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A B S T R A C T

Whenever the long term monitoring of a building is attempted it is likely that specific sensors or the whole
monitoring system used may experience long-term failure therefore creating important gaps in one or more
variables of special interest. These long gaps may not be addressed using simple linear interpolation. The option
of only using the available data for descriptive statistics would produce results that are biased towards the season
of measurement. In addition discarding the incomplete data represents a significant waste of time and effort in
the research study. A work around to reduce the bias problem is to predict the missing data from other measured
variables using machine-learning techniques. Some questions that follow are: How much data is necessary to be
able to train a regression model? What is the expected error of such prediction? What is the best model for such a
task? This paper addresses the problem of completing a data set for the interior temperatures inside a passive
house using different monitored predictors such as exterior temperature, humidity, wind speed, visibility,
pressure and electrical energy use inside the building. Two regression models, multiple linear regression and
random forest are compared using learning curves for the training and testing sets for visualizing the so-called
bias-variance trade off. The learning curves help to answer the question of optimal sample size for training,
model selection and expected error. Finally, descriptive statistics such as median, maximum, minimum, and
room temperature averages are presented before and after completing the data sets.

1. Introduction

Data loggers fail often during the time of monitoring building per-
formance data and this situation usually leaves the engineers and re-
search scientists involved in a difficult position for answering research
questions. It would be possible to avoid such a problem by im-
plementing some system redundancy (multiple loggers monitoring the
same parameters) in order to prevent data loss during failures, but this
would come at a significantly higher cost of equipment and main-
tenance. However, for this strategy to work, the loggers would have to
be independent of one another. This would not be the case if they were
to be powered by the same source. Also having redundancy does not
necessarily increase reliability for different reasons e.g. complexity,
human neglect [1].

An alternative to deal with the occurrence of missing data is to use
machine-learning techniques in order to create models to predict the
variable of interest from other available variables. In this work, we use
learning curves to visualize and understand the effect of sample size on
the training and testing set's root mean square errors. These types of
learning curves have been used many times to appreciate the effect of

sample size on the prediction error of the variable of interest [2–5].
In this paper, we investigate the interior temperatures inside a

passive house. The temperatures were monitored using a wireless
sensor network built with ZigBee radios and Arduino microcontrollers.
The network architecture is such that a concentrator node receives all
the incoming information at an Arduino base station that processes and
records the information onto an SD card. The base station also acts as a
server to access the data through the internet. This base station may
experience data logging failure due to: power loss, a writing error to the
memory card or malfunction of the ZigBee coordinator radio.

Since this work mostly deals with monitoring of temperatures inside
a passive building and the use of data driven regression models for
prediction, these are the main interests of the literature review. As a
reminder to the reader, regression models estimate relationships among
different variables for prediction of a continuous variable. For related
research about prediction of building energy consumption regression
models, building energy model calibration and artificial neural net-
works the reader is referred to [6–16]. A more recent publication
dealing with the problem with imputation of missing values in building
sensor data is presented by Chong, Lam et al. [17].
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1.1. Literature review

1.1.1. Regression models for indoor air temperature
Artificial neural networks ANNs were used for modeling the internal

temperature of a building by Gouda, Danaher et al. [18]. The model
employed outdoor temperature, solar irradiance, heating valve posi-
tion, and the interior temperature. The research also evaluated the
impact of hidden neurons on the mean squared error in training, testing
and validation data sets.

The simulated indoor greenhouse temperature was modeled using
neural networks by Uchida Frausto and Pieters [19]. The data set in-
cluded outside air temperature, outdoor relative humidity, global solar
radiation, and cloudiness of the sky. The research also investigated the
optimal number of neurons.

Linear and neural network models to predict indoor temperature of
a building were presented by Mechaqrane and Zouak [20]. The neural
network model was able to outperform the linear model significantly.
The model considered hourly values for variables for the indoor tem-
perature, outdoor temperature, the solar radiation, and the auxiliary
heating power.

A comparison of a multimode physical model and data-driven
models using neural networks was presented by Ruano et al. in Ref.
[21]. The neural network model used indoor air temperature, outside
solar radiation, air temperature and relative humidity. The neural
network model was shown to be better than the physical model for the
prediction of the interior temperature.

In other studies, Thomas and Soleilmani [22,23] compared different
regression models for predicting the indoor temperature in two build-
ings. The nonlinear artificial neural network models (ANN) were able to
outperform the linear models. In one of the buildings, the data used
included the outdoor and indoor temperatures, heating power, wall
temperatures, ventilation flow rates, time of day and sun radiation. Two
of the main conclusions were that the nonlinear combination of sun
radiation and time of day are good predictors for the indoor tempera-
tures and that the indoor temperature is non-linear dependent on the
ventilation rate.

The indoor temperature of a tropical greenhouse was modeled by
Patil, Tantau et al. [24] using autoregressive and neural network
models. The models used outdoor temperature, solar radiation, relative
humidity and cloud cover as input variables for the developed predic-
tion models.

Neural network and nonlinear (genetic algorithm) models were
compared in Ref. [25] to predict indoor temperature and relative hu-
midity in a test house. The research used time, outdoor temperature,
indoor temperature, outdoor relative humidity and indoor relative
humidity. The two models developed were considered satisfactory for
indoor temperature and for relative humidity based on the high cor-
relation coefficients between real and predicted values which ranged
from 0.997 to 0.998.

Data obtained over three months was used to develop linear para-
metric autoregressive (ARC) models and a neural network based non-
linear autoregressive model (NNARX) was used by Mustafaraj et al. to
predict the room temperature and relative humidity of an office room in
Ref. [26]. The models used outdoor temperatures, outside relative hu-
midity, room temperature, room relative humidity, supply air relative
humidity, supply air temperature, supply air flow rate, chilled water
temperature, hot water temperature and room CO2 concentration. The
authors evaluated the models performance with different steps ahead
predictions.

Multiple linear regression and artificial neural models for the pre-
diction of daily mean indoor temperature and relative humidity were
presented in Ref. [27] by Ozbalta et al., The models employed the day
of year, the outdoor temperature, outdoor relative humidity, wind
speed and indoor temperature and humidity. The artificial neural
models performed better in the testing data set based on their higher R
squared values compared to those of the multiple linear regression

models.
Auto-regressive neural network models were employed by

Marvuglia, Messineo et al. [28] to predict indoor temperature of a
building. The models used outdoor temperature, air relative humidity,
wind speed and interior air temperature as inputs. The authors used
training, testing and validation sets to avoid overfitting the neural
network. In this work, the data used samples at 1 h intervals.

Hourly indoor temperature and humidity were predicted using an
artificial neural network by Mba et al. in Ref. [29]. The researchers
established the optimal structure for the number of hidden neurons and
activation functions. The models employed outdoor temperature and
humidity, indoor temperature and humidity and a series of derived time
lagged values.

1.1.2. Internal temperatures in passive buildings
Mean average indoor hourly temperatures during the winter and

summer seasons for more than 100 passive units are presented in Ref.
[30] by Schnieders and Hermelink. The study used data for passive
houses in different locations across Europe. For the houses in Hannover,
the mean indoor temperatures in winter ranged from about 13.5 °C to
about 22.5 °C with an average for all the houses of 20 °C. The mean
temperature for unoccupied homes was below 17 °C. During the
summer, the mean indoor air temperatures ranged from about 20.5 °C
to about 25.5 °C. In some instances, the 95th percentile of hourly mean
values was higher than 27 °C.

Strategies to prevent overheating in a residential passive house in
Slovenia were presented by Mlakar et al. in Ref. [31]. The research
work employed monitored data to develop a mathematical model for
the internal temperature. The research found that the indoor tem-
perature of the house could be controlled by opening windows during
hot summer days, with shading of southern and western windows and
with the minimization of internal energy gains.

A comparison of indoor temperatures for two passive and two low
energy buildings in Vienna was done by Mahdavi et al. in Ref. [32]. The
study found that the use of mechanical ventilation in the passive houses
was better for controlling the CO2 levels during the cold periods. In
addition, it was found that overall the indoor conditions satisfied the
occupants.

Temperature and humidity profiles in small scale passive building
blocks were presented in Ref. [33] by Mlakar and Strancar. The study
compared three different design constructions to evaluate the effect of
moisture transport within walls and estimate the risk of mold damage
due to high relative humidity within it.

Table 1 presents a summary of the reviewed literature highlighting
the models used by the authors, model inputs and some relevant find-
ings from their research.

The review of the published literature highlights the following
points:

• Artificial Neural Network models have been used extensively for
indoor temperature prediction in buildings and greenhouses
[18–21,24].

• The different regression models have used data such as: exterior and
interior air temperature and humidity, solar radiation, cloud cover,
wind speed, energy use, ventilation rates and CO2 levels among
others.

• In general, the literature reviewed has shown that the errors in the
interior temperature are small when using autoregressive models.
The only caveat is that the models decrease in accuracy when the
predictions ahead increase.

• The reviewed literature did not use measured occupancy informa-
tion as an input for the regression models. However, CO2 levels have
been used as an input which indirectly reflects occupancy.

• The different works have addressed the problem of the optimal
number of neurons, derived features (lagged values), and variable
selection to minimize the prediction error.
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• The reviewed data driven regression models have so far not con-
sidered the effect of training sample size on the prediction errors.

As can be seen from the literature, the review has not found research
work in the area of temperature prediction in buildings addressing the
problem of optimal sample size and the corresponding model perfor-
mance. The main reasons for this could be the relatively small data sets
available before, the fact that training of the models can take a sig-
nificant amount of time and that computing power was not easily
available. This paper examines different questions such as: What is the
optimal sample size to train models? What is the expected error in the
testing set? What is the effect of completing the data sets on the de-
scriptive summary statistics?

1.2. Research objectives and methodology outline

The main purpose of this study was to be able to complete the in-
door temperature of a building for a year long data set using the
available sampled data. This includes the use of training regression
models and the evaluation of their performance in a testing set using

Table 1
Summary of previous research work.

Source Models Inputs comments

Gouda, Danaher et al.,
2002 [18]

Artificial neural networks ANNs Outdoor temperature, solar irradiance, heating valve
position, interior temperature

Tested error in training, testing and validation
sets. Error typically between −1 and 1 °C

Uchida Frausto and
Pieters [19]

Auto regressive model and Neural
network

Outside air temperature, outdoor relative humidity, global
solar radiation, sky cloudiness

Average absolute error lower than 1 °C

Mechaqrane and
Zouak [20]

Neural network auto regressive with
exogenous input (NNARX)

Heating power, indoor temperature, outdoor temperature,
solar radiation,

Typical error from −0.5 to 0.5 °C

Ruano, Crispim et al.
[21]

Neural network and physical models Indoor air temperature, solar radiation, outside
temperature and relative humidity

Neural network model was better than the
physical model. The RMSE of the neural
network was 0.0493 vs 0.1777 for the physical
model

Thomas and
Soleimani-
Mohseni [22]

Linear and artificial neural network
models for 1 h and 2 h ahead predictions

Outdoor and indoor temperature, heating power, wall
temperatures, ventilation flow rates, time of day and sun
radiation.

The mean absolute error in the training set
ranged from 0.1449 to 0.2639 For the testing
set, MAE ranged from 0.1458 to 0.2769

Patil, Tantau et al.,
2008 [24]

Autoregressive and neural network
models

External temperature, solar radiation, relative humidity,
cloud cover

The outside temperature was found to have the
greatest impact on the inside temperature

Lu and Viljanen [25] Neural networks, and autoregressive
models. Used information from previous
step to predict the next

Time, outdoor temperature, indoor temperature, outdoor
relative humidity and indoor relative humidity

The best model for temperature had a mean
squared error of 0.239 with one-step ahead
prediction in the testing set.

Mustafaraj, Lowry
et al. [26]

Neural network based nonlinear
autoregressive model

outdoor temperatures, outside relative humidity, room
temperature, room relative humidity, supply air relative
humidity, supply air temperature, supply air flow rate,
chilled water temperature, hot water temperature and
room CO2 concentration

The MSE for temperature using a step ahead
size of 6 (30min) was 0.0162.

Özbalta, Sezer et al.
[27]

Artificial neural network, multiple
regression

Day of the year, outdoor temperature and humidity, wind
speed, indoor temperature

RMSE ranged from 0.56 to 1.02 for the
Artificial neural network models for indoor
temperature prediction

Marvuglia, Messineo
et al. [28]

Auto-regressive neural network with
external inputs (NNARX)

Outdoor air temperature, relative humidity, wind speed
and interior air temperature

Research evaluated the impact of number of
neurons and delay time. The best MSE was
0.217.

Mba, Meukam et al.
[29]

Artificial neural network Outdoor temperature, humidity, indoor temperature and
humidity and a series of time lagged values

High correlation coefficient between predicted
and measure temperature of 0.9850.

Fig. 1. Pictures of the house.

Fig. 2. Photograph of one the wireless sensors. The main components are: the
Atmega-328P microcontroller, the DHT 22 sensor for temperature and humidity
measurement, and the XBee radio.

L.M. Candanedo et al. Building and Environment 138 (2018) 250–261

252



different sample sizes to be able to understand the effect of sample size.
Having a complete data set will also enable us to use it for more realistic
building simulation calibration studies. Finally, this work will compare
descriptive statistics before and after completing the data set.

The rest of the paper is organized as follows: first, a short descrip-
tion of the monitored house and the wireless sensor network. The next
section describes the data sets used and the training and testing of two
regression models. Then, a description of the data set processing
methodology is presented. A discussion of the relative variable im-
portance for the prediction model is included. A comparison of de-
scriptive statistics for the complete and incomplete datasets follows.
The paper ends with a discussion of results and conclusions.

2. The passive house

The passive house is located in Stambruges about 24 km from the
city of Mons in in Belgium [34,35] (see Fig. 1). The house was designed
using the Passive House Planning Package (PHPP) which is an energy
simulation tool implemented in Excel [36]. The simulation results from
PHPP must show that the building will have an annual heating load and
cooling load of no more than 15 kWh/m2 per year. The house is highly
insulated. The U value for the exterior walls, roof and ground are lower
than 0.1W/m2K. The windows are triple glazed with Ug= 0.5W/m2K
and Uf < 0.9W/m2K and can be operated by the occupants. The total
floor area is 280m2, from which the total heated area is 220m2. The
main source of space heating is a wood chimney. In addition, there was
no cooling system installed in the house during the time the data was
collected. Therefore, the indoor temperature could not have been
controlled with a thermostat to provide a specific set point. Information
about building occupancy and windows status (open/not) was not re-
corded.

2.1. Electrical energy metering and ZigBee wireless sensor network

M-BUS energy counters were used to monitor the electric energy
use. The information was collected every 10min. The sub metering
includes the energy used by the appliances, lighting, domestic hot water
(heat pump), electric heater and ventilation heat recovery.

The house interior temperature and humidity in different rooms
were monitored with a custom made ZigBee wireless sensor network
[37]. The sensor nodes were made of XBee radios [38], Amega328P
microcontrollers [39] and DHT-22 sensors. Fig. 2 shows the main
components for the sensor nodes. The accuracy for the temperature
is± 0.5 °C and±3% for the relative humidity. The sensor nodes re-
ported the temperature and humidity around every 3.3 min. In the
ZigBee architecture, one radio acts as the network coordinator. There
can be multiple end nodes (sensors) and routers to extend the amount of
end nodes and the range of the wireless network. The coordinator radio
receives all the incoming information from the end sensor nodes and
those relayed by the routers. Please refer to Fig. 3, Fig. 4 and Fig. 5 for
operation and position of the end sensor nodes.

Fig. 3. Conceptual representation of the wireless network architecture with the XBee radios. As shown in the diagram, the router extends the number of end devices
and range of the network and forwards the information to the coordinator node.

Fig. 4. First floor. Position of Temperature and Humidity sensors. The blue
circles indicate the sensor number. The coordinator (C) is placed near the
middle of the house. (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)
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3. Recorded data

All the data analysis and modeling presented here was done in R
[40]. R is a programming language and environment that has been
developed for statistical computing and is similar to the S language
developed at Bell laboratories. R is available as free software. The
weather data for the nearest airport weather station (Chièvres Airport,
Belgium) was merged by date and time in this study and used to predict
the average interior air temperature (TAVG) [41]. The Chièvres Airport is
located about 12 km from the passive house. The weather data from the
Chièvres Airport was found to have prediction power in Ref. [34]. The
downloaded weather data is at hourly intervals, and linear interpola-
tion was done to complete the data set at 10min intervals. The addi-
tional TAVG variable is a volume weighed derived variable based on the
measured indoor temperatures [42]. Mathematically, it can be ex-
pressed as:

=
∑ ⋅

∑
=

=

T
T Vol

VolAVG
i
n

i i

i
n

i

1

1

Where Ti is the room temperature in degrees C in the room i and Voli is
the corresponding volume in the room i.

Table 2 lists all the variables or features used in this work to build
the regression models. The total electrical energy used in the house
represents the energy used by the appliances, lighting, domestic hot
water, ventilation and the electric heater. The measured air tempera-
tures by the ZigBee Wireless Sensor network were also used in the
prediction models. The specific weather data from Chièvres is detailed
in Table 2.

Fig. 5. Second floor. Location of the Temperature and Humidity sensors. The blue circles indicate the sensor number. Sensor node 6 measures the exterior conditions.
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Table 2
Data Variables and description.

Data Variables Units Number of
Features

Total Electrical Energy use
(Appliances + lights + domestic hot
water + ventilation + electric heater)

Wh 1

T1, Temperature in kitchen area °C 2
T2, Temperature in living room area °C 3
T3, Temperature in laundry room area °C 4
T4, Temperature in office room °C 5
T5, Temperature in bathroom °C 6
T7, Temperature in ironing room °C 7
T8, Temperature in teenager room 2 °C 8
T9, Temperature in parents room °C 9
TAVG, Average indoor temperature °C 10
To, Temperature outside (from Chièvres weather

station)
°C 11

Pressure (from Chièvres weather station) mm Hg 12
RHo, Humidity outside (from Chièvres weather

station)
% 13

Windspeed (from Chièvres weather station) m/s 14
Visibility (from Chièvres weather station) km 15
Tdewpoint (from Chièvres weather station) °C 16
Date time stamp year-month-

day
hour:min:s

–

L.M. Candanedo et al. Building and Environment 138 (2018) 250–261

254



3.1. Data sets processing

The monitored data for 2016 was merged with the weather data
from Chièvres using the date and time stamp. The resulting data has
some missing values in the variable of interest T( )AVG . In order to train
the regression models it is preferable to work only with a complete data
set (free of missing data). After removing the missing rows, the re-
sulting complete data set was split into training and testing sets. Later
on, two regression models were trained: multiple linear regression (LM)
and random forest with different sample sizes to examine the effect on
the error. Afterwards, using one model the TAVG was predicted. Fig. 6
shows the work flow for the data processing. In Fig. 6 D&T refers to date
and time stamp.

Finally, a similar analysis was done to predict the missing data for
each of the interior temperatures (T1, T2, T3 … etc) using TAVG to ob-
tain linear regression models.

Fig. 7 shows the maximum, average and minimum indoor tem-
peratures for the house together with the outdoor temperature. The
monitoring discontinuities can be easily appreciated for the monitored
indoor data. There is significant data missing during the first days of
January, between May and June, between mid-July and mid-August,
and in the month of November for several days.

3.2. Model learning curves

From the available data, only the complete data set was used for
training and testing the models. Please note that a complete data set
refers to a data set free of any missing observations. The data set with
missing data has 52704 entries for 2016 (at 10min intervals), the
complete data set (free of missing data) has 37026 entries or

information for 257 days. The complete data set was split into training
and validation randomly using CARET’S1 create data partition function.
75% of the data was used for training of the models and the remaining
was used for testing [43].

Two regression models, multiple linear regression and random
forest, were trained to predict the average indoor temperature using
different sample sizes for the training set to observe how the error in the
training and testing sets behave as the sample size increases. The pre-
dictor variables for the models are: To, RHo, wind speed, visibility,
pressure, Tdewpoint and Total electric energy use (Please refer to
Table 2). The random forest model is a tree based model which uses the
output of several regression trees [55]. In this model, each tree is built
with a random sample of selected predicting variables.

The root mean squared error (RMSE) [44] is used to evaluate the
performance of the models against the sample size.

=
∑ −

= ˆRMSE
Y Y
n

( )i
n

i i1
2

(1)

WhereYi is the actual measurement (TAVG), Ŷi is the predicted value and
n is the number of measurements (sample size).

Fig. 8 shows the performance of the two models with sample size.
The behavior of the RMSE curves is similar for both models. At the
beginning, the RMSE in the training set (black curve) is smaller but then
it stabilizes as the sample size increases. Also, as the training sample
size increases, the RMSE in the testing set tends to decrease. However,
for the LM model, after a sample size of about 15300 the testing set

Fig. 6. Data processing flow chart.

1 The Classification and Regression Training package (CARET) has a set of functions to
facilitate the creation and testing of regression models.
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Fig. 7. Maximum, average and minimum indoor temperature and outdoor air temperature for the passive house in 2016.

Fig. 8. Learning curves for the LM (left) and RF (right) models.
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RMSE (1.17 °C) stabilizes and becomes as close as the RMSE in the
training set (1.07 °C). For the RF model, the RMSE (0.48 °C) in the
testing set approaches the RMSE of the training (0.42 °C) set but only
after a sample size of about 27300. In other words, the regression
models do not improve their performance significantly after those
samples sizes have been reached.

Another important aspect of performance to be considered besides
the error is the elapsed time to train the models. During training and
testing of the models, the elapsed time for each training cycle was re-
corded and the values are presented in Fig. 9. The LM model was sig-
nificantly faster to train than the RF model. For example at a large
sample size of 27300, the LM model only uses 2.51s versus 8549s for
the RF model. In other words, the LM model is 8500 times faster to train
at that sample size. The training time for the LM is a linear function of
the sample size. For the RF, the elapsed time is a quadratic function.

Now that the sample size question was considered, a RF model using
all the training data was trained using repeated 10 fold cross validations
repeated 3 times to select the best RF model. The RF model was pre-
ferred to the LM model because it is more precise as seen in Fig. 8. To
speed up the computation time during cross validations, the doParallel
package was used [45].

Fig. 10 shows the relative variable importance for the trained RF
model. For the RF model, the variable importance was measured by the
residual sum of squares. As seen in the figure, the wind speed and
pressure are important variables for the prediction. Similar results for
variable importance were also found in Ref. [34]. The influence of the
wind speed on the interior temperature can be understood due to its
direct impact on the exterior convective heat transfer coefficient
[46–48]. Also Pressure is correlated to wind speed [34].

Besides the root mean squared error (RMSE), other error metrics
used here are: the coefficient of determination or R-squared/R2, the

Fig. 9. Elapsed time for the LM and RF models versus sample size.

Fig. 10. Variable importance for the RF model.

Table 3
RF model performance.

Model Parameters/Features Training Testing

RMSE R2 MAE MAPE % RMSE R2 MAE MAPE %

RF TAVG, To, Pressure, Rho, Windspeed, Visibility, Tdewpoint 0.15 0.996 0.10 0.45 0.35 0.978 0.23 1.06
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mean absolute error (MAE) and the mean absolute percentage error
(MAPE):
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∑ −

∑ −
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=
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Y Y
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The R-squared can be interpreted as the amount of variability in the
data explained by the regression model [49]. The mean absolute error
measures the difference between the measured TAVG and the predicted
temperature value Ŷi . Similarly, the MAPE measures the average or
mean absolute error as a percentage.

Table 3 shows the RF model performance metrics for the training
and testing sets. As can be seen, the RMSE is small for both the training
(0.15 °C) and testing sets (0.35 °C). The R2 is high for both training
(0.996) and testing (0.978) sets. In the training set, the mean absolute
error is 0.10 °C and 0.23 °C in the testing set.

Fig. 11 shows histograms for the prediction error for both sets. For
the training set the error is usually within −0.5 to 0.5 °C and for the
testing set within −1 to 1 °C.

After the final RF model was obtained, it was used to predict the

Fig. 11. Histograms for error in the prediction of TAVG in the training set (left) and testing set (right).

Table 4
Linear models for interior temperatures.

Model Parameters/Features Training Testing

RMSE R2 MAE MAPE % RMSE R2 MAE MAPE %

lm TAVG, T1 0.438 0.956 0.333 1.491 0.438 0.956 0.333 1.494
lm TAVG, T2 0.870 0.887 0.707 3.344 0.874 0.887 0.707 3.340
lm TAVG, T3 1.03 0.848 0.771 3.414 1.02 0.851 0.764 3.373
lm TAVG, T4 0.765 0.905 0.573 2.700 0.762 0.906 0.574 3.373
lm TAVG, T5 0.814 0.907 0.643 3.120 0.817 0.907 0.644 3.127
lm TAVG, T7 0.969 0.866 0.747 3.603 0.966 0.866 0.744 3.589
lm TAVG, T8 0.995 0.830 0.789 3.535 0.997 0.827 0.789 3.537
lm TAVG, T9 0.810 0.914 0.639 3.167 0.813 0.913 0.640 3.175

Fig. 12. Linear regression prediction for T1 and training data.
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average indoor temperature for the missing data. Then, what remained
was to find relationships between the average indoor temperature and
the temperatures for each zone (T1, T2, T3 …). For this task, simple
linear regression models were trained using 10 fold cross validations
repeated 3 times.

As can be seen in Table 4, the linear regression models were able to
reproduce the temperatures for each of the building zones for both the
testing and training sets very well. For instance, the MAE is lower than
1 °C for all the models for both training and testing sets. In addition, the
errors in the training and testing sets were very close which is an in-
dication that they were trained with enough data. Fig. 12 shows the
predictions for the linear model for T1, and it can be appreciated that
the predictions fall around the 45-degree red line curve, which is also a
good indication that it is adequate to use a linear model. Fig. 13 shows
the yearlong temperature profile for T1 with the predicted and mon-
itored data set. It can be seen that the predictions behave similarly to
the measurements.

3.3. Descriptive statistics and boxplots

Table 5 lists some descriptive statistics for the incomplete and the
complete data sets to appreciate the effect of using the regression

models. As seen in Fig. 7, significant data was missing during the
months of July and August. Therefore, it is expected to find that the
median temperatures for the complete dataset in Table 5 are slightly
higher than for the incomplete data set. The lowest room median
temperature in the completed data set was found in the Bathroom (T5),
which is not surprising since this room is on the north side of the
building. The highest completed median temperatures happens in the
laundry room, which in spite of not facing the south also has a high
concentration of electrical devices that release heat e.g. small fridge,
upright freezer, wine cellar, washing machine, dryer, internet router,
internet hub and network attached storage [34]. Overall, the highest
maximum temperature was found in the Living room which is close to
large south facing windows. The relationships between the room tem-
peratures and the difference between the completed and incomplete
data sets can be appreciated in the boxplots in Fig. 14.

3.4. Research limitations

The results of the study completely depend on the quality of the
regression models. It is likely, that also having different variable mea-
surements (solar radiation, cloudiness and occupancy information)
could provide information to improve the prediction of the regression

Fig. 13. T1 profile for the whole year completed with predictions for missing data.

Table 5
Summary of descriptive statistics for interior temperatures.

T1 (Kitchen) T2 (Living Room) T3 (Laundry) T4 Office T5 Bathroom T7 Ironing T8 Boys bed T9 Parents

Min. Missing 16.8 16.1 15.5 14.9 15.3 15.4 16.3 14.9
Completed 16.8 16.1 15.5 14.9 15.3 15.4 16.3 14.9

Median Missing 22.2 20.7 22.7 21.7 20.2 21.2 22.7 20.3
Completed 22.4 20.9 22.9 22.0 20.3 21.4 22.8 20.4

Mean Missing 22.5 21.3 23.0 22.0 20.7 21.5 22.8 20.6
Completed 22.8 20.9 23.2 22.3 20.9 21.7 23.0 20.9

Max Missing 28.5 30.8 29.4 28.4 28.0 28.3 30.4 28.1
Completed 28.6 32.8 29.4 28.4 28.0 28.3 30.4 29.1
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models. Moreover, creating the regression curves can be a time con-
suming task depending on the chosen regression model. However, this
problem will be less of a barrier as the computing power continues to
increase.

4. Conclusion

As shown in the paper, the use of learning curves as seen in Fig. 8, is
a powerful method to understand the effect of sample size on training
and testing errors of data driven prediction models. This has practical
implications when doing monitoring studies to evaluate how much data
it is required to collect to train a prediction model and to compare the
performance of difference regression models. It must be noted that for
optimal performance the regression models would need to be trained
with samples from different seasons to be able to perform well
throughout the year. In this study, the random forest model shows
better performance compared to the multiple linear regression model as
seen in Fig. 8. The optimal sample size for the trained linear model was
about 15300, while for the random forest model it was about 27300.
The reader must bear in mind that these sample sizes are specific to the
studied house. Learning curves for other regression models for other
data sets and monitored buildings would display similar behavior and
have specific optimal sample sizes.

As seen in Fig. 10, wind speed, pressure, and the total electrical
energy used are important variables for an accurate prediction of the
interior temperature for the specific trained random forest. It must be
noted that other regression models (e.g. Support Vector Machines,
Neural Networks etc.) might re order the ranking of importance.

We expect that the completed data sets would be less biased when
producing descriptive statistics compared to the missing data. They also
have the effect of slightly rising the median temperatures of the rooms
because the missing data mainly corresponds to summer months.

The results also indicate that since the studied passive house is so

insulated, internal gains have a direct impact on the indoor tempera-
tures, as demonstrated by the fact that the highest median temperature
happens in the laundry room where there is a high concentration of
electrical equipment. The monitored temperatures in the living room
can be quite high as seen in Fig. 14. The highest measured temperature
there was 30.8 °C and the largest predicted 32.8 °C. This has the im-
plication that better control of solar gains is necessary in this zone to
ensure comfortable temperatures. The minimum temperature in the
house was seen in the office (14.9 °C).

In order to allow for reproducibility of the presented results, and for
fellow scientists and researchers, to test their models, the data and the
processing scripts will be made available in the following public re-
pository: https://github.com/LuisM78/Reconstruction_of_indoor_
temperatures.
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