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This article deals with the computation of consistent answers to queries on relational

databases that violate primary key constraints. A repair of such inconsistent database is

obtained by selecting a maximal number of tuples from each relation without ever

selecting two distinct tuples that agree on the primary key. We are interested in the

following problem: Given a Boolean conjunctive query q, compute a Boolean first-order

(FO) query c such that for every database db, c evaluates to true on db if and only if q

evaluates to true on every repair of db. Such c is called a consistent FO rewriting of q.

We use novel techniques to characterize classes of queries that have a consistent FO

rewriting. In this way, we are able to extend previously known classes and discover new

ones. Finally, we use an Ehrenfeucht–Fraı̈ssé game to show the non-existence of a

consistent FO rewriting for 9x9yðRðx; yÞ ^ Rðy; cÞÞ, where c is a constant and the first

coordinate of R is the primary key.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Consistent query answering (CQA) was introduced by
Arenas et al. [1] and has gained considerable interest in
recent years; see for example the invited talk by Chomicki
[2]. The aim of CQA is to get consistent information out of
inconsistent databases. In technical terms, the repairs of
an inconsistent database db are defined as the consistent
databases that can be obtained from db by some minimal
change. If, as in this article, the constraints are primary
keys, then it is natural to take as repairs the maximal
consistent subsets of db. Given a Boolean query q, the
problem then is to decide whether q evaluates to true on
every repair of db.

For example, the relation EMP in Fig. 1, which violates
the primary key Name, has two repairs, each containing
one tuple. The query 9yðEMPðBlake; y;10KÞÞ evaluates to
true on both repairs, so ‘‘Blake earns 10K’’ is accepted as a
consistent piece of information. On the other hand,
ll rights reserved.
9zðEMPðBlake;Paris; zÞÞ is not true in every repair, so we
cannot be sure that Blake lives in Paris.

We deal with conjunctive queries in this article. For a
fixed Boolean conjunctive query q, CQAðqÞ is the following
problem: On input of a not-necessarily-consistent data-
base db, decide whether q evaluates to true on every
repair of db. It is by now well known (see for example [2])
that CQAðq1Þ is coNP-complete for the following Boolean
query q1:

q1 : 9x9y9zðRðx; zÞ ^ Sðy; zÞÞ,

where primary key positions are underlined. On the other
hand, CQAðq2Þ is in P for the following query q2 [3]:

q2 : 9x9y9zðRðx; zÞ ^ Sðz; yÞÞ.

The different computational behavior arises because the
‘‘join’’ variable z (i.e. the variable common to both atoms)
constitutes a primary key in the second query, but not in
the first one.

Fuxman and Miller [3] showed that for every query q in
some syntactically restricted class, called Cforest , there
exists a computable Boolean first-order (FO) query c such
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EMP Name City Sal
Blake Paris 10K
Blake London 10K

Repair1 Name City Sal
Blake Paris 10K

Repair2 Name City Sal
Blake London 10K

Fig. 1. Relation with two repairs.
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that for every database db, q evaluates to true on every
repair of db if and only if c evaluates to true on db. We
call such c a consistent FO rewriting of q. Clearly, if q has a
consistent FO rewriting c, then CQAðqÞ is in P (because c
can be evaluated in polynomial time on any database). For
the query q2, a consistent FO rewriting is

c2 : 9x9z0ðRðx; z0Þ^

8zðRðx; zÞ ! 9yðSðz; yÞÞÞÞ:

Intuitively, c2 checks whether for all R-tuples with
primary key value x, there exists a joining tuple in S.

Query rewriting is a clean and elegant approach to
consistent query answering. This article presents a
number of new results in this field; its main contributions
can be summarized as follows:
1.
roo

tha
We define the class of key-rooted1 Boolean conjunctive
queries and give a rewrite function that computes a
consistent FO rewriting for every query in this class.
The function consists of two rewrite rules. The class of
key-rooted queries seems to be large: we are unaware
of Boolean conjunctive queries that are FO rewritable
and not key-rooted (but we have no formal proof that
no such query can exist).
2.
 As the notion of key-rooted queries is a semantical one,
the task then is to define syntactic restrictions on
queries that guarantee ‘‘key-rootedness’’ (and hence
guarantee applicability of our rewrite function). The
advantage of our approach is that the notion of key-
rootedness hides the syntactical intricacies that com-
plicate FO rewriting.
Instead of Fuxman Miller (FM) join graphs, we use the
join trees defined by Beeri, Fagin, Maier and Yannaka-
kis [5], called BFMY join trees hereafter. This technique
allows us to characterize new, previously unknown
classes of queries with a consistent FO rewriting (some
of which have cyclic FM join graphs, but acyclic BFMY
join trees).
3.
 We pay special attention to queries with multiple
occurrences of the same relation name, a class for
which consistent FO rewriting was largely unexplored
until now. For the query

q ¼ 9x9y9zðRðx; zÞ ^ Rðy; zÞ ^ xayÞ,

it is known that CQAðqÞ is in P but q has no consistent
FO rewriting [6]. We show that the same holds for the
query q ¼ 9x9yðRðx; yÞ ^ Rðy; cÞÞ, where c is a constant.
This result is surprising, since the join variable y
1 In [4], these queries were called rooted. We prefer the term key-

ted in this article, to avoid confusion with the construct of rooted tree

t will also be used.
appears as primary key. It indicates that consistent FO
rewriting easily fails for conjunctive queries with self-
joins (i.e. in which the same relation name occurs more
than once).
This article is organized as follows. The next section
introduces the notations and terminology used through-
out the article. In particular, the term ‘‘rule’’ will be used
as a shorthand for ‘‘Boolean conjunctive query.’’ Section 3
discusses related work. Section 4 defines the model-
theoretic class of key-rooted rules. Section 5 gives a
rewrite function that computes a consistent FO rewriting
for any key-rooted rule. Section 6 deals with different
kinds of join trees and exhibits some useful properties.
Section 7 characterizes classes of key-rooted rules in
terms of BFMY join trees. Section 8 shows that for the
query q ¼ 9x9yðRðx; yÞ ^ Rðy; cÞÞ, CQAðqÞ is in P but q has no
consistent FO rewriting. Section 9 shows how to deal with
conjunctive queries with free variables. Section 10 con-
cludes the article. Some lengthy proofs and helping
lemmas have been moved to the Appendix.
2. Notations and terminology

A symbol is either a constant or a variable. Let X be a set
of variables. A valuation over X is a mapping y from X to
constants; the mapping y is extended to all symbols as
follows: if s is a variable that does not occur in X or if s is a
constant, then yðsÞ ¼ s.

If ~x is a sequence of symbols, then varsð~xÞ is the set of
variables that occur in~x. A valuation of~x is a valuation over
varsð~xÞ.

Key-equal atoms: A database schema is a finite set of
relation names. Every relation name R has a unique
signature, which is a pair ½n; k� with nXkX1: n is the arity

of the relation name and the coordinates 1;2; . . . ; k make
up the primary key. If R is a relation name with signature
½n; k�, then Rðs1; . . . ; snÞ is an R-atom (or simply atom),
where each si is a constant or a variable (1pipn). Such an
atom is commonly written as Rð~x;~yÞ where ~x ¼ s1; . . . ; sk

and ~y ¼ skþ1; . . . ; sn. An atom is ground if it contains no
variables. All constructs that follow are defined relative to
a fixed database schema.

A database is a finite set I of ground atoms using only
the relation names of the schema. Two ground atoms

R1ð~a1;~b1Þ;R2ð~a2;~b2Þ 2 I are key-equal if R1 ¼ R2 and

~a1 ¼ ~a2. We write 1R1ð~a1;~b1ÞUI for the set containing each

atom of I that is key-equal to R1ð~a1;~b1Þ. This notation

extends naturally to subsets J � I, as follows:
1JUI ¼

S
f1AUI j A 2 Jg.

Repair: A database I is consistent if it does not contain
two distinct atoms that are key-equal. Thus, I is consistent
if for every atom A 2 I, 1AUI ¼ fAg. A repair of a database I

is a maximal (under set inclusion) consistent subset J of I.
Non-ordered and ordered rules: As in [7, p. 41], the term

rule will be used as a shorthand for rule-based conjunctive

query. Moreover, all rules are understood to be Boolean.
Thus we have the following definitions.
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Fig. 2. FM join graphs of fRðx; yÞ; Sðu;wÞ; Tðy;wÞg and fRðx; yÞ; Sðx; yÞg.
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Fig. 3. FM join graph of fPðy;u; xÞ; Sðv;uÞ;Nðx; z;wÞ; Tðv;wÞg.
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A (non-ordered) rule is a finite set

q ¼ fR1ð~x1;~y1Þ; . . . ;Rmð~xm;~ymÞg

of atoms. This rule is satisfied by a database I, denoted
I � q, if there exists a valuation y of~x1~y1 � � �~xm~ym such that
for each i 2 f1; . . . ;mg, Riðyð~xiÞ; yð~yiÞÞ 2 I.

We say that a rule q has a self-join if two distinct atoms
of q share the same relation name.

In several places of the technical development, the
order in which atoms of a rule are listed is significant. In
particular, the syntactic rewrite function of Section 5
processes the atoms of a rule from left to right. Therefore,
an ordered rule of length m is a sequence

qo ¼ hR1ð~x1;~y1Þ; . . . ;Rmð~xm;~ymÞi

of (not necessarily distinct) atoms. The ith atom of qo,

1pipm, is denoted qo½i�, that is, qo½i� ¼ Rið~xi;~yiÞ. The first

atom R1ð~x1;~y1Þ is called the prefix of the rule, and

hR2ð~x2;~y2Þ; . . . ;Rmð~xm;~ymÞi the tail. The length m of qo is

denoted by jqoj. Satisfaction of ordered rules is defined in
the same way as for non-ordered rules. In general, any
construct that is defined for non-ordered rules naturally
carries over to ordered rules by ignoring the order and by
eliminating duplicates (if any).

Notice that rules contain no built-in predicates.
Consistently true: A rule q is consistently true in I,

denoted I�sureq, if for every repair J of I, J � q. The problem
CQASðqÞ, where S is a database schema and q is a rule, is
the complexity of (testing membership of) the set:

CQASðqÞ ¼ fI j I is a database over S and I�sureqg.

Throughout this article, the schema S will be implicitly
understood and therefore omitted.

Consistent FO rewriting: We say that a Boolean FO query
c is a consistent FO rewriting of a rule q if for every
database I, I�sureq if and only if I � c. Thus, q has a
consistent FO rewriting if and only if CQAðqÞ is first-order
definable.
2 Caveat: This class is not the same as the class Ctree in Fuxman and

Miller’s original conference article [13]. The definition of Ctree in [13]

does not require that the Fuxman Miller join graph be connected.
3. Related work

The repairs defined above are maximal consistent
subsets of the original database. In the case of primary
keys, it makes no difference whether maximality is
expressed relative to set inclusion (as in [1]) or cardinality
(as in [8]). Inserting new tuples is useless for restoring
primary key violations. Tuple modifications, as proposed
in [9], are not considered in this article.

The idea of consistent query rewriting first appeared in
[1]. Fuxman and Miller [3] have made a number of
breakthroughs in the consistent FO rewriting of rules
under primary key constraints, which motivated the
ConQuer system [10]. Their results have been generalized
and extended to exclusion dependencies by Grieco et al.
[11] and to unions of conjunctive queries by Lembo et al.
[12].

Up to Section 9, we limit our attention to Boolean
queries. Thus, all variables of a rule are understood to
be implicitly existentially quantified. The definition of
Fuxman Miller join graph first appeared in [13] and was
slightly adapted in [3].

FM join graph: The FM join graph of a (Boolean) rule
q ¼ fR1ð~x1;~y1Þ; . . . ;Rmð~xm;~ymÞg is a directed graph whose
vertices are the atoms of q; there is a directed edge from
Rið~xi;~yiÞ to Rjð~xj;~yjÞ if iaj and varsð~yiÞ \ varsð~xj~yjÞafg.

It is common to label an edge from Rið~xi;~yiÞ to Rjð~xj;~yjÞ

in the FM join graph of q with the (nonempty) set of

variables that occur in both ~yi and ~xj~yj.

Fig. 2 shows two FM join graphs; neither is a directed
tree (the left graph has a vertex with two incoming edges).
Fig. 3 shows an FM join graph that is a directed tree.

Fuxman and Miller [3] give an algorithm that com-
putes a consistent FO rewriting for any rule q ¼

fR1ð~x1;~y1Þ; . . . ;Rmð~xm;~ymÞg with the following properties:
1.
 1piojpm implies RiaRj. Thus, no relation name
occurs more than once in q;
2.
 the FM join graph of q is a directed forest; and

3.
 if there is a directed edge from atom Rið~xi;~yiÞ to Rjð~xj;~yjÞ,

then varsð~xjÞ � varsð~yiÞ. Using the terminology of

Fuxman and Miller [3], an edge from Rið~xi;~yiÞ to

Rjð~xj;~yjÞ implies a full nonkey-to-key join from Rið~xi;~yiÞ

to Rjð~xj;~yjÞ.

This class of rules is called Cforest . In this article, we denote
by Ctree the subclass of Cforest that contains q 2 Cforest

whenever the FM join graph of q is a (connected) directed
tree.2 Lemma 2 in [3] implies that whenever two distinct
Ctree components q1 and q2 of a Cforest query share a
variable x, then x can only occur in the primary keys of the
root atoms of q1 and q2.
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The class Cþtree, defined by Grieco et al. [11], omits the
third condition in the definition of Cforest , that is, nonkey-
to-key joins need not be full in Cþtree. Fuxman and Miller
give a query q without self-join such that the FM join
graph of q is a directed forest and CQAðqÞ is coNP-hard
[3]. Proposition 1 slightly modifies that query such that its
FM join graph becomes a tree, while maintaining intract-
ability. It follows that under the assumption PaNP, not all
queries in Cþtree have a consistent FO rewriting. Notice that
in the rule of Proposition 1, the atom Pðy;u; xÞ contains
some, but not all, variables that occur in the primary key
of Sðv;uÞ. Hence, the rule contains a nonkey-to-key join
that is not full.

Proposition 1. If q ¼ fPðy;u; xÞ, Sðv;uÞ, Nðx; z;wÞ, Tðv;wÞg,
then CQAðqÞ is coNP-hard.

Complexity results on consistent query answering for
larger classes of constraints appear in [14,15].

4. Key-rooted rules

We define the model-theoretic notion of key-rooted
rule. Key-rootedness is based on the following model-
theoretic property which can be easily verified. Let I be a
database. An ordered rule q with prefix R1ð~x1;~y1Þ and tail
q0 is true in every repair of I if the following condition is
satisfied:

there exists a valuation y of~x1 (let yð~x1Þ ¼ ~a) such that I

contains an R1-atom with primary key value ~a and for
every such atom R1ð~a;~bÞ 2 I, there exists a valuation y~b
of ~x1~y1 such that y~bð~x1~y1Þ ¼ ~a

~b and y~bðq
0Þ is true in

every repair of I that contains R1ð~a;~bÞ.

The above condition deals with all ways to repair multiple
R1-atoms with the same primary key value ~a. There are
two points to observe:
1.
 If such valuation y exists, then yðqÞ is also true in every
repair of I.
2.
 Consistent truth of q is reduced to consistent truth of
shorter rules y~bðq

0Þ for every Rð~a;~bÞ 2 I.

The above condition is sufficient for I�sureq. Key-rooted-
ness will be defined in such a way that every key-rooted
ordered rule q satisfies that condition whenever I�sureq.
Observation (1) leads to the notion of ‘‘reifiability’’
(Definition 1); observation (2) to a recursive definition
of key-rooted ordered rules (Definition 2). Lemma 1
provides a sufficient condition for reifiability that will be
used in some proofs later on. Proposition 2 then indicates
that the class of key-rooted rules is of practical interest: it
encompasses the class Ctree, which contains many com-
mon, practical queries [13]. Moreover, as we will see later
on, it covers relevant queries not in Cforest , such as the
‘‘intersection’’ query 9~x9~yðRð~x;~yÞ ^ Sð~x;~yÞÞ, where R and S

have the same signature.

Definition 1. Let q be a rule containing Rð~x;~yÞ. We call
Rð~x;~yÞ reifiable in q if for every database I, if I�sureq, then
there exists a valuation y of ~x such that I�sureyðqÞ.
For a consistent database J, we define:

Reifiesðq;~x; JÞ ¼ fy j y valuation of ~x; J � yðqÞg.

Example 1. We show that SðyÞ is not reifiable in
q ¼ fSðyÞ;Rðx; yÞg. Let I ¼ fSðbÞ, SðcÞ, Rða; bÞ, Rða; cÞg. The
two repairs of I are J1 and J2:

J1 ¼ fSðbÞ; SðcÞ;Rða; bÞg

J2 ¼ fSðbÞ; SðcÞ;Rða; cÞg

Since J1 � q and J2 � q, we have I�sureq. However, there is
no constant e such that I�surefSðeÞ;Rðx; eÞg.

On the other hand, from the results in this article, it will

follow that Rðx; yÞ is reifiable in q ¼ fSðyÞ;Rðx; yÞg.

Example 2. Neither Rðx; yÞ nor Rðy; cÞ is reifiable in
q ¼ fRðx; yÞ;Rðy; cÞg. Consider the database I ¼ fRða; bÞ;

Rðb; cÞ;Rðb;dÞ;Rðd; cÞg. The two repairs of I are J1 and J2:

J1 ¼ fRða; bÞ;Rðb; cÞ;Rðd; cÞg

J2 ¼ fRða; bÞ;Rðb; dÞ;Rðd; cÞg

Clearly, J1 � q and J2 � q. However, there exists no constant
e such that J1 and J2 both satisfy fRðe; yÞ;Rðy; cÞg. Likewise,
there exists no constant f such that J1 and J2 both satisfy
fRðx; f Þ;Rðf ; cÞg.

Example 3. Let q ¼ fRðx; yÞ;Rðy; zÞg. Let J ¼ fRða; bÞ, Rðb; cÞ,
Rðc; dÞ, Rðe; eÞg. Then, Reifiesðq; x; JÞ contains the following
valuations of x: fx/ag, fx/bg, and fx/eg. Reifiesðq; x; JÞ
does not contain fx/cg, because JjfRðc; yÞ;Rðy; zÞg.

Let q be a rule containing atom Rð~x;~yÞ. Let I be a
database. For every repair J of I, there can be zero, one or
more valuations y of ~x such that J � yðqÞ. The following
question arises: Is there a repair J such that for every
valuation o of ~x, oðqÞ is satisfied by J only if oðqÞ is
satisfied by every repair of I? Lemma 1 states that if the
answer to this question is ‘‘yes’’ for every database I, then
Rð~x;~yÞ is reifiable in q.

Lemma 1. Let q be a rule containing Rð~x;~yÞ. The atom Rð~x;~yÞ

is reifiable in q if for each database I, for all repairs J1; J2 of I,
there exists a repair J of I such that Reifiesðq;~x; JÞ �

Reifiesðq;~x; J1Þ \ Reifiesðq;~x; J2Þ.

Proof. Let I be a database. Assume that for all repairs J1; J2

of I, there exists a repair J of I such that
Reifiesðq;~x; JÞ � Reifiesðq;~x; J1Þ \ Reifiesðq;~x; J2Þ. We can
assume a repair J satisfying Reifiesðq;~x; JÞ ¼

T
fReifiesðq;~x; J0Þ j J0 repair of Ig; the latter intersection is
finite, since the number of repairs is finite. We distinguish
two cases:
�
 Reifiesðq;~x; JÞafg. Then, we can assume a valuation y of
~x such that for each repair J0 of I, J0 � yðqÞ. It follows
I�sureyðqÞ.

�
 Reifiesðq;~x; JÞ ¼ fg. Then, for every valuation y of ~x,

JjyðqÞ. It follows Jjq. Since J is a repair of I, Ijsureq.

Since I is arbitrary, it follows that Rð~x;~yÞ is reifiable
in q. &

We now define the conditions for an ordered rule to be
key-rooted: the rule’s prefix must be reifiable, and its tail
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must be key-rooted under every valuation of its prefix. To
get the recursion off the ground, the empty rule is key-
rooted. Notice that this definition is not relative to a given
database.

Definition 2. We define key-rooted ordered rules:
1.
 The empty rule is key-rooted.

2.
 The ordered rule q ¼ hR1ð~x1;~y1Þ; . . . ;Rmð~xm;~ymÞi with

mX1 is key-rooted if
(a) R1ð~x1;~y1Þ is reifiable in q; and
(b) for each valuation y of~x1~y1, the ordered rule yðq0Þ is

key-rooted where q0 is the tail of q.
A non-ordered rule is called key-rooted if it is key-rooted
under some linear ordering of its atoms.

The following proposition will serve in certain examples.
It is subsumed by more general theorems to follow.

Proposition 2.
1.
 If jqj ¼ 1, then q is key-rooted.
2.
 The ordered rule hR1ð~a;~y1Þ;R2ð~x2;~y2Þi, where ~a contains

no variables, is key-rooted (possibly R1 ¼ R2).

3.
 Let q be a (non-ordered) rule in Ctree, and let t be its FM

join tree. Let

qo ¼ hR1ð~x1;~y1Þ; . . . ;Rmð~xm;~ymÞi

be the ordered rule obtained from q by listing its atoms in

increasing depth. Thus, if t contains a directed edge from

Rið~xi;~yiÞ to Rjð~xj;~yjÞ, then ioj. Then, qo is key-rooted.

Proof. The first item is subsumed by Theorem 4. The
second item is subsumed by Theorem 2. The third item
follows from the proof of Corollary 5. &

Lemma 2 shows that for every key-rooted ordered rule
q, CQAðqÞ is in P. The proof characterizes CQAðqÞ as the set
of databases satisfying a property, called Property FO,
which can be checked in polynomial time. As was to be
expected, Property FO expresses the condition that
motivated the definition of key-rootedness (see first
paragraph of Section 4). Significantly, we will show in
Section 5 that Property FO is first-order expressible, which
thus gives us a consistent FO rewriting for any key-rooted
rule.

Lemma 2. If q is a key-rooted ordered rule, then CQAðqÞ is

in P.

Proof. Let q ¼ hR1ð~x1;~y1Þ; . . . ;Rmð~xm;~ymÞi be a key-rooted
ordered rule. If m ¼ 0, then the desired result is obvious.
Next assume mX1.

Let I be a database such that I�sureq. Since R1ð~x1;~y1Þ is

reifiable in q, we can assume the existence of a valuation y
of ~x1 such that I�sureyðqÞ. Assume w.l.o.g. that yð~x1Þ ¼ ~a.

Then, there exists an atom R1ð~a;~b
0

Þ 2 I such that every

repair J of I contains exactly one atom of 1R1ð~a;~b
0

ÞUI .

Let R1ð~a;~bÞ 2 I be key-equal to R1ð~a;~b
0

Þ. Let J be a repair

of I such that R1ð~a;~bÞ 2 J. Since J � yðqÞ, it follows that
there exists a valuation y~b of ~x1~y1 such that y~bð~x1Þ ¼

yð~x1Þ ¼ ~a, y~bð~y1Þ ¼
~b, and J � y~bðqÞ. Clearly, if J is a repair of

I such that R1ð~a;~bÞ 2 J, then J is a repair of ðIn1R1ð~a;~b
0

ÞUIÞ[

fR1ð~a;~bÞg; and the inverse is also true. It follows

ðIn1R1ð~a;~b
0

ÞUIÞ [ fR1ð~a;~bÞg�surey~bðqÞ. Hence, if I�sureq, then

the following condition holds:

Property FO. For some atom R1ð~a;~b
0

Þ 2 I, for every key-

equal atom R1ð~a;~bÞ 2 I, there exists a valuation y~b of ~x1~y1

such that y~bð~x1~y1Þ ¼ ~a
~b and

ðIn1R1ð~a;~b
0

ÞUIÞ [ fR1ð~a;~bÞg�surey~bðq
0Þ, (1)

where q0 is the tail of q.

It is easy to see that Property FO is also sufficient for

I�sureq. The quintessence now is that y~bðq
0Þ is key-rooted

by Definition 2. That is, we have reduced the test I�sureq to

tests of the form I0�sureq0 where I0 � I and jq0j ¼ jqj � 1.

For every query of smaller length, its query prefix can be

mapped to at most jIj different atoms. For a database I that

is ordered by primary key values, the overall complexity

for testing I 2 CQAðqÞ is OðjIjmÞ where m ¼ jqj. &

5. Consistent first-order rewriting of key-rooted ordered
rules

We show that if q is a key-rooted rule, then we can
construct a FO formula cq that checks membership of
CQAðqÞ; that is, for every database I, I�sureq if and only if
I � cq. The formula cq is essentially nothing else than a
first-order encoding of Property FO in the proof of
Lemma 2.

To start with a simple example, consider the singleton
rule q0 ¼ R1ða;bÞ, which is obviously key-rooted because it
contains no variables. To ease the technical treatment, we
encode this rule as R1ðx; yÞ ^j where j ¼ ðx ¼ aÞ^ ðy ¼ bÞ.
The following formula starts encoding Property FO:

9x 9y0ðR1ðx; y
0Þ ^ 8yðR1ðx; yÞ ! RewriteðjÞÞÞ.

Intuitively, ‘‘for some atom R1ð~a;~b
0

Þ 2 I’’ is encoded
by 9x9y0ðR1ðx; y

0Þ ^ � � �Þ, and ‘‘for every key-equal atom

R1ð~a;~bÞ 2 I’’ is encoded by 8yðR1ðx; yÞ ! � � �Þ. Since the
formula j is a conjunction of equalities, its truth is
database independent; it will be defined that
RewriteðjÞ ¼ j. Thus, we obtain the following consistent
FO rewriting for q0:

9x 9y0ðR1ðx; y
0Þ ^ 8yðR1ðx; yÞ ! ðx ¼ aÞ ^ ðy ¼ bÞÞÞ,

which is equivalent to

9y0ðR1ða; y
0Þ ^ 8yðR1ða; yÞ ! ðy ¼ bÞÞÞ.

As a follow-up example, consider the ordered rule q1 ¼

hR1ða; yÞ;R2ðx; yÞi, which is key-rooted by Proposition 2.
Note incidentally that this rule has a cyclic FM join graph
and hence does not belong to Ctree. We first write
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this rule as

R1ðx1; y1Þ ^ R2ðx2; y2Þ ^j,

where

j ¼ ðx1 ¼ aÞ ^ ðy1 ¼ y2Þ.

We proceed as in the first example:

9x19y
0
1ðR1ðx1; y

0
1Þ ^ 8y1ðR1ðx1; y1Þ !RewriteðR2ðx2; y2Þ ^jÞÞÞ

(2)

A subtlety to note is that in Eq. (1) of Property FO, y~bðq
0Þ

must be true, not in every repair of I, but in every repair of

I that contains R1ð~a;~bÞ. So we have to distinguish two
cases:
�
 If R2aR1, then RewriteðR2ðx2; y2Þ ^jÞ can be computed
as before, because R2ðx2; y2Þ ^j is true in every repair
of I that contains R1ðx1; y1Þ if and only if R2ðx2; y2Þ ^j is
true in every repair of I:

RewriteðR2ðx2; y2Þ ^jÞ
¼ 9x29y

0
2ðR2ðx2; y

0
2Þ^

8y2ðR2ðx2; y2Þ ! ðx1 ¼ aÞ ^ ðy1 ¼ y2ÞÞÞ.
�
 On the other hand, if R2 ¼ R1, then it becomes
significant that the formula RewriteðR2ðx2; y2Þ ^jÞ
must be true in I if and only if R2ðx2; y2Þ ^j is true in
each repair of I that contains R1ðx1; y1Þ. This yields two
cases: if x2ax1, then we proceed as before; if x2 ¼ x1,
then R2ðx2; y2Þ must be identified with R1ðx1; y1Þ. Thus,
for R2 ¼ R1, we obtain

RewriteðR2ðx2; y2Þ ^jÞ
¼ 9x29y

0
2ððx2ax1Þ ^ R2ðx2; y

0
2Þ^

8y2ðR2ðx2; y2Þ ! ðx1 ¼ aÞ ^ ðy1 ¼ y2ÞÞÞ

_

9x29y2

ðx2 ¼ x1Þ

^ ðy2 ¼ y1Þ

^ ðx1 ¼ aÞ

^ ðy1 ¼ y2Þ

0
BBBBB@

1
CCCCCA.

In this particular example, the second disjunct is
equivalent to simply ðx1 ¼ aÞ and is implied by the
first disjunct. Hence, if R2 ¼ R1, then the formula
RewriteðR2ðx2; y2Þ ^jÞ is equivalent to ðx1 ¼ aÞ. When
we substitute this result in formula (2), we find a
formula equivalent to

9x19y
0
1ðR1ðx1; y

0
1Þ ^ ðx1 ¼ aÞÞ.

It can be verified that the latter formula correctly
checks membership of CQAðq1Þ by noticing that q1 ¼

hR1ða; yÞ;R2ðx; yÞi is equivalent to R1ða; yÞ if R1 ¼ R2.

This concludes the introductory example.
Definition 3 defines the ‘‘equational form’’ for ordered

rules which is assumed by our rewrite function. Definition
4 then introduces our rewrite function, which takes the
form Rewq1

ðq2 ^jÞ, where q1 ‘‘remembers’’ the part of the
query that has already been rewritten, so that atoms of q2
can possibly be identified with atoms of q1 (as in the
above example). Note that the use of the separator ^
instead of a comma (,) is just for readability. Theorem 1
then states that this rewrite function computes a
consistent FO rewriting for every key-rooted ordered rule.

Definition 3. Let q ¼ hR1ð~x1;~y1Þ; . . . ;Rmð~xm;~ymÞi be an

ordered rule. Let q0 ¼ hR1ð~u1; ~w1Þ . . . ;Rmð~um; ~wmÞibe

the ordered rule obtained from q by putting a new fresh
variable at each position. Thus, q0 is constant-free and
contains no two occurrences of the same variable. Let V be
the set of variables that occur in q0. Let m be the (unique)
substitution over V such that mðq0Þ ¼ q. Let j be a
conjunction of equations such that:
1.
 whenever v 2 V and mðvÞ ¼ c, where c is a constant,
then j contains v ¼ c; and
2.
 whenever v1;v2 2 V and mðv1Þ ¼ mðv2Þ ¼ z, where z is a
variable, then j contains v1 ¼ v2.

Then, the formula qef defined as (the existential closure of)

qef ¼ R1ð~u1; ~w1Þ ^ � � � ^ Rmð~um; ~wmÞ ^j0,

where j0 is equal or equivalent to j, is called an
equational form for q.

A conjunction j of equalities is satisfiable if there exists

a valuation y over the variables in j such that for every

equality r ¼ s in j, yðrÞ ¼ yðsÞ.
We write q1 � q2, where q1 and q2 are Boolean queries,

if for every database I, I � q1 if and only if I � q2.

It is easy to see that if qef ¼
Vm

j¼1Rjð~uj; ~wjÞ ^j0 is an
equational form for q, then q � qef . Moreover, this
equivalence remains valid under valuations in the sense
explained in the next paragraph. Consequently, the
notions of reifiable atom and key-rootedness directly
extend to equational forms.

Consider the ith symbol position in q and qef (counting
from the left and ignoring j; thus, the first position in qef

is occupied by the leftmost variable in ~u1, and the last
position is occupied by the rightmost variable in ~wm).
Assume that qef contains variable u at position i. Two
cases can occur:
1.
 q contains a variable x at position i. Let o and y be the
valuations o ¼ fx/ag and y ¼ fu/ag, where a is any
constant. Then, oðqÞ � yðqef Þ.
2.
 q contains some constant b at position i. In this case, j0
implies u ¼ b. For yb ¼ fu/bg, we have ybðqef Þ � q.
Moreover, for every constant cab, if yc ¼ fu/cg, then
ycðj0Þ is unsatisfiable.

Example 4. Let c be a constant. Let

q ¼ hRðx; y; yÞ; Sðy; z; cÞi,

qef ¼ Rðu;v;wÞ ^ Sðr; s; tÞ ^

ðv ¼ wÞ

^ ðw ¼ rÞ

^ ðt ¼ cÞ

0
BB@

1
CCA.
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R(x, y)

S (u,w)
T (y,w)

y

w

R(x, y) S (x, y)
x, y

Fig. 4. BFMY join trees of fRðx; yÞ; Sðu;wÞ; Tðy;wÞg and fRðx; yÞ; Sðx; yÞg.
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Then, qef is an equational form for q. The substitution
m ¼ fðu; xÞ, ðv; yÞ, ðw; yÞ, ðr; yÞ, ðs; zÞ, ðt; cÞgmaps the atoms of
qef to the corresponding atoms of q.

Consider symbol position 3. The third symbol position

in q is occupied by y. In qef , the variable w occurs at

position 3. Let o ¼ fy/ag and y ¼ fw/ag. The Boolean

queries oðqÞ and yðqef Þ are obviously equivalent:

oðqÞ ¼ hRðx; a; aÞ; Sða; z; cÞi,

yðqef Þ ¼ Rðu;v; aÞ ^ Sðr; s; tÞ ^

ðv ¼ aÞ

^ ða ¼ rÞ

^ ðt ¼ cÞ

0
BB@

1
CCA.

Definition 4. Let q1, q2 be (possibly empty) conjunctions
of constant-free atoms. Let j be a conjunction of
equations.

Rewq1
ðq2 ^jÞ is inductively defined as follows:

Basis: q2 ¼ fg.

Rewq1
ðjÞ ¼ j

Step: q2 ¼ Rð~x;~yÞ ^ q3.

Rewq1
ðRð~x;~yÞ ^ q3 ^jÞ

¼
_

Rð~v;~wÞ2q1
9~x9~y

ð~x ¼ ~vÞ

^ ð~y ¼ ~wÞ

^ Rewq1
ðq3 ^jÞ

0
BB@

1
CCA

0
BB@

1
CCA

_

9~x9~yðRð~x;~yÞ ^ ð
^

Rð~v;~wÞ2q1
ð~xa~vÞÞ^

8~yðRð~x;~yÞ ! Rewq1[fRð~x;~yÞg
ðq3 ^jÞÞÞ.

It is understood that ~x ¼ ~v is a shorthand for x1 ¼ v1 ^ � � �

^xk ¼ vk, where ~x ¼ hx1; . . . ; xki and ~v ¼ hv1; . . . ;vki. Like-

wise for ~y ¼ ~w. The disequality ~xa~v is shorthand for

:ð~x ¼ ~vÞ. Furthermore, 9~x is a shorthand for 9x1 � � � 9xk. The

empty disjunction is false and the empty conjunction is

true.

For example, the complete rewriting of the rule
hRða; yÞ;Rðx; yÞi now goes as follows. First, we write this
rule in equational form, giving Rðx1; y1Þ ^ Rðx2; y2Þ^

ðx1 ¼ aÞ ^ ðy1 ¼ y2Þ. Next,

RewfgðRðx1; y1Þ ^ Rðx2; y2Þ ^ ðx1 ¼ aÞ ^ ðy1 ¼ y2ÞÞ

¼ 9x19y1ðRðx1; y1Þ ^ 8y1ðRðx1; y1Þ

! RewfRðx1 ;y1Þg
ðRðx2; y2Þ ^ ðx1 ¼ aÞ ^ ðy1 ¼ y2ÞÞÞÞ,

where we have omitted empty disjunctions and

RewfRðx1 ;y1Þg
ðRðx2; y2Þ ^ ðx1 ¼ aÞ ^ ðy1 ¼ y2ÞÞ

¼ 9x29y2

ðx2 ¼ x1Þ

^ ðy2 ¼ y1Þ

^ ðx1 ¼ aÞ

^ ðy1 ¼ y2Þ

0
BBBBB@

1
CCCCCA

_

9x29y2ðRðx2; y2Þ ^ ðx2ax1Þ^

8y2ðRðx2; y2Þ ! ðx1 ¼ aÞ ^ ðy1 ¼ y2ÞÞÞ.
Theorem 1. Let q ^j be an equational form for some key-

rooted ordered rule. For every database I, I�sureq ^j if and

only if I � Rewfgðq ^jÞ.

To obtain consistent FO rewritings of shorter length, in
Definition 4, the first disjunct (between big brackets) can
be equivalently rewritten as

9~x 9~y Rewq1
ðq3 ^jÞ ^

_
Rð~v;~wÞ2q1

ð~x ¼ ~vÞ ^ ð~y ¼ ~wÞ

0
@

1
A

0
@

1
A.

Despite this shortening, since Rewq1
ðRð~x;~yÞ ^ q3 ^jÞ calls

both Rewq1
ðq3 ^jÞ and Rewq1[fRð~x;~yÞg

ðq3 ^jÞ, the length of
Rewfgðq ^jÞ is Oð2m

Þ where m ¼ jqj. However, if no
relation name occurs more than once (i.e. for rules
without self-join), the disjunction

W
Rð~v;~wÞ2q1

ð� � �Þ is empty,
resulting in a rewriting of length linear in jqj. In the
literature, we found no algorithms for the consistent FO
rewriting of rules with self-joins.

6. Join trees

Now that we are able to compute a consistent FO
rewriting for every key-rooted rule, we can shift our
attention to characterizing syntactic classes of key-rooted
rules. This is essential, because our definition of key-
rooted rules is semantic and provides no syntactic test to
verify whether a rule is key-rooted. We will not use FM
join graphs employed by others for characterizing classes
of rules with a consistent FO rewriting. Instead, we use the
join trees defined by Beeri et al. [5].

6.1. BFMY join trees

We recall the notion of join tree introduced by Beeri,
Fagin, Maier, and Yannakakis [5]; the authors’ initials will
be used to make a distinction with the FM join trees
introduced by Fuxman and Miller [3]. Fig. 4 shows two
BFMY join trees. Compare with the FM join graphs of the
same queries in Fig. 2.

Definition 5. A BFMY join tree for a rule q is an undirected
(connected) tree whose vertices are the atoms of q such
that:

Connectedness Condition: whenever the same variable x

occurs in two distinct atoms Rið~xi;~yiÞ and Rjð~xj;~yjÞ, then
x occurs in each atom on the unique path linking
Rið~xi;~yiÞ and Rjð~xj;~yjÞ.

A rule is called acyclic if it has a BFMY join tree.

It is customary to label the edges of a join tree as

follows: if e is an edge between Rið~xi;~yiÞ and Rjð~xj;~yjÞ,
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then e is labeled by the set of variables that occur in both

Rið~xi;~yiÞ and Rjð~xj;~yjÞ. An edge label may be the empty set.

Unlike FM join graphs, BFMY join trees are undirected

graphs. Nevertheless, if t is a BFMY join tree, then a

directed rooted BFMY join tree is obtained from t by

singling out one vertex of t as the root.

The term Connectedness Condition appears in [16] and
refers to the following property: if t is a BFMY join tree
and x a variable, then the set of vertices in which x occurs
induces a (connected) subtree of t.

The rule fPðy;u; xÞ; Sðv;uÞ;Nðx; z;wÞ; Tðv;wÞg, whose FM
join tree is shown in Fig. 3, is cyclic. The graph in Fig. 5
explains why there exists no BFMY join tree for that rule:
the graph is a cycle and removing any one edge results in a
tree that violates the Connectedness Condition.

Note that each rule q has a unique FM join graph, but
can have zero, one or more BFMY join trees.
6.2. Number join trees

When a rule q is ordered, then its atoms can be
indicated by their position in q. Roughly, we use the term
‘‘number join tree’’ for a BFMY join tree in which each
atom is replaced by its position in q. Additionally, we will
require that every path in a number join tree that starts
from vertex 1 is increasing. Number join trees will be
handy in the technical treatment because, as explained in
Section 6.3, they remain unchanged under variable
assignments.

Definition 6. Let q be an ordered rule of length m. A
number join tree for q is an undirected tree t whose
vertices are the integers 1; . . . ;m such that:
1.
 Connectedness Condition: whenever the same variable x

occurs in two atoms q½i� and q½j�, then x occurs in q½k�

for every k on the unique path linking i and j

(1pi; jpm).

2.
R(x)

{x}

1

{x}
Increasingness Condition: if 1 ¼ i0; i1; i2; . . . ; ik ¼ j is a
path in t from 1 to j, then i0oi1oi2o � � �oik. Thus,
vertices are strictly increasing along each path that
starts from 1.

Optionally, edge labels can be added: if e is an edge linking
i and j, then the label of e is the set of variables that occur
in both q½i� and q½j�.
P(y, u, x)

N(x, z,w)
S (v, u)

T (v,w)

xu

wv

Fig. 5. The rule fPðy;u; xÞ; Sðv;uÞ;Nðx; z;wÞ; Tðv;wÞg is cyclic.
If the vertex 1 is chosen as the root, we obtain a directed

rooted number join tree with root 1, whose vertices are

numbered in increasing depth.

It is straightforward to transform a BFMY join tree into a
number join tree: single out a vertex as the root and
number it 1, then number all other vertices in increasing
depth.

Lemma 3. Let q be an acyclic rule and m ¼ jqj. Let t ¼ ðq; EÞ,
where E is the edge set, be a BFMY join tree for q. Let Rð~x;~yÞ

be any atom of q, and let tRð~x;~yÞ denote the directed rooted

BFMY join tree obtained from t by selecting Rð~x;~yÞ as its root.

Let f : q! f1; . . . ;mg be a bijection that numbers the atoms

of q in increasing depth of tRð~x;~yÞ. That is,
1.
Fig
rule
f ðRð~x;~yÞÞ ¼ 1; and
2.
 for all atoms A1;A2 2 q, if A1 is the parent of A2 in tRð~x;~yÞ,
then f ðA1Þof ðA2Þ.

Then, the graph ðf1; . . . ;mg; f ðEÞÞ is a number join tree for the

ordered rule hf�1
ð1Þ; . . . ; f�1

ðmÞi.

Proof. Let qo ¼ hf
�1
ð1Þ; . . . ; f�1

ðmÞi. Obviously, ðf1; . . . ;mg;
f ðEÞÞ is a tree.

Assume that the same variable x occurs in qo½i� ¼ f�1
ðiÞ

and qo½j� ¼ f�1
ðjÞ, and that k is on the path linking i and j.

Then in t, f�1
ðkÞ is on the path linking f�1

ðiÞ and f�1
ðjÞ. By

the Connectedness Condition for t, x occurs in f�1
ðkÞ ¼ qo½k�.

Assume that 1 ¼ i0; i1; . . . ; ik ¼ j is a path from 1 to j in

ðf1; . . . ;mg; f ðEÞÞ. Then, f�1
ð1Þ ¼ f�1

ði0Þ; f
�1
ði1Þ; . . . ; f

�1
ðikÞ ¼

f�1
ðjÞ is a path from Rð~x;~yÞ ¼ f�1

ð1Þ to f�1
ðjÞ in tRð~x;~yÞ. By

condition (2) in the statement of the lemma, 1 ¼ i0o
i1o � � �oik ¼ j. &

Example 5. See Fig. 6. Let

q ¼ fRðxÞ; Sðx;uÞ; Tðx;u; y; zÞ;RðyÞ;RðzÞg.

The tree with edge set

E ¼ ffRðxÞ; Sðx;uÞg; fSðx;uÞ; Tðx;u; y; zÞg,

fTðx;u; y; zÞ;RðyÞg; fTðx;u; y; zÞ;RðzÞgg

is a BFMY join tree for q. If RðxÞ is selected as the root, then
the vertices of q are already listed in increasing depth. The
vertex numbering f is defined by f ðRðxÞÞ ¼ 1, f ðSðx;uÞÞ ¼ 2,
S (x, u)

T (x, u, y, z)

R(y) R(z)

{x, u}

{y} {z}

2

3

4 5

{x, u}

{y} {z}

. 6. BFMY join tree (left) and number join tree (right) for the ordered

hRðxÞ; Sðx;uÞ; Tðx;u; y; zÞ;RðyÞ;RðzÞi.
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f ðTðx;u; y; zÞÞ ¼ 3, f ðRðyÞÞ ¼ 4, f ðRðzÞÞ ¼ 5. We have

f ðEÞ ¼ ff1;2g; f2;3g; f3;4g; f3;5gg,

which defines a number join tree for the ordered rule

qo ¼ hRðxÞ; Sðx;uÞ; Tðx;u; y; zÞ;RðyÞ;RðzÞi.

Conversely, let t be a number join tree for an ordered
rule q in which no atom occurs more than once; it is
straightforward to transform t into a BFMY join tree for q.

6.3. Operations on number join trees

Lemma 4 expresses that for any valuation y, every
number join tree for an ordered rule q is also a number
join tree for yðqÞ. Notice incidentally that edge labels are
optional and need to be recomputed when moving from q

to yðqÞ. This straightforward property of number join
trees is not shared by BFMY join trees, as illustrated by
Example 6. Because of this, number join trees are some-
what handier than BFMY join trees in certain technical
developments.

Lemma 4. Let q be an ordered rule. Let V be the set of

variables that occur in q, and X � V . Let y be a valuation over

X. Every number join tree for q is a number join tree for yðqÞ.

Proof. Straightforward. &

Example 6. This is a continuation of Example 5. For the
valuation y ¼ fx/a; z/ag, we obtain

yðqÞ ¼ fRðaÞ; Sða;uÞ; Tða;u; y; aÞ;RðyÞg

and

yðEÞ ¼ ffRðaÞ; Sða;uÞg; fSða;uÞ; Tða;u; y; aÞg,
fTða;u; y; aÞ;RðyÞg; fTða;u; y; aÞ;RðaÞgg.

The edges of yðEÞ are shown in Fig. 7 (left). Since y maps
both RðxÞ and RðzÞ to RðaÞ, yðEÞ contains a cycle and hence is
not a tree.

On the other hand, the tree with vertices f1;2;3;4;5g

and edges

ff1;2g; f2;3g; f3;4g; f3;5gg

is a number join tree for the ordered rule

yðqoÞ ¼ hRðaÞ; Sða;uÞ; Tða;u; y; aÞ;RðyÞ;RðaÞi
R(a)

S (a, u)

T (a, u, y, a)

R(y)

{}

{u}

{y}

{}

1

2

3

4 5

{}

{u}

{y} {}

Fig. 7. Results of applying the valuation fx/a; z/ag on the join trees of

Fig. 6.
in which RðaÞ occurs twice; it is shown in Fig. 7 (right).

Notice that edge labels have been recomputed.

The following definition introduces an operator for
constructing rules corresponding to subtrees in a directed
rooted number join tree.

Definition 7. Let q be an ordered rule of length m that has
a number join tree t. Let t1 denote the directed rooted
number join tree obtained from t by selecting 1 as its root.
Let i 2 f1;2; . . . ;mg and let d be a nonnegative integer. Let
i ¼ i0oi1oi2o � � �oik be the ascending sequence that
contains i and all descendants of i in t1 that are at (graph)
distance pd from i. Then, subdtqði; dÞ is defined as the
following ordered rule:

subdtqði; dÞ :¼ hq½i0�;q½i1�; . . . ;q½ik�i.

Finally, we define

subtqðiÞ :¼ subdtqði;1Þ,

where1 denotes a large integer greater than the depth of t.

Example 7. Let q be an ordered rule of length 12 that has
a number join tree with root 1 as shown in Fig. 8. The
vertex 3 and its descendants in increasing value are
3o5o7o8o9o10o11o12. Hence, subtqð3Þ ¼ hq½3�; q½5�;
q½7�;q½8�; q½9�; q½10�; q½11�; q½12�i.

The vertex 3 and its descendants at a distance p2 from

3 are 3o5o7o8o11o12. Hence, subdtqð3;2Þ ¼ hq½3�; q½5�;

q½7�;q½8�; q½11�; q½12�i.

Lemma 5. Let q be an ordered rule of length m that has a

number join tree t. For each i 2 f1; . . . ;mg, subtqðiÞ has a

number join tree.

Proof. Let t ¼ ðf1; . . . ;mg; EÞ. Let i ¼ i1oi2o � � �oik be the
ascending sequence that contains i and all descendants of
i in t1. Let t0 be the vertex-induced subgraph induced by
fi1; i2; . . . ; ikg. Let f be the renumbering defined by f ði1Þ ¼ 1,
f ði2Þ ¼ 2; . . . ; f ðikÞ ¼ k. A number join tree for subtqðiÞ is
obtained by renumbering the vertices of t0 according
to f. &

6.4. Merging key-rooted ordered rules

We show that if two key-rooted ordered rules q1 and q2

have no variable in common, then any merge of q1 and q2

results in a key-rooted rule.
1

3 4

7 5 6

8

9 10

11 12

2

Fig. 8. Number join tree.
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Definition 8. Let q1 and q2 be ordered rules. We say that
an ordered rule

qmerge ¼ hR1ð~x1;~y1Þ; . . . ;Rmð~xm;~ymÞi

is a merge of the ordered rules q1 and q2 if there exist two
sequences 1pi1oi2o � � �oikpm and 1pj1oj2o � � � jlpm

such that:
1.
 fi1; . . . ; ikg \ fj1; . . . ; jlg ¼ fg;

2.
 fi1; . . . ; ikg [ fj1; . . . ; jlg ¼ f1;2; . . . ;mg;

3.
 q1 ¼ hRi1 ð

~xi1 ;~yi1
Þ; . . . ;Rik ð

~xik ;~yik
Þi; and
4.
 q2 ¼ hRj1
ð~xj1

;~yj1
Þ; . . . ;Rjl

ð~xjl ;~yjl
Þi.
Thus, qmerge lists the atoms of q1 in the order in which they
occur in q1, and qmerge lists the atoms of q2 in the order in
which they occur in q2.

Lemma 6. Let q1 and q2 be ordered rules such that no

variable x occurs in both q1 and q2. Let qmerge be a merge of

q1 and q2. If q1 and q2 are key-rooted, then qmerge is key-

rooted.

Proof. Proof by induction on jqmergej, the length of qmerge.
The result is trivial for the induction basis jqmergej ¼ 0,
because the empty rule is key-rooted. For the induction
step, assume jqmergej40. Assume the numbering of
Definition 8. Assume w.l.o.g. that i1 ¼ 1. Thus, the first
atom of qmerge is the first atom of q1. We use the following
notations:
�
 q01 ¼ hRi2 ð
~xi2 ;~yi2

Þ; . . . ;Rik ð
~xik ;~yik

Þi, the tail of q1; and
�
 q0merge ¼ hR2ð~x2;~y2Þ; . . . ;Rmð~xm;~ymÞi, the tail of qmerge.

Let I be a database such that I�sureqmerge. Clearly, I�sureq1

and I�sureq2. Since q1 is key-rooted, it follows:
1.
 there exists a valuation y of~x1 such that I�sureyðq1Þ; and

2.
 for each valuation m of ~x1~y1, mðq01Þ is key-rooted.

Let J be a repair of I. Let X1 and X2 be the sets of variables
that occur in q1 and q2, respectively. By the first item
above, there exists a valuation o1 over X1 such that
o1ð~x1Þ ¼ yð~x1Þ and J � o1ðq1Þ. Since I�sureq2, there exists a
valuation o2 over X2 such that J � o2ðq2Þ. Let o be the
valuation over X1 [ X2 such that oðxÞ ¼ o1ðxÞ if x 2 X1 and
oðxÞ ¼ o2ðxÞ if x 2 X2. The valuation o is well defined
because X1 \ X2 ¼ fg. Clearly, J � oðqmergeÞ. Hence,
J � yðqmergeÞ. Since J is an arbitrary repair of I, I�sureyðqmergeÞ.

Let m be a valuation of ~x1~y1. Clearly, mðq0mergeÞ is a merge

of mðq01Þ and mðq2Þ. Since no variable x occurs in both ~x1~y1

and q2, mðq2Þ ¼ q2. Since mðq01Þ is key-rooted by the second

item above, and q2 is key-rooted by our initial assumption,

mðq0mergeÞ is a merge of two key-rooted ordered rules. Since

the length of mðq0mergeÞ is jqmergej � 1, by the induction

hypothesis, mðq0mergeÞ is key-rooted.

We have shown:
1.
 I�sureyðqmergeÞ for some valuation y of ~x1; and

2.
 for each valuation m of ~x1~y1, mðq0mergeÞ is key-rooted,

where q0merge is the tail of qmerge.
Consequently, qmerge is key-rooted. &

The following corollary is very useful in establishing
key-rootedness of ordered, acyclic rules.

Corollary 1. Let q be an ordered rule of length m that has a

number join tree t with root 1. Let q½1� ¼ Rð~x;~yÞ and let y be

a valuation of~x~y. If yðsubtqðiÞÞ is key-rooted for each child i of

1, then yðq0Þ is key-rooted, where q0 is the tail of q.

Proof. Assume w.l.o.g. that 2;3; . . . ; l are the children of 1
in the number join tree t with root 1. Clearly, the tail q0 of

q is a merge of subtqð2Þ; . . . ; subtqðlÞ. Consequently, yðq0Þ is a

merge of yðsubtqð2ÞÞ; . . . ; yðsubtqðlÞÞ. By the Connectedness

Condition, the ordered rules yðsubtqð2ÞÞ; . . . ; yðsubtqðlÞÞ have

pairwise disjoint sets of variables. By repeated application

of Lemma 6, yðq0Þ is key-rooted. &

7. New classes of rules with a consistent first-order
rewriting

This section consists of three subsections, each of which
contains a theorem introducing a new class of key-rooted
rules. Sections 7.1 and 7.2 cover rules in which the same
relation name can occur multiple times. Section 7.3 then
elaborates on the class Ctree defined in Section 3. Significantly,
the key-rooted rules in Sections 7.1 and 7.3 can have cyclic
FM join graphs (but always have acyclic BFMY join trees).

7.1. No variables in the primary key of the root

Theorem 2 uses the construct of number join tree to
characterize a class of key-rooted rules—and for which
Theorem 1 thus provides a consistent FO rewriting. The
class contains the rule shown in Fig. 9. The rule has four
occurrences of the same relation name and the FM join
graph (not shown) would contain a directed edge from any
atom to any other atom (and hence would not be a tree).

Theorem 2. An ordered rule

q ¼ hR1ð~x1;~y1Þ; . . . ;Rmð~xm;~ymÞi

is key-rooted if it has a number join tree t with root 1 such

that:
1.
 varsð~x1Þ ¼ fg. Thus, the primary key of the first atom

contains only constants.
2.
 For i; j 2 f1; . . . ;mg, if i is the parent of j, then j is a leaf

vertex of t or varsð~xjÞ � varsð~xi~yiÞ.

Theorem 2 immediately leads to the following result for
(non-ordered) rules.

Corollary 2. A rule q ¼ fR1ð~x1;~y1Þ; . . . ;Rmð~xm;~ymÞg has a

consistent FO rewriting if it has a directed rooted BFMY join

tree t such that:
1.
 if Rið~xi;~yiÞ is the root of t, then varsð~xiÞ ¼ fg; and
2.
 if Rið~xi;~yiÞ is the parent of Rjð~xj;~yjÞ, then Rjð~xj;~yjÞ is a leaf

vertex of t or varsð~xjÞ � varsð~xi~yiÞ.
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R(x1, x2, x3)

R(x2, x4, x5) R(x3, x6, x7)

R(x4, x8, x9)
R(x5, x10, x11) R(x6, x12, x13)

R(x7, x14, x15)

x2 x3

x4 x5 x6 x7

Fig. 10. BFMY join tree for a rule covered by Theorem 3.

R(a, x, y)

R(x, y, z)

R(u, y, x) R(w, z, y)

{x, y}

{x, y} {y, z}

Fig. 9. BFMY join tree for the rule fRða; x; yÞ, Rðx; y; zÞ, Rðu; y; xÞ, Rðw; z; yÞg.
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Proof. Clearly, by the construction in Lemma 3, there
exists an ordered rule qo such that qo contains exactly the
atoms of q and qo has a number join tree that satisfies all
conditions of Theorem 2. By Theorem 1, qo has a
consistent FO rewriting. &

The ordered rules captured by Theorem 2 reflect the
definition of key-rooted rules (Definition 2). If q is an
ordered rule in this class, then the primary key of q’s
prefix is variable-free, hence the prefix is reifiable. Next,
the second condition in the theorem’s statement guaran-
tees that either q’s tail is a singleton, or whenever y is a
valuation of q’s prefix, then y applied to q’s tail is a shorter
rule in the same class.

7.2. Single relation name

Theorem 3 characterizes another class of key-rooted
rules in terms of number join trees. A rule of this class is
shown in Fig. 10. Unlike the queries considered in [3], all
atoms of rules in this class share the same relation name.

Theorem 3. An ordered rule

q ¼ hRð~x1;~y1Þ; . . . ;Rð~xm;~ymÞi,

with a single relation name R, is key-rooted if it has a number

join tree t with root 1 such that:
1.
 Every atom is constant-free and contains no two

occurrences of the same variable.

2.
 For all internal vertices i and j, the ordered rules

subdtqði;1Þ and subdtqðj;1Þ are the same up to a renaming

of variables.
3.
 All leaf vertices are at the same depth.
4.
 For i; j 2 f1; . . . ;mg, if i is the parent of j, then

varsð~xi~yiÞ \ varsð~xj~yjÞ ¼ varsð~xjÞ.

Theorem 3 immediately leads to the following result for
(non-ordered) rules.

Corollary 3. A rule q ¼ fRð~x1;~y1Þ; . . . ;Rð~xm;~ymÞg, with a

single relation name R, has a consistent FO rewriting if it

has a directed rooted BFMY join tree t such that:
1.
 Every atom is constant-free and contains no two

occurrences of the same variable.
2.
 For all internal vertices Rð~xi;~yiÞ and Rð~xj;~yjÞ, the subtree

induced by Rð~xi;~yiÞ and all its children is the same, up to a

renaming of variables, as the subtree induced by Rð~xj;~yjÞ

and its children.
3.
 All leaf vertices are at the same depth.
4.
 If atom Rð~xi;~yiÞ is the parent of Rð~xj;~yjÞ, then

varsð~xi~yiÞ \ varsð~xj~yjÞ ¼ varsð~xjÞ.

The following examples show that Theorem 3 is no
longer valid if one of conditions (1)–(4) is dropped.

Example 8. The rule q1 ¼ hRðx; yÞ;Rðy; cÞi, where c is a
constant, satisfies all but condition (1) in Theorem 3. In
Section 8, it is shown that this rule has no consistent FO
rewriting, and hence cannot be key-rooted.

The rule q4 ¼ hRðx; yÞ;Rðy; xÞi satisfies all but condition

(4). The atom Rðx; yÞ is not reifiable in q4, hence q4 is not

key-rooted. Witness thereof is the database

I ¼ fRða; bÞ;Rðb; aÞ;Rðb; cÞ;Rðc; bÞ;Rðc; dÞ;Rðd; cÞg,

which has four repairs:

J1 ¼ fRða; bÞ;Rðb; aÞ;Rðc; bÞ;Rðd; cÞg,

J2 ¼ fRða; bÞ;Rðb; cÞ;Rðc;bÞ;Rðd; cÞg,

J3 ¼ fRða; bÞ;Rðb; aÞ;Rðc; dÞ;Rðd; cÞg,

J4 ¼ fRða; bÞ;Rðb; cÞ;Rðc;dÞ;Rðd; cÞg.

Since each repair satisfies q4, we have I�sureq4. The atom

Rðx; yÞ is not reifiable in q4, because for every valuation y of

x, there is at least one repair that falsifies yðq4Þ.

Example 9. The ordered rule

q2 ¼ hRðx1; x2; x3Þ;Rðx2; x4; x5Þ;Rðx5; x6; x7Þi

with a BFMY join tree as shown in Fig. 11, satisfies all but
condition (2) in Theorem 3, since the two subrules

hRðx1; x2; x3Þ;Rðx2; x4; x5Þi; hRðx2; x4; x5Þ;Rðx5; x6; x7Þi

are not equal up to a variable renaming. For the database
I ¼ fRða; b; bÞ, Rðb; a;1Þ, Rðb;1; aÞg, we have I�sureq2 but
there is no valuation y of x1 such that I�sureyðq2Þ. Thus,
Rðx1; x2; x3Þ is not reifiable in q2.

Example 10. The ordered rule

q3 ¼ hRðx1; x2; x3Þ;Rðx2; x4; x5Þ;Rðx3; x6; x7Þ,

Rðx4; x8; x9Þ;Rðx5; x10; x11Þ;Rðx6; x12; x13Þ,

Rðx7; x14; x15Þ;Rðx8; x16; x17Þ;Rðx9; x18; x19Þ,

Rðx14; x20; x21Þ;Rðx15; x22; x23Þi

of which a BFMY join tree is shown in Fig. 12, satisfies all
but condition (3) in Theorem 3; for the database
I ¼ fRða; c;3Þ, Rðb;3; cÞ, Rðc;1;2Þ, Rðc;2;1Þ, Rð3;2;2Þ,
Rð2;1;1Þ, Rð1;0;0Þg, we have I�sureq3 but there is no
valuation y of x1 such that I�sureyðq3Þ. Thus, Rðx1; x2; x3Þ is
not reifiable in q3.
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7.3. No duplicate relation names

Theorem 4 and its Corollary 4 extend the class Ctree

defined in Section 3. They deal with rules without self-
joins (condition (1) in the theorem’s statement). Condition
(2b) states that the variables shared by a child and its
parent are (possibly strictly) contained in the child’s
primary key variables. Thus, unlike Ctree, nonkey-to-key
joins need not be full. Condition (2a) provides an
alternative: the primary key of the child contains all
variables of the parent’s primary key.

Theorem 4. An ordered rule

q ¼ hR1ð~x1;~y1Þ; . . . ;Rmð~xm;~ymÞi

is key-rooted if it has a number join tree t with root 1 such

that:
1.
 If iaj, then RiaRj. Thus, no relation name occurs more

than once in q.

2.
 If i is the parent of j (1pi; jpm), then at least one of the

following two conditions is true:
(a) varsð~xjÞ 	 varsð~xiÞ; or

(b) varsð~xjÞ 	 varsð~xi~yiÞ \ varsð~xj~yjÞ. That is, varsð~xjÞ is a

superset of the label on the edge between i and j.
Fig
Theorem 4 immediately leads to the following result for
(non-ordered) rules.

Corollary 4. A rule q ¼ fR1ð~x1;~y1Þ; . . . ;Rmð~xm;~ymÞg has a

consistent FO rewriting if it has a directed rooted BFMY join

tree t such that:
R(x1, x2, x

R(x2, x4, x5)

R(x4, x8, x9)
R(x5, x10, x11)

R

R(x8, x16, x17)
R(x9, x18, x19)

x2

x4 x5

x8 x9

Fig. 12. BFMY join tree for a rule

R(x1, x2, x3)

R(x2, x4, x5)

R(x5, x6, x7)

x2

x5

. 11. BFMY join tree for a rule not covered by Theorem 3.
1.
3)

(x6,

R

not
no relation name occurs more than once in q; and
2.
 if Rið~xi;~yiÞ is the parent of Rjð~xj;~yjÞ (1pi; jpm), then at

least one of the following conditions is true:

(a) varsð~xjÞ 	 varsð~xiÞ; or

(b) varsð~xjÞ 	 varsð~xi~yiÞ \ varsð~xj~yjÞ.
x12,

(x14

x

cove
For example, the ‘‘intersection’’ rule fRðx; yÞ; Sðx; yÞg
(right graph of Fig. 4) is covered by the corollary and
hence has a consistent FO rewriting:

9x9yðRðx; yÞ ^ Sðx; yÞ ^ 8zððRðx; zÞ _ Sðx; zÞÞ ! z ¼ yÞÞ.

The rule fRðx; yÞ; Sðx; yÞg is not in Ctree because its FM join
graph is cyclic (right graph in Fig. 2). The acyclic rule

fRðx; yÞ; Sðu;wÞ; Tðy;wÞg

has a unique BFMY join tree (left graph of Fig. 4) but is not
covered by Corollary 4, no matter which atom is selected
as the root.

By proving that every rule in Ctree satisfies the
conditions of Corollary 4, we obtain the following result.

Corollary 5. Every rule in Ctree has a consistent FO rewriting.

Proof. Let q ¼ fR1ð~x1;~y1Þ; . . . ;Rmð~xm;~ymÞg be a rule in Ctree

with FM join tree t.

Assume that two distinct atoms Rið~xi;~yiÞ;Rjð~xj;~yjÞ 2 q

have a variable u in common. Recall that our definition of

Ctree implies that the FM join graph of q is connected.

Then, two cases can occur:
1.
 One of Rið~xi;~yiÞ or Rjð~xj;~yjÞ is an ancestor of the other.

Assume w.l.o.g. that Rið~xi;~yiÞ is an ancestor of

Rjð~xj;~yjÞ.Then u 2 varsð~xjÞnvarsð~yjÞ, or else the FM join

graph would be cyclic, a contradiction. Let Rlð~xl;~ylÞ be

the parent of Rjð~xj;~yjÞ. Since all nonkey-to-key joins are

full, u 2 varsð~ylÞ. Then l ¼ i, or else the FM join graph

would be cyclic, a contradiction. It follows that Rið~xi;~yiÞ

is the parent of Rjð~xj;~yjÞ.
2.
 Neither of Rið~xi;~yiÞ or Rjð~xj;~yjÞ is an ancestor of the

other. Then u 2 varsð~xiÞnvarsð~yiÞ, or else there would be

a directed edge from Rið~xi;~yiÞ to Rjð~xj;~yjÞ, a contra-

diction. Let Rlð~xl;~ylÞ be the parent of Rið~xi;~yiÞ. Since
R(x3, x6, x7)

x13)
R(x7, x14, x15)

, x20, x21)
R(x15, x22, x23)

3

x6 x7

x14 x15

red by Theorem 3.
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u 2 varsð~ylÞ, there is a directed edge from Rlð~xl;~ylÞ to

Rjð~xj;~yjÞ. That is, Rið~xi;~yiÞ and Rjð~xj;~yjÞ are siblings and

their common parent contains u.

Hence, if two distinct atoms share a variable u, then
either one of the atoms is the parent of the other, or both
atoms are siblings and their common parent atom
contains u. It follows that the FM join tree of q is a
directed rooted BFMY join tree satisfying the conditions of
Corollary 4. &

8. 9x9yðRðx; yÞ ^ Rðy; cÞÞ has no consistent first-order
rewriting

We found in the literature no rewriting algorithms that
produce consistent FO rewritings for rules that contain
self-joins. Theorems 2 and 3 seem to be the first positive
results in this direction. We now argue that there is little
hope to significantly extend these results.

Clearly, under the assumption PaNP, a rule q can
have no consistent FO rewriting if CQAðqÞ is coNP-
complete. We will now show that the simple rule
q ¼ fRðx; yÞ;Rðy; cÞg, where c is a constant, has no consis-
tent FO rewriting, even though CQAðqÞ is in P. This
may come as a surprise, because the nonkey-to-key
join is full, the rule has a BFMY join tree, and its FM join
graph is a tree. Intuitively, if R encodes the edge set of a
graph, the query asks whether there is a path of length 2
that ends in a distinguished vertex c. The rule is not
covered by Corollary 2 because no primary key is ground;
it is not covered by Corollary 3 because it contains a
constant. So it turns out that the double occurrence
of the same relation name in a rule q easily leads to the
non-existence of a consistent FO rewriting (even if CQAðqÞ

is in P).
The intuition behind (the proof of) Theorem 5 can be

understood as follows. Let q ¼ fRðx; yÞ;Rðy; cÞg. Consider
the class of databases encoding directed acyclic graphs
with exactly two sinks c and �. Let I be any database in this
class. Notice that in every repair, every vertex can have at
most one outgoing edge. We argue hereafter that Ijsureq if
and only if for every vertex x that is not a sink,
�
 Rðx; cÞ 2 I, or

�
 I contains a directed path from x to �.
Fig. 13. 9x9yðRðx; yÞ ^ Rðy; cÞÞ is consis
For the if-direction, construct a repair J of I such that
for every vertex x, if I contains a directed path from x to �,
then so does J; otherwise J contains Rðx; cÞ. This is
illustrated by the database B in Fig. 13 (right) and its
repair of Fig. 14. Then J contains no path of length 2 ending
in c. For the opposite direction (only-if), assume a vertex x,
xac and xa�, such that Rðx; cÞeI and there is no directed
path from x to �. Thus, each maximal path that starts from
x, ends in c. Then it is easy to see that every repair J of I

contains a directed path with length X2 from x to c, hence
J � q. This is illustrated by the database A in Fig. 13 (left),
which contains no directed edge from d to c, and no
directed path from d to �.

The quintessence now is that reachability from x to � is
not first-order expressible. In particular, we show that for
any given FO sentence c, the databases A and B can be
chosen sufficiently large such that they cannot be
distinguished by c. On the other hand, the existence of
particular paths can be verified in polynomial time.

Theorem 5. Let q ¼ fRðx; yÞ;Rðy; cÞg.
1.
tent
CQAðqÞ is in P.

2.
 There exists no Boolean FO query c such that for every

database I, I�sureq if and only if I � c. Thus, q has no

consistent FO rewriting.

9. Rules with free variables

The rewrite functions of Definition 4 and Theorem 1
are given for Boolean queries. We now show how to
handle conjunctive queries with free variables.

Let qðx1; . . . ; xnÞ denote an ordered rule with n free
variables x1; . . . ; xn. Let ~x ¼ hx1; . . . ; xni. For every sequence
~a ¼ ha1; . . . ; ani of constants:
�
 q~x/~a denotes the ordered rule obtained from q by
replacing each free occurrence of xi with ai, for all
1pipn; and

�
 qef

~x/~a
denotes an equational form for q~x/~a as defined in

Definition 3.

Since every constant symbol is interpreted by itself, we
have the following equivalences for any database I:

I�sureqð~aÞ () I�sureq~x/~a () I�sureqef
~x/~a.
ly true in A, but not in B.
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Fig. 14. Repair of B falsifying 9x9yðRðx; yÞ ^ Rðy; cÞÞ.
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Example 11. Let

qðx1; x2Þ ¼ 9yðRðx1; yÞ ^ Sðy; x2ÞÞ,

with two free variables x1 and x2. Let a1 and a2 be two (not
necessarily distinct) constants. Then,

q~x/~a ¼ hRða1; yÞ; Sðy; a2Þi,

qef
~x/~a ¼ Rðu1;w1Þ ^ Sðw2;u2Þ^

w1 ¼ w2 ^ u1 ¼ a1 ^ u2 ¼ a2.

By Theorem 1, for each ~a such that the rule q~x/~a is key-
rooted, for every database I,

I�sureqð~aÞ () I � Rewfgðq
ef
~x/~aÞ. (3)

Let ~c ¼ hc1; . . . ; cni be a sequence of n new distinct

constants. Clearly, for every ~a, it can be assumed without

loss of generality that qef
~x/~a

is obtained from qef
~x/~c

by

replacing each occurrence of ci with ai, for all 1pipn.
Furthermore, it is easy to verify that the rewrite function

of Definition 4 is such that for every ~a, Rewfgðqef
~x/~a
Þ can be

obtained from Rewfgðqef
~x/~c
Þ by replacing each ci with ai, for

all 1pipn.

The variables x1; . . . ; xn do not occur in Rewfgðqef
~x/~c
Þ. Let

Q be the query obtained from Rewfgðqef
~x/~c
Þ by replacing

each occurrence of ci with xi, for all 1pipn. Then, Q is a
query with free variables x1; . . . ; xn, denoted Q ðx1; . . . ; xnÞ,

such that for all ~a, for every database I,

I � Q ð~aÞ () I � Rewfgðq
ef
~x/~aÞ. (4)

From (3) and (4), it follows that for each ~a such that
q~x/~a is key-rooted, for every database I,

I�sureqð~aÞ () I � Q ð~aÞ.

Thus, Q ðx1; . . . ; xnÞ is a consistent FO rewriting of
qðx1; . . . ; xnÞ.

Example 12. Continuation of Example 11. We have

qðx1; x2Þ ¼ 9yðRðx1; yÞ ^ Sðy; x2ÞÞ.

Let c1 and c2 be two distinct constants. Then,

q~x/~c ¼ hRðc1; yÞ; Sðy; c2Þi
and

qef
~x/~c ¼ Rðu1;w1Þ ^ Sðw2;u2Þ ^

ðw1 ¼ w2Þ

^ ðu1 ¼ c1Þ

^ ðu2 ¼ c2Þ

0
B@

1
CA.

For RaS, we get the following rewriting:

Rewfgðq
ef
~x/~cÞ

¼ 9u19w1ðRðu1;w1Þ^

8w1ðRðu1;w1Þ ! 9w29u2ðSðw2;u2Þ^

8u2ðSðw2;u2Þ ! jÞÞÞÞ,

where

j ¼ ðw1 ¼ w2Þ ^ ðu1 ¼ c1Þ ^ ðu2 ¼ c2Þ.

To help readability, we can simplify Rewfgðqef
~x/~c
Þ as

follows:

Rewfgðq
ef
~x/~cÞ �

9w1ðRðc1;w1Þ ^

8w1ðRðc1;w1Þ ! 9u2ðSðw1;u2Þ^

8u2ðSðw1;u2Þ ! u2 ¼ c2ÞÞÞÞ

.

Finally, Q is obtained by replacing c1 and c2 with x1 and x2,
respectively:

Q ðx1; x2Þ ¼ 9w1ðRðx1;w1Þ^

8w1ðRðx1;w1Þ ! 9u2ðSðw1;u2Þ^

8u2ðSðw1;u2Þ ! u2 ¼ x2ÞÞÞÞ.

Since it can be easily verified, using Theorem 2, that q~x/~a

is key-rooted for all ~a, it follows that for all a1; a2,
I�sureqða1; a2Þ () I � Q ða1; a2Þ.

10. Concluding remarks

In the past literature, consistent FO rewriting under
primary keys has mainly be specified by procedural
program code. Our consistent FO rewrite function of
Definition 4 is considerably more succinct than existing
rewrite algorithms, and yet turns out to be widely
applicable. We proved that this rewrite function yields a
consistent FO rewriting for any key-rooted rule. This result
allowed us to shift our attention from the syntactical
intricacies of FO rewriting toward characterizing classes of
key-rooted rules. This characterization was successful
using BFMY join trees (instead of FM join trees used so
far in the literature). Finally, we showed that the rule
fRðx; yÞ;Rðy; cÞg has no consistent FO rewriting.

In this article, the target language of the rewrite
function is first-order. The motivation for this is that
first-order queries execute in polynomial time data
complexity and can be easily encoded in SQL. Never-
theless, the proof of Theorem 5 suggests adding some
form of recursion to the target language.

The model-theoretic notion of key-rooted rule was
engineered so as to capture the typical 98 quantifier
alternation in consistent FO rewritings: the formula
9~x9~z8~yðRð~x;~zÞ ^ ðRð~x;~yÞ ! cÞÞ expresses that c must hold
no matter how we repair R-atoms that agree on the
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primary key ~x. Three intriguing questions about key-
rootedness are open for further research:
�
 Does there exist a rule q such that q has a consistent FO
rewriting but q is not key-rooted, no matter how its
atoms are ordered?

�
 Is it decidable whether a given rule q is key-rooted?

Partial solutions to this question appear in [17].

�
 We used BFMY join trees to syntactically characterize

key-rooted rules. Can generalizations of BFMY join
trees [18] be used to characterize wider classes of key-
rooted rules?
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Appendix A. Proof of Proposition 1
Proof of Proposition 1. Reduction form MONOTONE
3SAT. Let f ¼

Vn
i¼1fi, where each fi is either a disjunction

of three positive literals or a disjunction of three negative
literals. Let a be a constant that does not occur in f. We
can assume a fixed linear order 
 on the propositional
variables occurring in f. The formula f induces a
database, denoted dbðfÞ, as follows.
�
 For each propositional variable p occurring in f, dbðfÞ
contains Sðp; pÞ and Tðp; pÞ.

�
 For each i 2 f1;2; . . . ;ng,
� if fi contains only positive literals, then dbðfÞ

contains Pði; p; aÞ for each propositional variable p

occurring in fi; and
� if fi contains only negative literals, then dbðfÞ

contains Nða; i; pÞ for each propositional variable p

occurring in fi.
We show that f is satisfiable if and only if dbðfÞjsureq.

For the only-if part, assume f satisfiable. We can assume

a truth assignment B satisfying f. Construct a database J

containing all S-atoms and T-atoms of dbðfÞ and such that

for every i 2 f1;2; . . . ;ng,
�
 if fi contains only positive literals, then J contains
Pði;p; aÞwhere p is the smallest (under 
) variable of fi

satisfying BðpÞ ¼ true; and

�
 if fi contains only negative literals, then J contains

Nða; i; pÞwhere p is the smallest variable of fi satisfying
BðpÞ ¼ false.

Clearly, J is a repair of dbðfÞ. We next show Jjq. Assume,
on the contrary, J � q. Then, there exists a valuation y such
that fPðyðyÞ; yðuÞ; yðxÞÞ, SðyðvÞ; yðuÞÞ, NðyðxÞ; yðzÞ; yðwÞÞ,
TðyðvÞ; yðwÞÞg � J. Clearly, yðxÞ ¼ a. Assume yðuÞ ¼ p. For
each S-fact Sðs; tÞ 2 J, we have s ¼ t; hence yðvÞ ¼ p. For
each T-fact Tðs; tÞ 2 J, we have s ¼ t; hence yðwÞ ¼ p. Since J

contains PðyðyÞ; p; aÞ, BðpÞ ¼ true, and since J contains
Nða; yðzÞ; pÞ, BðpÞ ¼ false, a contradiction. We conclude by
contradiction that Jjq. It follows dbðfÞjsureq.

For the if part, assume dbðfÞjsureq. We can assume a

repair J of dbðfÞ such that Jjq. Clearly, J must contain all

S-facts and T-facts from dbðfÞ. Construct a truth assign-

ment B as follows:
�
 if J contains Pði; p; aÞ for some i 2 f1;2; . . . ;ng, then
BðpÞ ¼ true; and

�
 if J contains Nða; j; pÞ for some j 2 f1;2; . . . ;ng, then

BðpÞ ¼ false.
Note that J cannot contain both Pði; p; aÞ and Nða; j; pÞ, or
else J � q, a contradiction. Clearly, B can be extended to a
truth assignment satisfying f. &

Appendix B. Proof of Theorem 1
Definition 9. Let c be a FO formula with free variables
x1; . . . ; xn. Let y be a valuation over fx1; . . . ; xng. Then, yðcÞ
denotes the FO formula obtained from c by replacing each
free occurrence of xi with yðxiÞ, for all 1pipn.

Lemma 7. Let V be a set of variables. Let q1, q2 be

conjunctions of constant-free atoms containing no variable

of V. Let j be a conjunction of equalities. For every valuation

o over V, Rewq1
ðq2 ^oðjÞÞ ¼ oðRewq1

ðq2 ^jÞÞ.

Proof. The proof runs by induction on the length of q2.
The basis of the induction, q2 ¼ fg, is trivial. For the
induction step, assume q2 ¼ Rð~x;~yÞ ^ q3. We have

Rewq1
ðRð~x;~yÞ ^ q3 ^oðjÞÞ ¼

_
Rð~v;~wÞ2q1

9~x9~y

ð~x ¼ ~vÞ

^ ð~y ¼ ~wÞ

^ Rewq1
ðq3 ^oðjÞÞ

0
BB@

1
CCA

0
BB@

1
CCA

_

9~x9~yðRð~x;~yÞ ^ ð
^

Rð~v;~wÞ2q1
ð~xa~vÞÞ^

8~yðRð~x;~yÞ ! Rewq1[fRð~x;~yÞg
ðq3 ^oðjÞÞÞÞ

By the induction hypothesis,

Rewq1
ðRð~x;~yÞ ^ q3 ^oðjÞÞ ¼

_
Rð~v;~wÞ2q1

9~x9~y

ð~x ¼ ~vÞ

^ ð~y ¼ ~wÞ

^ oðRewq1
ðq3 ^jÞÞ

0
BB@

1
CCA

0
BB@

1
CCA

_

9~x9~yðRð~x;~yÞ ^ ð
^

Rð~v;~wÞ2q1
ð~xa~vÞÞ^

8~yðRð~x;~yÞ ! oðRewq1[fRð~x;~yÞg
ðq3 ^jÞÞÞÞ

Since o is the identity on every variable that occurs in q1,
it follows Rewq1

ðRð~x;~yÞ ^ q3 ^oðjÞÞ ¼ oðRewq1
ðRð~x;~yÞ^

q3 ^jÞÞ. &

Proof of Theorem 1. Let q1 ^ q2 ^j be a key-rooted
ordered rule in equational form. Thus, q1 ^ q2 is
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constant-free and contains no two occurrences of the
same variable. In particular, q1 and q2 have no variables in
common. The expression j is a satisfiable set of equations
involving variables of q1 ^ q2 and constants.

Let V1 be the set of variables that occur in q1. Let I be a

database. Let y be a valuation over V1 such that:

Consistency: yðq1Þ is a consistent subset of I; and

Key-rootedness: yðq2 ^jÞ ¼ q2 ^ yðjÞ is key-rooted.

We define the following shorthand:

I

y
q1

2
64

3
75

2
64

3
75 ¼ ðIn1yðq1ÞUIÞ [ yðq1Þ.

It is easy to see that if some variable x has a free

occurrence in Rewq1
ðq2 ^jÞ, then x 2 V1. Hence,

yðRewq1
ðq2 ^jÞÞ is a closed formula. We prove that

I

y
q1

2
64

3
75

2
64

3
75�sureq2 ^ yðjÞ () I � yðRewq1

ðq2 ^jÞÞ.

The desired result follows by choosing q1 ¼ fg.

The proof runs by induction on q2’s length. The proof is

trivial if q2 is empty. For q2 nonempty (let q2 ¼ Rð~x;~yÞ ^ q3)

the result follows by equivalence of the statements

(1)–(7):
1.

I

y
q1

2
64

3
75

2
64

3
75�sureRð~x;~yÞ ^ q3 ^ yðjÞ.
2.
 Since Rð~x;~yÞ ^ q3 ^ yðjÞ is key-rooted, it follows that for
some valuation x of ~x,

I

y
q1

2
64

3
75

2
64

3
75�sureRðxð~xÞ;~yÞ ^ q3 ^ x � yðjÞ.
3.
 For some valuation x of ~x, for some valuation u of ~y,
either:
� for some atom Rð~v; ~wÞ 2 q1, we have Rðyð~vÞ; yð~wÞÞ ¼

Rðxð~xÞ; uð~yÞÞ and

I

y
q1

2
64

3
75

2
64

3
75�sureq3 ^ y � u � xðjÞ; or

� Rðxð~xÞ; uð~yÞÞ 2 In1yðq1ÞUI and for each valuation u0 of
~y, if Rðxð~xÞ; u0ð~yÞÞ 2 I, then

I

u0 � x � y
q1 [ fRð~x;~yÞg

2
64

3
75

2
64

3
75�sureq3 ^ u0 � x � yðjÞ.
Concerning the first bulleted item, since yðq1Þ

is consistent, every repair of the database

I

y
q1

2
64

3
75

2
64

3
75
contains Rðyð~vÞ; yð~wÞÞ. Concerning both items, since

Rð~x;~yÞ ^ q3 ^ yðjÞ is key-rooted, so is q3 ^o � yðjÞ for

any valuation o of ~x~y.
The transition between (3) and (4) applies the induc-
tion hypothesis twice on rules of shorter length:
� first,

I

y
q1

2
64

3
75

2
64

3
75�sureq3 ^ y � u � xðjÞ

m

I � yðRewq1
ðq3 ^ u � xðjÞÞÞ:

The preconditions for the induction hypothesis
are fulfilled, because:
Consistency: yðq1Þ is a consistent subset of I.
Key-rootedness: Since q2 ^ yðjÞ ¼ Rð~x;~yÞ ^ q3 ^ yðjÞ
is key-rooted and u � x is a valuation of ~x~y, q3 ^ y �
u � xðjÞ is key-rooted.
Note that by Lemma 7,

yðRewq1
ðq3 ^ u � xðjÞÞÞ ¼ y � u � xðRewq1

ðq3 ^jÞÞ.

� second,

I

u0 � x � y
q1 [ fRð~x;~yÞg

2
64

3
75

2
64

3
75�sureq3 ^ u0 � x � yðjÞ

m

I � u0 � x � yðRewq1[fRð~x;~yÞg
ðq3 ^jÞÞ:

The preconditions for the induction hypothesis
are fulfilled, because:
Consistency: u0 � x � yðq1 [ fRð~x;~yÞgÞ ¼ yðq1Þ [ fRðxð~xÞ;
uð~yÞÞg is a consistent subset of I since Rðxð~xÞ;
uð~yÞÞ 2 In1yðq1ÞUI .
Key-rootedness: q3 ^ u0 � x � yðjÞ is key-rooted.
4.
 Therefore, by the induction hypothesis and by Lemma 7,
for some valuation x of~x, for some valuation u of~y, either:
� for some Rð~v; ~wÞ 2 q1, I satisfies

ðxð~xÞ ¼ yð~vÞÞ
^ ðuð~yÞ ¼ yð~wÞÞ
^ y � u � xðRewq1

ðq3 ^jÞÞ

0
B@

1
CA; or

� Rðxð~xÞ; uð~yÞÞ 2 In1yðq1ÞUI and for each valuation u0 of
~y, if Rðxð~xÞ; u0ð~yÞÞ 2 I, then

I � u0 � x � yðRewq1[fRð~x;~yÞg
ðq3 ^jÞÞ.
5.
 For some valuation x of ~x, for some valuation u of ~y,
either:
� I satisfies

_
Rð~v;~wÞ2q1

ðxð~xÞ ¼ yð~vÞÞ
^ ðuð~yÞ ¼ yð~wÞÞ
^ y � u � xðRewq1

ðq3 ^jÞÞ

0
B@

1
CA; or

� Rðxð~xÞ; uð~yÞÞ 2 I and ð
V

Rð~v;~wÞ2q1
xð~xÞayð~vÞÞ and for

every valuation u0 of ~y such that Rðxð~xÞ; u0ð~yÞÞ 2 I,

I � u0 � x � yðRewq1[fRð~x;~yÞg
ðq3 ^jÞÞ.
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After some rearranging, either
6.
I � y
_

Rð~v;~wÞ2q1
9~x9~y

ð~x ¼ ~vÞ

^ ð~y ¼ ~wÞ

^ Rewq1
ðq3 ^jÞÞ

0
B@

1
CA

0
B@

1
CA

or

I � y½9~x9~yðRð~x;~yÞ ^ ð
^

Rð~v;~wÞ2q1

~xa~vÞ^

8~yðRð~x;~yÞ ! Rewq1[fRð~x;~yÞg
ðq3 ^jÞÞÞ�.
7.
 I � yðRewq1
ðRð~x;~yÞ ^ q3 ^jÞÞ. &

Appendix C. Proof of Theorem 2

The proof runs by induction on the length of q. The case
mp1 is trivial. Next assume m41. Since ~x1 contains no
variables, R1ð~x1;~y1Þ is obviously reifiable.

Let q0 ¼ hRð~x2;~y2Þ; . . . ;Rð~xm;~ymÞi, the tail of q. We still

need to show that yðq0Þ is key-rooted for every valuation y
of~x1~y1. Let i be a child of 1 in the number join tree t with
root 1. Two cases can occur:
1.
 i is a leaf vertex in t. Thus, yðsubtqðiÞÞ is a singleton. We
show hereafter that every singleton rule is key-rooted.
2.
 i is an internal vertex in t. The construction in the proof
of Lemma 5 allows to build a number join tree (call it

ti) for the ordered rule subtqðiÞ. By Lemma 4, ti is a

number join tree for yðsubtqðiÞÞ. It is now easy to check

that the ordered rule yðsubtqðiÞÞ, of smaller length than

q, satisfies the conditions of the theorem’s state-

ment.Hence, yðsubtqðiÞÞ is key-rooted by the induction

hypothesis.

Since i is arbitrary, yðsubtqðiÞÞ is key-rooted for every child i

of 1. By Corollary 1, yðq0Þ is key-rooted.
To show that every singleton rule qs ¼ Rð~x;~yÞ is key-

rooted, it suffices to show that Rð~x;~yÞ is reifiable in qs. Let I

be a database. Two cases can occur:
�
 For every atom Rð~a;~bÞ 2 I, there exists a key-equal
atom Rð~a;~cÞ 2 I such that Rð~a;~cÞjqs. Then, obviously,
there exists a repair J of I such that Jjqs, hence
Ijsureqs.

�
 I contains an atom Rð~a;~bÞ such that for every key-equal

atom Rð~a;~cÞ 2 I, Rð~a;~cÞ � qs. Let y be the valuation of ~x
such that yð~xÞ ¼ ~a. Since every repair J of I contains an
atom of 1Rð~a;~bÞUI , it follows I�sureyðqsÞ.

Since I is arbitrary, it follows that Rð~x;~yÞ is reifiable in qs.

Appendix D. Proof of Theorems 3 and 4
Definition 10. Let ~x be a sequence of symbols and ~a a
sequence of constants such that j~aj ¼ j~xj. The valuation y
of ~x such that yð~xÞ ¼ ~a, if it exists, will be denoted by
id½~x/~a�.
Let I be a database and A 2 I. We define the following

shorthand:

I

A

� �� �
¼ ðIn1AUIÞ [ fAg.

Lemma 8. Let q be a rule and I a database. Let V be the set of

variables in q, and X � V . Let Rð~a;~bÞ 2 I such that for no

valuation y over V, Rð~a;~bÞ 2 yðqÞ. Let I0 ¼ In1Rð~a;~bÞUI . Every

repair J0 of I0 can be extended to a repair J of I such that for

every valuation m over X, J � mðqÞ implies J0 � mðqÞ.

Proof. Let J0 be a repair of I0. Let J ¼ J0 [ fRð~a;
~bÞg. Clearly, J

is a repair of I. Let m be a valuation over X such that
J � mðqÞ. Hence, there exists a valuation o over V such that
oðxÞ ¼ mðxÞ for each x 2 X and oðqÞ � J. Since Rð~a;~bÞeoðqÞ,
it follows oðqÞ � J0. Hence, J0 � mðqÞ. &

Proof of Theorem 3. Let h be the height of the number
join tree for q. Let J1; J2 be two repairs of the same
database I. We will construct a sequence of sets of atoms

fg ¼ N0 � N1 � � � � � Nh � J1 [ J2

such that for each d 2 f0; . . . ;hg:
(P1)
 Nd is consistent.

(P2)
 For all key-equal atoms Rð~a;~bÞ;Rð~a;~cÞ, one from J1 and

the other from J2 (possibly ~b ¼~c),
(a) if Nd contains neither Rð~a;~bÞ nor Rð~a;~cÞ, then

J1 [ J2�sureid½~x1/~a�ðsubdtqð1; dÞÞ; and
(b) if Nd contains Rð~a;~bÞ or Rð~a;~cÞ, then for each

repair J of J1 [ J2 such that Nd � J,
Jjid½~x1/~a�ðsubdtqð1; dÞÞ.
If this construction succeeds, then the root vertex

Rð~x1;~y1Þ is reifiable. Indeed, by property (P1), there exists

a repair J of J1 [ J2 (and hence of I) such that Nh � J. Notice

that q ¼ subdtqð1;hÞ. Assume J � id½~x1/~a�ðqÞ. Let

Rð~a;~bÞ;Rð~a;~cÞ be key-equal atoms, one from J1 and the

other from J2. By property (P2b), Nh � J and J �

id½~x1/~a�ðqÞ imply that Nh contains neither Rð~a;~bÞ nor

Rð~a;~cÞ.Then, by property (P2a), J1 � id½~x1/~a�ðqÞ and

J2 � id½~x1/~a�ðqÞ. Since ~a is arbitrary, it follows that

Reifiesðq;~x1; JÞ � Reifiesðq;~x1; J1Þ and Reifiesðq;~x1; JÞ �

Reifiesðq;~x1; J2Þ. Then, by Lemma 1, Rð~x1;~y1Þ is reifiable.

Let q0 ¼ hRð~x2;~y2Þ; . . . ;Rð~xm;~ymÞi, the tail of q. We still

need to show that yðq0Þ is key-rooted for every valuation y
of~x1~y1. Let i be a child of 1 in the number join tree t with

root 1. The construction in the proof of Lemma 5 allows to

build a number join tree (call it ti) for the ordered rule

subtqðiÞ. By Lemma 4, ti is also a number join tree for

yðsubtqðiÞÞ. By condition (4) in the theorem’s statement and

by Theorem 2, the ordered rule yðsubtqðiÞÞ is key-rooted. By

Corollary 1, yðq0Þ is key-rooted.

In the remainder of the proof, we show the construction

of Nd for each d 2 f0; . . . ;hg. The construction runs by

induction on increasing d. Since N0 ¼ fg, N0 trivially

satisfies properties (P1) and (P2b); N0 satisfies property

(P2a) because subdtqð1;0Þ ¼ Rð~x1;~y1Þ and~x1~y1 is a sequence



ARTICLE IN PRESS

J. Wijsen / Information Systems 34 (2009) 578–601 595
of distinct variables (condition (1) in the theorem’s

statement).

Construction of Ndþ1 from Nd: For all key-equal atoms

Rð~a;~bÞ;Rð~a;~cÞ, one from J1 and the other from J2, and both

not in Nd, whenever

J1 [ J2jsureid½~x1/~a�ðsubdtqð1; dþ 1ÞÞ,

then select A 2 fRð~a;~bÞ;Rð~a;~cÞg such that

J1 [ J2

A

� �� �
jsureid½~x1/~a�ðsubdtqð1; dþ 1ÞÞ (5)

and include A 2 Ndþ1. Henceforth, assume w.l.o.g. that

A ¼ Rð~a;~bÞ.

Note that if J1 [ J2�sureid½~xi/~a�ðsubdtqð1; dþ 1ÞÞ, then

Ndþ1 contains neither Rð~a;~bÞ nor Rð~a;~cÞ.

In this way, Ndþ1 obviously satisfies properties (P1) and

(P2a). To show that Ndþ1 satisfies property (P2b), assume

Rð~a;~bÞ 2 Ndþ1. Let J be a repair of J1 [ J2 such that Ndþ1 � J.

Two cases can occur.
1.
 Case Rð~a;~bÞ 2 Nd. By the induction hypothesis,

Jjid½~x1/~a�ðsubdtqð1; dÞÞ.

Obviously, Jjid½~x1/~a�ðsubdtqð1;dþ 1ÞÞ.

2.
 Case Rð~a;~bÞeNd. Then, by condition (5) in our con-

struction

J1 [ J2

Rð~a;~bÞ

" #" #
jsureid½~x1/~a�ðsubdtqð1; dþ 1ÞÞ.

Consequently, we can assume the existence of a
child j of 1 in the number join tree t with root 1 such
that

J1 [ J2

Rð~a;~bÞ

" #" #
jsureid½~x1~y1/~a~b�ðsubdtqðj; dÞÞ.

Assume id½~x1~y1/~a~b�ð~xjÞ ¼~e. Since varsð~x1~y1Þ \

varsð~xj~yjÞ ¼ varsð~xjÞ by condition (4) in the theorem’s
statement,

J1 [ J2jsureid½~xj/~e�ðsubdtqðj; dÞÞ. (6)

Consider three mutually exclusive and exhaustive
cases:
(a) Nd contains an R-atom with primary key value~e. By

the induction hypothesis,

Jjid½~x1/~e�ðsubdtqð1; dÞÞ.

By conditions (2) and (3) in the theorem’s state-
ment, subdtqð1;dÞ and subdtqðj; dÞ are the same up to
a renaming of variables, hence

Jjid½~xj/~e�ðsubdtqðj; dÞÞ.

It follows Jjid½~x1/~a�ðsubdtqð1; dþ 1ÞÞ.
(b) J1 [ J2 contains no R-atom with primary key value

~e. Obviously, Jjid½~x1/~a�ðsubdtqð1; dþ 1ÞÞ.
(c) J1 [ J2 contains an R-atom with primary key value

~e, but Nd does not. By the induction hypothesis,

J1 [ J2�sureid½~x1/~e�ðsubdtqð1; dÞÞ,
which contradicts Eq. (6). We conclude by contra-
diction that this case cannot occur. &
Proof of Theorem 4. The proof runs by induction on the
length of q. The proof is trivial if jqj ¼ 0; next assume that
jqj40.

Let I be a database. Let J1 and J2 be two repairs of I. We

are going to show the existence of a repair J of J1 [ J2 such

that for every valuation y of ~x1, if J � yðqÞ, then J1 � yðqÞ
and J2 � yðqÞ. By Lemma 8, we can assume w.l.o.g. that for

every atom Rið~xi;~yiÞ 2 q and for every Rið~a;
~bÞ 2 J1 [ J2,

id½~xi~yi/~a~b� is well defined.

For each i 2 f1; . . . ;mg, we construct a set NðiÞ � J1 [ J2

such that:
(P1)
 NðiÞ is consistent.

(P2)
 For all key-equal atoms Rið~a;

~bÞ;Rið~a;~cÞ, one from J1

and the other from J2 (possibly ~b ¼~c),

(a) if NðiÞ contains neither Rið~a;
~bÞ nor Rið~a;~cÞ, then

J1 [ J2�sureid½~xi/~a�ðsubtqðiÞÞ; and

(b) if NðiÞ contains Rið~a;
~bÞ or Rið~a;~cÞ, then for each

repair J of J1 [ J2 such that NðiÞ � J, Jjid½~xi

/~a�ðsubtqðiÞÞ.
Then, by Lemma 1, R1ð~x1;~y1Þ is reifiable; the argumenta-

tion is the same as in the proof of Theorem 3.

Let q0 ¼ hRð~x2;~y2Þ; . . . ;Rð~xm;~ymÞi, the tail of q. We still

need to show that yðq0Þ is key-rooted for every valuation y
of~x1~y1. Let i be a child of 1 in the number join tree t with

root 1. The construction in the proof of Lemma 5 allows to

build a number join tree (call it ti) for the ordered rule

subtqðiÞ. By Lemma 4, ti is also a number join tree for

yðsubtqðiÞÞ. It can now be easily checked that the ordered

rule yðsubtqðiÞÞ, which is of smaller length than q, satisfies

the conditions of the theorem’s statement, hence yðsubtqðiÞÞ

is key-rooted by the induction hypothesis. By Corollary 1,

yðq0Þ is key-rooted.

The construction of each NðiÞ runs by induction

on decreasing i, that is, in decreasing depth of the

number join tree t with root 1. Thus, if i is the parent of

j, then NðjÞ is computed before NðiÞ. The construction is

specified next.

Construction of NðiÞ for leaf vertex i: Let NðiÞ ¼ fg.

By our assumption in the beginning of the proof, for

every Rið~a;
~bÞ 2 J1 [ J2, fRið~a;

~bÞg � Rið~xi;~yiÞ. Obviously, if i is

a leaf vertex, then NðiÞ satisfies properties (P1) and (P2).

For the induction step, we assume that i 2 f1; . . . ;mg is

an internal node. Assume that the children of i are iþ

1; . . . ; iþ k; . . . ; iþ l such that for all j 2 f1þ 1; . . . ; iþ lg:
1.
 if j 2 fiþ 1; . . . ; iþ kg, then varsð~xiÞ � varsð~xjÞ and
varsð~xi~yiÞ \ varsð~xj~yjÞD/ varsð~xjÞ.
2.
 if j 2 fiþ kþ 1; . . . ; iþ lg, then varsð~xi~yiÞ \ varsð~xj~yjÞ

� varsð~xjÞ.
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This is illustrated in Fig. 15. We construct NðiÞ as the
smallest set containing Nðiþ 1Þ; . . . ;Nðiþ lÞ and the atoms
specified next.

Construction of NðiÞ for internal vertex i: For all key-equal

atoms Rið~a;
~bÞ;Rið~a;~cÞ, one from J1 and the other from J2,

whenever

J1 [ J2jsureid½~xi/~a�ðsubtqðiÞÞ,

then:
(I1)
Fig. 1
short
Select A 2 fRið~a;
~bÞ;Rið~a;~cÞg such that

J1 [ J2

A

� �� �
jsureid½~xi/~a�ðsubtqðiÞÞ

and include A 2 NðiÞ. Henceforth, assume w.l.o.g. that

A ¼ Rið~a;
~bÞ (the other case is symmetrical)." #" #
(I2)

Construct a repair J~a of

J1 [ J2

Rið~a;
~bÞ

such that NðjÞ � J~a

for each child j of i and J~ajid½~xi/~a�ðsubtqðiÞÞ.
(I3)
 Select a child j~a of i such that

J~ajid½~xi~yi/~a~b�ðsubtqðj~aÞÞ. (7)

For each pair of distinct key-equal atoms Rj~a ð
~d;~eÞ,

Rj~a
ð~d;~f Þ 2 ðJ1 [ J2ÞnNðj~aÞ, if Rj~a

ð~d;~eÞ 2 J~a and

J~a [ fRj~a ð
~d;~f Þg � id½~xi~yi~xj~a

~yj~a
/~a~b~d~f �ðsubtqðj~aÞÞ,

then add Rj~a ð
~d;~eÞ 2 NðiÞ.
Note that if J1 [ J2�sureid½~xi/~a�ðsubtqðiÞÞ, then neither
Rið~a;

~bÞ nor Rið~a;~cÞ is included in NðiÞ.

Obviously, for any internal vertex i, NðiÞ satisfies

property (P2a). The construction is illustrated by the

following example.

Example 13. Let q ¼ hRðx; zÞ; Sðx; y; zÞi. Let

J1 [ J2 ¼ fRða; cÞ;Rða; dÞ; Sða;1; cÞ,

Sða;1; dÞ; Sða;2; cÞ; Sða;2; dÞg.
5. Vertex numbering for an internal vertex i in the number join tree t for hR

hand for varsð~xiÞ. Every edge label �i is the set of variables that occur in b
We have Nð2Þ ¼ fg. Next, depending on which of Rða; cÞ or
Rða; dÞ is selected in step (I1), either
�

1ð~x

oth
Nð1Þ ¼ fRða; cÞ; Sða;1; dÞ; Sða;2; dÞg, or

�
 Nð1Þ ¼ fRða; dÞ; Sða;1; cÞ; Sða;2; cÞg.
The S-atoms in Nð1ÞnNð2Þ are added in step (I3).

We show the existence of J~a in step (I2). Since

J1 [ J2

Rið~a;
~bÞ

" #" #
jsureid½~xi/~a�ðsubtqðiÞÞ,

we can assume a repair G~a of J1 [ J2 such that Rið~a;
~bÞ 2 G~a

and

G~ajid½~xi/~a�ðsubtqðiÞÞ. (8)

Let J~a be the repair of
J1 [ J2

Rið~a;
~bÞ

" #" #
such that NðjÞ � J~a for

each child j of i and J~anð
Siþl

j¼iþ1NðjÞÞ � G~a. Thus, J~a contains

NðjÞ for each child j of i and is ‘‘completed’’ with atoms

from G~a.

We show J~ajid½~xi/~a�ðsubtqðiÞÞ. Assume, on the contrary,

J~a � id½~xi/~a�ðsubtqðiÞÞ. (9)

By the Connectedness Condition, for all children j1; j2 of i

such that j1aj2, the ordered rules id½~xi~yi/~a~b�ðsubtqðj1ÞÞ and

id½~xi~yi/~a~b�ðsubtqðj2ÞÞ have no variables in common. Then,

by Eq. (8), we can assume a child h of i such that

G~ajid½~xi~yi/~a~b�ðsubtqðhÞÞ. (10)

On the other hand, by Eq. (9), J~a � id½~xi~yi/~a~b�ðsubtqðhÞÞ.

Then, we can assume Rhð
~d;~eÞ 2 J~a such that:
�
 J~a � id½~xi~yi~xh~yh/~a~b~d~e�ðsubtqðhÞÞ, and
�
 G~ajid½~xi~yi~xh/~a~b~d�ðsubtqðhÞÞ.
1;~y1Þ; . . . ;Rmð~xm ;~ymÞi, used in the proof of Theorem 4. We write Xi as a

the parent and the child node.
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Then, J~a is a repair of J1 [ J2 such that NðhÞ � J~a and

J~a � id½~xh/
~d�ðsubtqðhÞÞ.

Since NðhÞ satisfies property (P2b) by the induction

hypothesis, Rhð
~d;~eÞeNðhÞ. By the construction of J~a,

Rhð
~d;~eÞ 2 G~a and NðhÞ contains no atom that is key-equal

to Rhð
~d;~eÞ. Since NðhÞ satisfies property (P2a) by the

induction hypothesis, G~a � id½~xh/
~d�ðsubtqðhÞÞ, hence G~a �

id½~xh~yh/
~d~e�ðsubtqðhÞÞ. Since Rhð

~d;~eÞ 2 J~a and id½~xi~yi~xh~yh/

~a~b~d~e� is well defined, it follows that id½~xi~yi/~a~b� and

id½~xh~yh/
~d~e� agree on varsð~xi~yiÞ \ varsð~xh~yhÞ. Consequently,

G~a � id½~xi~yi~xh/~a~b~d�ðsubtqðhÞÞ, contradicting (10). We con-

clude by contradiction J~ajid½~xi/~a�ðsubtqðiÞÞ.

In step (I3), the integer j~a satisfying (7) exists, because

by the Connectedness Condition, for all children j1; j2 of i

such that j1aj2, id½~xi~yi/~a~b�ðsubtqðj1ÞÞ and id½~xi~yi/~a~b�

ðsubtqðj2ÞÞ have no variables in common.

We now show that the addition of some Rj~a
ð~d;~eÞ 2 NðiÞ in

step (I3) of the above construction cannot possibly result

in NðiÞ becoming inconsistent (property (P1)). Assume, on

the contrary, that (I3) also adds Rj~a ð
~d;~f Þ 2 NðiÞ with ~fa~e.

Then, we can assume the existence of an atom Rið~a
0
;~b
0

Þ in

step (I1), a repair J~a0 in step (I2), and an integer j~a0 ¼ j~a in

step (I3) such that Rj~a ð
~d;~f Þ 2 J~a0 and

J~a0 [ fRj~a ð
~d;~eÞg � id½~xi~yi~xj~a

~yj~a
/~a

0~b
0~d~e�ðsubtqðj~aÞÞ.

It can be easily seen that the condition for adding Rj~a
ð~d;~eÞ

to NðiÞ in step (I3) requires j~a 2 fiþ 1; . . . ; iþ kg. It follows

varsð~xiÞ � varsð~xj~a Þ. Then, since the valuations id½~xi~yi~xj~a
~yj~a

/~a~b~d~f � and id½~xi~yi~xj~a
~yj~a

/~a
0~b
0~d~e� agree on ~xj~a , they must

agree on ~xi, hence ~a ¼ ~a
0
, so J~a ¼ J~a0 . Then, Rj~a ð

~d;~eÞ;

Rj~a ð
~d;~f Þ 2 J~a, a contradiction. It is correct to conclude by

contradiction that NðiÞ satisfies property (P1) for any

internal vertex i.

Finally, we show that NðiÞ satisfies property (P2b).

Assume a repair J of J1 [ J2 such that Rið~a;
~bÞ 2 NðiÞ � J.

We need to show Jjid½~xi/~a�ðsubtqðiÞÞ. Assume, on the

contrary, J � id½~xi/~a�ðsubtqðiÞÞ.

By (I2) and (I3), since Rið~a;
~bÞ 2 NðiÞ, there exists a repair

J~a of J1 [ J2 and a child j~a of i such that Rið~a;
~bÞ 2 J~a and

J~ajid½~xi~yi/~a~b�ðsubtqðj~aÞÞ.

Since J � id½~xi/~a�ðsubtqðiÞÞ, we can assume key-equal

atoms Rj~a ð
~d;~eÞ, Rj~a ð

~d;~f Þ, one from J1 and the other from J2,

such that Rj~a ð
~d;~f Þ 2 J and

J � id½~xi~yi~xj~a
~yj~a

/~a~b~d~f �ðsubtqðj~aÞÞ.

Hence, id½~xi~yi~xj~a
~yj~a

/~a~b~d~f � is well defined. Since Nðj~aÞ

satisfies property (P2b) by the induction hypothesis and

since Nðj~aÞ � NðiÞ � J and J � id½~xj~a/
~d�ðsubtqðj~aÞÞ, it follows

Rj~a ð
~d;~f ÞeNðj~aÞ and Rj~a ð

~d;~eÞeNðj~aÞ. Then, since Nðj~aÞ satisfies
property (P2a) by the induction hypothesis,

J1 [ J2�sureid½~xj~a/
~d�ðsubtqðj~aÞÞ.

Since ðJ~anfRj~a ð
~d;~eÞgÞ [ fRj~a ð

~d;~f Þg is a repair of J1 [ J2,

ðJ~anfRj~a ð
~d;~eÞgÞ [ fRj~a ð

~d;~f Þg � id½~xj~a/
~d�ðsubtqðj~aÞÞ.

Since Rið~a;
~bÞ 2 J~a and since id½~xi~yi~xj~a

~yj~a
/~a~b~d~f � is well

defined,

J~a [ fRj~a
ð~d;~f Þg � id½~xi~yi~xj~a

~yj~a
/~a~b~d~f �ðsubtqðj~aÞÞ.

Hence, it must be the case that ~ea~f and that Rj~a ð
~d;~eÞ 2 J~a

was included in NðiÞ during step (I3). So Rj~a ð
~d;~eÞ 2 J, a

contradiction. We conclude by contradiction that

Jjid½~xi/~a�ðsubtqðiÞÞ. Consequently, NðiÞ satisfies property

(P2b) for any internal vertex i. &

Appendix E. Proof of Theorem 5
Proof of Theorem 5 (First item). Let I be a database. Let
A ¼ fx j 9yðRðx; yÞ 2 IÞg. For each x 2 A, we define
succðxÞ ¼ fy j Rðx; yÞ 2 Ig. Construct a maximal sequence
C0D! C1D! C2D! � � �where C0 ¼ fg and for each i40, Ci ¼ Ci�1 [

fxg for some x 2 A such that c 2 succðxÞ � Ci�1 [ fcg. Thus,
x 2 Ci implies Rðx; cÞ 2 I (iX0). Let Cm be the last element
in this sequence. Obviously, mpjIj and Cm can be
computed in polynomial time.

We show that

I�sureq if and only if for some x 2 A; succðxÞ � Cm.

Note that for x 2 A, succðxÞ is nonempty, hence succðxÞ �

Cm implies mX1.

Example 14. For the database I ¼ fRða;bÞ, Rða; dÞ, Rðb; cÞ,
Rðb; dÞ, Rðb; eÞ, Rðd; cÞ, Rðd; eÞ, Rðe; cÞg, we have A ¼ fa; b; d; eg.
We obtain C0 ¼ fg, C1 ¼ feg, C2 ¼ fd; eg, C3 ¼ fb; d; eg, and
this sequence is maximal (i.e. m ¼ 3). Since
succðaÞ ¼ fb; dg � C3, I�sureq.

) Assume for all x 2 A, succðxÞD/ Cm. Construct a repair J

of I as follows:
�
 for each x 2 Cm, Rðx; cÞ 2 J; and

�
 for each x 2 AnCm, J contains Rðx; yÞ 2 I for some y with

yeCm [ fcg. Assume that no such y exists. Then, for
each x 2 AnCm, succðxÞ � Cm [ fcg. Since succðxÞD/ Cm by
the premise, c 2 succðxÞ. But then the sequence can be
extended with Cmþ1 ¼ Cm [ fxg, contradicting maxim-
ality of the original sequence.

We show Jjq. Assume, on the contrary, J � q. Then, we can
assume a valuation y such that RðyðxÞ;yðyÞÞ;RðyðyÞ; cÞ 2 J.
From RðyðyÞ; cÞ 2 J, it follows yðyÞ 2 Cm. From RðyðxÞ; yðyÞÞ 2
J and yðyÞ 2 Cm, it follows yðyÞ ¼ c. Our construction
obviously guarantees that for every a in some Ci,
succðaÞ � Ci [ fcg. Then, since c 2 Cm, succðcÞ � Cm[
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fcg ¼ Cm, contradicting our assumption that succðxÞD/ Cm

for each x 2 A. We conclude by contradiction Jjq.

Since Jjq, Ijsureq

( Assume the existence of a 2 A such that

succðaÞ � Cm.

Let M ¼ fRðx; yÞ 2 I j x 2 Cmg. We will show in the next

paragraph that for every repair J of M, either J � q or

J ¼ fRðx; cÞ 2 I j x 2 Cmg. Then, since for every repair K of I,

K \M is a repair of M, two cases can occur:
1.
 K \M � q. Obviously, K � q.

2.
 K \M ¼ fRðx; cÞ 2 I j x 2 Cmg. Then, K � Rða; yÞ;Rðy; cÞ.

It follows I�sureq.

It remains to be shown that for every repair J of M,

either J � q or J ¼ fRðx; cÞ 2 I j x 2 Cmg. For each

i 2 f0; . . . ;mg, let Mi ¼ fRðx; yÞ 2 I j x 2 Cig. We show that

for every repair J of Mi, either J � q or

J ¼ fRðx; cÞ 2 I j x 2 Cig. Then, the desired result follows by

choosing i ¼ m. The proof runs by induction on increasing

i. The base case i ¼ 0 is obvious. For the induction step,

assume Ckþ1 ¼ Ck [ fbg. Assume w.l.o.g. Mkþ1 ¼ Mk[

fRðb; cÞ;Rðb; a1Þ; . . . ;Rðb; anÞg where a1; . . . ; an 2 Ck. Let J be

a repair of Mkþ1. Clearly, for some repair J0 of Mk, for some

e 2 fc; a1; . . . ; ang, J ¼ J0 [ fRðb; eÞg. By the induction hypoth-

esis, two cases can occur:
1.
 J0 � q. It follows J � q.

2.
 J0 ¼ fRðx; cÞ 2 I j x 2 Ckg. If e ¼ c, then J ¼ fRðx; cÞ 2 I

j x 2 Ckþ1g. If e ¼ ai 2 Ck for some i 2 f1; . . . ;ng, then
Rðe; cÞ;Rðb; eÞ 2 J, hence J � q. &

Proof of Theorem 5 (Second item). The proof is based on
an Ehrenfeucht–Fraı̈ssé game [19]. Assume a vocabulary
with constant symbols c, a, b, �, d, w, t. Suppose there is a
FO sentence c checking membership of CQAðqÞ. Let d be
the quantifier depth of c. We exhibit two databases A and
B that are undistinguishable by Ehrenfeucht–Fraı̈ssé
games of length d such that A�sureq and Bjsureq.
Consequently, A and B are undistinguishable using
sentences of quantifier depth d, a contradiction.

The directed graphs in Fig. 13 show the databases A and

B. An edge from a1 to a2 means that the atom Rða1; a2Þ is

in the database; the interpretation of constant symbols is

indicated in the graphs.

Both databases A and B contain a long path from b to a,

denoted ½b;a�A and ½b;a�B, respectively; there is an edge

from every element on the path to c. Furthermore, there

are edges from d to w, and from t to �. The difference

between both databases is that t precedes w on ½b;a�A,

while t succeeds w on ½b;a�B.

In every repair, no vertex can have more than one

outgoing edge. Fig. 14 shows a repair of B that falsifies q,

because no path of length 2 ends in c. On the other hand,

it can be verified that every repair of A has a path of

length 2 ending in c.
Distances on the path ½b;a�A are defined as usual: for all

vertices v;w on ½b;a�A such that v precedes w on ½b;a�A,

we write dAðv;wÞ ¼ p if the directed subpath from v to w

contains exactly p edges. The distance function dB

between vertices on ½b;a�B is defined analogously.

We assume that A and B are chosen sufficiently large

such that:

dAðb; tÞ43d; dBðb;wÞ43d;

dAðt;wÞ43d; dBðw; tÞ43d;

dAðw;aÞ43d; dBðt;aÞ43d:

We specify the winning strategy for the duplicator. In

particular, we show that the duplicator can play in such a

way such that the following holds for each round i (iX0).

Let

~a ¼ ða�6; a�5; . . . ; a0; a1; . . . ; aiÞ

and

~b ¼ ðb�6; b�5; . . . ; b0; b1; . . . ;biÞ,

where

a�6 ¼ b�6 ¼ c; a�5 ¼ b�5 ¼ a; a�4 ¼ b�4 ¼ b;
a�3 ¼ b�3 ¼ d; a�2 ¼ b�2 ¼ �; a�1 ¼ b�1 ¼ w;
a0 ¼ b0 ¼ t;

and a1; . . . ; ai are the i moves in A, and b1; . . . ; bi are the i

moves in B. Then, for �6pj; lpi,
(C1)
 aj ¼ al () bj ¼ bl.

(C2)
 for each aj on ½b;a�A with ajaa,

(a) dAðaj; succi
AðajÞÞ43d�i

+

dBðbj; succi
BðbjÞÞ43d�i

(b) succi
AðajÞ ¼ al

and dAðaj; alÞp3d�i

+

succi
BðbjÞ ¼ bl

and dBðbj; blÞ ¼ dAðaj; alÞ

(11)
where for aj on ½b;a�A such that ajaa, succi
AðajÞ denotes

the vertex among fa�6; . . . ; aig that is the nearest successor
of aj on the path ½b;a�A. That is, succi

AðajÞ ¼ al if
1.
 ½b;a�A contains a subpath of length X1 from aj to al;
and
2.
 whenever �6pmpi and am lies on the subpath from aj

to al, then either am ¼ aj or am ¼ al.

Since a is the last vertex on the path ½b;a�A, the successor
function succi

A is not defined in a. The successor function
succi

B on vertices in B is defined analogously. For
example, succ0

AðwÞ ¼ a and succ0
BðwÞ ¼ t.

The predecessor function preci
A (and preci

B) is defined

symmetrically: for aj on ½b;a�A such that ajab, we write

preci
AðajÞ ¼ al if and only if succi

AðalÞ ¼ aj.
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We indicate that in condition (C2) of (11), succi
BðbjÞ is

well defined whenever succi
AðajÞ is well defined. Assume

aj is on ½b;a�A and ajaa. Then, ajad, aja�, and ajac. By

condition (C1) of (11), bjaa, bjad, bja�, and bjac. Since bj

is on ½b;a�B with bjaa, succi
BðbjÞ is well defined.

Propositions 3 and 4 give equivalent ways of expressing

(11). These symmetries will be exploited for shortening

the proof.

Proposition 3. Condition (11) is equivalent to: for

�6pj; lpi,
(C10)
 aj ¼ al () bj ¼ bl.

(C20)
 for each aj on ½b;a�A with ajab,

(a) if dAðpreci
AðajÞ; ajÞ43d�i, then dBðpreci

B
ðbjÞ;

bjÞ43d�i.

(b) if preci
AðajÞ ¼ al and dAðal; ajÞp3d�i, then

preci ðbjÞ ¼ bl and dBðbl; bjÞ ¼ dAðal; ajÞ.
B
Proof. We show that (11) implies (C10) and (C20) (the
opposite implication is symmetrical). (11) implies (C10) is
trivial. We next show (11) implies (C20). Let aj on ½b;a�A
such that ajab.
ð11Þ )(C20a)
 Assume dAðpreci
AðajÞ; ajÞ43d�i. Let preci

BðbjÞ

¼ bl and succi
AðalÞ ¼ am. Thus, succi

BðblÞ ¼ bj.
Assume dAðal; amÞp3d�i. By condition (C2b)
in (11), bm ¼ bj. By condition (C1) in (11),
am ¼ aj. Then succi

AðalÞ ¼ aj, hence preci
AðajÞ

¼ al. Consequently, dAðal; amÞ ¼

dAðpreci
AðajÞ; ajÞ, a contradiction.

We conclude by contradiction dAðal; amÞ

43d�i. By condition (C2a) in (11), dBðbl;

succi
BðblÞÞ43d�i. Hence, dBðpreci

BðbjÞ;

bjÞ43d�i.

ð11Þ )(C20b)
 Condition (C20b) follows immediately from

condition (C2b) in (11). &
Proposition 4. Condition (11) is equivalent to: for

�6pj; lpi,
(C100)
 aj ¼ al () bj ¼ bl.

(C200)
 for each bj on ½b;a�B with bjaa,

(a) if dBðbj; succi
BðbjÞÞ43d�i, then dAðaj; succi

AðajÞÞ

43d�i.
(b) if succi

BðbjÞ ¼ bl and dBðbj; blÞp3d�i, then

succi
AðajÞ ¼ al and dAðaj; alÞ ¼ dAðbj; blÞ.
Proof. We show that (11) implies (C100) and (C200) (the
opposite implication is symmetrical). (11) implies (C100) is
trivial. We next show (11) implies (C200). Let bj on ½b;a�B
and bjaa.
ð11Þ )(C200a)
 Clearly, condition (C200a) follows from con-
dition (C2b) in (11).
ð11Þ )(C200b)
 Let succi
B
ðbjÞ ¼ bl and dBðbj; blÞp3d�i. Let m

be an integer satisfying succi
AðajÞ ¼ am. If
dAðaj; amÞ43d�i, then by condition (C2a) in
(11), dBðbj; blÞ43d�i, a contradiction. We
conclude by contradiction that
dAðaj; amÞp3d�i. Then, by condition (C2b)
in (11), bl ¼ bm and dBðbj; bmÞ ¼ dAðaj; amÞ.
By condition (C1) in (11), am ¼ al. &
We now show that the conditions in (11) can be

preserved by the duplicator. The base case i ¼ 0 is

immediate from Fig. 13 and our assumption about the

size of A and B. For the induction step, assume that the

spoiler is making his ðiþ 1Þst move in A (the case B is

symmetrical because of Proposition 4). If the spoiler plays

aj, jpi, the response of the duplicator is bj, and the three

conditions in (11) are trivially preserved.

Otherwise, the spoiler’s move aiþ1 must fall on ½b;a�A
and baaiþ1aa. Let �6pp; spi such that ap ¼ preciþ1

A
ðaiþ1Þ

and as ¼ succiþ1
A ðaiþ1Þ. Clearly, succi

AðapÞ ¼ as. Then for

�6pjpiþ 1 such that aj on ½b;a�A with ajaa,

succiþ1
A ðajÞ ¼

succi
AðajÞ if jap and jaiþ 1;

aiþ1 if j ¼ p;

as if j ¼ iþ 1:

8><
>:

We consider the case dAðap; aiþ1ÞpdAðaiþ1; asÞ (the case

dAðap; aiþ1Þ4dAðaiþ1; asÞ is symmetrical because of Propo-

sition 3).

We show hereafter that the duplicator can (and will)

choose biþ1 such that

succiþ1
B ðbiþ1Þ ¼ succi

BðbpÞ, (12)

or equivalently, biþ1 ¼ succiþ1
B
ðbpÞ. This is illustrated in

Fig. 16. Note that possibly succi
B
ðbpÞabs.

Hence, for all �6pjpiþ 1 such that bj on ½b;a�B with

bjaa,

succiþ1
B
ðbjÞ ¼

succi
BðbjÞ if jap and jaiþ 1;

biþ1 if j ¼ p;

succi
BðbpÞ if j ¼ iþ 1:

8>><
>>:

We show that condition (C2) of (11) is satisfied for every aj

with jap and jaiþ 1. To this end, let �6pjpiþ 1 such

that jap and jaiþ 1. Then, succiþ1
A ðajÞ ¼ succi

AðajÞ and

succiþ1
B
ðbjÞ ¼ succi

BðbjÞ.
1.
 To show that condition (C2a) in (11) is true for aj, assume

dAðaj; succiþ1
A ðajÞÞ43d�ðiþ1Þ.

Two cases can occur:
(a) dAðaj; succi

AðajÞÞ43d�i. By the induction hypothesis

dBðbj; succi
B
ðbjÞÞ43d�i, hence dBðbj; succiþ1

B
ðbjÞÞ4

3d�ðiþ1Þ.
(b) dAðaj; succi

AðajÞÞp3d�i. Let succi
AðajÞ ¼ al. By the

induction hypothesis, succi
BðbjÞ ¼ bl and

dBðbj;blÞ ¼ dAðaj; alÞ. Hence, dBðbj; succi
BðbjÞÞ ¼

dAðaj; alÞ. Since dAðaj; alÞ43d�ðiþ1Þ by our initial

assumption, it follows dBðbj; succiþ1
B
ðbjÞÞ43d�ðiþ1Þ.



ARTICLE IN PRESS

Fig. 16. Moves in round iþ 1.
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2.
 To show that condition (C2b) in (11) is true for aj,
assume succiþ1

A ðajÞ ¼ al and dAðaj; alÞp3d�ðiþ1Þ. Hence,
succi

AðajÞ ¼ al and dAðaj; alÞp3d�i. By the induction
hypothesis, succi

BðbjÞ ¼ bl and dBðbj; blÞ ¼ dAðaj; alÞ. It
follows succiþ1

B
ðbjÞ ¼ bl and dBðbj; blÞ ¼ dAðaj; alÞ.

Thus, hereafter it suffices to show that the duplicator

can play in such a way that condition (C2) of (11) is true

for ap and aiþ1. We distinguish two cases:

Case dAðap; aiþ1Þp3d�ðiþ1Þ: The duplicator picks in B the

(unique) element biþ1 satisfying dBðbp; biþ1Þ ¼ dAðap; aiþ1Þ.

We distinguish again two cases:
1.
 dAðap; asÞ43d�i. Then, by the induction hypothesis,

dBðbp; succi
BðbpÞÞ43d�i. Since dBðbp; biþ1Þp3d�ðiþ1Þ

o3d�i, equation (12) is true.
It is immediate that condition (C2) of (11) is satisfied
for the vertex ap. We show that condition (C2) of (11) is

also satisfied for aiþ1:
(a) Assume dAðaiþ1; asÞ43d�ðiþ1Þ. Since dBðbp;

succi
BðbpÞÞ43d�i

¼ 3 � 3d�ðiþ1Þ and

dBðbp; biþ1Þp3d�ðiþ1Þ, it is correct to conclude

dBðbiþ1; succiþ1
B
ðbiþ1ÞÞ42 � 3d�ðiþ1Þ.

(b) Assume dAðaiþ1; asÞp3d�ðiþ1Þ. Since dAðap; aiþ1Þ

pdAðaiþ1; asÞ by our initial assumption, it follows
dAðap; asÞp2 � 3d�ðiþ1Þo3d�i, a contradiction. We
conclude by contradiction that this case cannot occur.
2.
 dAðap; asÞp3d�i. Then, succi
BðbpÞ ¼ bs and dBðbp; bsÞ ¼

dAðap; asÞ by the induction hypothesis. Then, the path

from aiþ1 to as is isomorphic to the path from biþ1 to

bs ¼ succiþ1
B
ðbiþ1Þ. Condition (12) is obviously satisfied.

It is immediate that condition (C2) of (11) is satisfied
for the vertices ap and aiþ1.

Case dAðap; aiþ1Þ43d�ðiþ1Þ: We first show

dBðbp; succi
BðbpÞÞ42 � 3d�ðiþ1Þ

þ 1.
1.
 If dAðap; asÞ43d�i, then, by the induction hypothesis,
dBðbp; succi

BðbpÞÞ43d�i. The desired result follows
because 3d�i

X2 � 3d�ðiþ1Þ
þ 1.
2.
 If dAðap; asÞp3d�i, then succi
BðbpÞ ¼ bs and dBðbp; bsÞ ¼

dAðap; asÞ by the induction hypothesis. By our initial
assumptions that 3d�ðiþ1ÞodAðap; aiþ1ÞpdAðaiþ1; asÞ, it
follows dAðap; asÞ42 � 3d�ðiþ1Þ

þ 1. Hence,
dBðbp; bsÞ42 � 3d�ðiþ1Þ

þ 1.

Thus, the duplicator can choose in B an element biþ1

satisfying

dBðbp; biþ1Þ43d�ðiþ1Þ,

dBðbiþ1; succiþ1
B
ðbiþ1ÞÞ43d�ðiþ1Þ,

where succiþ1
B
ðbiþ1Þ ¼ succi

BðbpÞ. Condition (12) is ob-

viously satisfied. It is immediate that condition (C2) of
(11) is satisfied for ap and aiþ1.

Finally, we show that ð~a;~bÞ defines a partial isomorph-

ism between A and B. That is, for �6pj; lpi,
1.
 aj ¼ al () bj ¼ bl. This is condition (C1) of (11).

2.
 For every e 2 fc;a;b; d; �;w; tg, aj ¼ e () bj ¼ e. This is

immediate from the choice of ða�6; . . . ; a0Þ and
ðb�6; . . . ; b0Þ.
3.
 Rðaj; alÞ 2 A () Rðbj; blÞ 2 B. We show ) (the oppo-
site direction is symmetrical using Proposition 4). The
implication holds obviously if one of aj or al is not on
½b;a�A. Assume next that aj and al are both on ½b;a�A.
Then, bj and bl are both on ½b;a�A. Since
dAðaj; alÞ ¼ 1p3d�i, it follows from condition (C2b) of
(11) that dBðbj; blÞ ¼ 1, hence Rðbj; blÞ 2 B.

Thus we have shown that the duplicator can win a d-
round Ehrenfeucht–Fraı̈ssé game on A and B. &
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