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Abstract— This paper presents an observer design technique
for a class or nonlinear coupled parabolic PDEs using the
infinite dimensional approach in Hilbert spaces. In particu-
lar, the linear approximate model incorporating the spatially
varying coefficients of the set of PDEs is used for designing
a Luenberger-like observer in order to achieve exponential
convergence of the estimation error dynamics. The proposed
observer is applied to a chemical tubular reactor considering
only boundary measurements. The observer performance is
assessed via numerical simulations.
Key words: distributed parameter systems, boundary observa-
tion, parabolic PDEs, tubular reactor.

I. INTRODUCTION

Distributed parameter systems (DPSs) are a class of im-
portant processes in which process variables depend not
only on time but also on spatial coordinates. Examples of
DPSs can be found in (bio)process monitoring and control,
robotics, glass feeders, biomedical engineering and flexible
structures [1], [2], [3], [4]. The description of DPSs often
takes the form of hyperbolic, parabolic or elliptic partial
differential equations (PDEs). Parabolic PDEs represent the
dynamics of industrial processes involving convection and
diffusion effects. One of the most important examples of such
class of systems is the chemical tubular reactor (CTR) with
axial dispersion. In order to capture the effects of reactions,
diffusion and convection in the reactor, the reactor model is
often described by a set of coupled parabolic PDEs.

For the operation and monitoring of processes described
by PDEs, the knowledge of system states is of fundamental
importance. In most cases it is not possible to have full
information of the system states because of economical
reasons and/or the fact that not all variables can be measured,
that is, installing all the necessary sensors may not be
physically possible or their costs may become prohibitive.
In such a case, the internal states can be estimated from the
measurement of process inputs and outputs. State observers
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are usually based on the system model with an additional
output injection term to improve the convergence of the
observation error and they are digitally implemented by a
computer for monitoring and/or feedback purposes. Due to
the fact that many processes in real world applications can
be modeled in terms of PDEs, the synthesis of observers for
DPSs has received a growing interest in the last decades.
Among the available survey papers, we can cite those by
[5], [6], or a more recent textbook [7] where a broad class
of estimation techniques for DPSs are presented.

In this work, we are interested in boundary observation of
a system described by a set of nonlinear parabolic PDEs.
By linearizing the nonlinear equations in the vicinity of
the system steady state profile, a set of linear parabolic
PDEs with spatially varying coefficients is derived. Then,
the state estimation problem can be transformed into a well-
posed abstract boundary control problem by applying an
exact transformation. The spectrum of the resulting linear
operator is computed by solving an eigenvalue problem using
techniques for the solution of the heat equation for composite
media. Finally, the output injection operator is obtained using
the decomposition of the state space induced by the spectral
projection operator.

The majority of the previous work on boundary problems
of infinite-dimensional systems concentrated on cases that
are described by a single spatially invariant parabolic PDE
[8], [9], [10], [11]. This work investigates an approach for
systems that are described by a set of PDEs with spatially
varying coefficients, which would model many chemical
engineering processes. A case study involving a tubular
reactor, wherein the catalytic cracking of gas oil takes place,
is used to illustrate our method. The reaction scheme results
in a triangular operator, which simplifies the computation of
the spectrum of the system.

The paper is organized as follows. Section II focuses
on the mathematical description of the system of interest.
In particular, the nonlinear system is linearized around a
steady state profile and appropriate state transformations are
used to cast the linearized system as a well-posed infinite-
dimensional system. In Section III, the dynamics of the
tubular reactor (wherein the catalytic cracking of gas oil
takes place) is presented. This reaction consists of two series
parallel reactions. The mass balance for the reactor results
in a set of coupled nonlinear parabolic PDEs. Section IV
considers the design of the observer system based on the
spectrum decomposition where the triangular structure of
the state operator simplifies the computation of its spectrum.
Throughout this work, the mathematical notation is standard



for infinite dimensional systems; see, for instance, [8].

II. MATHEMATICAL MODEL DESCRIPTION

The dynamics of a one-dimensional tubular reactor with
axial convection, dispersion and reaction is given by

θt(z,t) = Γ0θzz(z,t)−Υθz(z,t) + F (θ(z,t)) (1)

subject to the following boundary and initial conditions

Γ0θz(0,t) = Υ(θ(0,t)− uin(t))
θz(l,t) = 0
θ(z,0) = θ0(z)

(2)

where θ(·,t) = [θ1(·,t),..., θn(·,t)]T ∈ H = Ln2 (0,l) denotes
the vector of state variables that represents the components
concentration of the process, z ∈ [0,l] (where l is the
reactor length) and t ∈ [0,∞) denote the spatial and time
domains, respectively. Γ0 and Υ are n-dimensional diagonal
matrices of constant entries that represent the diffusion
coefficients and the constant advective velocity respectively.
Γ0 is assumed to be nonsingular and F is a locally Lipschitz
continuous nonlinear function from a specific subset of H
into H describing the kinetic part of the process (reaction
rate equations). The associated state estimation problem for
system (1)-(2) consists in designing a dynamical observer on
the basis of its mathematical model, the measurement θ(0,t),
and the input signal uin(t) which produces a convergent state
estimate θ̂(z,t) such that limt→∞ θ(z,t)− θ̂(z,t) = 0.

The nonlinear system (1)-(2) can be linearized around
the steady state profile (θss(z),uss) and the resulting linear
system is given by:

θ̃t(z,t) = Γ0θ̃zz(z,t)−Υθ̃z(z,t) +K0(z)θ̃(z,t) (3)

subject to the following boundary and initial conditions

Γ0θ̃z(0,t) = Υ(θ̃(0,t)− ũin(t))

θ̃z(l,t) = 0

θ̃(z,0) = θ̃0(z)

(4)

where K0(z) = ∂F
∂θ (θss(z)), and θ̃(z,t) = θ(z,t) − θss(z)

and ũin(t) = uin(t)− uinss are the state vector and control
input deviations with respect to their steady state profiles,
respectively.

Remark 1: It should be emphasized that the formulation
developed in this section can be extended to the case
where the matrices Γ0 and Υ are diagonalizable. Indeed,
the state transformation can be used to return to the case
where the matrices are diagonal. Moreover, in most chemical
engineering processes, Γ0 and Υ are symmetric and then
diagonalizable.

The equation in (3) is of type diffusion-convection-
reaction PDE. In view of solving the eigenvalue problem, it
is much easier to convert the equation to a diffusion-reaction
type. To this end, consider the following transformation:

x(z,t) = T θ̃(z,t) = exp

(
−1

2
Γ−10 Υz

)
θ̃(z,t). (5)

By using the above transformation, the PDE system (3)-(4)
can be described in terms of a new state vector x(z,t) leading

to the following linear diffusion-reaction coupled parabolic
PDE:

xt(z,t) = Γxzz(z,t) +K(z)x(z,t) (6)

subject to the boundary and initial conditions given by

Γxz(0,t) = 1
2Υx(0,t)−Υũin(t)

Γxz(l,t) = − 1
2Υx(l,t)

x(z,0) = T−1θ̃0(z)

(7)

where the matrices K(z) and Γ are given by

K(z) = T [K0(z)− 1
4ΥΓ−10 Υ]T−1

Γ = TΓ0T
−1.

(8)

A. Infinite-dimensional formulation

We can formulate the system as an abstract boundary
system on the infinite-dimensional space H [8] by consider-
ing that u(t) = Υũin(t) yielding the following state space
representation:

ẋ(t) = Ux(t) x(0) = x0

Bx(t) = u(t)

y(t) = Cx(t)

(9)

where x(·,t) ∈ H and the operators U : D(U) → H , B :
D(B)→ Rnu , C : D(C)→ Rny are defined as

U = Γ
d2

dz2
+K(z) · I

D(U) =

{
x ∈ H : x,

dx

dz
are a.c. ,

d2x

dz2
∈ H

and Γ
dx

dz
(l) +

1

2
Υx(l) = 0

}
Bx =

[
−Γdx

dz (0) + 1
2Υx(0)

]
(10)

Cx =
[
x(0)

]
.

B. Reformulation on the extended space

Boundary problems occur frequently in applications, but
unfortunately they do not fit into the standard formulation
Σ(A, B, C) with bounded observation and control operators
C and B, respectively. However, for sufficiently smooth
control inputs u(t) it is possible to reformulate such problem
on an extended state space so that they lead to an associated
system in the standard form Σ(Ae, Be, Ce) as described in
[8]. Firstly, a new operator A is defined by

Ax = Ux, (11)

D(A) = D(U) ∩ kerB

=

{
x ∈ H : x,

dx

dz
are a.c.,

d2x

dz2
∈ H and

Γ
dx

dz
(0)− Υ

2
x(0) = 0, Γ

dx

dz
(l) +

Υ

2
x(l) = 0

}
.

By using standard results of C0-semigroup theory (see,
e.g., [8] and [12]), it can be shown that, if the entries of



K(z) are bounded, then A is the infinitesimal generator of
a C0-semigroup on H . Assume that there exists an operator
B ∈ L(U,H) such that for all u ∈ U , Bu ∈ D(U) and the
following holds:

BBu = u. (12)

By defining the new input as u̇(t) and a new state

xe(t) =

[
xe1(t)
xe2(t)

]
=

[
u(t)

x(t)−Bu(t)

]
(13)

the system representation can be reformulated on the ex-
tended state space He = U⊕H as a well-posed system with
bounded input operator and unbounded output operator:

ẋe(t) = Aexe(t) +Beu̇(t)

y(t) = Cexe(t) (14)

where

Ae =

[
0 0
UB A

]
Be =

[
I
−B

]
Ce = C

[
B I

]
. (15)

Observe that the operator Ce is well-defined on U⊕D(C),
provided that D(B) ⊂ D(C). Hence, the operator Ae

generates a C0-semigroup on He given by

T e(t) =

[
I 0∫ t

0
T (s)UBxds T (t)

]
(16)

where T (t) is the C0-semigroup generated by A. Since
the performed transformation is an exact transformation, the
resulting system (14) is equivalent to the original system in
the sense of [8]. As we need to estimate x(t) we must focus
on the second state equation of (14) and the measured output
y(t) which can be rewritten as

ẋe2(t) = Axe2(t) + UBu(t)−Bu̇(t)

y(t) = Cxe2(t) + CBu(t) (17)

Therefore, the proposed observer is formally given by

˙̂xe2(t) = Ax̂e2(t) + UBu(t)−Bu̇(t) + L(ŷ(t)− y(t))

ŷ(t) = Cx̂e2(t) + CBu(t). (18)

The convergence of the observer (18) is achieved by
finding an bounded operator L which ensures the exponential
stability of the corresponding error dynamics. Finally, we can
recover the estimation of the original states by using

x̂(t) = x̂e2(t) +Bu(t). (19)

III. APPLICATION TO A TUBULAR REACTOR

The process considered in this section is the tubular
catalytic cracking reactor presented in [13]. This process
involves axial dispersion, convection and the following re-
actions taking place in it:

Θ1
k1→ Θ2

k2→ Θ3

Θ1
k3→ Θ3

(20)

where Θ1 represents gas oil, Θ2 gasoline and Θ3 other
products (e.g. butanes, coke, etc.). Putting aside the reactions

related to Θ3, the dynamics of the system are described by
the following parabolic PDEs representing the component
balances of Θ1 and Θ2 within the reactor:

θ1t(z,t) = γθ1zz(z,t)− υθ1z(z,t)− k0θ21(z,t) (21)
θ2t(z,t) = γθ2zz(z,t)− υθ2z(z,t) + k1θ

2
1(z,t)− k2θ2(z,t)

(22)

subject to the boundary conditions given by

γθ1z(0,t) = υ(θ1(0,t)− u1(t)) θ1z(l,t) = 0
γθ2z(0,t) = υ(θ2(0,t)− u2(t)) θ2z(l,t) = 0

(23)

for all t ≥ 0 and all z ∈ [0,l], where l is the reactor length,
and θ1(z,t), θ2(z,t), γ, υ, u1(t) and u2(t) denote the weight
fractions of reactant Θ1 and Θ2, the axial dispersion coef-
ficient, the superficial velocity, the inlet weight fraction of
component A and the inlet weight fraction of component B,
respectively. Such model takes the form of (1) by considering

θ(z,t) =

[
θ1(z,t)
θ2(z,t)

]
Γ0 =

[
γ 0
0 γ

]
Υ =

[
υ 0
0 υ

]
F (θ) =

[
−k0θ21

k1θ
2
1 − k2θ2

]
.

The corresponding steady-state equations of the PDEs
model defined by (21)-(22) are given by the following ODEs:

γ
d2θ1ss

dz2
− υdθ1ss

dz
− k0θ12ss = 0 (24)

γ
d2θ2ss

dz2
− υdθ2ss

dz
+ k1θ1

2
ss − k2θ2ss = 0 (25)

subject to the boundary conditions

γ
dθ1ss
dz

(0) = υ(θ1ss(0)− u1ss)
dθ1ss
dz

(l) = 0 (26)

γ
dθ2ss
dz

(0) = υ(θ2ss(0)− u2ss)
dθ2ss
dz

(l) = 0. (27)

The adopted numerical values for the process parameters
are taken from Table I (see [13]).

Parameters Numerical
Values

l 1 m
k0 22.9 (h x weight fraction)−1

k1 18.1 (h x weight fraction)−1

k2 1.7 (h)−1

γ 0.5 m2 x h−1

υ 2 m x h−1

u1(t) 0.7 weight fraction
u2(t) 0 weight fraction

TABLE I: Parameters of the process.

The steady state profiles of θ1(z,t) and θ2(z,t) are shown
in Figure 1. They were obtained by solving numerically (24)-
(27) considering the parameters given in Table I.

The deviation vector θ̃(z,t) = θ(z,t)−θss(z) is substituted
by the new vector variable x(z,t) according to the transfor-
mation defined in (5) leading to[

x1(z,t)
x2(z,t)

]
=

[
e−

υ
2γ z 0

0 e−
υ
2γ z

] [
θ̃1(z,t)

θ̃2(z,t)

]
. (28)
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Fig. 1: Steady state profiles.

By applying the procedure described in Section II and
assuming that there exists a single input u1(t) (setting
u2(t) = 0), we can formulate the system as an abstract
boundary system on the Hilbert space H = L2(0,1) ⊕
L2(0,1) according to

ẋ(t) = Ux(t) x(0) = x0

Bx(t) = u(t) (29)
y(t) = Cx(t)

where

x(·,t) =

{[
x1(·,t)
x2(·,t)

]
, 0 ≤ z ≤ l

}
∈ H

and the operators U : D(U) → H , B : D(B) → R, C :
D(C)→ R2 are defined as

U =

[
γ d2

dz2 − k̂1(z) 0

2k1x1ss(z) γ d2

dz2 − k̂2

]
=

[
U11 0
U21 U22

]

D(U) =

{
x ∈ H : x,

dx

dz
are a.c. ,

d2x

dz2
∈ H and

γ
dx1
dz

(l) +
υ

2
x1(l) = 0,

γ
dx2
dz

(0)− υ

2
x2(0) = 0,

γ
dx2
dz

(l) +
υ

2
x2(l) = 0

}
Bx =

[
−γ dx1

dz (0) + υ
2x1(0)

]
Cx =

[
x1(0)
x2(0)

]
(30)

with k̂1(z) = υ2

4γ + 2k0θ1ss(z) and k̂2 = υ2

4γ + k2.

IV. OBSERVER DESIGN

The observer design is based on the procedure described
in Section II-B with A as defined below

Ax =

[
γ d2

dz2 − k̂1(z) 0

2k1x1ss(z) γ d2

dz2 − k̂2

]
=

[
A11 0
A21 A22

]
,

D(A) = D(U) ∩ kerB (31)

=

{
x ∈ H : x,

dx

dz
are a.c.,

d2x

dz2
∈ H and

Γ
dx

dz
(0)− 1

2
Υx(0) = 0,

Γ
dx

dz
(l) +

1

2
Υx(l) = 0

}
,

The study of the spectrum of A allows designing an
observer with a specified convergence rate. This section sum-
marizes the computation of the eigenvalues and eigenvectors
of operator A.

Notice that −A11 and −A22 are both Sturm-Liouville op-
erators, which are self-adjoint with respect to an appropriate
inner product.

Now, let λn and χn be the eigenvalues and eigenfunctions
of the operator A11, and µn and ψn be the eigenvalues and
eigenfunctions of the operator A22. Then, it follows that:
• A22 is a linear operator with constant coefficients and

its eigenvalues are given by

µn=−γw2
n−k̂2, with tan(wnl)=

4γwnυ

4γ2w2
n−υ2

and the corresponding eigenfunctions are given by

ψn = cos(wnz) +
υ

2γwn
sin(wnz).

• A11 is a linear operator with reaction coefficient de-
pending on z, consequently the calculation of the spec-
trum of the operator A11 is a challenging issue. This
problem can be carried out by dividing the length
of the reactor into a finite number N of segments
where it is assumed that at each segment the values of
coefficients are constant. The mathematical formulation
of this approach can be found in [14]. Hence, the
eigenvalues λn are given by

λn=−γw2
n−k̂1n, with tan(wnl)=

4γwnυ

4γ2w2
n−υ2

and the corresponding eigenfunctions are given by

χn(z) = a1ρn sin(wnz) + ηn sin(wnz)

where ρ1 = 1; ρn = sn,n−1sn−1,n−2 · · · s2,1 and

sn,n−1 =
sin(wn−1zn) + ηn−1 cos(wn−1zn)

sin(wnzn) + ηn cos(wnzn)

sN,N−1 =
1

hN

sin(wN−1zN ) + ηN−1 cos(wN−1zn)

sin(wNzN ) + ηn cos(wNzN )

η1 = −υ sin(w1z1)− 2h1w1 cos(w1z1)

υ cos(w1z1) + 2h1w1 sin(w1z1)

ηi =
numi

deni



with

numi = cos(wizi)(sin(wi−1zi) + ηi−1 cos(wi−1zi))

− sin(wizi)(cos(wi−1zi)− ηi sin(wi−1zi))

deni = sin(wizi)(sin(wi−1zi) + ηi−1 cos(wi−1zi))

+ cos(wizi)(cos(wi−1zi)− ηi sin(wi−1zi)).

A. Eigenvalues and eigenfunctions of the operator A
The operator A is triangular and therefore its eigenvalues

consist of the union of eigenvalues of A11 and A22, i.e.,
σ(A) = σ(A11) ∪ σ(A22), where:

σ(A) =

{
σ2n+1 = λn, ∀n ≥ 0

σ2n = µn, ∀n ≥ 1,
(32)

with the corresponding eigenvectors given by

φ2n+1 =

[
χn

(λnI −A22)−1A21χn

]
φ2n =

[
0
ψn

]
.

(33)

The corresponding biorthonormal eigenfunctions can be
found by solving the eigenvalue problem for the adjoint
operator A∗ and are given by

Ψ2n+1 =

[
χn
0

]
Ψ2n =

[
(µnI −A11)−1A21ψn

ψn

] (34)

where

(µnI −A11)−1A21ψn =
∑∞
m=0

1
µn−λm 〈A21ψn, χm〉χm

(λnI −A22)−1A21χn =
∑∞
m=0

1
λn−µm 〈A21χn, ψm〉ψm.

Hence, the first five eigenvalues of the operators A11 and
A22 are as follows

λ = {−2.39× 10−5, − 1.34× 10−4, − 4.46× 10−4,

− 1.12× 10−3, − 2.35× 10−3}

µ = {−2.04× 10−6, − 1.096× 10−5, − 5.68× 10−5,

− 2.08× 10−4, − 5.78× 10−4}.

B. Luenberger-observer

In order to design a dynamical observer of the form (18),
we must guarantee the β-exponential detectability of the
pair (A,C), where C should be interpreted as a bounded
linear functional on H which approaches the action of the
Dirac delta distribution. Assuming a decay rate for the state
estimation error β = −2.5 × 10−6, which provides faster
convergence than the one of the states, the spectrum of σ(A)
is the union of two parts, σ+

β (A) and σ−β (A), such that a
rectifiable, closed, simple curve Cβ can be drawn so as to
enclose an open set containing σ+

β (A) in its interior and
σ−β (A) in its exterior. The operator, PCβ , defined by

PCβx =
1

2πj

∫
Cβ

(λI −A)−1xdλ (35)

is the spectral projection operator that induces a decompo-
sition of the state space as well as the operators according
to

H = H+
β ⊕H

−
β

PCβx =
∑

σ(A)∈σ(A)+β

〈x,Ψn〉φn

A+
β x = APCβx =

∑
σ(A)∈σ(A)+β

σn(A)〈x,Ψn〉φn (36)

C+
β x = CPCβx =

∑
σ(A)∈σ(A)+β

〈x,Ψn〉Cφn.

The system Σ(A, − ,C) is β-exponentially detectable by
L = iβL0 , where L0 is such that A+

β + L0C
+
β is β-

exponentially stable and iβ is the injection operator from
H+
β to H as shown in [8]. To guarantee the well-posedness

of our formulation with bounded operators, the operator C
is redefined as

Cx =

[
x1(0)
x2(0)

]
'

[∫ 1

0
1[0,ε]x1(z,t)dz∫ 1

0
1[0,ε]x2(z,t)dz

]
(37)

where

1[0,ε] =

{
1
ε , 0 ≤ z ≤ ε,
0, elsewhere,

for a sufficiently small ε. Considering that ε = 0.01, we
obtain

(A+
β ,− , C

+
β ) =

(
µ2,− ,

[
0∫ ε

0
1[0,ε]ψ1(z)dz

])
=

(
−2.04× 10−6,−,

[
0

0.91

]) (38)

and L0 = [0 − 5.05 × 10−7]. Notice that L0 is such that
A+
β + L0C

+
β is β-exponentially stable. Thus,

Ly = iβL0y =

[
0

ψ1(z)

]
[0 − 5.05× 10−7]y. (39)

The observer system has been simulated considering the
parameters of the system given in Table I with the initial
profiles for the observer system as θ̂1 = θ̂2 = 0 . The
numerical simulation of PDE systems can be achieved using
the method of lines and the MATMOL library [15]. Figures 2
and 3 show the evolution of the actual states θ1, θ2 (red
lines) and the estimated states θ̂1, θ̂2 (blue lines) related to
the proposed observer.

V. CONCLUDING REMARKS

In this paper, a Luenberger-type state observer is presented
for a certain class of nonlinear coupled parabolic PDEs
considering only boundary measurements. To this end, a
linear approximate model of the system around a given
steady-state profile is considered, which results in a linear
DPS with spatially-varying coefficients. The observer output
injection operator is thereby initially determined by making
use of the boundary conditions for the stability of a triangular
operator having Sturm-Liouville operators in its diagonal.
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Fig. 3: Time evolution of the spatial profile of θ2 and θ̂2 at
time instants t1 = 0, t2 = 61.5s, t3 = 320.7s, t4 = 644.7s.

Subsequently, the output injection operator is designed by
using spectrum decomposition conditions ensuring a certain
convergence decay rate for the estimation error dynamics.
The proposed observer was applied to a tubular catalytic
cracking reactor and the observer performance was studied
via numerical simulations. It has been observed that the
formulated observer has provided an accurate estimation of
the states of the original plant.

Moreover, in view of the promising numerical results
obtained in the application (see e.g. Figures 2 and 3), an
interesting open problem is the extension of the method
described in this paper to a more general class of coupled
parabolic PDEs with not necessarily triangular structure. This
problem is currently under investigation by the authors. Thus,
the proposed study is a point of departure to design observers
based on the spectrum for more general state operators.
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