Information Systems 34 (2009) 578-601

Contents lists available at ScienceDirect =
Information
Systems
Information Systems
journal homepage: www.elsevier.com/locate/infosys ssomccen

On the consistent rewriting of conjunctive queries under primary
key constraints

Jef Wijsen

Université de Mons, Place du Parc 20, B-7000 Mons, Belgium

ARTICLE INFO ABSTRACT

This article deals with the computation of consistent answers to queries on relational
databases that violate primary key constraints. A repair of such inconsistent database is
obtained by selecting a maximal number of tuples from each relation without ever
selecting two distinct tuples that agree on the primary key. We are interested in the
following problem: Given a Boolean conjunctive query g, compute a Boolean first-order
(FO) query y such that for every database db, s evaluates to true on db if and only if g
evaluates to true on every repair of db. Such is called a consistent FO rewriting of q.

We use novel techniques to characterize classes of queries that have a consistent FO
rewriting. In this way, we are able to extend previously known classes and discover new
ones. Finally, we use an Ehrenfeucht-Fraissé game to show the non-existence of a
consistent FO rewriting for 3x3y(R(x,y) A R(y,¢)), where ¢ is a constant and the first
coordinate of R is the primary key.

Keywords:

Certain query answering
Consistent query answering
Database repairing

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Consistent query answering (CQA) was introduced by
Arenas et al. [1] and has gained considerable interest in
recent years; see for example the invited talk by Chomicki
[2]. The aim of CQA is to get consistent information out of
inconsistent databases. In technical terms, the repairs of
an inconsistent database db are defined as the consistent
databases that can be obtained from db by some minimal
change. If, as in this article, the constraints are primary
keys, then it is natural to take as repairs the maximal
consistent subsets of db. Given a Boolean query g, the
problem then is to decide whether g evaluates to true on
every repair of db.

For example, the relation EMP in Fig. 1, which violates
the primary key Name, has two repairs, each containing
one tuple. The query JFy(EMP(Blake,y, 10K)) evaluates to
true on both repairs, so “Blake earns 10K” is accepted as a
consistent piece of information. On the other hand,

E-mail address: wijsen@umbh.ac.be

0306-4379/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/].is.2009.03.011

Jz(EMP(Blake, Paris, z)) is not true in every repair, so we
cannot be sure that Blake lives in Paris.

We deal with conjunctive queries in this article. For a
fixed Boolean conjunctive query g, CQA(q) is the following
problem: On input of a not-necessarily-consistent data-
base db, decide whether g evaluates to true on every
repair of db. It is by now well known (see for example [2])
that CQA(q;) is coNP-complete for the following Boolean
query q;:

¢r : IAYIZ(R®.2) A SV, 2),

where primary key positions are underlined. On the other
hand, CQA(q,) is in P for the following query g, [3]:

qz - 3x3Y3z(R(X, 2) A S,).

The different computational behavior arises because the
“join” variable z (i.e. the variable common to both atoms)
constitutes a primary key in the second query, but not in
the first one.

Fuxman and Miller [3] showed that for every query q in
some syntactically restricted class, called Cpyr, there
exists a computable Boolean first-order (FO) query ¥ such

www.sciencedirect.com/science/journal/is
www.elsevier.com/locate/infosys
dx.doi.org/10.1016/j.is.2009.03.011
mailto:wijsen@umh.ac.be

J. Wijsen / Information Systems 34 (2009) 578-601 579

EMP | Name City Sal
‘Blake Paris 10K

Blake London 10K

Repair1| Name City Sal
Blake Paris 10K

Fig. 1. Relation with two repairs.

Repair2 | Name City Sal
| Blake London 10K

that for every database db, g evaluates to true on every
repair of db if and only if evaluates to true on db. We
call such y a consistent FO rewriting of g. Clearly, if g has a
consistent FO rewriting y/, then CQA(q) is in P (because
can be evaluated in polynomial time on any database). For
the query g, a consistent FO rewriting is

Yyt IAXIZRE,Z)A
VZ(R(X,2) — 3y(SZ.).

Intuitively, , checks whether for all R-tuples with
primary key value x, there exists a joining tuple in S.

Query rewriting is a clean and elegant approach to
consistent query answering. This article presents a
number of new results in this field; its main contributions
can be summarized as follows:

1. We define the class of key-rooted' Boolean conjunctive
queries and give a rewrite function that computes a
consistent FO rewriting for every query in this class.
The function consists of two rewrite rules. The class of
key-rooted queries seems to be large: we are unaware
of Boolean conjunctive queries that are FO rewritable
and not key-rooted (but we have no formal proof that
no such query can exist).

2. As the notion of key-rooted queries is a semantical one,

the task then is to define syntactic restrictions on
queries that guarantee ‘“key-rootedness” (and hence
guarantee applicability of our rewrite function). The
advantage of our approach is that the notion of key-
rootedness hides the syntactical intricacies that com-
plicate FO rewriting.
Instead of Fuxman Miller (FM) join graphs, we use the
join trees defined by Beeri, Fagin, Maier and Yannaka-
kis [5], called BFMY join trees hereafter. This technique
allows us to characterize new, previously unknown
classes of queries with a consistent FO rewriting (some
of which have cyclic FM join graphs, but acyclic BEMY
join trees).

3. We pay special attention to queries with multiple
occurrences of the same relation name, a class for
which consistent FO rewriting was largely unexplored
until now. For the query

q = Ix3Ay3FzZ(R(x,2) A R(Y,2) A X#Y),

it is known that CQA(q) is in P but g has no consistent
FO rewriting [6]. We show that the same holds for the
query g = Ix3y(R(x,y) A R(y,c)), where c is a constant.
This result is surprising, since the join variable y

! In [4], these queries were called rooted. We prefer the term key-
rooted in this article, to avoid confusion with the construct of rooted tree
that will also be used.

appears as primary key. It indicates that consistent FO
rewriting easily fails for conjunctive queries with self-
joins (i.e. in which the same relation name occurs more
than once).

This article is organized as follows. The next section
introduces the notations and terminology used through-
out the article. In particular, the term “rule” will be used
as a shorthand for “Boolean conjunctive query.” Section 3
discusses related work. Section 4 defines the model-
theoretic class of key-rooted rules. Section 5 gives a
rewrite function that computes a consistent FO rewriting
for any key-rooted rule. Section 6 deals with different
kinds of join trees and exhibits some useful properties.
Section 7 characterizes classes of key-rooted rules in
terms of BFMY join trees. Section 8 shows that for the
query q = 3Ix3y(R(x,y) A Ry, c)), CQA(q) is in P but g has no
consistent FO rewriting. Section 9 shows how to deal with
conjunctive queries with free variables. Section 10 con-
cludes the article. Some lengthy proofs and helping
lemmas have been moved to the Appendix.

2. Notations and terminology

A symbol is either a constant or a variable. Let X be a set
of variables. A valuation over X is a mapping 6 from X to
constants; the mapping 0 is extended to all symbols as
follows: if s is a variable that does not occur in X or if s is a
constant, then 6(s) = s.

If X is a sequence of symbols, then vars(X) is the set of
variables that occur in X. A valuation of X is a valuation over
vars(X).

Key-equal atoms: A database schema is a finite set of
relation names. Every relation name R has a unique
signature, which is a pair [n, k] with n>k>1: n is the arity
of the relation name and the coordinates 1,2, ...,k make
up the primary key. If R is a relation name with signature
[n, k], then R(sq,...,Sp) is an R-atom (or simply atom),
where each s; is a constant or a variable (1<i<n). Such an
atom is commonly written as R(X,y) where X =sq,...,5
and y = Si,1,...,Sp. An atom is ground if it contains no
variables. All constructs that follow are defined relative to
a fixed database schema.

A database is a finite set I of ground atoms using only
the relation names of the schema. Two ground atoms

Ri(dy, by), Ry (d2, by) el are key-equal if Ry =R, and
d; = d,. We write [Ry(d, 51)]], for the set containing each

atom of I that is key-equal to R;(dy, b1). This notation
extends naturally to subsets J<I, as follows:
U1y =UllAl 1A €]).

Repair: A database I is consistent if it does not contain
two distinct atoms that are key-equal. Thus, I is consistent
if for every atom A € I, [A]; = {A}. A repair of a database |
is @ maximal (under set inclusion) consistent subset J of I.

Non-ordered and ordered rules: As in [7, p. 41], the term
rule will be used as a shorthand for rule-based conjunctive
query. Moreover, all rules are understood to be Boolean.
Thus we have the following definitions.

580 J. Wijsen / Information Systems 34 (2009) 578-601

A (non-ordered) rule is a finite set
q={RiGE.Y1)- ... Ru@im,)}

of atoms. This rule is satisfied by a database I, denoted
I & g, if there exists a valuation 0 of X1y, - - - Xy, such that
for eachie {1,...,m}, Ri(0X),0))) € I.

We say that a rule g has a self-join if two distinct atoms
of q share the same relation name.

In several places of the technical development, the
order in which atoms of a rule are listed is significant. In
particular, the syntactic rewrite function of Section 5
processes the atoms of a rule from left to right. Therefore,
an ordered rule of length m is a sequence

9o = (R1@E1.¥1)s- - -, Rm@Em, Jim))

of (not necessarily distinct) atoms. The ith atom of q,,
1<i<m, is denoted q,[i], that is, q,[i] = R;(¥;,¥;). The first
atom R;(%;,¥;) is called the prefix of the rule, and
(R2(%2,¥2), - ., Rm(Xm,¥,)) the tail. The length m of q, is
denoted by |q,|. Satisfaction of ordered rules is defined in
the same way as for non-ordered rules. In general, any
construct that is defined for non-ordered rules naturally
carries over to ordered rules by ignoring the order and by
eliminating duplicates (if any).

Notice that rules contain no built-in predicates.

Consistently true: A rule q is consistently true in I,
denoted IFg,q, if for every repair J of I, J = q. The problem
CQAs(q), where S is a database schema and q is a rule, is
the complexity of (testing membership of) the set:

CQAs(q) = {I | I is a database over S and IFgyeq}.

Throughout this article, the schema S will be implicitly
understood and therefore omitted.

Consistent FO rewriting: We say that a Boolean FO query
Y is a consistent FO rewriting of a rule q if for every
database I, IFsyeq if and only if IF. Thus, g has a
consistent FO rewriting if and only if CQA(q) is first-order
definable.

3. Related work

The repairs defined above are maximal consistent
subsets of the original database. In the case of primary
keys, it makes no difference whether maximality is
expressed relative to set inclusion (as in [1]) or cardinality
(as in [8]). Inserting new tuples is useless for restoring
primary key violations. Tuple modifications, as proposed
in [9], are not considered in this article.

The idea of consistent query rewriting first appeared in
[1]. Fuxman and Miller [3] have made a number of
breakthroughs in the consistent FO rewriting of rules
under primary key constraints, which motivated the
ConQuer system [10]. Their results have been generalized
and extended to exclusion dependencies by Grieco et al.
[11] and to unions of conjunctive queries by Lembo et al.
[12].

Up to Section 9, we limit our attention to Boolean
queries. Thus, all variables of a rule are understood to
be implicitly existentially quantified. The definition of

R(x,y)
o T(y,w)

y
R(x,y) S(x,y)
; <>

y

S (u,w)

Fig. 2. FM join graphs of {R(x,y),S(u,w), T(y,w)} and {R(x,y), S(x,¥)}.

P(y,u, x)

X

: N(x,2,w)
S(v,u) =

w

T(v,w)

Fig. 3. FM join graph of {P(y,u,x),S(v, u), N(x,z, w), T(v, w)}.

Fuxman Miller join graph first appeared in [13] and was
slightly adapted in [3].

FM join graph: The FM join graph of a (Boolean) rule
q={Ri(1.¥1),....Rm(Xm.y,n)} is a directed graph whose
vertices are the atoms of g; there is a directed edge from
Ri(X;,¥;) to R;(%;,y)) if i+j and vars(y;) N vars(X;y;) # {}.

It is common to label an edge from Ri(X;,¥;) to Ri(%;.)
in the FM join graph of g with the (nonempty) set of
variables that occur in both y; and X;y;.

Fig. 2 shows two FM join graphs; neither is a directed
tree (the left graph has a vertex with two incoming edges).
Fig. 3 shows an FM join graph that is a directed tree.

Fuxman and Miller [3] give an algorithm that com-
putes a consistent FO rewriting for any rule gq=
{Ri(X1,¥1) ..., Rn(Xm,¥»)} with the following properties:

1. 1<i<j<m implies R;#R;. Thus, no relation name
occurs more than once in q;

2. the FM join graph of q is a directed forest; and

3. if there is a directed edge from atom R;(%;, ;) to R;(X;. y)),
then vars(X;) C vars(y;). Using the terminology of
Fuxman and Miller [3], an edge from R;(X;,y;) to
Ri(¥;,y;) implies a full nonkey-to-key join from R;i(X;,¥;)
to Rj(&jj)'

This class of rules is called Cg,yes;. In this article, we denote
by Cuee the subclass of Cpyresr that contains q € Crorest
whenever the FM join graph of q is a (connected) directed
tree.? Lemma 2 in [3] implies that whenever two distinct
Ciree components q; and g, of a Cpps query share a
variable x, then x can only occur in the primary keys of the
root atoms of ¢q; and .

2 Caveat: This class is not the same as the class Cyee in Fuxman and
Miller’s original conference article [13]. The definition of Ce in [13]
does not require that the Fuxman Miller join graph be connected.

J. Wijsen / Information Systems 34 (2009) 578-601 581

The class C/,,, defined by Grieco et al. [11], omits the
third condition in the definition of Cp,y.s:, that is, nonkey-
to-key joins need not be full in C/,,. Fuxman and Miller
give a query g without self-join such that the FM join
graph of q is a directed forest and CQA(q) is coNP-hard
[3]. Proposition 1 slightly modifies that query such that its
FM join graph becomes a tree, while maintaining intract-
ability. It follows that under the assumption P NP, not all
queries in C;,, have a consistent FO rewriting. Notice that
in the rule of Proposition 1, the atom P(y,u,x) contains
some, but not all, variables that occur in the primary key
of S(v,u). Hence, the rule contains a nonkey-to-key join
that is not full.

Proposition 1. If g = (P(y,u,x), S(v,u), N(x,z,w), T(v,w)},
then CQA(q) is coNP-hard.

Complexity results on consistent query answering for
larger classes of constraints appear in [14,15].

4. Key-rooted rules

We define the model-theoretic notion of key-rooted
rule. Key-rootedness is based on the following model-
theoretic property which can be easily verified. Let I be a
database. An ordered rule g with prefix R;(X;,y) and tail
q is true in every repair of I if the following condition is
satisfied:

there exists a valuation 0 of X; (let 0(X;) = d) such that I
contains an Ry-atom with primary Kkey value d and for
every such atom Ry (d, E) el, thqe exists a valuation 95
of %y, such that 0;(*,y,) = db and 0;(q) is true in
every repair of I that contains Ry(d, b).

The above condition deals with all ways to repair multiple
R;-atoms with the same primary key value d. There are
two points to observe:

1. If such valuation 6 exists, then 6(q) is also true in every
repair of I.

2. Consistent truth of g is reduced to consistent truth of
shorter rules 0;(q') for every R, B) el

The above condition is sufficient for I=gyeg. Key-rooted-
ness will be defined in such a way that every key-rooted
ordered rule g satisfies that condition whenever I=qyq.
Observation (1) leads to the notion of “reifiability”
(Definition 1); observation (2) to a recursive definition
of key-rooted ordered rules (Definition 2). Lemma 1
provides a sufficient condition for reifiability that will be
used in some proofs later on. Proposition 2 then indicates
that the class of key-rooted rules is of practical interest: it
encompasses the class Cgee, which contains many com-
mon, practical queries [13]. Moreover, as we will see later
on, it covers relevant queries not in Cpyes, Such as the
“intersection” query 3IX3y(R(X,y) A S(X.¥)), where R and S
have the same signature.

Definition 1. Let g be a rule containing R(X,y). We call
R(%,y) reifiable in q if for every database I, if IFg,q, then
there exists a valuation 0 of X such that I=g,0(q).

For a consistent database J, we define:
Reifies(q,X,]) = {0 | 0 valuation of X,] F 0(q)}.

Example 1. We show that S(y) is not reifiable in
q={S),Rx.y)). Let I={S(b), S(c), R(ab), R@c). The
two repairs of I are J; and J,:

J1 = {8(b), S(c), R(a, b)}
J2 = (S(b), S(0), R(a, ©)}

Since J; £ q and J, F q, we have IEg,q. However, there is
no constant e such that I=g,e{S(e), R(x, e)}.

On the other hand, from the results in this article, it will
follow that R(x,y) is reifiable in g = {S(y), R(x,y)}.

Example 2. Neither R(x,y) nor R(y,c) is reifiable in
q = {R(x,y),R(y,0)}. Consider the database I={R(a,b),
R(b,¢),R(b,d),R(d, c)}. The two repairs of [are J; and J,:

Ji = {R(a, b).R(b.c).R(d,)}
J2 = {R(a,b), R(b,d),R(d, 0)}

Clearly, J; F g and J, E q. However, there exists no constant
e such that J; and J, both satisfy {R(e,y),R(y, ¢)}. Likewise,
there exists no constant f such that J; and J, both satisfy
{R(x.f),R(f, 0)}.

Example 3. Let ¢ = {R(X,Y),R(Y,2)}. Let] = {R(a, b), R(b, 0),
R(c,d), R(e,e)}. Then, Reifies(q,_x,]) contains the following
valuations of x: {x~—a}, {x— b}, and {x+— e}. Reifies(q,x,])
does not contain {x— c}, because J #{R(c,y), R(y, 2)}.

Let g be a rule containing atom R(X,y). Let I be a
database. For every repair J of I, there can be zero, one or
more valuations 0 of X such that J F 6(q). The following
question arises: Is there a repair J such that for every
valuation w of X, w(q) is satisfied by J only if w(q) is
satisfied by every repair of I? Lemma 1 states that if the
answer to this question is “yes” for every database I, then
R(X,y) is reifiable in q.

Lemma 1. Let q be a rule containing R(X,y). The atom R(X,y)
is reifiable in q if for each database I, for all repairs J;,], of I,
there exists a repair J of I such that Reifies(q,X,]) <
Reifies(q, X,J;) N Reifies(q, X,],).

Proof. Let I be a database. Assume that for all repairs J;,J,
of I, there exists a repair J of I such that
Reifies(q, X,]) € Reifies(q,X,J;) N Reifies(q,X,J,). We can
assume a repair J satisfying Reifies(q,X,]) =
{Reifies(q,X,]') | J' repair of I}; the latter intersection is
finite, since the number of repairs is finite. We distinguish
two cases:

e Reifies(q,X,])#{}. Then, we can assume a valuation 0 of
X such that for each repair J' of I, J' = 0(q). It follows
I':sureg(q)-

e Reifies(q,X,]) = {}. Then, for every valuation 0 of X,
J¥#0(q). 1t follows J ¥ q. Since] is a repair of I, I ¥ syreq.

Since I is arbitrary, it follows that R(X,y) is reifiable
ing. O

We now define the conditions for an ordered rule to be
key-rooted: the rule’s prefix must be reifiable, and its tail

582 J. Wijsen / Information Systems 34 (2009) 578-601

must be key-rooted under every valuation of its prefix. To
get the recursion off the ground, the empty rule is key-
rooted. Notice that this definition is not relative to a given
database.

Definition 2. We define key-rooted ordered rules:

1. The empty rule is key-rooted.
2. The ordered rule g = (Ri(X1.¥1)....,RnXm.¥)) with
m=>1 is key-rooted if
(a) Ri(X1,y,) is reifiable in q; and
(b) for each valuation 0 of Xy, the ordered rule 6(q’) is
key-rooted where ¢’ is the tail of q.

A non-ordered rule is called key-rooted if it is key-rooted
under some linear ordering of its atoms.

The following proposition will serve in certain examples.
It is subsumed by more general theorems to follow.

Proposition 2.

1. If 1q| = 1, then q is key-rooted.

2. The ordered rule (R1(d.y,),R2(X2.¥,)), where d contains
no variables, is key-rooted (possibly Ry = Ry).

3. Let q be a (non-ordered) rule in Cyee, and let T be its FM
join tree. Let

9o = (RiE1.¥1). - ... RmEm. Yim))

be the ordered rule obtained from q by listing its atoms in
increasing depth. Thus, if T contains a directed edge from
Ri(X;,¥;) to Ri(X;,¥;), then i<j. Then, q, is key-rooted.

Proof. The first item is subsumed by Theorem 4. The
second item is subsumed by Theorem 2. The third item
follows from the proof of Corollary 5. O

Lemma 2 shows that for every key-rooted ordered rule
g, CQA(q) is in P. The proof characterizes CQA(q) as the set
of databases satisfying a property, called Property FO,
which can be checked in polynomial time. As was to be
expected, Property FO expresses the condition that
motivated the definition of key-rootedness (see first
paragraph of Section 4). Significantly, we will show in
Section 5 that Property FO is first-order expressible, which
thus gives us a consistent FO rewriting for any key-rooted
rule.

Lemma 2. If q is a key-rooted ordered rule, then CQA(q) is
inP.

Proof. Let q = (R{(X1,Y1), ..., Rm(Zm,¥m)) be a key-rooted
ordered rule. If m = 0, then the desired result is obvious.
Next assume m=>1.

Let I be a database such that I=geq. Since Ry(Xy,¥,) is
reifiable in g, we can assume the existence of a valuation 0
of X; such that I=q.0(q). Assume w.l.o.g. that 0(%;) = d.
Then, there exists an atom R;(d, B’) eI such that every
repair J of I contains exactly one atom of [R(d, B/)}],.

Let Ry(@,b) e I be key-equal to R (@, B/). Let J be a repair
of I such that R;@@,b) e]. Since] E 0(q), it follows that

there exists a valuation 0; of X¥;y; such that 0;(%) =
0x) =4, 0;(31) = b,and J E 05(q@). Clearly, if] is a repair of
I such that Ry(d, B) €], then J is a repair of (I\[R(d, B/)]],)U
{R1(d, B)}; and the inverse is also true. It follows

(1\ [[Rl (ﬁa Bﬂ)}][)) {Rl (ﬁa B)}’:sureef,(q)- Hence, lf I':surer then
the following condition holds:

Property FO. For some atom R;(d, B/) e I, for every key-
equal atom R;(d, b) e, there exists a valuation 05 of X134
such that 0;(*1y;) = @b and

(N[Ri(@ b)) U {R1 (@ B)}=sure05(@), (1)

where ¢’ is the tail of g.

It is easy to see that Property FO is also sufficient for
IFsureq. The quintessence now is that 0;(q') is key-rooted
by Definition 2. That is, we have reduced the test IFgy.q to
tests of the form IpFsureqy Where Iy €I and |qy| = Iq| — 1.
For every query of smaller length, its query prefix can be
mapped to at most |I| different atoms. For a database I that
is ordered by primary key values, the overall complexity
for testing I ¢ CQA(q) is O(I|™) where m = |q|. O

5. Consistent first-order rewriting of key-rooted ordered
rules

We show that if g is a key-rooted rule, then we can
construct a FO formula , that checks membership of
CQA(q); that is, for every database I, IFqy.q if and only if
I'= 4. The formula , is essentially nothing else than a
first-order encoding of Property FO in the proof of
Lemma 2.

To start with a simple example, consider the singleton
rule gy = Ry(a, b), which is obviously key-rooted because it
contains no variables. To ease the technical treatment, we
encode this rule as Ry(x,y) A ¢ where ¢ = (x = a)A (y = b).
The following formula starts encoding Property FO:

IxIY'(R1(X.Y") AVY(R1(x,y) — Rewrite())).

Intuitively, “for some atom Rl(Q,E/)eI” is encoded
by 3x3y'(Ri(x,y’) A---), and “for every key-equal atom
R1@B)el” is encoded by Vy(R;(x,y) — ---). Since the
formula ¢ is a conjunction of equalities, its truth is
database independent; it will be defined that
Rewrite(¢p) = ¢. Thus, we obtain the following consistent
FO rewriting for q,:

XY (R1(X.Y) AVY(R1(X,Y) = (x =a) A (y = D)),

which is equivalent to

I'(R1(a,y") AVY(RR1(a,y) — (¥ = b))).

As a follow-up example, consider the ordered rule q; =
(R1(a,y), Ry(x,y)), which is key-rooted by Proposition 2.
Note incidentally that this rule has a cyclic FM join graph
and hence does not belong to Cge. We first write

J. Wijsen / Information Systems 34 (2009) 578-601 583

this rule as

Ri(X1,¥1) A Ra(X2,¥2) A @,

where

P=X1=)AY =Y)-
We proceed as in the first example:

1 3Y; (R1(X1, Y1) A VY1 (R1(X1, Y1) — Rewrite(Ry (X2, ¥2) A)

(2)
A subtlety to note is that in Eq. (1) of Property FO, 0;(q")
must be true, not in every repair of I, but in every repair of

I that contains Ry(d, B). So we have to distinguish two
cases:

e If R, #R;, then Rewrite(Ry(X2,y,) A @) can be computed
as before, because Ry(x2,¥,) A @ is true in every repair
of I that contains Ry(x1,y;) if and only if Ry(x2,¥,) A ¢ is
true in every repair of I:

Rewrite(Rz(X2, Y1) A @)
= 3y, (Ra(x2, Yo)A
VY2 (Ra(X2,¥2) — (X1 = @) A (V1 = Y2)))-

e On the other hand, if R, =R;, then it becomes
significant that the formula Rewrite(Ry(X2,y5) A @)
must be true in I if and only if Ry(x2,y,) A @ is true in
each repair of I that contains Ry(x1,y;). This yields two
cases: if x, #x;1, then we proceed as before; if x, = X1,
then Ry(x,,y,) must be identified with R;(x1,y;). Thus,
for R, = Ry, we obtain

Rewrite(Ry(X2,¥2) A @)
= I35 (X2 #X1) A Ra(X2, o)A
VY2 (Ra(X2,¥2) = (X1 = @) A (V1 =Y2))

v
(X2 = X1)
A V2=Y1)
EleElyz (x1 _ (1)
A V1 =Y2)

In this particular example, the second disjunct is
equivalent to simply (x; = a) and is implied by the
first disjunct. Hence, if R, =R;, then the formula
Rewrite(Rz(X2,¥,) A @) is equivalent to (x; = a). When
we substitute this result in formula (2), we find a
formula equivalent to

I Y (R X1, Y1) A (X1 = a)).

It can be verified that the latter formula correctly
checks membership of CQA(q,) by noticing that g, =
(R1(a,y), Ra(x,y)) is equivalent to Ry(a,y) if Ry = R,.

This concludes the introductory example.

Definition 3 defines the “equational form” for ordered
rules which is assumed by our rewrite function. Definition
4 then introduces our rewrite function, which takes the
form Rewg, (9, A @), where q; “remembers” the part of the
query that has already been rewritten, so that atoms of g,

can possibly be identified with atoms of g; (as in the
above example). Note that the use of the separator A
instead of a comma (,) is just for readability. Theorem 1
then states that this rewrite function computes a
consistent FO rewriting for every key-rooted ordered rule.

Definition 3. Let q = (Ri(X1,y1),...,Rn(Xm,¥,)) be an
ordered rule. Let ¢q = (Ri(iy,W1)...,Rm(tim, Wn))be
the ordered rule obtained from g by putting a new fresh
variable at each position. Thus, q' is constant-free and
contains no two occurrences of the same variable. Let V be
the set of variables that occur in q'. Let u be the (unique)
substitution over V such that u(q’)=gq. Let ¢ be a
conjunction of equations such that:

1. whenever v € V and u(v) = ¢, where c is a constant,
then ¢ contains v = ¢; and

2. whenever vq,v; € V and w(vq) = u(v2) =z, where zis a
variable, then ¢ contains v; = v,.

Then, the formula g, defined as (the existential closure of)
Qeor = R1(tig, W1) A -+ - A Rin(tim, Win) A @',

where ¢’ is equal or equivalent to ¢, is called an
equational form for q.

A conjunction ¢ of equalities is satisfiable if there exists
a valuation 0 over the variables in ¢ such that for every
equality r =s in ¢, 0(r) = 0(s).

We write q; = q,, where q; and g, are Boolean queries,
if for every database [, [E q; if and only if I E g,.

It is easy to see that if g, = /\j’ile@,ij)/\ @' is an
equational form for ¢, then gq=q,. Moreover, this
equivalence remains valid under valuations in the sense
explained in the next paragraph. Consequently, the
notions of reifiable atom and Kkey-rootedness directly
extend to equational forms.

Consider the ith symbol position in q and g, (counting
from the left and ignoring ¢; thus, the first position in g,
is occupied by the leftmost variable in ti;, and the last
position is occupied by the rightmost variable in Wy,).
Assume that g, contains variable u at position i. Two
cases can occur:

1. g contains a variable x at position i. Let w and 6 be the
valuations o = {x+—a} and 0 = {u— a}, where a is any
constant. Then, w(q) = 0(qey)-

2. q contains some constant b at position i. In this case, ¢’
implies u=b. For 0, = {u—b}, we have 0,(q,) = q.
Moreover, for every constant c#b, if 0. = {u~sc}, then
0c(¢") is unsatisfiable.

Example 4. Let c be a constant. Let
q = (Rx.y,),50.z,0)),
v=w)
Qef = RWV, W) AS@T,s,) A | A (W=T)
A (t=0)

584 J. Wijsen / Information Systems 34 (2009) 578-601

Then, g, is an equational form for q. The substitution
= {u,x), v,y), w,y), r,y), (,2), (t,c)} maps the atoms of
qes to the corresponding atoms of gq.

Consider symbol position 3. The third symbol position
in q is occupied by y. In g, the variable w occurs at
position 3. Let w = {y—a} and 0 = {(w—a}. The Boolean
queries w(q) and 0(q,) are obviously equivalent:

w(q) = (R(x,a,a),5(a,z0)),

v=a
0qep) = R, v,0) ST, 5,00 A [A (@=T)
A (t=0)

Definition 4. Let q,, ¢, be (possibly empty) conjunctions
of constant-free atoms. Let ¢ be a conjunction of
equations.

Rewg, (4 A @) is inductively defined as follows:

Basis: q, = {}.

Rewg, (@) = ¢
Step: q; = R&.Y) A qs.
Rewg, (RX.¥) A G3 A @)
RX=7)
= \/R@W)g21 P3| A Y=wW)
A Rewg (q3 A @)
A\

IIHREI) A (N\ggirea,
YJ(RRZ,Y) — Rewq,urayy (s A @)

RAED)A

It is understood that X = 7 is a shorthand for x; = v{ A ---
AXy = Vg, Where X = (xq,...,X;) and U = (vq,...,vy). Like-
wise for ¥ =w. The disequality X+#7V is shorthand for
—(X = V). Furthermore, 3X is a shorthand for 3x; - - - 3x;. The
empty disjunction is false and the empty conjunction is
true.

For example, the complete rewriting of the rule
(R(a,y),R(x,y)) now goes as follows. First, we write this
rule in equational form, giving R(X1,y;) A R(X2,¥2)A
(X1 = a) A (¥; =Yy)- Next,

Rew (R(X1,¥1) A R(X2,¥2) A (X1 =) A (V1 = ¥2))
= Ix13Y1 (R(X1,¥1) A VY1 (R(RX1, Y1)
— ReWry, y)y (RX2,¥2) A (X1 =) A (V1 =Y2))
where we have omitted empty disjunctions and

Rew gy, vy (RX2,¥2) A (%1 = a) A (V1 = ¥2))

(X2 = X1)
AN V2=Y1)
=2 =0
AN V1=V
v

IoTy»(R(X2, ¥2) A (X2 #X1)A
vy, (R(X2,¥5) — (X1 = @) A (V1 = Y2)))-

Theorem 1. Let g A ¢ be an equational form for some key-
rooted ordered rule. For every database I, IFsyeq A ¢ if and
only if I E Rewy(q A).

To obtain consistent FO rewritings of shorter length, in
Definition 4, the first disjunct (between big brackets) can
be equivalently rewritten as

EIS(’H?(Rewa((h AQ)A (\V &= ﬁ)A@:Vv))).
R@,W)eq,

Despite this shortening, since Rewg, (R(X,y) A g3 A @) calls
both Rewg, (g3 A @) and Rewy, yrz) (43 A @), the length of
Rew;(q A @) is O2™) where m =|q|. However, if no
relation name occurs more than once (i.e. for rules
without self-join), the disjunction Vr@eq, - +) IS empty,
resulting in a rewriting of length linear in |g|. In the
literature, we found no algorithms for the consistent FO
rewriting of rules with self-joins.

6. Join trees

Now that we are able to compute a consistent FO
rewriting for every key-rooted rule, we can shift our
attention to characterizing syntactic classes of key-rooted
rules. This is essential, because our definition of key-
rooted rules is semantic and provides no syntactic test to
verify whether a rule is key-rooted. We will not use FM
join graphs employed by others for characterizing classes
of rules with a consistent FO rewriting. Instead, we use the
join trees defined by Beeri et al. [5].

6.1. BFMY join trees

We recall the notion of join tree introduced by Beeri,
Fagin, Maier, and Yannakakis [5]; the authors’ initials will
be used to make a distinction with the FM join trees
introduced by Fuxman and Miller [3]. Fig. 4 shows two
BFMY join trees. Compare with the FM join graphs of the
same queries in Fig. 2.

Definition 5. A BEMY join tree for a rule q is an undirected
(connected) tree whose vertices are the atoms of g such
that:

Connectedness Condition: whenever the same variable x
occurs in two distinct atoms R;(X;, ¥;) and R;(X;,y)), then
X occurs in each atom on the unique path linking
Ri(%;.y;) and Rj(x;.).
A rule is called acyclic if it has a BFMY join tree.
It is customary to label the edges of a join tree as
follows: if e is an edge between R;(¥:,y;) and R;(X;.y)),

y
R(x,y)
T(y.w)
S (u, w)
w

Fig. 4. BEMY join trees of {R(x,y),S(u, w), T(y,w)} and {R(x,y),S(x.y)}.

R(x,y) ./KS (%)

J. Wijsen / Information Systems 34 (2009) 578-601 585

then e is labeled by the set of variables that occur in both
Ri(%:,y;) and R;(%;,5)). An edge label may be the empty set.

Unlike FM join graphs, BFMY join trees are undirected
graphs. Nevertheless, if T is a BFMY join tree, then a
directed rooted BFMY join tree is obtained from t by
singling out one vertex of t as the root.

The term Connectedness Condition appears in [16] and
refers to the following property: if T is a BFMY join tree
and x a variable, then the set of vertices in which x occurs
induces a (connected) subtree of 7.

The rule {P(y,u,x),S(v,u), N(x,z,w), T(v,w)}, whose FM
join tree is shown in Fig. 3, is cyclic. The graph in Fig. 5
explains why there exists no BFMY join tree for that rule:
the graph is a cycle and removing any one edge results in a
tree that violates the Connectedness Condition.

Note that each rule g has a unique FM join graph, but
can have zero, one or more BFMY join trees.

6.2. Number join trees

When a rule q is ordered, then its atoms can be
indicated by their position in q. Roughly, we use the term
“number join tree” for a BFMY join tree in which each
atom is replaced by its position in q. Additionally, we will
require that every path in a number join tree that starts
from vertex 1 is increasing. Number join trees will be
handy in the technical treatment because, as explained in
Section 6.3, they remain unchanged under variable
assignments.

Definition 6. Let g be an ordered rule of length m. A
number join tree for q is an undirected tree T whose
vertices are the integers 1,...,m such that:

1. Connectedness Condition: whenever the same variable x
occurs in two atoms ¢[i] and g[j], then x occurs in q[k]
for every k on the unique path linking i and j
(1<i,j<sm).

2. Increasingness Condition: if 1 =1p,iy,ip,...,i,=j is a
path in 7 from 1 to j, then iy<ij <i; < --- <i,. Thus,
vertices are strictly increasing along each path that
starts from 1.

Optionally, edge labels can be added: if e is an edge linking
i and j, then the label of e is the set of variables that occur
in both q[i] and q[j].

P(y, u, x)

N(x,z,w)

T(v,w)

Fig. 5. The rule {P(y,u,x),S(v,u), N(x,z,w), T(v,w)} is cyclic.

If the vertex 1 is chosen as the root, we obtain a directed
rooted number join tree with root 1, whose vertices are
numbered in increasing depth.

It is straightforward to transform a BFMY join tree into a
number join tree: single out a vertex as the root and
number it 1, then number all other vertices in increasing
depth.

Lemma 3. Let q be an acyclic rule and m = |q|. Let T = (q, E),
where E is the edge set, be a BFMY join tree for q. Let R(X,y)
be any atom of q, and let TR&Y denote the directed rooted
BFMY join tree obtained from t by selecting R(X,y) as its root.
Let f : q — {1,...,m} be a bijection that numbers the atoms
of q in increasing depth of TR&Y), That is,

1. fRZX,y)) =1; and
2. for all atoms Aq,A; € q, if Ay is the parent of A, in TRGY),
then f(A1)<f(A2)

Then, the graph ({1,...,m}, f(E)) is a number join tree for the
ordered rule (f~'(1),....f~'(m)).

Proof. Let q, = (f"'(1),....f '(m)). Obviously, ({1,...,m},
f(E)) is a tree.

Assume that the same variable x occurs in q,[i] = f 0
and q,[j] = f~'(j), and that k is on the path linking i and j.
Then in 7, f~' (k) is on the path linking f~'(i) and f’l(j). By
the Connectedness Condition for t, x occurs in f ' (k) = q,[K].

Assume that 1 =ig,iy,...,1i, =j is a path from 1 to j in
((1,....m},f(E). Then, f (1) =" (Qo)f " (i)s....f ') =
f71G) is a path from R®,¥) =f~'(1) to f7'(j) in tR&H. By
condition (2) in the statement of the lemma, 1 =iy<
i1<~'~<ik=j. O

Example 5. See Fig. 6. Let

q = {R(x), S5, u), T(x,u,y,2), R(Y), R@@)}.

The tree with edge set

E = {{RXx), Sx, w)}, {Sx, u), T(x, u.y,2)},
{T(x,u,y,2), Ry} AT(x,u.y,2),R(2)}}

is a BFMY join tree for q. If R(x) is selected as the root, then
the vertices of q are already listed in increasing depth. The
vertex numbering f is defined by f(R(X)) = 1, f(S(x, u)) = 2,

R(x)

{x}
S(x, u)
{x, u}

T(x,u,y,2)

O} {z} O}

R(Q) R(2) 4

Fig. 6. BFMY join tree (left) and number join tree (right) for the ordered
rule (R(x),S(x,u), T(x,u,y,2), R(y), R(2)).

586 J. Wijsen / Information Systems 34 (2009) 578-601

f(Tx,u,y,2) = 3, fRY)) = 4, f(R@)) = 5. We have

FB) = {{1,2),{2,3},(3,4},{3,5}},

which defines a number join tree for the ordered rule
do = (RX),Sx,u), T(x,u,¥,2),R(Y),R@)).

Conversely, let T be a number join tree for an ordered
rule g in which no atom occurs more than once; it is
straightforward to transform 7 into a BFMY join tree for q.

6.3. Operations on number join trees

Lemma 4 expresses that for any valuation 0, every
number join tree for an ordered rule g is also a number
join tree for 6(q). Notice incidentally that edge labels are
optional and need to be recomputed when moving from g
to 0(qg). This straightforward property of number join
trees is not shared by BFMY join trees, as illustrated by
Example 6. Because of this, number join trees are some-
what handier than BFMY join trees in certain technical
developments.

Lemma 4. Let q be an ordered rule. Let V be the set of
variables that occur in q, and X < V. Let 0 be a valuation over
X. Every number join tree for q is a number join tree for 0(q).

Proof. Straightforward. O

Example 6. This is a continuation of Example 5. For the
valuation 0 = {x+ a,z~— a}, we obtain

0(q) = {R(a),S(a,u), T(a,u,y,a), R(y)}

and

O(E) = {{R(a), S(a, w)}, {S(a, w), T(a,u,y, a)},
{T(a,u,y,a),R)}, {T(a,u,y,a), R@}}.

The edges of 0(E) are shown in Fig. 7 (left). Since 6 maps
both R(x) and R(z) to R(a), O(E) contains a cycle and hence is
not a tree.

On the other hand, the tree with vertices {1,2,3,4,5}
and edges

{{1,2},{2,3},{3,4},{3,5}}
is a number join tree for the ordered rule

0(q,) = (R@), S(a,w), T(a,u,y,a), R(y), R@)

R(a)
{}
{} S (a, u)
{u}
T(a,u,y,a)
o)
R(y)

Fig. 7. Results of applying the valuation {x+— a,z+ a} on the join trees of
Fig. 6.

in which R(a) occurs twice; it is shown in Fig. 7 (right).
Notice that edge labels have been recomputed.

The following definition introduces an operator for
constructing rules corresponding to subtrees in a directed
rooted number join tree.

Definition 7. Let g be an ordered rule of length m that has
a number join tree 1. Let t' denote the directed rooted
number join tree obtained from 7 by selecting 1 as its root.
Letie {1,2,...,m} and let d be a nonnegative integer. Let
i=ip<ij<iy<---<ip be the ascending sequence that
contains i and all descendants of i in t! that are at (graph)
distance <d from i. Then, subd;(i, d) is defined as the
following ordered rule:

subdg(i, d) := (qlio). q[i1], - . ., qlik])-

Finally, we define

subg(i) := subdg(i, o),

where oo denotes a large integer greater than the depth of 7.

Example 7. Let g be an ordered rule of length 12 that has
a number join tree with root 1 as shown in Fig. 8. The
vertex 3 and its descendants in increasing value are
3<5<7<8<9<10<11<12. Hence, subg(3) = (q[3].q[5].
ql71, 48], q[91, q[10], q[11], q[12]).

The vertex 3 and its descendants at a distance <2 from
3 are 3<5<7<8<11<12. Hence, subdy(3,2) = (q[3],q[5].

q(71.q[8].q[11]. q[12]).

Lemma 5. Let q be an ordered rule of length m that has a
number join tree t. For each i e {1,...,m}, subg(i) has a
number join tree.

Proof. Let 1 = ({1,...,m},E). Leti =i, <i, < --- <iy be the
ascending sequence that contains i and all descendants of
iin t!. Let 7/ be the vertex-induced subgraph induced by
{i1,i2,...,1}. Let f be the renumbering defined by f(i;) = 1,
fly)=2,....f(iy) = k. A number join tree for sub;(i) is
obtained by renumbering the vertices of 7/ according
tof. O

6.4. Merging key-rooted ordered rules
We show that if two key-rooted ordered rules q; and g,

have no variable in common, then any merge of ¢; and g,
results in a key-rooted rule.

Fig. 8. Number join tree.

J. Wijsen / Information Systems 34 (2009) 578-601 587

Definition 8. Let q¢; and g, be ordered rules. We say that
an ordered rule

Qmerge = (Rl (&ayl)’ cee ’Rm(&,ym)>

is a merge of the ordered rules q; and ¢, if there exist two
sequences 1<ij<iz<---<ip<m and 1<j;<j,<---jj<m
such that:

Lo i, i 0 L =
2. i, LU L =1{1,2,...,m);
3. 41 = Ry, Ry, ¥, - Ry R, 93,))5 and

4 dy = R, .Y Ry T

Thus, qperge lists the atoms of g, in the order in which they
occur in gq, and Gperg lists the atoms of g, in the order in
which they occur in g,.

Lemma 6. Let q; and q, be ordered rules such that no
variable x occurs in both q, and q,. Let qyerge be a merge of
q: and q,. If q; and q, are key-rooted, then Qg is key-
rooted.

Proof. Proof by induction on |Gperg|, the length of qperge.
The result is trivial for the induction basis |Gperg| =0,
because the empty rule is key-rooted. For the induction
Sstep, assume |qerge|>0. Assume the numbering of
Definition 8. Assume w.l.0.g. that i; = 1. Thus, the first
atom of qyerg is the first atom of ;. We use the following
notations:

® gy = (R, (X,.¥3,). ... Ry (%, ¥;,)), the tail of q;; and

b qi/nerge = (RZ(&syz)s s ,Rm(X_m,ym)), the tail of merge-

Let I be a database such that IFsyeqmerge- Clearly, IFsureqy
and IFgyeq,. Since q; is key-rooted, it follows:

1. there exists a valuation 6 of X; such that I=¢ye0(q;); and
2. for each valuation p of X1y, u(qy) is key-rooted.

Let J be a repair of I. Let X; and X, be the sets of variables
that occur in g; and g,, respectively. By the first item
above, there exists a valuation w; over X; such that
w1(X1) = 0(%1) and] F m1(q,). Since IFgyreq,, there exists a
valuation w, over X, such that J F wy(q,). Let w be the
valuation over X; U X, such that w(x) = w4 (x) if x € X; and
(X) = wy(x) if x € X5. The valuation w is well defined
because X;NX;={}. Clearly, JF &(qper). Hence,
J E 0(qinerge)- Since J is an arbitrary repair of I, I=sure O(qmerge)-

Let u be a valuation of X,¥,. Clearly, ((qper) is @ merge
of u(q}) and p(q,). Since no variable x occurs in both X;y,
and q5, ((q;) = q,. Since u(q,) is key-rooted by the second
item above, and g, is key-rooted by our initial assumption,
H(qrnerge) 1s @ merge of two key-rooted ordered rules. Since
the length of WGrmerge) 1S |Gmergel — 1, by the induction
hypothesis, ((qerge) is key-rooted.

We have shown:

1. IFsureO(qpmerge) for some valuation 6 of X;; and
2. for each valuation u of X1¥;, [(qperg.) is key-rooted,
where qppg, 1S the tail of gperge-

Consequently, qerge is key-rooted. [

The following corollary is very useful in establishing
key-rootedness of ordered, acyclic rules.

Corollary 1. Let q be an ordered rule of length m that has a
number join tree T with root 1. Let q[1] = R(X,y) and let 0 be
a valuation of Xy. If@(subf](i)) is key-rooted for each child i of
1, then 0(q') is key-rooted, where q' is the tail of q.

Proof. Assume w.l.o.g. that 2,3, ...,[are the children of 1
in the number join tree t with root 1. Clearly, the tail q’ of
q is a merge of subg(2),...,subg(l). Consequently, 0(q) is a
merge of O(suby(2)),...,0(subg(l). By the Connectedness
Condition, the ordered rules O(subg(2)),...,0(subg()) have

pairwise disjoint sets of variables. By repeated application
of Lemma 6, 6(q’) is key-rooted. [

7. New classes of rules with a consistent first-order
rewriting

This section consists of three subsections, each of which
contains a theorem introducing a new class of key-rooted
rules. Sections 7.1 and 7.2 cover rules in which the same
relation name can occur multiple times. Section 7.3 then
elaborates on the class Cy. defined in Section 3. Significantly,
the key-rooted rules in Sections 7.1 and 7.3 can have cyclic
FM join graphs (but always have acyclic BEMY join trees).

7.1. No variables in the primary key of the root

Theorem 2 uses the construct of number join tree to
characterize a class of key-rooted rules—and for which
Theorem 1 thus provides a consistent FO rewriting. The
class contains the rule shown in Fig. 9. The rule has four
occurrences of the same relation name and the FM join
graph (not shown) would contain a directed edge from any
atom to any other atom (and hence would not be a tree).

Theorem 2. An ordered rule

q= (Rl(&,y]),,Rm(&,ym))

is key-rooted if it has a number join tree t with root 1 such
that:

1. vars(Xy) = {}. Thus, the primary key of the first atom
contains only constants.

2. For i,j e {1,...,m}, if i is the parent of j, then j is a leaf
vertex of T or vars(X;) C vars(X;y;).

Theorem 2 immediately leads to the following result for
(non-ordered) rules.

Corollary 2. A rule q = {Ry1,31),. .., Rm@m.Vm)} has a
consistent FO rewriting if it has a directed rooted BEMY join
tree T such that:

1. if RiX;,)) is the root of t, then vars(X;) = {}; and
2. if Ri(%;,y;) is the parent of R;(X;,;), then Ri(%;,¥;) is a leaf
vertex of T or vars(X;) C vars(X%y).

588 J. Wijsen / Information Systems 34 (2009) 578-601

{x.y}

R(u,y, x) R(w,z,y)

Fig. 9. BFMY join tree for the rule {R(a,x,y), R(X,y.,2), Ry, X), R(W,zy)}.

Proof. Clearly, by the construction in Lemma 3, there
exists an ordered rule g, such that g, contains exactly the
atoms of q and g, has a number join tree that satisfies all
conditions of Theorem 2. By Theorem 1, g, has a
consistent FO rewriting. O

The ordered rules captured by Theorem 2 reflect the
definition of key-rooted rules (Definition 2). If g is an
ordered rule in this class, then the primary key of ¢'s
prefix is variable-free, hence the prefix is reifiable. Next,
the second condition in the theorem’s statement guaran-
tees that either ¢’s tail is a singleton, or whenever 0 is a
valuation of g's prefix, then 6 applied to g's tail is a shorter
rule in the same class.

7.2. Single relation name

Theorem 3 characterizes another class of key-rooted
rules in terms of number join trees. A rule of this class is
shown in Fig. 10. Unlike the queries considered in [3], all
atoms of rules in this class share the same relation name.

Theorem 3. An ordered rule

q= (R(&Lyl)a .. >R(7<7m=ym))v

with a single relation name R, is key-rooted if it has a number
join tree T with root 1 such that:

1. Every atom is constant-free and contains no two
occurrences of the same variable.

2. For all internal vertices i and j, the ordered rules
subdg(i, 1) and subdg(j, 1) are the same up to a renaming
of variables.

3. All leaf vertices are at the same depth.

4. For i,je{l,...,m}, if i is the parent of j, then
vars(Xy;) Nvars(x;y;) = vars(x;).

Theorem 3 immediately leads to the following result for
(non-ordered) rules.

Corollary 3. A rule q={R(X1,y,),...,RXm,¥n)}, with a
single relation name R, has a consistent FO rewriting if it
has a directed rooted BFMY join tree t such that:

1. Every atom is constant-free and contains no two
occurrences of the same variable.

2. For all internal vertices R(X;,y;) and R(X;,y;), the subtree
induced by R(X;,y;) and all its children is the same, up to a
renaming of variables, as the subtree induced by R(%;,))
and its children.

R(x1, x2, x3)

R(x2, x4, x5) R(x3, x6, x7)

R(x4, x3, X9) R(x7, x14, X15)

R(xs, x10, X11)

R(x6, X12, X13)

Fig. 10. BFMY join tree for a rule covered by Theorem 3.

3. All leaf vertices are at the same depth.
4. If atom R(X.y;) is the parent of R(X;,y;, then
vars(Xy;) N vars(X;y;) = vars(x)). N

The following examples show that Theorem 3 is no
longer valid if one of conditions (1)-(4) is dropped.

Example 8. The rule ¢; = (R(x,y),R(y,c)), where c is a
constant, satisfies all but condition (1) in Theorem 3. In
Section 8, it is shown that this rule has no consistent FO
rewriting, and hence cannot be key-rooted.

The rule g, = (R(x,y),R(y,x)) satisfies all but condition
(4). The atom R(x,y) is not reifiable in q4, hence g, is not
key-rooted. Witness thereof is the database

I = {R(a, b),R(b, a),R(b, ¢),R(c, b), R(c, d),R(d,)},

which has four repairs:

J1 = {R@@, b),R(b, a),R(c, b), R(d, 0)},

J2 = {R(@,b),R(b, ¢),R(c, b), R(d,)},

Js = {R(a, b),R(b, @), R(c, d), R(d, ©)},

Ja = {R(@,b),R(b, ¢),R(c,d), R(d, 0)}.

Since each repair satisfies q,, we have IFqyeq,. The atom

R(x,y) is not reifiable in q,, because for every valuation 6 of
x, there is at least one repair that falsifies 0(q,).

Example 9. The ordered rule

qz = (R(X1,X2,X3), R(X2, X4, X5), R(X5, X6, X7))

with a BFMY join tree as shown in Fig. 11, satisfies all but
condition (2) in Theorem 3, since the two subrules
(R(X1,X2,X3), R(X2,X4,X5)), (R(X2,X4,X5), R(Xs5, X5, X7))

are not equal up to a variable renaming. For the database
I ={R(a,b,b), R(b,a,1), R(b,1,a)}, we have Irg,q, but
there is no valuation 6 of x; such that Irg,0(q,). Thus,
R(x1,X3,x3) is not reifiable in q,.

Example 10. The ordered rule

q3 = (R(X1,X2,X3), R(X2, X4, X5), R(X3, X, X7),

R(X4, X3, X9), R(X5, X10, X11), R(X6, X12, X13),

R(X7,X14,X15), R(X3, X16, X17), R(Xg, X18, X19),

R(X14, X20,X21), R(X15, X22, X23))
of which a BFMY join tree is shown in Fig. 12, satisfies all
but condition (3) in Theorem 3; for the database
I={R@c,3), R®b,3,0, R(c12), Rc2,1), RG22,
R(2,1,1), R(1,0,0)}, we have IrFqeqs; but there is no
valuation 0 of x; such that g, 0(q3). Thus, R(x1,X2,X3) is
not reifiable in gs.

J. Wijsen / Information Systems 34 (2009) 578-601 589

7.3. No duplicate relation names

Theorem 4 and its Corollary 4 extend the class Ceree
defined in Section 3. They deal with rules without self-
joins (condition (1) in the theorem’s statement). Condition
(2b) states that the variables shared by a child and its
parent are (possibly strictly) contained in the child’s
primary key variables. Thus, unlike Cee, nonkey-to-key
joins need not be full. Condition (2a) provides an
alternative: the primary key of the child contains all
variables of the parent’s primary key.

Theorem 4. An ordered rule
q= <R1(&75}])7 ... >Rm(5€_m>ym)>
is key-rooted if it has a number join tree T with root 1 such

that:

1. If i#j, then R;#R;. Thus, no relation name occurs more
than once in q.
2. If i is the parent of j (1<i,j<m), then at least one of the
following two conditions is true:
(a) vars(¥;) 2 vars(x;); or
(b) vars(X;) 2 vars(X;y;) N vars(X;y;). That is, vars(X;) is a
superset of the label on the edge between i and j.

Theorem 4 immediately leads to the following result for
(non-ordered) rules.

Corollary 4. A rule q={Ri(X1,y1),...,RnXm,¥n)} has a

consistent FO rewriting if it has a directed rooted BFMY join
tree t such that:

R(x1, x2, x3)
X
R(x2, x4, X5)
Xs

R(xs, xo, x7)

Fig. 11. BFMY join tree for a rule not covered by Theorem 3.

1. no relation name occurs more than once in q; and
2. if Ri(%.,yy) is the parent of R;(%;.y;) (1<i,j<m), then at
least one of the following conditions is true:

(a) vars(¥)) 2 vars(X;); or
(b) vars(x)) 2 vars(X;) N vars(X;y).

For example, the “intersection” rule {R(x,y),S(x,y)}
(right graph of Fig. 4) is covered by the corollary and
hence has a consistent FO rewriting:

IYRE,Y) ASK.Y) AVZ(R(X,2) v S(X,2)) - Z=Y)).

The rule {R(x,y),S(x,y)} is not in Cyee because its FM join
graph is cyclic (right graph in Fig. 2). The acyclic rule
(R,), S, w), T(y, w)}

has a unique BFMY join tree (left graph of Fig. 4) but is not
covered by Corollary 4, no matter which atom is selected
as the root.

By proving that every rule in Cge satisfies the
conditions of Corollary 4, we obtain the following result.

Corollary 5. Every rule in Cyree has a consistent FO rewriting.

Proof. Let ¢ = {R1(X1,¥1),- - -, Rm(Xm,Ym)} be a rule in Ceree
with FM join tree 7. o

Assume that two distinct atoms Ri(X;,¥;),R;.J)) € q
have a variable u in common. Recall that our definition of
Ciree implies that the FM join graph of g is connected.
Then, two cases can occur:

1. One of Ri(X;,¥;) or R;i(%;.¥;) is an ancestor of the other.
Assume w.l.o.g. that Ri(X;,y;) is an ancestor of
Ri(X;,y;).-Then u e vars(?cj)\\;rs@j), or else the FM join
gr;:ph would be cyclic, a contradiction. Let Ry(%X;,¥;) be
the parent of R;(%;,)). Since all nonkey-to-key j;ins are
full, u e vars(?,).il"hen I =i, or else the FM join graph
would be cyclic, a contradiction. It follows that R;(X;,y;)
is the parent of R;(X;,y)). a

2. Neither of Ri(&,yi;or Rj(X;,y;) is an ancestor of the
other. Then u € vars(ii)\vars@i), or else there would be
a directed edge from R;(X.y;) to R;(X;,y;), a contra-
diction. Let Ri(X;,y)) be the parent of_Ri(&7§i). Since

R(x1, x2, Xx3)

R(x2, x4, X5)

X4

R(x4, X3, X9)
R(xs, x10, X11)

X8 X9

R(x9, x13, X19)
R(xs, X16, X17)

R(x3, X6, %7)
X6 X7

R(x6, x12, X13)

R(x7, X14, X15)

X14 X15

R(x14, X20, X21)
R(x15, x22, X23)

Fig. 12. BFMY join tree for a rule not covered by Theorem 3.

590 J. Wijsen / Information Systems 34 (2009) 578-601

u e vars()), there is a directed edge from R(X;,y)) to
Ri(X;,¥)). That is, Ri(X;,¥;) and R;(%;,y;) are siblings and
their common parent contains u.

Hence, if two distinct atoms share a variable u, then
either one of the atoms is the parent of the other, or both
atoms are siblings and their common parent atom
contains u. It follows that the FM join tree of q is a
directed rooted BFMY join tree satisfying the conditions of
Corollary 4. O

8. 3x3y(R(x.y) A R(y,0)) has no consistent first-order
rewriting

We found in the literature no rewriting algorithms that
produce consistent FO rewritings for rules that contain
self-joins. Theorems 2 and 3 seem to be the first positive
results in this direction. We now argue that there is little
hope to significantly extend these results.

Clearly, under the assumption P#NP, a rule q can
have no consistent FO rewriting if CQA(q) is coNP-
complete. We will now show that the simple rule
q = {R(x.y),R(y,c)}, where c is a constant, has no consis-
tent FO rewriting, even though CQA(q) is in P. This
may come as a surprise, because the nonkey-to-key
join is full, the rule has a BFMY join tree, and its FM join
graph is a tree. Intuitively, if R encodes the edge set of a
graph, the query asks whether there is a path of length 2
that ends in a distinguished vertex c. The rule is not
covered by Corollary 2 because no primary key is ground;
it is not covered by Corollary 3 because it contains a
constant. So it turns out that the double occurrence
of the same relation name in a rule q easily leads to the
non-existence of a consistent FO rewriting (even if CQA(q)
is in P).

The intuition behind (the proof of) Theorem 5 can be
understood as follows. Let g = {R(x,¥),R(y,c)}. Consider
the class of databases encoding directed acyclic graphs
with exactly two sinks c and . Let I be any database in this
class. Notice that in every repair, every vertex can have at
most one outgoing edge. We argue hereafter that [¥ ¢y.q if
and only if for every vertex x that is not a sink,

® R(x,c) €1, or
e | contains a directed path from x to &.

For the if-direction, construct a repair J of I such that
for every vertex x, if I contains a directed path from x to ¢,
then so does J; otherwise J contains R(x,c). This is
illustrated by the database B in Fig. 13 (right) and its
repair of Fig. 14. Then J contains no path of length 2 ending
in c. For the opposite direction (only-if), assume a vertex x,
x#c and x#¢, such that R(x,c)¢I and there is no directed
path from x to &. Thus, each maximal path that starts from
x, ends in c. Then it is easy to see that every repair J of I
contains a directed path with length >2 from x to c, hence
J & q. This is illustrated by the database 21 in Fig. 13 (left),
which contains no directed edge from ¢ to ¢, and no
directed path from ¢ to e.

The quintessence now is that reachability from x to ¢ is
not first-order expressible. In particular, we show that for
any given FO sentence v, the databases 2l and B can be
chosen sufficiently large such that they cannot be
distinguished by .. On the other hand, the existence of
particular paths can be verified in polynomial time.

Theorem 5. Let g = {R(x,¥),R(y,C)}.

1. CQA(q) is in P.

2. There exists no Boolean FO query such that for every
database 1, IFsyeq if and only if I = . Thus, q has no
consistent FO rewriting.

9. Rules with free variables

The rewrite functions of Definition 4 and Theorem 1
are given for Boolean queries. We now show how to
handle conjunctive queries with free variables.

Let q(xq,...,xn) denote an ordered rule with n free
variables xi,...,X,. Let X = (xq, ..., Xy). For every sequence
d=(ay,...,a,) of constants:

® (3 ,; denotes the ordered rule obtained from q by
replacing each free occurrence of x; with qg;, for all
1<i<n; and

° qua denotes an equational form for g3, ,; as defined in
Definition 3.

Since every constant symbol is interpreted by itself, we
have the following equivalences for any database I:

I':sureq(a) — I':Sure%?»—»ﬁ — I':sureqsfHa-

B [

Fig. 13. 3x3y(R(x,¥) A R(y,0)) is consistently true in 2, but not in B.

J. Wijsen / Information Systems 34 (2009) 578-601 591

N

|
I

(l

L

Fig. 14. Repair of B falsifying 3x3y(R(x,y) A Ry, ©)).

Example 11. Let
q(x1,%2) = Y(R(X1,¥) A S, X2)),

with two free variables x; and x;. Let a; and a;, be two (not
necessarily distinct) constants. Then,

Gxa = (R(a1,¥),5(y, a2)),

@& 5 = R(ug, wi) A S(wa, ux)A

W1 =Wy AU =01 AUy =0y,

By Theorem 1, for each d such that the rule gy, ,; is key-
rooted, for every database I,

IFeureq(@) <= I = Rewy(qS' ;). (3)

Let ¢ = (cy,...,cy) be a sequence of n new distinct
constants. Clearly, for every d, it can be assumed without
loss of generality that qXHa is obtained from q;fHE by
replacing each occurrence of ¢; with g;, for all 1<i<n.
Furthermore, it is easy to verify that the rewrite function
of Definition 4 is such that for every d, Rew(,(qef) can be
obtained from Rew (g3’ .) by replacing each ¢; with a;, for
all 1<i<n.

The variables x;, ..., x, do not occur in Rew“(qxw) Let

Q be the query obtained from Rew(qS .) by replacing

X—C

each occurrence of ¢; with x;, for all 1<i<n. Then, Qis a
query with free variables x1,...,x,, denoted Q(xy,...,Xn),
such that for all d, for every database I,

IE Q@) < I+ Rewy(qS' ;). (4)

From (3) and (4), it follows that for each d such that

Gz is key-rooted, for every database I,
IFsureq(@d) < I Q(@).

Thus, Q(x1,...,xn) is a consistent FO rewriting of
q(X1,...,Xn).

Example 12. Continuation of Example 11. We have
q(x1,%2) = Y(R(X1,¥) A S(Y, X2)).
Let ¢; and ¢, be two distinct constants. Then,

Qxoe = <R(C_1: Y), S(Za CZ)>

and
(W =wy)
o e =R, W) ASWa,u) A | A (U1 =C1)

N (Uz=0¢y)
For R+#S, we get the following rewriting:
Rew((45 ¢)
= JurIw(R(U, WA
Ywi(R(Uug, wi) — 3w, 3up(S(Wa, Up)A
YU (S(Wa, U2) — @),
where
=W =wW2) A (U =C1) AUz = C2).

To help readability, we can simplify Rew;(qS as

follows:

x»—»c)

Rew(,(q)E(LE) =
Iwi(R(c, wy) A

Ywi(R(c1,w1) — Fup(S(wy, u)A

Vup (S(W1, Up) — Uz = (2))))

Finally, Q is obtained by replacing c; and ¢, with x; and x;,
respectively:

Q(x1,X2) = Iw1(R(X1, wi)A
Ywi(R(X1, wp) — ua(S(Wy, Uz)A
YU (S(W1, Uz) — Uz = X2)))).

Since it can be easily verified, using Theorem 2, that gz, ;

is key-rooted for all d, it follows that for all ay,as,
IFsureq(ay, az) <= 1 F Q(ay, a).

10. Concluding remarks

In the past literature, consistent FO rewriting under
primary keys has mainly be specified by procedural
program code. Our consistent FO rewrite function of
Definition 4 is considerably more succinct than existing
rewrite algorithms, and yet turns out to be widely
applicable. We proved that this rewrite function yields a
consistent FO rewriting for any key-rooted rule. This result
allowed us to shift our attention from the syntactical
intricacies of FO rewriting toward characterizing classes of
key-rooted rules. This characterization was successful
using BFMY join trees (instead of FM join trees used so
far in the literature). Finally, we showed that the rule
{R(x,y),R(y,c)} has no consistent FO rewriting.

In this article, the target language of the rewrite
function is first-order. The motivation for this is that
first-order queries execute in polynomial time data
complexity and can be easily encoded in SQL. Never-
theless, the proof of Theorem 5 suggests adding some
form of recursion to the target language.

The model-theoretic notion of key-rooted rule was
engineered so as to capture the typical 3V quantifier
alternation in consistent FO rewritings: the formula
IXIZVY(R(X,2) A (RX,Y) —) expresses that iy must hold
no matter how we repair R-atoms that agree on the

592 J. Wijsen / Information Systems 34 (2009) 578-601

primary key X. Three intriguing questions about key-
rootedness are open for further research:

e Does there exist a rule g such that g has a consistent FO
rewriting but g is not key-rooted, no matter how its
atoms are ordered?

e [s it decidable whether a given rule q is key-rooted?
Partial solutions to this question appear in [17].

e We used BFMY join trees to syntactically characterize
key-rooted rules. Can generalizations of BFMY join
trees [18] be used to characterize wider classes of key-
rooted rules?

Acknowledgments

The comments and suggestions of the anonymous
reviewers were highly appreciated.

Appendix A. Proof of Proposition 1

Proof of Proposition 1. Reduction form MONOTONE
3SAT. Let ¢ = ALL; ¢;, where each ¢; is either a disjunction
of three positive literals or a disjunction of three negative
literals. Let a be a constant that does not occur in ¢. We
can assume a fixed linear order < on the propositional
variables occurring in ¢. The formula ¢ induces a
database, denoted db(¢), as follows.

e For each propositional variable p occurring in ¢, db(¢)
contains S(p,p) and T(p, p).
e Foreachie{1,2,...,n},

o if ¢; contains only positive literals, then db(¢)
contains P(i,p,a) for each propositional variable p
occurring in ¢;; and

o if ¢; contains only negative literals, then db(¢)
contains N(a,i,p) for each propositional variable p
occurring in ¢;.

We show that ¢ is satisfiable if and only if db(¢) ¥ sureq.

For the only-if part, assume ¢ satisfiable. We can assume
a truth assignment B satisfying ¢. Construct a database J
containing all S-atoms and T-atoms of db(¢)) and such that
foreveryiec{1,2,...,n},

e if ¢; contains only positive literals, then J contains
P(i, p, a) where p is the smallest (under <) variable of ¢;
satisfying B(p) = true; and

e if ¢; contains only negative literals, then J contains
N(a,i,p) where p is the smallest variable of ¢; satisfying
B(p) = false.

Clearly, J is a repair of db(¢). We next show J ¥q. Assume,
on the contrary, J = q. Then, there exists a valuation 0 such
that {P(Oy),0(w),0(x)), SO®),0w), N(OXx),0(z),0w)),
T(O(v),0(w))} < J. Clearly, 0(x) = a. Assume 0(u) = p. For
each S-fact S(s,t) € J, we have s =t; hence 6(v) = p. For
each T-fact T(s, t) € J, we have s = t; hence 0(w) = p. Since |
contains P(0(y),p,a), B(p) =true, and since | contains

N(a, 0(2), p), B(p) = false, a contradiction. We conclude by
contradiction that J ¥ q. It follows db(¢) ¥ sureq.

For the if part, assume db(¢) ¥ sueq. We can assume a
repair J of db(¢) such that J #q. Clearly,] must contain all
S-facts and T-facts from db(¢). Construct a truth assign-
ment B as follows:

e if J contains P(i,p, a) for some i € {1,2,...,n}, then
B(p) = true; and

e if | contains N(a,j,p) for some j € {1,2,...,n}, then
B(p) = false.

Note that J cannot contain both P(i,p,a) and N(a,j, p), or
else J F g, a contradiction. Clearly, B can be extended to a
truth assignment satisfying ¢. O

Appendix B. Proof of Theorem 1

Definition 9. Let iy be a FO formula with free variables
X1,...,Xn. Let 0 be a valuation over {x,...,x,}. Then, 0(})
denotes the FO formula obtained from i by replacing each
free occurrence of x; with 6(x;), for all 1<i<n.

Lemma 7. Let V be a set of variables. Let q;, q, be
conjunctions of constant-free atoms containing no variable
of V. Let @ be a conjunction of equalities. For every valuation
w over V, Rewg, (q; A W(p)) = w(Rewg, (q; A @)).

Proof. The proof runs by induction on the length of g,.
The basis of the induction, g, = {}, is trivial. For the
induction step, assume g, = R(X,J) A q3. We have

Rewg, (RX.¥) A g3 A (@) =
*=1)
\/R@,\Tv)e% WPY| A T=w)
A Rewg, (g3 A ()

\%

W REY) A (g s0ycq, EE A
YJ(REY) — Rewq urayy(@s A (@)
By the induction hypothesis,
Rewg, (RZ,¥) A g3 A (@) =
X="1)
Visineg, XV | A 0 =W
A o(Rewg, (43 A @)

\4

FAYRE.I) A (g 507cq, BF DA

VYRR, ¥) — w(Rewy, yrey) (@3 A $)))
Since o is the identity on every variable that occurs in q;,
it follows Rewg, (RX,Y) A q3 A (@) = w(Rewg, (RX, Y)A
g3~ @). O
Proof of Theorem 1. Let q; Aq, A @ be a key-rooted
ordered rule in equational form. Thus, gq; Aq, is

J. Wijsen / Information Systems 34 (2009) 578-601 593

constant-free and contains no two occurrences of the
same variable. In particular, g; and g, have no variables in
common. The expression ¢ is a satisfiable set of equations
involving variables of g¢; A g, and constants.
Let V1 be the set of variables that occur in g;. Let I be a
database. Let 6 be a valuation over V; such that:
Consistency: 0(q;) is a consistent subset of I; and
Key-rootedness: 0(q, A @) = g, A 0(¢) is key-rooted.
We define the following shorthand:

I

0 || =(\[0@gy)]) Y 0(qy).
q1

It is easy to see that if some variable x has a free
occurrence in Rewg (q; A @), then xeVi. Hence,
O(Rewg, (g, A ¢)) is a closed formula. We prove that

I

0 || Fouelz A 0(@) <= 1 F O(Rewy, (4, A @)).
q1

The desired result follows by choosing g, = {}.

The proof runs by induction on g,’s length. The proof is
trivial if g, is empty. For g, nonempty (let g, = R(X,y) A q3)
the result follows by equivalence of the statements

(1)-(7):
1

0 ’:sureR(g,y) A3 A 6(@)
a1

1.

2. Since R(X,¥) A g3 A O(¢) is key-rooted, it follows that for
some valuation ¢ of X,

I

0 ':sureR(é(X)ay) Aq3 A é © Q(Q)
a1

3. For some valuation ¢ of X, for some valuation v of ¥,
either:
o for some atom R(¥, W) € q;, we have R(O(V), 0(W)) =
R(®),v(®)) and
I
0 || Esures A 00 0o E(); or
q;

e R(((X), () € N[0(qq)]; and for each valuation v’ of
¥, if R(EX),v'(y)) € I, then
I
Vool
41 V{REY)

Fsureq3 A V'oéo 0((/))

Concerning the first bulleted item, since 6(q,)
I

is consistent, every repair of the database || 0
a1

contains R(O(V), O(w)). Concerning both items, since
R(X,y) A g5 A O(@) is key-rooted, so is g3 A w o O(¢p) for
any valuation w of Xy.
The transition between (3) and (4) applies the induc-
tion hypothesis twice on rules of shorter length:

o first,

I
0 Fsureq3 A Oovo 5((/))
q1

¢
1= O(Rewg, (q3 A U o E())).

The preconditions for the induction hypothesis
are fulfilled, because:
Consistency: 0(q,) is a consistent subset of I.
Key-rootedness: Since g, A 0(¢) = RX,Y) A g3 A (@)
is key-rooted and v o ¢ is a valuation of %y, g5 A o
v o &() is key-rooted.
Note that by Lemma 7,

O(Rewg, (3 A 0 o E(@))) = 00 v o E(Rewg, (G3 A P)).

second,
1
Vool
g1 U{RZ.3)

Fsureq3z AV 0 &0 0(¢)

¢
IEV oo Q(RequU{R@y))(% A @)).

The preconditions for the induction hypothesis
are fulfilled, because:
Consistency: v' o ¢ o 0(q; U {RE.¥)}) = 0(q1) U (REX),
v(¥))} is a consistent subset of I since R(((X),
v(@) € N[0(q1)]}
Key-rootedness: g3 AV o & o O(¢) is key-rooted.
4. Therefore, by the induction hypothesis and by Lemma 7,
for some valuation ¢ of X, for some valuation v of ¥, either:
o for some R(V, W) € q;, I satisfies

(EX) = 0(v))
A (0F) = 0w)) ; or
A 0ovol(Rewq (g3 A)

e R(((X),v(y) € I\[0(q)], and for each valuation v’ of
¥, if REX),v'(y)) € I, then

I= V" 0 & o O(Rewy, yray)y (3 A 9))-
5. For some valuation ¢ of X, for some valuation v of y,
either:
o [satisfies
(&) = 0(v))
AV A (@) = 0(W)) :or
(V. W)eq,
A Oovo&(Rewg (g3 A @)

e REE),0(@) el and (Arggeq, E®)#0() and for
every valuation v’ of y such that R(&(X),0'(y)) € 1,

IEV o&o G(Rewq]u“-‘,@y),(q3 A Q).

594 J. Wijsen / Information Systems 34 (2009) 578-601

6. After some rearranging, either

&=1)
TR0\ qpsieg, [A O =W)
B A Rewg, (g3 A @)

or
= O[3X3IY(RE, Y) A (/\R(y’.m’/)em)_é# V)A
VY(RRZ,Y) - Rewg, urg (@3 A @)1

7. I E O(Rewg, RE.Y) Aq3 A @)). O
Appendix C. Proof of Theorem 2

The proof runs by induction on the length of q. The case
m<1 is trivial. Next assume m> 1. Since ¥; contains no
variables, R;(X1,¥;) is obviously reifiable.

Let ¢ = (R(X2,¥3), - - ., REm.¥n)), the tail of q. We still
need to show that 0(q’) is key-rooted for every valuation 0
of X1Y;. Let i be a child of 1 in the number join tree t with
root 1. Two cases can occur:

1. iis a leaf vertex in 7. Thus, 0(subfl(i)) is a singleton. We
show hereafter that every singleton rule is key-rooted.

2. iis an internal vertex in 7. The construction in the proof
of Lemma 5 allows to build a number join tree (call it
7;) for the ordered rule sub;(i). By Lemma 4, 7; is a
number join tree for 6(subfl(i)). It is now easy to check
that the ordered rule 0(sub;(i)), of smaller length than
g, satisfies the conditions of the theorem’s state-
ment.Hence, 0(sub;(i)) is key-rooted by the induction
hypothesis.

Since i is arbitrary, ()(subé(i)) is key-rooted for every child i
of 1. By Corollary 1, 6(q’) is key-rooted.

To show that every singleton rule g; = R(X,y) is key-
rooted, it suffices to show that R(%,) is reifiable in g;. Let I
be a database. Two cases can occur:

e For every atom R(d, b) eI, there exists a key-equal
atom R(d, <) € I such that R(@,¢)¥q,. Then, obviously,
there exists a repair J of I such that J¥q,, hence
1# sure{s- N

e] contains an atom R(d, b) such that for every key-equal
atom R(d,¢) € I, R(d, €) F q. Let 0 be the valuation of X
such that 0(X) = d. Since every repair J of I contains an
atom of [R(d, 5)],, it follows I=gye0(qy).

Since I is arbitrary, it follows that R(%,) is reifiable in g.

Appendix D. Proof of Theorems 3 and 4

Definition 10. Let X be a sequence of symbols and d a
sequence of constants such that |d| = |X|. The valuation 0
of X such that 0(X) = q, if it exists, will be denoted by
idR i d).

Let I be a database and A € I. We define the following
shorthand:

I
[4] - nranpua.

Lemma 8. Let q be a rule and I a database. Let V be the set of
variables in q, and X € V. Let R(d, B) e I such that for no
valuation 0 over V, R@,b) € 0(q). Let Iy = N[R, E)]],. Every
repair], of Io can be extended to a repair J of I such that for
every valuation p over X, J £ u(q) implies J, = u(q).

Proof. Let], be a repair of Iy. Let] = J, U {R(d, b)}. Clearly, J
is a repair of I. Let u be a valuation over X such that
J E u(q). Hence, there exists a valuation o over V such that
o(x) = w(x) for each x € X and w(q) < J. Since R(q, B)géw(q),
it follows w(q) < J,. Hence, Jo F u(q). O

Proof of Theorem 3. Let h be the height of the number
join tree for q. Let J;,J, be two repairs of the same
database I. We will construct a sequence of sets of atoms

(}=NocSNyc---SN,cJyU]J,
such that for each d € {0, ..., h}:

(P1) Ny is consistent.
(P2) For all key-equal atoms R(@, b), R(@, ©), one from J; and
the other from J, (possibly b=0),
(a) if N, contains neither R(@,b) nor R@,?¢), then
J1 UJaFsueid[X; > dl(subdg(1,d)); and
(b) if Ny contains R(d, b) or R(@,¢), then for each
repair J of J;UJ, such that N;C]J,
JEid[X; —d](subd;(1,d)).

If this construction succeeds, then the root vertex
R(X1,¥) is reifiable. Indeed, by property (P1), there exists
arepairJ of J; UJ, (and hence of I) such that N;, C J. Notice
that ¢q= subdg(1,h). Assume JFid[X;—d](q). Let
R(d,b),R(d,¢) be key-equal atoms, one from J; and the
other from J,. By property (P2b), N, <J and JF
id[®, —d](q) imply that N, contains neither R(d,b) nor
R(@,¢).Then, by property (P2a), J; Eid[X;—d](q) and
J, Fid[X;—d](q). Since d is arbitrary, it follows that
Reifies(q,X1,]) C Reifies(q,%X1,J;) and Reifies(q,X1,]) €
Reifies(q,%1,J,). Then, by Lemma 1, R(X,¥,) is reifiable.

Let ¢’ = (R*2.¥3),REm.Y)), the tail of q. We still
need to show that 0(q’) is key-rooted for every valuation 6
of X1Y;. Let i be a child of 1 in the number join tree t with
root 1. The construction in the proof of Lemma 5 allows to
build a number join tree (call it 7;) for the ordered rule
sub;(i). By Lemma 4, 1; is also a number join tree for
0(subé(i)). By condition (4) in the theorem'’s statement and
by Theorem 2, the ordered rule 0(sub;(i)) is key-rooted. By
Corollary 1, 6(q) is key-rooted.

In the remainder of the proof, we show the construction
of Ny for each d € {0,...,h}. The construction runs by
induction on increasing d. Since Ngo = {}, N trivially
satisfies properties (P1) and (P2b); Ny satisfies property
(P2a) because subd;(l, 0) = R(X1.¥1) and X1y, is a sequence

J. Wijsen / Information Systems 34 (2009) 578-601 595

of distinct variables (condition (1) in the theorem’s
statement).

Construction of Ng.1 from Ng: For all key-equal atoms
R, B),R(Q’, ¢), one from J; and the other from J,, and both
not in N4, whenever

J1 UJa B sureid[®y > d](subdg(1,d + 1)),
then select A € {R@d, B), R(d,)} such that

[[]1 Ul

l]] ¥ quroidf > dlisubd(1,d + 1)) 5)

and include A e Ny, ;. Henceforth, assume w.l.o.g. that
A=R@,b).

Note that if J; U jzt:surejd[k'i —d](subdg(1,d + 1)), then
Ng4,1 contains neither R(d, b) nor R(d, ¢).

In this way, Ny, obviously satisfies properties (P1) and
(P2a). To show that Ny ; satisfies property (P2b), assume
R, B) € Ngyq. Let] be a repair of J; UJ, such that Ng,; € J.
Two cases can occur.

1. Case R@,b) e Ny. By the induction hypothesis,
JEid[X; — d)(subdg(1,d)).

Obviously, J #id[X; — d](subdg(1,d + 1))
2. Case R(d,b)¢Ny. Then, by condition (5) in our con-
struction

J1Yl); o .
RG. B) ¥ sureld[X¥q = d](subdg(1,d + 1)).
Consequently, we can assume the existence of a
child j of 1 in the number join tree T with root 1 such
that

J1Y), i L <.
RG@, B) F sureld[X1Y1 '_’ab](subdq(], d)).

Assume id[X1 ¥, »—»EB]()?J-) =¢. Since vars(X;¥;)N

vars(X;y;) = vars(¥;) by condition (4) in the theorem’s

statement,

J1 UJ2 E sureid[X; — €](subdg (i, d)). (6)

Consider three mutually exclusive and exhaustive

cases:

(a) N4 contains an R-atom with primary key value €. By
the induction hypothesis,

JEid[X; —€](subdy(1,d)).

By conditions (2) and (3) in the theorem’s state-
ment, subdg(1,d) and subdg(j, d) are the same up to
a renaming of variables, hence

JEid[X;i— é)(subdy(j, d)).

It follows J #id[*; — d](subdg(1,d + 1)).

(b) J; UJ, contains no R-atom with primary key value
€. Obviously, J #id[x; — d](subdg(1,d + 1)).

(c) J; UJ, contains an R-atom with primary key value
é, but Ny does not. By the induction hypothesis,

J1 UJaFsureid[X; — €](subdg(1,d)),

which contradicts Eq. (6). We conclude by contra-
diction that this case cannot occur. [

Proof of Theorem 4. The proof runs by induction on the
length of g. The proof is trivial if |q| = 0; next assume that
Iq]>0.

Let I be a database. Let J; and J, be two repairs of I. We
are going to show the existence of a repair J of J; UJ, such
that for every valuation 0 of Xy, if J F 0(q), then J; F 6(q)
and J, F 0(q). By Lemma 8, we can assume w.l.o.g. that for
every atom R;(X;,y;) € q and for every Ri(d, b) €JiUJy,
id[%;/;—db] is well defined.

For each i € {1,...,m}, we construct a set N(i) € J; U],
such that:

(P1) N(i) is consistent. R
(P2) For all key-equal atoms R;(d, b), Bi(ﬁ, ¢), one from J,
and the other from J, (possibly b = ¢),

(@) if N(i) contains neither Ri(@,b) nor R;@,7), then
J1 UJaFsureid[X; — d](subg(i)); and

(b) if N() contains Ry(@,b) or Ri@,?), then for each
repair J of J;UJ, such that N(i) €], J¥idX;
> d](subg(D)).

Then, by Lemma 1, Ry (X1, ¥,) is reifiable; the argumenta-
tion is the same as in the proof of Theorem 3.

Let ¢ = (R(Z2.¥>), ..., REm.Yn)), the tail of q. We still
need to show that 0(q’) is key-rooted for every valuation 0
of X;¥,. Let i be a child of 1 in the number join tree 7 with
root 1. The construction in the proof of Lemma 5 allows to
build a number join tree (call it 7;) for the ordered rule
sub;(i). By Lemma 4, 7; is also a number join tree for
9(subf1(i)). It can now be easily checked that the ordered
rule 9(sub;(i)), which is of smaller length than q, satisfies
the conditions of the theorem’s statement, hence 6(sub;(i))
is key-rooted by the induction hypothesis. By Corollary 1,
0(q') is key-rooted.

The construction of each N(i) runs by induction
on decreasing i, that is, in decreasing depth of the
number join tree T with root 1. Thus, if i is the parent of
j, then N(j) is computed before N(i). The construction is
specified next.

Construction of N(i) for leaf vertex i: Let N(i) = {}.

By our assumption in the beginning of the proof, for
every Ri(@d,b) € J; UJ,, {Ri(@,b)} F Ri(%;, ;). Obviously, if i is
a leaf vertex, then N(i) satisfies properties (P1) and (P2).

For the induction step, we assume that i€ {1,...,m} is
an internal node. Assume that the children of i are i+
1,...,i+k,...,i+Isuchthatforallje{1+1,...,i+1}:

1if je{i+1,...,i+k}, then vars(X;) Cvars(Xj) and
vars(X;y;) N vars(X;y;) & vars(X)).

2.if je{i+k+1,...,i+1}, then varsXy;) NvarsXy;)
C vars()).

596 J. Wijsen / Information Systems 34 (2009) 578-601

This is illustrated in Fig. 15. We construct N(i) as the
smallest set containing N(i + 1),...,N(i + [) and the atoms
specified next.

Construction of N(i) for internal vertex i: For all key-equal
atoms R;(@,b), Ri(@, ¢), one from J; and the other from J,,
whenever

J1 Ul # sureidl[%; - dl(subj (),

then:

(11) Select A e {Ri(@, b), Ri(@, ®)} such that

[{J 1Y),
A
and include A € N(i). Henceforth, assume w.l.o.g. that
A = Ri(@, b) (the other case is symmetrical).
J1YJz
Ri(@, b)
for each child j of i and J; #id[X; — d](suby(i)).
(I3) Select a child j; of i such that

ﬂ ¥ suroids — d)SbL (1)

(12)

Construct a repair J; of |:[ﬂ such that N(j) < J;

Ja #id[%y; > Ab)(subl(jg))- 7)
Foraegch pair of distinct key—equal atoms Rja(ﬁ,é),
Ri,(d.f) € (J; UJ)\NGy), if R;,(d,€) € J; and

Ja VIR, (d.)} F id%y %, 3, — abdf)(subl(iq)),

then add R;,(d, &) € N(.

Note that if J; UJyFsureid[X;—dl(suby(i), then neither
R;(d, b) nor R;(d,©) is included in N().

Obviously, for any internal vertex i, N(i) satisfies
property (P2a). The construction is illustrated by the
following example.

Example 13. Let g = (R(x,2),5(X,y,2)). Let

J1UJy ={R(a,0),R(a,d),S(a,1,0),
S(a,1,d),5(a,2,¢),5(a,2,d)}.

We have N(2) = {}. Next, depending on which of R(a, c) or
R(a,d) is selected in step (I1), either

o N(1) = {R(a,c),S(a,1,d),S(a, 2,d)}, or
® N(1) = {R(g,d),5(a,1,0),5(a,2,0)}.

The S-atoms in N(1)\N(2) are added in step (I13).

We show the existence of J; in step (I2). Since

J1Y), i -
{[R/(@.b) F sureld[X; > d](subg (1)),
we can assume a repair Gz of J; UJ, such that Ry(d, b) e Gy
and

Gq #id[X; — d)(subg(i)). (8)

Jiul,
Ri(@b
each child j of i and]a\(U;ﬂ-HNU)) C Gg. Thus, J; contains
N(j) for each child j of i and is “completed” with atoms
from G;.

We show J; #id[X; Hﬁ](sub;(i)). Assume, on the contrary,

Let J; be the repair of H ﬂ such that N(j) € J; for

Ja E id[X; > d](subg(i)). (9)
By the Connectedness Condition, for all children j;,j, of i
such that j; #j,, the ordered rules id[X;y; HﬁB](sub;(jl)) and

id[Sc',y,-n—»ﬁB](sube(jz)) have no variables in common. Then,
by Eq. (8), we can assume a child h of i such that

G #id[%y; > ab](sub (). (10)

On the other hand, by Eq. (9), J; F id[i('ij/iHﬁB](subé(h)).

Then, we can assume Rh@,é’) € J; such that:

e 1

® | EidEyiXnyn Hﬁﬁaé](sub;(h)), and
o G #id[XyXy > dbd)(subjy(h)).

€irir1 € Xitkrl

i+k+1

Fig. 15. Vertex numbering for an internal vertex i in the number join tree 7 for (R (X1, ¥), ..., Rin(Xm.¥m)), used in the proof of Theorem 4. We write X; as a
shorthand for vars(x;). Every edge label ¢; is the set of variables that occur in both the parent and the child node.

J. Wijsen / Information Systems 34 (2009) 578-601 597

Then, J; is a repair of J; UJ, such that N(h) C J; and
Ja F id[%y > di(sub}(h)).

Since N(h) satisfies property (P2b) by the induction
hypothesis, Ry(d,€)¢N(h). By the construction of Ja
Rh@, €) € G; and N(h) contains no atom that is key-equal
to Rh@ €). Since N(h) satisfies property (P2a) by the
induction hypothesis, G; F id[)?hHa](sub;(h)), hence G; F
id[X’hj/’hHaé](sub;(h)). Since Ry(d.®) € J; and id[Ry:X,y), —
dbdé] is well defined, it follows that id[)?’,»?,-»—»ﬁB] and
id[X,Y), > deé] agree on vars(X;y;) N vars(X,y;,). Consequently,
G; = id[ié,»yiic'hHEEH](sub;(h)), contradicting (10). We con-
clude by contradiction J; #id[X; »—»ﬁ](sub;(i)).

In step (I3), the integer j; satisfying (7) exists, because
by the Connectedness Conditign, for all children j;,j, ofai
such that j; #j,, id[Xy;—dbl(suby(j;)) and id[X;y;—db]
(sub;(jz)) have no variables in common. -

We now show that the addition of some R;,(d, €) € N(i) in
step (I3) of the above construction cannot possibly result
in N(i) becoming inconsistent (property (P1)). Assume, on
the contrary, that (I3) also adds Rja.@f) € N(i) with f;é e.
Then, we can assume the existence of an atom R;(d, 5/) in
step (I1), a repair Jy inasgep (12), and an integer j; = j; in
step (I3) such that R;,(d.f) € J; and

Ja UR;,(d. 8)) F id%3i,,5;, —d'b deél(subf ().

It can be easily seen that the condition for adding Rja@ é)
to N(i) in step (I3) requires j; € {i+ 1,...,i+ k}. It follows
vars(¥;) C vars(¥;,). Then, since the valuations id[X;yX;.y;,
+abdf] and id[ziyizjdyjaHa’E/aa agree on X;,, they must
agree on %;, hence d=d, so J;=J]y. Then, Rjﬁ@),
Rja,(ﬁ,f) € J4, a contradiction. It is correct to conclude by
contradiction that N(i) satisfies property (P1) for any
internal vertex i.

Finally, we show that N(i) satisfies property (P2b).
Assume a repair J of J; UJ, such that Ry(d,b) € N(i) < J.
We need to show]#id[}‘é,—wﬁ](sub;(i)). Assume, on the
contrary, J k id[X; — d](subg(i)).

By (I12) and (I3), since R;(d, B) € N(i), there exists a repair
Js of JUJ, and a child j; of i such that Ri(@,b) e J; and
Ja Fid[Ry; - db)(subj))-

Since jI:id[X’iHﬁ](sub;(i)). we can assume key-equal
atoms Rjﬁ@), Rjﬁ@f). one from J; and the other from J,,

such that Rja,(a,f) eJand

J E id[%y%,,3;, > abdf1(subja))-

Hence, id[Xy;X;,y;. —abdf] is well defined. Since N@z)
satisfies property (P2b) by the induction hypothesis and
since N(jz) € N(i) < J and] = id[X;, Ha](sub;(ja)), it follows
Rjﬂ(a,f)e,éN(ja) and Rjﬂ@ €)¢ N(jy). Then, since N(j;) satisfies

property (P2a) by the induction hypothesis,
J1 UJsFsureid[R, > dI(sub (ja))-
Since (J4\(R;,(d.8)) U (R;,(d.f)} is a repair of J; UJ,,

Ja\(Ri,(d. &)} U (R;,(d.f)} ¥ id[%;, > dI(sub(ig))-

Since Ri(@,b) e Jz and since id[x,-y,»xjﬁyjﬂ,HﬁBaf] is well
defined,

Ja U Ry, (d.)) F id[Xy%;,y;, +— dbdfI(sub(ia).

Hence, it must be the case that -f and that Rja@ €) e/
was included in N(i) during step (I3). So Rjﬂ@,é) €], a
contradiction. We conclude by contradiction that
] #id[}?in—»ﬁ](sub;(i)). Consequently, N(i) satisfies property
(P2b) for any internal vertex i. [

Appendix E. Proof of Theorem 5

Proof of Theorem 5 (First item). Let I be a database. Let
A={x|3y(Rx,y)e)}. For each xeA, we define
succ(x) = {y | R(x,y) € I}. Construct a maximal sequence
CoeC1ECo&--- where Cy = {} and foreachi>0,C; = C;_{ U
{x} for some x € A such that c € succ(x) < C;_; U {c}. Thus,
x € C; implies R(x,c) € I (i=0). Let C;, be the last element
in this sequence. Obviously, m<|I| and C, can be
computed in polynomial time.
We show that

IFsureq if and only if for some x e A, succ(x) < Cp,.

Note that for x € A, succ(x) is nonempty, hence succ(x)
Cp implies m>1.

Example 14. For the database I = {R(a,b), R(a,d), R(b,¢),
R(b,d), R(b, e), R(d, c), R(d, e), R(e, c)}, we have A = {a,b,d, e}.
We obtain Cy = {}, C; = {e}, C; ={d,e}, C3 = {b,d,e}, and
this sequence is maximal (i.e. m=3). Since
succ(a) = {b,d} < C3, IFsyreq.

Assume for all x € A, succ(x) £ Cp,. Construct a repair J
of I as follows:

e for each x € Cpy, R(x,¢) € J; and

e for each x € A\Cp,, J contains R(x,y) € I for some y with
y¢Cn U {c}. Assume that no such y exists. Then, for
each x € A\Cp,, succ(x) < Cpy U {c}. Since succ(x) ECn by
the premise, ¢ € succ(x). But then the sequence can be
extended with C,,;1 = Cpn U {x}, contradicting maxim-
ality of the original sequence.

We show J ¥ g. Assume, on the contrary, | = q. Then, we can
assume a valuation 6 such that R(6(x), 0(y)), R(O(y),c) €].
From R(O(y), c) €], it follows 0(y) € Cp,. From R(0(x), 0(y))
J and 0(y) € Cm, it follows 6O(y) =c. Our construction
obviously guarantees that for every a in some C;,
succ(a) € C;U{c}. Then, since ce Cp, succ(c) < CnU

598 J. Wijsen / Information Systems 34 (2009) 578-601

{c} = Cp,, contradicting our assumption that succ(x)& Cp,
for each x € A. We conclude by contradiction J #q.

Since J¥#q, I ¥ sureq

Assume the existence of aeA such that
succ(a) < Cp.

Let M = {R(x,y) € I | x € Cpy}. We will show in the next
paragraph that for every repair J of M, either JFq or
J={R(x,c) el | x € Cyy}. Then, since for every repair K of I,
KN M is a repair of M, two cases can occur:

1. KNM E q. Obviously, K F q.
2. KNM = {R(x,¢) eI | x € Cr}. Then, K F R(@,y),R(y, ©).

It follows IFgyreq.

It remains to be shown that for every repair J of M,
either JFEq or J={Rixc)el|xeCp). For each
ie{0,...,m}, let M; = {R(x,y) el |x e C;}. We show that
for every repair J of M; either JEq or
J ={R(x,c) €I | x € C;}. Then, the desired result follows by
choosing i = m. The proof runs by induction on increasing
i. The base case i = 0 is obvious. For the induction step,
assume (.1 =C,U({b}. Assume w.lo.g. M, ;=M
{R(b,c),R(b,ay),...,R(b,a,)} where ay,...,a, € C. Let | be
a repair of M. Clearly, for some repair J' of My, for some
eec{c,ay,...,an},J] =J U{R(,e)}. By the induction hypoth-
esis, two cases can occur:

1. J'E q. It follows | F q.

2.] ={Rix,c)el|xeC}. If e=c, then J={R(x,c)el
| x € Cyyq}. If e=a; € G, for some ie{1,...,n}, then
R(e,c),R(b,e) €], hence J=q. O

Proof of Theorem 5 (Second item). The proof is based on
an Ehrenfeucht-Fraissé game [19]. Assume a vocabulary
with constant symbols c, o, f3, ¢, , x, T. Suppose there is a
FO sentence iy checking membership of CQA(q). Let d be
the quantifier depth of y. We exhibit two databases 2 and
®B that are undistinguishable by Ehrenfeucht-Fraissé
games of length d such that Wkgeq and BFgyeq.
Consequently, 2 and B are undistinguishable using
sentences of quantifier depth d, a contradiction.

The directed graphs in Fig. 13 show the databases 2l and
B. An edge from a; to a, means that the atom R(a;, ay) is
in the database; the interpretation of constant symbols is
indicated in the graphs.

Both databases 2l and B contain a long path from /5 to o,
denoted [f,]y and [f, a]y, respectively; there is an edge
from every element on the path to c. Furthermore, there
are edges from 6 to y, and from t to ¢. The difference
between both databases is that t precedes y on [f, o]y,
while t succeeds y on [f, o]y.

In every repair, no vertex can have more than one
outgoing edge. Fig. 14 shows a repair of B that falsifies g,
because no path of length 2 ends in c. On the other hand,
it can be verified that every repair of 2 has a path of
length 2 ending in c.

Distances on the path [f, «]y are defined as usual: for all
vertices v,w on [f, o]y such that v precedes w on [f, o]y,
we write dy (v, w) = p if the directed subpath from v to w
contains exactly p edges. The distance function dg
between vertices on [f, o]y is defined analogously.

We assume that 2l and B are chosen sufficiently large
such that:

du(B,1)>3"% dg(B.1)>3%
dy(t, >3 dy(r.1)>3"
dg[(X,OC)>3d, d%(r,oc)>3d.

We specify the winning strategy for the duplicator. In
particular, we show that the duplicator can play in such a
way such that the following holds for each round i (i>0).

Let

a=(a_6,0as,...,00,01,...,0;)
and
b=(b_s,b_s,...,bg,b1,...,by,
where

ag=bgeg=c, as=bs=0a as=b,s=4

a3=bs3=0, a,=b,=¢ a,=b 1=y
ao=b0=‘f,
and ay,...,q; are the i moves in 2, and by, ..., b; are the i

moves in B. Then, for —-6<j,I<i,

(c1) a4 =0 <= bj =b,.
(C2) for each g; on [f, oy With aj#0o,

(@) dyl(aj,succhy(a;))>3""
(3
das (b, succiy (b)) > 34
(b) succh(a) =q Ny (1)
and dy(aj, a)<3""
U
succly(by) = by
and dy(bj, b)) = do(a;, ap)

where for a; on [, oy such that a;#a, succy(a;) denotes
the vertex among {a_g, ..., a;} that is the nearest successor
of g; on the path [B, o]y That is, succh(a;) = q if

1. [B, o]y contains a subpath of length >1 from g; to aj;
and

2. whenever —6<m<iand an, lies on the subpath from g;
to aj, then either a, = g; or a; = a;.

Since « is the last vertex on the path [f3,]y, the successor
function succfl[is not defined in «. The successor function
succy on vertices in B is defined analogously. For
example, succd () = o and succ(y) = 7.

The predecessor function precfl[(and prec{B) is defined
symmetrically: for a; on [,]y such that a;+# 8, we write

preci,(a;) = a; if and only if succh(a) = g;.

J. Wijsen / Information Systems 34 (2009) 578-601 599

We indicate that in condition (C2) of (11), succ{'B(bj) is
well defined whenever succi(a;) is well defined. Assume
a; is on [f, o]y and a;#a. Then, a;#46, a;#¢, and a;#c. By
condition (C1) of (11), bj #a, b; # 4, bj #¢, and b; #c. Since b;
is on [B, oy with bj#a, succh(bj) is well defined.

Propositions 3 and 4 give equivalent ways of expressing
(11). These symmetries will be exploited for shortening
the proof.

Proposition 3. Condition (11) is equivalent to: for
-6<j,1<i,

(C1") aqj=a, < bj =b,.
(C2') for each a; on [B,ale with ajfﬁ,
() if dy(preciy(a;),a;)>3"", then dg(preciy (b)),
bj)>3d_i.)
(b) if preci(a)=a;, and dy(a,a)<3"", then
preci(bj) = by and dg(b), bj) = dy(a;, a)).

Proof. We show that (11) implies (C1’) and (C2’) (the
opposite implication is symmetrical). (11) implies (C1’) is
trivial. We next show (11) implies (C2). Let a; on [f, o]y
such that a;# 8.

(11) =(C2'a) Assume dy(prech(a;),a;)>3"". Let preck (b))
= by and succi(a)) = ap. Thus, succy (b)) = b.
Assume dy(a;, am) <3%. By condition (C2b)
in (11), bm = b;. By condition (C1) in (11),
am = a;. Then succy(a;) = a;, hence precy(a;)
=aq. Consequently, do(a;, am) =
dy(prech(a)), a;), a contradiction.
We conclude by contradiction de(a;,am)
>3%1 By condition (C2a) in (11), dy(by,
succh(b,.))>3d"'. Hence, dg(preci (b)),
bj)>3dil.

(11) =(C2’b) Condition (C2'b) follows immediately from
condition (C2b) in (11). O

Proposition 4. Condition (11) is equivalent to: for
-6<j,1<i,

(C]”) a4 =0a < bj = b[.
(C2") for each bj on [f, g with b;#a, ‘
(a) if 3c(l;§i(bj,succ{5(bj))>3d", then dy(a;, succy(a;))
> .
(b) if succly(by)=b; and dg(b;,b)<3?", then
succh(a;) = a; and dy(a;, a;) = dy(bj, by).

Proof. We show that (11) implies (C1”) and (C2”) (the
opposite implication is symmetrical). (11) implies (C1”) is
trivial. We next show (11) implies (C2”). Let b; on [, o]y
and b #a.

(11) =(C2”a) Clearly, condition (C2”a) follows from con-
dition (C2b) in (11).

(11) =(C2"b) Let succly(b;) = by and dy(b;, b)) <3*~". Let m
be an integer satisfying succy(a;) = am. If

da(aj, am)> 3", then by condition (C2a) in
(11), dg(bj,b)>3"", a contradiction. We
conclude by contradiction that
do(aj, am)<3°"". Then, by condition (C2b)
n (11), by = by and dyg(bj, bm) = dy(a;, am).
By condition (C1) in (11), am =q;. O

We now show that the conditions in (11) can be
preserved by the duplicator. The base case i=0 is
immediate from Fig. 13 and our assumption about the
size of U and B. For the induction step, assume that the
spoiler is making his (i + 1)st move in U (the case B is
symmetrical because of Proposition 4). If the spoiler plays
a;, j<i, the response of the duplicator is b;, and the three
conditions in (11) are trivially preserved.

Otherwise, the spoiler’s move a;,; must fall on [, o]y
and f+#a;,; #o. Let —6<p,s<i such that a, = prec’;gl(am)
and a5 = succh'(a;,1). Clearly, succh(ay) = as. Then for
—6<j<i+ 1 such that g; on [f, o] with a;#a,

succh(a) if j#p and j#i+1,
succhi(a)) = { @i if j = p,

as ifj=i4+1.
We consider the case dy(ap, a;,1)<dy(ai.1,as) (the case
dy(ap, air1)>dy(aiyq, as) is symmetrical because of Propo-
sition 3).

We show hereafter that the duplicator can (and will)

choose b;,; such that

succh(biy1) = succly(bp), (12)

or equivalently, bi,q = succh'(by). This is illustrated in
Fig. 16. Note that possibly succiy(bp)+ bs.
Hence, for all —6<j<i+ 1 such that b; on [, «]g with
bj#%
succly(by) if j#p and j#i+1,
succly! (by) = { biv1 if j=p.
succy(bp) if j=i41.

We show that condition (C2) of (11) is satisfied for every g;
with j#p and j#i+ 1. To this end, let —6<j<i+ 1 such
that j#p and j=#i+ 1. Then, succh!(aj) = succiy(a;) and
succh! (bj) = succiy(bj).

1. To show that condition (C2a) in (11) is true for a;, assume
dar(aj, succht! (aj) >34,

Two cases can occur:

(@) dy(a;, succh (a;))>3%". By the induction hypothesis

] ar (G
dy(bj, succly(b)>3%"", hence dy(bj, succly!(by)>
3d-G+1)

(D) dyy(aj, succh(a))<39". Let succh(a)=a. By the
induction hypothesis, succly(by) = by and
dy(bj,b) = dy(a;,a). Hence, dg(bj, succy(b)) =
do(aj, a)). Since dy(aj,a)>3""" by our initial
assumption, it follows dy(bj, succly(by) >34~

600 J. Wijsen / Information Systems 34 (2009) 578-601

vy = xuccgl(am) = xucc%(u,,)

‘__,Asucc%] (biy) = SML'C[% (bp)

a »

bi+l/

b,

Fig. 16. Moves in round i+ 1.

2. To show that condition (C2b) in (11) is true for g;,
assume succh'(a)) = a; and dy(a;, a) <3V, Hence,
succfu(aj)=al aI_]d d«u(aj,a,)<3d". By the induction
hypothesis, succiy(b)) = b; and dg(b;, b) = dy(a;, ap. 1t
follows succiy!(bj) = b, and dy(b;, b)) = dy(a;, ap.

Thus, hereafter it suffices to show that the duplicator
can play in such a way that condition (C2) of (11) is true
for a, and a;,;. We distinguish two cases:

Case do(ap, ai1)<3%"™V: The duplicator picks in B the
(unique) element b;, 4 satisfying dg(bp, bi1) = do(ap, Qi1 1).
We distinguish again two cases:

1 dy(ay,a5)>3%". Then, by the induction hypothesis,
dy(bp, succly(bp))>3%". Since dy(bp,bj,1) <3P
<39 equation (12) is true.

It is immediate that condition (C2) of (11) is satisfied

for the vertex a,. We show that condition (C2) of (11) is

also satisfied for a;,:

(@) Assume dy(@i,q,a5)>37 "D, Since dg(bp,
succhy (b)) >3 = 3 5 340D and
de(bp, b 1)<39"™D, it is correct to conclude
das(bis1, succi by, 1)) >2 x 3D,

(b) Assume do(ai;1,a5)<3 V. Since dy(ap,ai,q)
<dy(ai1,as) by our initial assumption, it follows
do(@p, as)<2 + 3D <397 3 contradiction. We
conclude by contradiction that this case cannot occur.

2. dy(ap,as)<3%". Then, succiy(by) = bs and dy(bp,bs) =
dy(ap, as) by the induction hypothesis. Then, the path
from a;,; to as is isomorphic to the path from b;,; to
bs = succ’gl(biﬂ). Condition (12) is obviously satisfied.
It is immediate that condition (C2) of (11) is satisfied
for the vertices a, and a;, 4.

Case dy(ap, @ip1)> 397D We first show

du(bp, succiy(by))>2 34-ED 4 1,

1. If dy(ap,as)>3%", then, by the induction hypothesis,
dy(bp, succiy(by))>3%". The desired result follows
because 397 >2 390+ 4 1,

2. If dy(ap, a;)<3%", then succly(bp) = bs and dy(bp, bs) =
dy(ap, as) by the induction hypothesis. By our initial
assumptions that 3"V <dy(ay, a;,1) <du(aiq, as), it
follows dog(ap, as)>2 % 3970+D 4 1, Hence,
dag(bp, bs)>2 539D 4 1,

Thus, the duplicator can choose in B an element b,
satisfying

d%(bpa bi+1)> 3d—(i+])’

i d—(i+1
dg(bi+],SuCC£+l(b,‘+]))>3 +),

where succi!(b;,1) = succy(bp). Condition (12) is ob-
viously satisfied. It is immediate that condition (C2) of
(11) is satisfied for ap and a;, .

Finally, we show that (d, b) defines a partial isomorph-
ism between 2 and B. That is, for —6<j,I<i,

. @j = a; < b; = b;. This is condition (C1) of (11).

. For every e € {c,a, B,9,¢,%,7}, aj = e < b; = e. This is
immediate from the choice of (a_s,...,ap) and
(b_s, - ..,bo).

3. R(gj,a)) € W < R(bj, b)) € B. We show = (the oppo-

site direction is symmetrical using Proposition 4). The

implication holds obviously if one of g; or g, is not on

[B. o]y Assume next that a; and q; are both on [, oy.

Then, b; and b, are both on [, aly. Since

dy(aj,a)) = 1<3%, it follows from condition (C2b) of

(11) that dg(b;, b)) = 1, hence R(b;, b)) € B.

N —

Thus we have shown that the duplicator can win a d-
round Ehrenfeucht-Fraissé game on 2 and 8. O

References

[1] M. Arenas, L.E. Bertossi,]. Chomicki, Consistent query answers in
inconsistent databases, in: PODS, ACM Press, New York, 1999,
pp. 68-79.

[2] J. Chomicki, Consistent query answering: five easy pieces, in: T.
Schwentick, D. Suciu (Eds.), ICDT, Lecture Notes in Computer
Science, vol. 4353, Springer, Berlin, 2007, pp. 1-17.

[3] A. Fuxman, R.J. Miller, First-order query rewriting for inconsistent
databases, J. Comput. Syst. Sci. 73 (4) (2007) 610-635.

[4] J. Wijsen, On the consistent rewriting of conjunctive queries under
primary key constraints, in: M. Arenas, M.I. Schwartzbach (Eds.),
DBPL, Lecture Notes in Computer Science, vol. 4797, Springer, Berlin,
2007, pp. 112-126.

[5] C. Beeri, R. Fagin, D. Maier, M. Yannakakis, On the desirability of
acyclic database schemes, J. ACM 30 (3) (1983) 479-513.

[6] A. Fuxman, RJ. Miller, Towards inconsistency management in data
integration systems, in: S. Kambhampati, C.A. Knoblock (Eds.),
[IWeb, 2003, pp. 143-148.

[7] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison-
Wesley, Reading, MA, 1995.

[8] J. Lin, A.O. Mendelzon, Merging databases under constraints, Int. J.
Cooperative Inf. Syst. 7 (1) (1998) 55-76.

[9] J. Wijsen, Database repairing using updates, ACM Trans. Database
Syst. 30 (3) (2005) 722-768.

[10] A. Fuxman, E. Fazli, R]. Miller, Conquer: efficient management of
inconsistent databases, in: F. Ozcan (Ed.), SIGMOD Conference,
ACM, New York, 2005, pp. 155-166.

[11] L. Grieco, D. Lembo, R. Rosati, M. Ruzzi, Consistent query answer-
ing under key and exclusion dependencies: algorithms and

[12]

[13]

(14]

J. Wijsen / Information Systems 34 (2009) 578-601 601

experiments, in: O. Herzog, H.-J. Schek, N. Fuhr, A. Chowdhury, W.
Teiken (Eds.), CIKM, ACM, New York, 2005, pp. 792-799.

D. Lembo, R. Rosati, M. Ruzzi, On the first-order reducibility of
unions of conjunctive queries over inconsistent databases, in: T.
Grust, H. Hopfner, A. Illarramendi, S. Jablonski, M. Mesiti, S. Miiller,
P.-L. Patranjan, K.-U. Sattler, M. Spiliopoulou, J. Wijsen (Eds.), EDBT
Workshops, Lecture Notes in Computer Science, vol. 4254, Springer,
Berlin, 2006, pp. 358-374.

A. Fuxman, RJ. Miller, First-order query rewriting for inconsis-
tent databases, in: T. Eiter, L. Libkin (Eds.), ICDT, Lecture Notes in
Computer Science, vol. 3363, Springer, Berlin, 2005, pp. 337-351.
A. Cali, D. Lembo, R. Rosati, On the decidability and complexity of
query answering over inconsistent and incomplete databases, in:
PODS, ACM, New York, 2003, pp. 260-271.

[15] J. Chomicki, J. Marcinkowski, Minimal-change integrity mainte-
nance using tuple deletions, Inf. Comput. 197 (1-2) (2005)
90-121.

[16] G. Gottlob, N. Leone, F. Scarcello, Hypertree decompositions and
tractable queries, J. Comput. Syst. Sci. 64 (3) (2002) 579-627.

[17] J. Wijsen, Consistent query answering under primary keys: a
characterization of tractable queries, in: R. Fagin (Ed.), ICDT, ACM,
New York, 2009.

[18] G. Gottlob, N. Leone, F. Scarcello, Hypertree decompositions
and tractable queries,]J. Comput. Syst. Sci. 64 (3) (2002)
579-627.

[19] L. Libkin, Elements of Finite Model Theory, Springer, Berlin,
2004.

	On the consistent rewriting of conjunctive queries under primary key constraints
	Introduction
	Notations and terminology
	Related work
	Key-rooted rules
	Consistent first-order rewriting of key-rooted ordered rules
	Join trees
	BFMY join trees
	Number join trees
	Operations on number join trees
	Merging key-rooted ordered rules

	New classes of rules with a consistent first-order rewriting
	No variables in the primary key of the root
	Single relation name
	No duplicate relation names

	 x y(R(x,y) R(y,c)) has no consistent first-order rewriting
	Rules with free variables
	Concluding remarks
	Acknowledgments
	Proof of Proposition 1
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorems 3 and 4
	Proof of Theorem 5
	References

