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Abstract— We propose a robust state estimation approach
for a linear reaction-convection-diffusion equation under
bounded unknown disturbances. Inspired by sliding mode
theory, an adequate discontinuous input function is designed
to compensate for the effect of the unknown disturbances.
Based on Filippov’s solutions theorem, we report the existence
of generalized solutions to the estimation error system
subject to the discontinuous input. Based on a Lyapunov
stability analysis, we show the asymptotic convergence of
the estimation error. The observer is then designed under
more relaxed and realistic assumptions by replacing the
discontinuous input by a continuous approximation and by
using adaptive techniques to compensate for the upper bound
on the bounded disturbances which are rather assumed to be
unknown. Numerical simulations are performed to illustrate
the effectiveness of the proposed robust estimation approach.

Keywords Infinite dimensional systems, linear reaction-
convection-diffusion  equation, partial differential
equations, robust observer design.

I. INTRODUCTION

Distributed parameter systems are modeled by partially dif-
ferential equations (PDEs) which depend on time and space
variables. Many engineering systems may modeled by PDEs
especially in bio(chemical) engineering systems consisting
on axial dispersion (bio)chemical reactor models with con-
vection and first order kinetics: see for instance [9], [20]. In
this paper, we consider the problem of robust observation
for a linear reaction-convection diffusion equation subject to
norm-bounded unknown disturbances. The problem of robust
observer design has been widely investigated in the literature
of “control theory” in the case of lumped finite-dimensional
systems subject to unknown inputs: design methods are based
on Lyapunov analysis, solving linear matrix inequalities and
sliding modes theory ( see for instance [5], [6], [7], [18] ).
However, this issue was not sufficiently investigated in the
case of distributed parameter systems except some papers
such [1] where the authors proposed a robust adaptive neural
observer for a class of parabolic PDE systems and [2] in
which an uncertainty and disturbance estimator (UDE) is
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designed for an unstable parabolic PDE with disturbances.
As a consequence this issue still needs to be addressed
thoroughly: the problem consists in designing a dynamical
system (a robust observer) which estimates the state of the
considered infinite-dimensional system and reject the effect
of the unknown inputs function. The dependence on the
spacial variable make this problem much more complex
since the available measurements usually occur only on the
boundary of the spatial domain.

Inspired by sliding modes theory ([16], [13],[14]), we pro-
pose in this paper a robust observer for a linear reaction-
convection diffusion equation under bounded unknown in-
puts based on the only available measurement on the
boundary. A discontinuous input function is appropriately
synthesized to ensure persistent unknown inputs rejection.
The trajectories of the state observation error described by
PDEs are shown to be well-posed in the sense of Filippov
(see mathematical setting on Filippov’s solutions concept
in both Banach and Hilbert spaces, respectively, in [12]
and [10]). Based on a constructive Lyapunov functional,
we also establish the asymptotic convergence of the error
trajectories to the origin, uniformly in the space variable.
The result is then generalized to the more realistic case
where the discontinuous input function is approximated by
its continuous counter part and where an appropriate adaptive
law is designed to compensate for the norm-upper bound of
the unknown disturbance which is rather assumed unknown.

The paper is organized as follows: in the following section,
we recall the concept of Filippov’s solutions in Banach
space; in Section III, we state the problem formulation; in
Section IV, the observer is designed based on a Lyapunov
analysis; in Section V, we prove the existence and the
asymptotic convergence of the estimation error trajectories
and in Section VI, a robust adaptive estimation approach is
developed under more realistic and relaxed assumptions. To
illustrate the theoretical results, some numerical simulations
results are presented in Section VII and finally concluding
remarks are given in Section VIII.

Notations. C*(]0,7]) denotes the class of continuous func-
tions on [0, 7] whose derivative is again continuous on [0, 7].
#'(0,1), with [ = 1,2,..., denotes the Sobolev space of
absolutely continuous scalar functions z(z) on (0,1) with
square integrable derivatives z(*)(x) for i = 1,...,l. This
space is equipped with the standard H'—norm. The standard
notation H°(0,1) = L?(0,1) will also be used. Finally, |.|
denotes a norm on any vector space, since its interpretation
will be clear from the context.



II. PRELIMINARIES
In this section, we recall the main features of the concept of

Filippov’s solutions in Banach spaces. Let us consider the
following class of differential equations in Banach spaces:

&(t) + Az(t) = f(x(1)), (D
l’(O) = Zo, (2)

under the following assumptions:

Assumption 1: (X,|.|) is a reflexive Banach space.
Assumption 2: The operator —A : D(A) C X — X gener-
ates a Cp-semigroup (K (£)):>o of bounded linear operators
on X. Therefore —A is closed and densely defined.
Assumption 3: (Growth condition) The function f : D(f) C
X — X is densely defined and satisfies the following linear
growth condition for some nonnegative constants M and N:

|f(z)| < M|z|+ N, forall € D(f). (3)

Le us now introduce the concept of generalized solutions
for semilinear differential equations with discontinuous right-
hand side on a Banach space.

Definition 1: The generalized solution of the equation

@(t) + Ax(t) = f(z(t)), 4)
z(0) = o )

is a mild solution of the differential inclusion

i(t) + Az(t) € F(x(t)), (6)
2(0) = o, (7

where F(z) = (..o f(B(z,e) N D(f)), co(E) denotes
the closed convex hull of a set E and B(z,¢) denotes the
closed ball of center x and radius e.

A mild solution z(.) of the differential inclusion (6)-(7) is
a continuous function x : [0,7] — X such that for some
T >0:

x(t) = K(t)xg +/0t K(t—s)g(s)ds, forte[0,T], (8)

where g : [0,7] — X is in L*(0,7;X) and satisfies
g(s) € F(z(s)) for almost every s € [0,T].

If S C X and zy € S, a viable solution z(.) of (6)-(7) is
a mild solution such that, for all ¢, z(t) € S. A generalized
viable solution of (4)-(5) is a viable solution z(.) of (6)-
(7). A particular class of semilinear differential equations is
described by controlled differential equations of the form

%(t) + Az(t) = Bu(z(t)), x(0)= =0, )

where z is the state variable and w is a control variable taking
its values in U and given by

Cx

u(z) = N(z) m,

(10)

where Y = U and N is a continuous real-valued function,
under the following assumptions:

Assumption 4: (U, |.|) is a Banach space.

Assumption 5: B : U — X is a bounded linear operator.
Assumption 6: u : D(u) C X — U is a densely defined
function satisfying the growth condition (Assumption 3).
Assumption 7: (Y,].|) is a Banach space, C' : X — Y is a
bounded linear operator such that C' # 0 and D(u) = X\ S,
where S = Ker{C}.

Now, we are ready to state an existence theorem
of generalized solutions to (9)—(10). This result is a
straightforward consequence of the proof of [10, Corollary
3.1].

Theorem 1 (Filippov’s solutions): Under Assumptions 1-7,

for any =9 € S N D(A), there exist generalized viable
solutions on S of (9)—(10) if for all z € SND(A),

Az € F(z) - S, (1)

where F(z) = (., Bu(B(z,e) ND(u)).
Moreover, any viable solution z(-) satisfies

x(t) = K(t)xo + /0 K(t—s)g(s)ds, Vt>0, (12)

where g(s) € Ax(s) + S for almost every s.

IIT. PROBLEM STATEMENT

We consider the following perturbed linear reaction-
convection-diffusion equation:

zt(x,t) = Dzga(x,t) — 22 (2, t) — koz(z,t) + ¥(t) (13)
with initial and boundary conditions given by:

2(x,0) = 2%a), (14)

Dz, (0,t) = =2(0,t), (15)

z:(1,t) = 0. (16)

where z(x,t) is a space- and time-varying scalar field
(e.g. a time-dependent concentration profile) over the spatial
variable z € [0,1] and time variable ¢ > 0, and D is
a real-valued parameter. For example, D can be given by

D = =2 where v and D, are real-valued parameters, which
can beyinterpreted as a fluid superficial velocity and as a
dispersion/diffusion coefficient, respectively. The dynamical
model equation (13) is a simplified model for real problems.
Indeed, the reaction kinetics is usually nonlinear and the
linear term koz(x,t) is its linear approximation. See e.g.
[9], [20] and references cited therein. In this particular case,
D1 is the well-known Peclet number, for a spatial interval
of length 1. y(t) = z(0,t) is the boundary measurement. ¢ €
C*([0,7]; H2(0,1)) corresponds to an unknown disturbance
satisfying the following boundedness assumption:



Assumption 8: There exists a known constant K such that

[Y(t)| < K, for all t > 0. (17)

According to Curtain and Zwart [4, Theorem 3.1.3],
the system (13)-(16) possesses a unique continuously
differentiable classical solution.

The problem that is considered in this paper consists in
designing a robust observer for system (13)-(16), which
is robust in the sense that it estimates the state variable
z(z,t) despite the unknown perturbation (¢) such that the
only available measurement for the system (13)—(16) is its
state at x = 0 or equivalently that the output is given by

y(t) = 2(0,1).

IV. ROBUST STATE ESTIMATION APPROACH

We consider the dynamical system described by the follow-
ing equations:

Zi(x,t) = DZge(z,t) — 2.(z,t) — koZ(x,t)
+u(t), (18)
2(z,0) 2% (), (19)
Dz.(0,t) = 2(0,t), (20)
2.(Lt) = 0 Q1)
git) = 2(0,1), (22)

where 2(x,t) denotes the estimated state, 2°(z) is the initial
estimated state, §(¢) is the estimated output and w(t) is
an input function whose main objective is to compensate
the effect of the unknown disturbance and which is to be
designed later. Let e(x,t) = z(x,t) — 2(z,t) denotes the
state observation error. Defining e® = 2°— 20 to be the initial
state observation error, the dynamics of the state observation
error e(z,t) can be written as

er(xz,t) = Degy(z,t) —ez(x,t) — koe(x,t)
+(t) — u(t) (23)
e(z,0) () (24)
Dey(0,8) = e(0,t) (25)
ex(1,t) = 0. (26)

Based on a Lyapunov analysis, our aim is to synthesize
the input function w(¢) in such away that the effect of
the unknown disturbance is compensated and that the error
system is exponentially stable. To that end, let us consider
the following positive definite Lyapunov functional:

1
V() = %Gex(O,t)2+%/O ex(s,t)%ds.  (27)

It can be shown that its time derivative along the state error

trajectories of (23)—(26) is given by

V(t) = (0—D)ey(0,t)en(0,t) — D/O1 ern(5,1)%ds

_%(em(ov t))2 - koez(ov t)e(o’ t)

“Fo [ (ol 0)Pds + vlt)ec(0.)

—u(t)ey(0,1). (28)

Let us now design the input function as follows:

B e;(0,t) - B
U(t) = Qem(&t) +)\m +6k0€(0,t) et(o,t), (29)

where )\ , 6, 0 are constant design parameters such that

é:ﬁ—l

0<0<2D
D 0=

and
K<\

(30)
€1y

Replacing the discontinuous input u(t) by its expression (29)
in equation (28) and using Assumption (8),

V() < =Alea(0,0)] + (1) e (0,8)]

! 2 1 2
—ko/o (ex(s,1))ds — 3 (ea(0,1))
1

< (@007~ [ (el s, 3D

0
where we have also used condition (31) and equation (25).
Hence one gets

(33)

V() < —-mV(b),

1
where 7y = min 7 2ko

At this stage, we deduce that the error system is exponen-
tially stable such that |e,(z,t)|o tends to 0 as ¢ tends to
infinity. Moreover, we deduce that lim; . |e,(0,t)] = 0.
As a consequence, it follows from the equation (25) that
Jim [e(0, )] = 0. (34)
Later, we will use the property (34) to establish that the error

trajectories of the error system e(z,t) converge to zero as ¢
tends to the infinity, uniformly in x.

V. EXISTENCE AND CONVERGENCE OF THE SOLUTIONS
TO THE ERROR SYSTEM

This section is divided in two main parts. First, we report
the existence of solutions to the error system (23)—(26) by
applying Theorem 1 on Filippov’s solutions. Second, we
report the convergence of the error system trajectories.



A. Existence of solutions to the error system

We specify the operator C' corresponding to the boundary
measurement introduced in Section 2: the operator C' is the
bounded linear functional on H!'(0,1) which is given for
all w € H'(0,1) by Cw = w(0). The main result of this
subsection is based on Theorem 1:

Theorem 2: For any initial state error e € Ker{C}, there
exist generalized viable solutions on Ker{C} of the state
error system (23)—(26) without disturbance, i.e. ¥(t) = 0,
and with input u(t) given by (29). Any generalized viable
solution e(-,t) of this system satisfies

e(.,1) :K(t)eM/OtK(t—s)g(s)ds, £>0, (39

where g(s) € Ae(.,s) + S for almost every s and
where (K (t));>0 is the Cp-semigroup generated by the
operator —A which is defined on its domain D(—A) =

{h € HY0,1) : h and % are absolutely continuous, ?ZT}?L €
#'(0,1), 2%(1) = 0 and 692 (0) = h(0)} by
o? 0

In addition, the corresponding generalized viable solution
e(-,t) of the state error system (23)—(26) with disturbance

() is given by

e(.,t) = K(t)eo—i—/o K(t—s)y(s)ds

t

+ K(t—s)g(s)ds, t>0. 37

S—

B. Convergence of the error system trajectories

The convergence analysis of the solution of the error
system as well as the robust state estimation for the linear
reaction-convection-diffusion equation are based on the
following auxiliary result:

Lemma 1: [14, Lemma 1] Let £(z) € H'(0,1). Then, the
following inequality holds

EC, )3 < 2(62(0) + [ )]3),

where |.|, denotes the usual norm on L*(0,1).

(38)

Applying Lemma 1| with £(-, ) = e(, t), using equation (25),
and inequality (33), one can show that the state error
system (23)—(26) is globally exponentially stable in the
Sobolev space H'(0,1), ie. |e(-,t)|, converges towards
zero exponentially fast as time goes to infinity, for every
initial condition e°. Then, using successively Agmon’s and
Young’s inequalities, one can conclude that e(xz,t) — 0 as
t — oo, uniformly in z € [0,1], since e(0,t) — 0 as

t — oo (See (34)).

The previous Lyapunov analysis of the robust state
estimation for the linear reaction-convection-diffusion
equation is summarized in the following theorem.

Theorem 3: Consider the linear reaction-convection- diffu-
sion equation (13)—(16) under Assumption 8 and the robust
observer defined by (18)-(22) with the discontinuous input
(29). Then the solution e(-,t) of the resulting state error
system (23)—(26) is globally exponentially stable in the
Sobolev space H'(0,1). Moreover e(z,t) — 0 as t — oo,
uniformly in z € [0, 1].

VI. ADAPTIVE ROBUST STATE ESTIMATION APPROACH
UNDER RELAXED ASSUMPTIONS

In practice, imperfections always occur on the discontin-
uous input such that imprecision in sensors, delays and
disturbances which gives rise to the well-known chattering
phenomenon. In order to improve our methodology in real
life applications, we choose to apply the continuous approx-
imation method to reduce chattering. This approach consists
in approximating the discontinuous input by a continuous
one. Furthermore, in order to extend the range of applications
of our estimation approach, we assume that the upper-
bound on the disturbance (t) is rather unknown in this
section. Adaptive techniques are employed to compensate
for the unknown upper-bound on the disturbance (¢). The
continuously-implemented counter-part of the discontinuous
input w in (29) is given by

« eg(0,1) _
t) = 0er (0,t) + A————— + 0koe(0,1) — e (0,t).
u( ) €t ( )+ |€I(O,t)| Ye + 06( ) et( )
) (39)
where A is an adaptive parameter such that
A =7l]es(0,8)] — oA (40)

Note that, in order to prevent \ to increase unboundedly, we
have used the so-called o-modification technique consisting
in adding the term —o A in equation (40).

Corollary 1: Consider the linear reaction-convection-
diffusion equation (13)—(16) under Assumption 8 and the
infinite dimensional sliding mode observer defined by (18)-
(22) with the continuously-implemented counter-part (39) of
the discontinuous input u in (29), then the solutions e(-, t)
of the resulting error boundary-value problem converge to
a neighborhood of the origin by choosing appropriately the
design parameters €, v and o.

Hints for the proof:

The proof goes along the lines of the previous section by
considering the following augmented Lyapunov functional
defined by

W (t) — )2 41)

I
=
+

1 1 [t 1 -
= Z0e2(0,t) + = 2(s,t)ds + —\2. (42
2eI(O,)+2/OeI(s,)s+27 42)



where A = K — \. One can show that

W(t) < —2K,W(t)+ Ka, (43)
where K is a positive constant and
Ka(o,7,€) = — K2+ Ke+ &2 (44)
2y o

to deduce that |e(z,t)|o as well as |e(0,t)| are bounded.
Using again Agmon’s and Young’s inequalities, respectively,
we can establish that the estimation error e(z,t) converges
to a small neighborhood of the origin which may be reduced
at will by selecting appropriately the design parameters o,y
ans € by reducing K (See (44)), uniformly in = € [0, 1].
Moreover the adaptation error S\(t) is bounded.

VII. NUMERICAL SIMULATIONS

The reaction-convection-diffusion equation given by the
equations (13)—(16) can be employed to model many applica-
tions. Here we consider a Peclet number Pe = D~! = 1000
and a decay coefficient kg = 1 (for instance the decay of
a chemical compound in a stream of water). The unknown
disturbance is given by ¢ (t) = —H (t—2)+3H (t—4) where
H(t) represents the unitary step signal.
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Fig. 1. Evolution of the original system spatial profiles (solid red line) and
of the observer (black dotted line) at t = 0,0.5, ..., 8

0.5

efx,t)

-0.5

Fig. 2. Time evolution of the spatial profiles of the observation error e(z, t)
att=0,0.5,..,8

To overcome the problem of on-line computation of the time
derivative of the boundary measurement output, we assume
that the PDE can be approximated by

zi(z,t) = —z, (2, 1) (45)

near this boundary, i.e., that the system is dominated by
convection at the inlet boundary.

Using the the latter PDE approximation (45) and the equation
(25), the correction term (39) is modified and replaced by
the following new expression:

e(0,1)

N 0 ~ < €(0,t)

Note that using the latter solution (the PDE approximation),
the sensitivity with respect to the measurement noise is con-
siderably reduced which clearly improves the performances
of the proposed sliding mode observer in the case where the
output signal is corrupted by disturbances.

The observer equations are solved using the MatMol li-
brary (www.matmol.org): see for instance the reference [19].
Spatial operators are approximated using finite difference
schemes and the resulting set of ODEs are solved using
the Matlab integrator ode23. The observer is initiated with
Z(z,0) = 1 whereas the actual initial condition is z(x,0) =
1 + 0.5sin(2mzx). The design parameters of the observer
are set to 8§ = 1.8D, v = 1000, ¢ = 10 and ¢ =
10716 the floating-point relative accuracy. The convergence
is illustrated in Figures 1 and 2. It is to be noticed that
thanks to the continuous approximation technique applied to
the input term u(¢) (See Equation (39) which represents the
continuously-implemented counter-part of the input wu(t)),
the well-known chattering phenomena is avoided as it is
clearly illustrated in Figures | and 2.



VIII. CONCLUDING REMARKS.

We presented a robust estimation approach for a linear
reaction-convection-diffusion equation under unknown dis-
turbances based on the only available measurements occur-
ring on the boundary of the spacial domain. We proved the
existence of generalized Filippov’s solutions and based on
a Lyapunov analysis, we established both state estimation
and unknown inputs rejection. Continuous approximation
method and adaptive techniques were employed to extend
the applicability of our approach. Theoretical results were
illustrated via some simulations.
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