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Alzheimer disease (AD) ;Arachm-:amc acid

MNeure-inflammation
AP production
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* Most common dementia worldwide with 2 main features : extracellular senile plaques of amyloid B (AB) & intracellular ['3“”5'3““"'3“'5]

neurofibrillary tangles of tau protein
* Since 1993, no new drug was approved by FDA (> 95% failed during clinical trials [1])
e Actual therapies are only symptomatic & do not slow the progression of the disease
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>[ Mitochondrial dysfunction
AD management
* Only symptomatic treatments allowing a better quality of life for patients | ROS
e \arious phospholipase isoforms involved in memory impairment and neurodegeneration in AD Figure 1 Our hypothesis‘ conFerning the progress. of the AD proc;ess: af:cumulz?tion of AB at-the cerebral Igvell results iq exc‘essi\{e
_ ) _ ) S ) ) o stimulation of NMDAR, triggering the exacerbated influx of Ca?* which activates kinases responsible of PLA, activation. Arachidonic acid
* PLA, signaling pathway involved in AD [2] - PLA, inhibition has shown neuron protection against apoptosis induced by AB [3] (AA) produced promotes synaptic function disruption, tau phosphorylation and aggregation, increased AB production and ROS generation,

as well as neuro-inflammation and apoptotic death of neurons.
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Development of a therapeutic strategy by targeting a key actor in the phospholipase (PLA,) signalling involved in AD using a peptide identified by phage display
(PLP,<) and rendered able to cross the BBB by coupling to a vector peptide (LRP,) targeting the LDLR.
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Figure 2. The glutamate shows a stimulatory effect on PLA, w 1 — 0.2 ’
0
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(positive control) compared to the negative control (non-induced
and non-inhibited cells), attested by a significant increase in the ) ) ) ] ] ) Figure 4. Study of the inhibitory effect of PLP,; on cellular biomarkers linked to PLA,. PLA, stimulation by glutamate results in its phosphorylation and
released AA. PLP,.-LRP, complex significantly decreases the Figure 3. Detection by IF of (A) glutamate-induced PLA, and (B) AB-induced PLA, on neuron differentiated migration to membranes and neurites, the activation of COX2 and/or ALOX5 depending on the cell type, the translocation of these enzymes into cell

. . NT2/D1 cells, highligh Dyligh 4 . Nuclei bl ing DAPI. PLA igrates t ites i . . o . .
released AA levels, whereas the non-specific peptide (NSP) shows / . ce S. ighlighted by Dylight 594 (red). Nuc e.' appear ue us*:ng 2 Migrates to heurites in processes and the restructuration of the beta-actin cytoskeleton. PLP,5 prevents all these phenomena by its interaction with PLA,. * p < 0.05
. %k, both stimulations. In both cases, PLP,. prevents the migration of PLA,. * p < 0.05
no effect (*: p<0,05; **: p<0,01).
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Figure 6. Representative
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images of mouse brains
acquired by MRI on
APP/PS1 mice injected
with USPIO-PHO
targeted to amyloid
beta  peptide. MRI
experiments were
performed after the
period of treatment. e SENNS
The negative contrast N Y jhoyum. o
observed  for  mice e
injected  with  NSP Figure 7. (A) Detection of amyloid plaques (AP) by IHC on brain slices of healthy NMRI and APP/PS1 mice, highlighted by brown spots. After 1.5
reveals a higher amount months of treatment, the injection of PLP,.-LRP, to APP/PS1 mice reduced the number and size of AP in contrast to NSP injection, whereas
of AB in the brain. older and non-treated mice show AP progression. (B) AP were counted manually in the whole brain and the hippocampus of mice treated with
PLP,s-LRP, or NSP, and in older APP/PS1.
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Figure 5. Study of the spatial memory of APP/PS1 mice by the Barnes maze. Mice treated with
PLP,c-LRP, generally made fewer errors (A) and spent more time in the correct quadrant (B)
than the non-treated or NSP-treated mice.
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healthy mice. Figure 9. Detection of PLA, by IHC. Pathological conditions induce the overexpression of PLA, in both the cortex and the hippocampus. Mice treated with PLP,.-LRP, have a clearly weak overall labeling, unlike mice treated with the NSP, in the range of

diseased mice.
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Figure 11. Detection of phospho-tau (p-Tau) by IHC. Healthy mice and mice treated with PLP,.-LRP, have shown a
p-Tau labeling mainly in the cell bodies and in the nucleus, whereas in diseased mice and NSP-treated mice p-Tau
is located in axons.
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Figure 10. Detection of NMDAR by IHC. The strong cellular NMDAR expression in the cortex and hippocampus of healthy mice is decreased in diseased mice. The treatment with PLP,.-LRP, allows to increase the NMDAR
\expression, unlike the treatment with NSP.

g CONCLUSION

Evaluation of the inhibitory potential of the PLA,-targeted peptide combined with LDLR-targeted peptide * Inhibitory potential of PL-P25: Pre-incubation of differentiated NT2/D1 cells during 30 minutes
with peptides (20uM) before induction with glutamate (50uM) - AA dosage (AA ELISA kit, Cusabio,
IN VITRO IN VIVO USA).
PLP,.-LRP, incubation with cells shows to: PLP,.-LRP, injection to APP/PS1 mice allows to: ) Ln;;?zuZc:_f(l;;(c;reas;jrl)cei::ftcislIular localization of PLA; and p-PLA,, of AA-depending enzymes such as
“* Prevent the production of AA by Glu-stimulated cells; < Improve their cognitive abilities (Barnes maze results) .’ ' o . . . _
< Prevent the Glu- and AB-induced PLA, translocation to cell 2 Reduce the amount of amyloid plagues unlike NSP injection * In vivo molecular imaging: APP/PS1 mice (.Jackson Laborator-y, Maine, USA) were |njecteo! with
membranes 2 200pmol Fe/kg b.w of USPIO-PHO [4]. Then, images were acquired at the level of the head with T,-

weighted RARE imaging protocol (TR/TE = 3000/60 ms, RARE factor = 4, NEX = 6, matrix = 512x512,

% Prevent COX2 and ALOX5 t location after Glu stimulation L : .
v an ransiotation FOV = 2.5cm, slice thickness 1mm, 20 axial slices, spatial resolution = 48um, TA = 38m24sec).

EX VIVO * Barnes maze: study of the spatial memory of non treated healthy mice and APP/PS1 mice during
the period of treatment with PLP,.-LRP, or NSP (1.5 month). All performances were recorded and
IHC on mice brain slices showed that PLP,.-LRP, injection allows to restore in the range of healthy mice the expression, cellular analyzed manually.
\ localization and activity of selected biomarkers of interest for AD. j \- Immunohistochemistry: detection of AP, APP, PLA,, NMDAR and p-tau )
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