
Fuzzy Sets and Systems 148 (2004) 211–229
www.elsevier.com/locate/fss

Conjoint axiomatization of Min, DiscriMin and LexiMin
Philippe Fortemps∗, Marc Pirlot

Department of Mathematics and Operations Research, Facult�e Polytechnique de Mons, Rue de Houdain, 9,
B-7000 Mons, Belgium

Received 25 August 2003; received in revised form 14 April 2004; accepted 14 April 2004

Abstract

In many multi-criteria decision-making applications, the preferential information is of an ordinal nature and
appropriate aggregation procedures should be used. In this paper, we build a common axiomatic framework to
characterize the “Minimum” procedure as well as two of its re6nements, the “DiscriMin” and the “LexiMin”.
In practical situations, this axiomatic framework could help to select the best-suited procedure.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

More often than not, data in decision problems—constraint satisfaction problems (CSP), multi-
criteria decision aiding (MCDA), social choice—are of an ordinal nature and it may be so even
when data are encoded as numbers. Obviously, when data are ordinal, they should be “treated”
accordingly: determining whether a¡ b (“a is at least as good as b” or “a is preferred or indi=er-
ent to b”) should not involve performing arithmetic operations on ordinal data unless a meaningful
quantitative recoding can be obtained from the decision maker (as is current practice when building,
for instance, an additive utility model, see [33]).
In a Aexible constraint satisfaction problem (FCSP) [19,21], a solution a is assessed for each

constraint Ci by the degree �Ci(a)∈ [0; 1] up to which a satis6es Ci. Indeed, Ci is allowed to be
partially satis6ed, i.e. up to a certain degree between 0 and 1; “0” (respectively “1”) means the
complete violation (resp. satisfaction) of the constraint Ci. It is generally recognized that satisfaction
degrees, although expressed as numbers, are a matter of feeling and thus hardly measurable; it is
thus advisable to treat these numbers as ordinal data. The comparison of two solutions a and b in
the FCSP approach has to be consistent with this ordinal character. In view of the meaning of a
constraint, it makes sense to associate a solution a with a global satisfaction degree [19] that is often
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de6ned as:

�C(a) = min
i=1;:::; n

�Ci(a); (1)

C being the set of constraints {C1; : : : ; Cn}. Therefore, a is preferred or indi=erent to b, if its global
satisfaction degree is larger than that of b:

a¡ b ⇔ �C(a)¿�C(b) ⇔ min
i=1;:::; n

�Ci(a)¿ min
i=1;:::; n

�Ci(b): (2)

More generally, we consider the problem of comparing and ranking a set A of alternatives
{a; b; : : :}, where each alternative is evaluated with respect to several viewpoints. In other words, we
have to compare and rankorder vectors of performances (also called pro2les): a ≡ (a1; : : : ; an). In
this paper, we identify alternatives with their pro6les, which supposes that the selected viewpoints
describe all relevant aspects for the comparison of the alternatives by the decision maker in the
considered context.
A common way to proceed in such a case is to use an aggregation function u, that summarizes

the pro6le (a1; : : : ; an) of a in a single numerical value u(a). This global score or utility function
induces a weak order ¡ on A:

a¡ b ⇔ u(a)¿u(b): (3)

A weak order is a complete (∀ a; b∈ A; a¡ b or b¡ a) and transitive (∀ a; b; c∈ A; a¡ b and b¡ c im-
plies a¡ c) relation. Aggregation functions and their properties (such as monotonicity, continuity, : : :)
have been investigated in various contexts (see e.g. [1–4,24,27]); there are few axiomatizations of
the “min” function as an operator acting on vectors of numbers and returning a number; it is often
the case that a family of aggregation functions (e.g. Sugeno integrals) are characterized, of which
“min” is a special case (e.g. [27] or [28]; see also [16]).
In the present paper, we follow another path. We do not aim at characterizing a function or an

operator, but instead, we directly characterize the global preference relation on the set of alternatives.
Of course, it may happen (and it will) that this preference is determined via some score u like in
Eq. (3) but we do not restrict ourselves a priori to relations that can be obtained in that way.
This has important consequences since all relations that can be described by Eq. (3), using some
function u, are weak orders, which will not be true in general in our more general framework. This
approach is not newer than the characterization of functional operators; it is more in the tradition
of utility theory and conjoint measurement theory [26,31] as well as social choice [32] and game
theory [29]. In all these frameworks (but especially the latter two), characterizations of preference
relations on sets of alternatives described by vectors of ordinal data have been obtained, including
the Min procedure (that produces the relation according to rule (2)) and the re6nements of the Min
that we consider in this paper (see Section 3).
What then distinguishes the present work? First the “style” of the axioms. And a common

axiomatic framework for three procedures. Our axioms are not intended to be “normative” in the
sense that they would point to one of the procedures and designate it as the best one (w.r.t. some
criterion such as rationality for instance). They mainly refer to the behaviour of the procedure in
response to changes in the evaluations of the alternatives. For instance, monotonicity (i.e., roughly,
“if a is preferred to b and the performance of a improves on some criterion, this should not result
in b being preferred to improved a”) is an axiom of that type, but monotonicity is also a rationality
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axiom: one does not expect (except perhaps in very special situations) that any reasonable procedure
would not satisfy monotonicity. Our axioms relate to the behaviour of the procedures, but are not
supposed to be universally accepted: a property could make sense in a preference modelling context
and seem unnatural in another context. Since for characterizing the Min and its two variants, we
use various relaxations and strengthenings of the same basic axioms, we hope to provide a kind
of “common language” that could help to question about the opportunity of using a procedure or
another in a given context. Another advantage of this conjoint axiomatization is to enhance the
understanding of what may distinguish the various procedures studied. This work is in line with
previous papers [12,30].
The paper is organized as follows. In the next section, we present a problem, namely, the bottleneck

assignment problem, in which the Min procedure appears as insuKcient; this motivates the intro-
duction of the two re6nements of the Min that are described in Section 3; some of their main
properties are recalled. In that section, we discuss in some detail several procedures that have been
proposed in various 6elds of research; we show that those procedures all correspond to what we call
“DiscriMin”. In Section 4, we present the axioms and prove the characterizations of Min, DiscriMin
and LexiMin. That of the DiscriMin procedure is new and bridges the gap between those of Min
and LexiMin that were already in [30].

2. A bottleneck assignment problem

This section exempli6es diKculties emerging in a classical bottleneck assignment problem. The
same diKculties are observed in many other decision problems where the maxmin (or the minmax)
rule seems a reasonable criterion for ranking the alternatives [20,21].
The bottleneck assignment problem (BAP) is a variant of the linear assignment problem (LAP).

In the latter, the optimization criterion is linear, while in the former it is based on the min operator.
Consider a set of n tasks to be assigned to n operators. One and only one task has to be committed

to each operator; for each operator i∈ {1; : : : ; n}, let xi ∈ {1; : : : ; n} be the task allocated to him. Each
operator has been asked to express his preferences for the various tasks; let �i(j)∈ [0; 1] be the degree
to which operator i “likes” task j.
Solving the problem is determining the n variables xi such that the satisfaction of the least sat-

is6ed operator, mini �i(xi) is maximized, while respecting the natural constraints of the problems
(in particular, i 
= j⇒ xi 
= xj). In other words, if a and b represent two di=erent complete assign-
ments, these solutions are compared taking into account their performance pro6les (ai= �i(x

(a)
i ) and

similarly for bi) and,

a¡ b ⇔ min
i
ai¿min

i
bi: (4)

The following numerical example is intended to clarify our point. Let

M =



0:4 0:0 0:1 0:2 0:4
0:2 0:5 0:1 0:5 0:0
0:8 0:1 0:6 0:0 0:2
0:0 0:7 0:2 0:6 0:1
0:7 0:2 0:6 0:1 0:6


:
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The matrix M contains the preference degrees for an assignment problem with 6ve tasks and 6ve
operators. Each line (resp. row) corresponds to an operator (resp. a task).
The solution x(a) = (1; 2; 3; 4; 5) assigns the 6rst task to the 6rst operator, the second task to the

second operator and so on; the corresponding performance pro6le is a=(0:4; 0:5; 0:6; 0:6; 0:6). This
solution is “optimal”, since there does not exist a solution x(b) such that b � a according to
relation (4). Indeed, the least satis6ed operator, i.e. the one corresponding to the 6rst row and
satis6ed only to degree 0.4, cannot be more satis6ed in any other assignment. However, there exists
a solution that one would probably prefer to solution x(a). As a matter of fact, if we consider solu-
tion x(b) = (5; 4; 3; 2; 1) with pro6le b=(0:4; 0:5; 0:6; 0:7; 0:7), we observe that the 6rst three operators
enjoy the same degree of satisfaction as in the previous solution, while the satisfaction for both the
fourth and the 6fth ones have increased. This situation claims for a re6ned comparison procedure,
which would enforce not only min-optimality but also Pareto-optimality (see Section 3.2).
Before going into further details, let us examine a third solution x(c) = (5; 4; 1; 2; 3) with per-

formance pro6le c=(0:4; 0:5; 0:8; 0:7; 0:6). The latter solution is also to be preferred to solution
x(a), since each individual operator is at least as satis6ed with solution x(c) as with solution x(a). But
should it be preferred to solution x(b), some operators being more satis6ed in x(b) than in x(c), and
vice versa? Which is=are the best solution(s) and with respect to which ordering procedure?

3. Min and its re�nements

We formalize in this section the Min procedure to build a global preference relation on vectors of
performances. As shown in the previous section, the Min shows some weaknesses. Various proce-
dures that re6ne the Min have been proposed in the literature. We recall them and draw some links
between apparently di=erent de6nitions that turn out to yield the same relation.

3.1. Notation

Consider a set of objects. We assume that each object is described in all its relevant aspects by
a n-component vector—a pro6le—belonging to the set X = [0; 1]n. The problem is to determine a
relevant procedure to rank the objects, on the basis of their pro6le. This is a suitable framework for
representing and dealing with, for instance,

(a) Multiple-criteria decision problems: objects are alternatives and each alternative is evaluated
along n criteria; evaluations may be normalized in order to 6t in the [0; 1] interval or they may
be supposed to be recoded into “utilities”;

(b) Flexible constraint satisfaction problems (FCSP): objects are solutions and each solution is char-
acterized by the degree to which it ful6lls each constraint (in a set of n);

(c) In voting theory, each candidate is characterized by a pro6le indicating the rank of the candidate
in the preference ordering of each voter; normalizing the pro6le by dividing the ranks by the
number of voters yields a vector of performances in the [0; 1] interval.

The set of pro6les of the objects under consideration will be denoted by A and is thus a subset of
X = [0; 1]n.
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A ranking procedure associates to any set A, a relation, i.e. a subset of A × A. Often, but not
always, this relation may have special properties such as transitivity or completeness. In the sequel,
procedures will be denoted by ¡, possibly with a superscript like min, disc or lex that identi6es it.
The procedures we consider can be applied to any subset A of X = [0; 1]n including X itself; we
assume that the relation induced on each particular subset A is the restriction of the relation de6ned
by the procedure on X . We shall therefore make no distinction between a procedure and the relation
it induces on X .
A binary relation ¡ on A is said to be:

• re7exive if [a¡ a],
• irre7exive if [Not(a¡ a)],
• complete if [a¡ b or b¡ a],
• symmetric if [a¡ b]⇒ [b¡ a],
• asymmetric if [a¡ b]⇒ [Not[b¡ a]],
• transitive if [a¡ b and b¡ c]⇒ [a¡ c],

for all a; b; c∈ A. The asymmetric (resp. symmetric) part of relation ¡ is denoted by � (resp. ∼).

3.2. Min

In the 6eld of fuzzy set theory, the Min and the Max operators have been 6rst proposed by
Zadeh [34] to de6ne the intersection and union of fuzzy sets (see also [9]). Bellman and Zadeh [10]
have argued in favour of using those operators in a multi-objective programming framework (that
could be described as FCSP).
The Min-procedure ¡min compares alternatives on the basis of their worst performance:

a¡minb ⇔ min
i∈I ai ¿ min

i∈I bi: (5)

The de6nitions of the asymmetric and the symmetric parts �min and ∼min of ¡min are obvious.
The lack of discriminating power exhibited by the min-based procedure in the assignment problem
is also known as the “drowning e=ect” [20,21]. The “Min” has another drawback. A min-optimal
solution in A (i.e. a solution b such that there is no a∈A for which a�min b) is not necessarily
Pareto-optimal ; there may exist a solution a that dominates b in the Pareto ordering:

a �Pareto b ⇔
{ ∀i ∈ I : ai¿bi;

∃i ∈ I : ai¿bi:
(6)

This may not occur however if there is only one min-optimal solution; a unique min-optimal solution
is Pareto-optimal.
Despite its weaknesses, the Min enjoys particular features that command attention; it is well

suited for aggregating ordinal evaluations when meaningful recodings into cardinal scales seem out
of reach or when preferences are non-compensatory [11,13,23] but commensurate (i.e. all criteria are
evaluated on the same ordinal scale). Therefore, it makes sense to keep considering this procedure or
to start from it and build more discriminating ones. In the next subsections we recall the de6nitions
of some re6nements of the Min.
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3.3. DiscriMin

The DiscriMin procedure compares solutions according to the inclusion of the �-cuts of their
performance pro6les. This procedure has been proposed independently by Brewka [14] in a logical
setting and by Barbera and Jackson [6] in a welfare economics context (where it is called “Protective
Criterion”).
Let I(a)�= {i∈ I |ai¿�} be the strong �-cut of the performance pro6le of a solution a. The

DiscriMin ordering is de6ned as follows:

a¡discb ⇔




a = b or


∃�′ ∈ [0; 1] such that I(a)�′\I(b)�′ 
= ∅
and

∀� ∈ [0; 1] with �¡�′; I(a)� = I(b)�


: (7)

Note that only the �-cuts for values not larger than �′ are taken into account; above that level, there
is no constraint imposed on the pro6les. a is better than b in the sense of the DiscriMin ordering
if although both solutions are indi=erent for low levels of aspiration, raising this level of aspiration
breaks the ties in favour of a.
For ease of reference, we explicitly de6ne the asymmetric and symmetric parts of ¡disc:

a �disc b ⇔ ∃�′ ∈ [0; 1] such that:

{ I(a)�′ ) I(b)�′ and

∀� ∈ [0; 1] with �¡�′; I(a)� = I(b)�;
(8)

a ∼disc b ⇔




a = b or


∃�′ ∈ [0; 1] such that I(a)�′\I(b)�′ 
= ∅ 
= I(b)�′\I(a)�′

and

∀� ∈ [0; 1] with �¡�′; I(a)� = I(b)�


: (9)

An equivalent de6nition [19] relies on the di8erence set, i.e. the set of points of view D(a; b) on
which the evaluations of alternatives a and b di=er:

D(a; b) = {i∈ I : ai 
= bi}; (10)

a¡discb ⇔ min
i∈D(a; b)

ai¿ min
i∈D(a; b)

bi: (11)

Note that if a= b; mini∈D(a; b) ai= mini∈D(a; b) bi=1, since the minimum of an empty subset
of [0; 1] is the maximal element in [0; 1]. The above de6nitions are proven to be equivalent in
[20]. The DiscriMin ordering compares alternatives on the basis of their worst performance-like the
Min—but only taking into account the points of view on which they di=er. It is clear from (10–
11) that the DiscriMin ordering re6nes the min-ordering in the sense that a�min b⇒ a�disc b and
a�disc b⇒ a¡min b. A solution a is said DiscriMin-optimal in a set A, if there is no solution b∈ A
such that b�disc a. DiscriMin-optimal solutions are Pareto-optimal but the converse is not true in
general (see [19]).
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�disc is a partial order (an asymmetric and transitive relation). The symmetric part ∼disc is
not necessarily transitive as shown by the following example. Let a=(0:8; 0:4); b=(0:4; 0:5) and
c=(0:5; 0:4); we have a∼disc b∼disc c but a�disc c. Hence ¡disc—contrary to ¡min—is not a weak
order.

3.3.1. No reason for regret
Behringer [7] proposed a notion called “No Reason for Regret (NR)” as a re6nement of both

min- and Pareto-optimality (see also [8]). This author showed that NR-optimal solutions are min-
and Pareto-optimal while the converse is not true in general. As stated in [8], a is NR-better (�NR)
than b if the following holds:

a �NR b ⇔ ∃j : (bj¡aj and [∀i; (bj¡ai) or (bi6ai)]): (12)

This de6nition can be motivated as follows. Assume there is a bundle of “goods” to be distributed
among m persons. Each person assigns a degree of satisfaction to each subset of goods; di=erent
persons may feel di=erent degrees of satisfaction for the same set of goods. Let a=(a1; : : : ; am)
and b=(b1; : : : ; bm) be two admissible distributions, where ai is the satisfaction degree of person
i for the set of goods he=she receives in distribution a. Each person i wants to maximize his=her
individual satisfaction. In human societies, there are collective mechanisms (unanimity, veto power)
that generate a feeling for equity or fairness. The reasoning described below could be a basis for
generating such a feeling.
Distribution a will be (socially) preferred to b if

1. at least one individual feels better with a than with b:

∃j : aj¿bj
and, for each other person i,

2. (a) either i is not worse o=:

∀i : ai¿bi
or

(b) if i receives less satisfaction (ai¡bi), he=she has “no reason for regretting” the choice
of distribution a instead of b, because he=she is still better o= than member j was with
distribution b:

ai¿bj:

With distribution b; j would have reasons for complaining and might put his=her veto, disabling
the society agreement.

The NR ordering, proposed by Behringer in the domain of multi-objective optimization, is also
known in the 6eld of cooperative games theory as Osborne and Rubinstein’s ordering [18,29]. It is
usually de6ned in that context as a complete relation:

a¡NRb ⇔ a = b or ∃j : [aj¿bj and ∀i; ai¿min(bj; bi)]: (13)
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It is not immediately evident that the relation de6ned by (12) is the asymmetric part of the relation
de6ned by (13), i.e. a�NR b i= Not[b¡NR a]. The easiest way of showing this might be indirectly,
as a consequence of Proposition 1.

Proposition 1.

a �disc b ⇔ a �NR b

and

a¡discb ⇔ a¡NRb:

Proof. [�disc ⇒ �NR] Suppose that a�disc b; using (11), we have mini∈D(a; b) ai¿mini∈D(a; b) bi
where D(a; b)= {i∈ I : ai 
= bi}. Let ak (resp. bj) be the minimum of ai (resp. bi) for i in D(a; b).
We have

bj¡ak6aj;

bi = ai; ∀i =∈ D(a; b);
bj¡ak6ai; ∀i ∈ D(a; b):

Therefore, a�NR b.
[�NR ⇒ �disc] Suppose that a�NR b; in view of (12), for all i∈ D(a; b), we have either

bj¡ai¡bi or bi¡ai. Let D1 = {i∈ D(a; b); bj¡ai¡bi} and D2 = {i∈ D(a; b); bi¡ai}. (D1;D2) is
a partition of D(a; b). D(a; b) is not empty since j∈ D2. We have:

min
i∈D1

bi¿min
i∈D1

ai¿bj

and

min
i∈D2

bi6bj since j∈ D2;

hence

min
i∈D(a; b)

bi = min
i∈D2

bi6bj:

We also have

min
i∈D1

ai¿bj¿ min
i∈D(a; b)

bi

and

min
i∈D2

ai¿min
i∈D2

bi¿ min
i∈D(a; b)

bi;

hence

min
i∈D(a; b)

ai¿ min
i∈D(a; b)

bi:

Therefore, a�disc b.
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A similar argument proves the equivalence of ¡disc and ¡NR.

3.3.2. Remark on Justmann order
A variant of ¡NR has been proposed in [25] and was compared with ¡NR in [18]. The de6nition

of the Justmann order ¡J is as follows:

a¡Jb ⇔ a = b or ∃j : [aj¿bj and ∀i; ai¿min(aj; bi)]: (14)

The de6nition of this ordering can be motivated by considerations in game theory similar to those for
¡NR presented in the example above. Derks and Peters [18] have shown that a¡J b implies a¡NR b
(it is obvious from the comparison of (13) and (14)). Although we have ¡J ⊆¡NR, we may not
infer that the converse inclusion holds between the asymmetric parts of these relations, since ¡J

is not a complete relation. The following simple example makes the point. Let a=(0:8; 0:4) and
b=(0:2; 0:6); it is readily seen that neither a¡J b nor b¡J a, while a�min b and hence a�NR b.
We thus do not have �NR ⊂ �J. The same example also shows that �min is not included in
�J and it is not hard to prove that �J is not included in �min either.
Let us mention an alternative de6nition of ¡J in terms of �-cuts, that allows for a comparison

with (7). We leave it to the reader to establish the equivalence of (15) and (14).

a¡Jb ⇔



a = b or
 ∃i ∈ {1; : : : ; n} such that ∀�¡ai; I(a)� ⊇ I(b)�

and
∃�′¡ai with I(a)�′ ) I(b)�′


: (15)

We do not investigate relation ¡J further in the sequel.

3.4. LexiMin

Well-known in the theory of social choice and welfare, the LexiMin order [32] relies on the
cardinality of the �-cuts of the performance pro6les [20], in contrast with their inclusion like in the
previous procedure.
Solution a is preferred to solution b, according to the LexiMin order, if there is a threshold �

such that for all �¡�, the number of points of view that pass level � is the same for both a and b,
while the number of points of view that reach or pass � is strictly larger for a than for b. In other
words, this de6nition is similar to (8–9) where cardinalities of cutsets are compared, instead of the
cutsets themselves.
Let us show the di=erences between the three procedures on an example. Let a=(0:8; 0:3; 0:9);

b=(0:3; 0:3; 0:9), and c=(0:7; 0:3; 0:4). Since the minimal value of the three pro6les is 0.3, they
are all indi=erent with respect to ¡min. The DiscriMin makes a distinction between a and c, and
between b and c, but not between a and b (because the value 0.3 on the second criterion is common
to both alternatives; when this common value has been neutralized, the minimum of the remaining
ones is 0.3 both in a and in b): c�disc b; c�disc a and a∼disc b. The LexiMin discriminates between
the three alternatives; we have c�lex a�lex b; indeed, when comparing a and c, one sees that 0.3 is
the smallest value of the threshold for which there are more criteria above the threshold in c than
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in a; the same occurs for the value 0.8 of the threshold when comparing a and b, and for �=0:7,
when comparing b and c.
When comparing two vectors, this procedure, like DiscriMin, may take into account their values

on several coordinates, contrary to the Min which bases the comparison on the sole smallest value. In
contrast with DiscriMin, the di=erent performance values of vectors a and b are ranked in increasing
order before the vectors are compared.
Let a denote the lowest value in the pro6le of a. ([1]; : : : ; [n]) is a permutation of the indices from

I such that the corresponding pro6le is arranged in nondecreasing order. In other words, a[i]; i∈ I ,
is the ith smallest value of a:

a = a[1] 6 a[2] 6 · · · 6 a[m]:

Let b another pro6le; we have

b = b[1] 6 b[2] 6 · · · 6 b[m];

clearly, the permutations corresponding to the pro6les a and b may be di=erent.
The LexiMin relation ¡lex is de6ned as follows:

a¡lexb ⇔
{
a[ ] = b[ ] or

∃i6m: [a[i]¿b[i] and ∀j¡i: a[ j] = b[ j]]:
(16)

Note that a∼lex b i= a[ ] = b[ ]. It is easy to convince oneself that ¡lex is transitive and complete,
hence a weak order. The procedure compares the cardinality of the �-cuts for the fuzzy sets a and b
on the universe I , letting the value of � increase. As soon as a di=erence occurs, the vector whose
cut has the highest cardinality is chosen. Vector corresponding to the cut of highest cardinality is
chosen.
It can be shown [20,22] that such a ranking leads to the solutions violating the smallest number

of fuzzy constraints in FCSP, in the sense of a fuzzy-valued cardinality.
The orderings described above have been presented in increasing order of their discriminating

power: solutions being indi=erent for an order could be distinguished by the next one:

a¡lexb ⇒ a¡discb ⇒ a¡minb: (17)

In particular, any LexiMin-optimal solution is DiscriMin-optimal.
Before proceeding to an axiomatic characterization of these orderings, we mention a few results

about the resolution of problems using them. Dubois and Fortemps [21] showed that the optimal
solutions for DiscriMin and for LexiMin can be obtained through an iterative version of the min-
based algorithm. A paper by Barbadym [5] provides with a very elegant “vectorial” solution of the
lexicographic bottleneck problem. The reader is also referred to [15,17].

4. Characterization of the Min, DiscriMin and LexiMin

Our characterization of the above ordering procedures uses axioms that refer to the expected be-
haviour of the procedure when the values describing the alternatives are varied in some particular
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ways. These properties are related to speci6c interpretations of the “nature of the data”; in partic-
ular, they are consistent with an ordinal interpretation of the values describing the alternatives. We
emphasize that our axioms are not supposed to be veri6ed in all circumstances; they do not imple-
ment what could be interpreted as rationality principles that any ordering procedure should obey:
they are not normative axioms. Our axioms may be described as answers to “What if?” questions
of the type: “What if the preferred alternative in a pair is deteriorated (or improved) in such and
such a way? What if a pair of alternatives are both altered in such and such a way?”. This ap-
proach provides axioms that may be relevant and argued for in the described context of FCSP and
MCDA.
Consider an alternative a with its performance pro6le; the pro6le (xi; a−i) denotes the pro6le

of another alternative or solution obtained by substituting the value of a on the ith criterion, ai,
by the value xi; a−i is a (n − 1)-tuple that contains all values in the pro6le a except that corre-
sponding to criterion i. In other words, alternative a′ described by the pro6le (xi; a−i) enjoys the
same valuations than a on all criteria except possibly on the ith one, on which the valuation of a′
is xi.

4.1. The Min procedure

We present the axioms for the Min and brieAy comment on them. Since they have been introduced
in [30], we give the results without proofs; they can be found in the mentioned paper.

4.1.1. Axioms
The main characteristic of the Min procedure is that it is well-suited to deal with ordinal data.

The usual ordinality axiom consists in requiring that the ordering of two alternatives a; b is not
modi6ed when a common increasing transformation of the [0; 1] interval is applied to all coordinates
of their pro6les. Our axiom is related to ordinality but neither weaker nor stronger. We impose
that the ordering of a and b is not altered when the values in their pro6les undergo a common
translation (the relationship between translation invariance and ordinality is discussed in some detail
in Section 4.1.3). Let us be more precise.
A translation tK of value K ∈ [−1; 1] transforms the performance pro6les a and b into pro6les a′

and b′, such that ∀i∈ I
a′
i = ai + K;

b′
i = bi + K:

The translation tK is called feasible w.r.t. the pro6les a and b if both transformed pro6les still
belong to A. Note that the “feasibility” of a translation is only checked with respect to a and b.
The invariance under feasible translation is formulated as follows:

Axiom 1 (Translation Invariance—TI): For all pairs of pro2les (a; b)∈ A2 and for all K such that
tK is a feasible translation, we have

a¡ b ⇒ a′¡b′;

where a′ and b′ are the pro2les resulting from the translation.
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The second axiom makes sense, in particular, in the context of constraint satisfaction. It requires
that the preference of one alternative a over another b can be reverted through appropriate change
on any single dimension. More precisely, if alternative b does not violate completely any constraint,
it is possible to deteriorate the degree to which a satis6es a single particular constraint in such a
way that b is strictly preferred to the transformed a. For example, setting the performance of a on
a constraint to 0 does it. We call the corresponding property “Strong Reversal”:

Axiom 2 (Strong Reversal—SR): If a¡ b and for every criterion j∈ I; bj¿0 then for each criterion
i∈ I , there exists a′

i¡ai such that b � (a′
i ; a−i).

A similar property, called “Weak Reversal”, deals with the case where it cannot be excluded
that b fully violates a constraint. In such a case, the preference of a over b can be reverted but
indi=erence of transformed a and b can result and it may be impossible to obtain strict preference
of b over transformed a.

Axiom 3 (Weak Reversal—WR): If a¡ b then for each criterion i∈ I , there exists a′
i6ai such that

b¡ (a′
i ; a−i).

In [30], examples are provided that show the independence of these three axioms. A procedure
considering all the elements of A as equivalent veri6es TI and WR but not SR; LexiMin satis6es
TI and SR but not WR; procedures deciding on the basis of the ratio a=b of the smallest values in
both pro6les, for instance, do not satisfy TI whilst WR and SR may be true.

4.1.2. Characterization
The 6rst lemma states direct consequences of the reversal axioms. If alternative a completely

dissatis6es a criterion, it is impossible for a to be strictly preferred to any other alternative. In
particular, if b has only strictly positive performances, then it is strictly preferred to a.

Lemma 2. (a) For any procedure satisfying WR, for all pairs of alternatives (a; b)∈ A2,

a = 0 ⇒ b¡ a: (18)

(b) For any procedure satisfying SR, for all pairs of alternatives (a; b)∈ A2,

a = 0¡b ⇒ b � a: (19)

For procedures that enjoy property TI, translation invariance enables to establish the previous
results for levels other than 0.

Proposition 3. If a procedure satis2es properties TI and WR, then for all pairs of alternatives
(a; b)∈ A2,

a = b ⇒ a ∼ b (20)

and

a¡b ⇒ b¡ a: (21)
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Proposition 4. If a procedure satis2es properties TI and SR, then for all pairs of alternatives
(a; b)∈ A2,

a¡b ⇒ b � a: (22)

Combining the above two propositions clearly yields the following characterization of the Min:

Theorem 5. The Min procedure is the only one that satis2es TI, WR and SR.

4.1.3. Relationship between translation invariance and ordinality
We discuss here the somewhat mysterious translation invariance axiom and its connections with

ordinality. Let us distinguish two types of feasible translations for a given pair of pro6les a and b. A
feasible translation of type I avoids the border of the [0; 1] interval, i.e., if all ai and bi are di=erent
of 0 and 1, tK(ai) and tK(bi) are equal neither to 0 nor 1. A feasible translation is said of type II, if
some ai 
=0; 1 or some bi 
=0; 1 is mapped onto either 0 or 1. It is not diKcult to realize that, for any
feasible translation of type I w.r.t. a and b, one can build an increasing transformation of the [0; 1]
interval that modi6es a; b just like the translation does. This implies that ordinal invariance entails
translation invariance for translations of type I. Translations of type II cannot be embedded into an
increasing (one-to-one) transformation of the [0; 1] interval but they can be embedded in a non-
decreasing one. Suppose for instance that x and y are respectively the minimum and the maximum
values in the pro6les a and b and that K =1− y; tK maps the interval [x; y]⊂]0; 1[onto[x + K; 1].
A non-decreasing transformation f that produces the same e=ect on the [x; y] interval than tK is the
following:

f(u) =



((x + K)=x)u if u ∈ [0; x]

u+ K if u ∈ [x; y]

1 if u ∈ [y; 1]
:

Although the Min satis6es strong ordinality (i.e. a¡ b implies f(a)¡f(b), where f is any non-
decreasing transformation of the [0; 1] interval that 6xes 0 and 1), this is not the case of DiscriMin
and LexiMin. One can thus conceive of translation invariance as to a property that is intermedi-
ary between ordinality and strong ordinality; it is well-suited for describing the behaviour of the
re6nements of the Min we are dealing with.
Translation invariance of type II could be roughly described as “ordinality + continuity near the

borders”. It is interesting to note that Bouyssou and Pirlot [12] have proved the equivalence of strong
ordinality with ordinality + continuity. This might help to understand intuitively the position of the
translation invariance property w.r.t. ordinality and strong ordinality.

4.2. The DiscriMin procedure

The above characterization of Min suggests that it might be interesting to pay attention to two
families of procedures: those satisfying TI and WR on the one hand and, on the other hand, those
satisfying TI and SR. Those families, respectively denoted TIWR and TISR have been investigated
in some detail in [30]. The intersection of the families TIWR and TISR contains a single procedure,
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the Min. LexiMin and DiscriMin belong to the TISR family, which we shall thus further explore in
the sequel.

4.2.1. Axioms
To keep in line with our axiomatization of the Min, we need to weaken WR into WWR. WWR

limits the validity of the WR property to those criteria on which alternative b is not completely
unsatisfactory, i.e. the criteria i for which bi¿0.

Axiom 4 (Weakened Weak Reversal—WWR): If a¡ b then for each criterion i∈ I such that bi 
=0,
there exists a′

i6ai such that b¡ (a′
i ; a−i).

At the same time, in order to reject the Min procedure that also satis6es the WWR axiom, we
add an independence condition (ICE) stating that the degree of satisfaction of a constraint does not
matter if the compared pro6les achieve the same degree of satisfaction on this constraint.

Axiom 5 (Independence w.r.t. Criterion–Equality—ICE): If a¡ b and for some i; ai= bi, then ∀xi ∈
[0; 1]; (xi; a−i)¡ (xi; b−i).

This is the classical condition of “mutual preference independence”. A consequence of ICE
is that, instead of comparing the pro6les a and b, we can compare the pro6les (1E ; a−E) and
(1E ; b−E), where E denotes the set of criteria on which a and b reach the same performance,
namely, E = {i∈ I : ai= bi}= I\D(a; b); 1E denotes a sub-pro6le on the set E with all values equal
to 1, and a−E (resp. b−E) sets the evaluations on the coordinates in the complement of E to the
corresponding values in the pro6le a (resp. b). The following corollary is obvious.

Corollary 6. For any procedure satisfying ICE, for all pairs of alternatives (a; b)∈ A2,

a¡ b ⇔ a∗ ¡ b∗; (23)

where the pro2le a∗=(1E ; a−E) obtains by setting to 1 the degrees of satisfaction for the criteria
in E .

4.2.2. Characterization
Using a∗ and b∗ de6ned above, let a∗ (resp. b∗) denote the minimum value in the pro6le a∗ (resp.

b∗); we have a∗= mini∈D(a; b) ai; the usual convention applies in the limit case where D(a; b)= ∅,
i.e. mini∈∅ ai=1. The result of Lemma 2(b) related to SR is still relevant for DiscriMin. As a
consequence of the weak reversal property, if a completely violates a criterion which b does not,
then a cannot be strictly preferred to b. Lemma 2(a) is modi6ed into the following.

Lemma 7. For any procedure satisfying WWR, for all pairs of alternatives (a; b)∈ A2, we have

∃i : ai = 0 
= bi ⇒ b¡ a: (24)

Proof. Assume that ∃i : ai=0 
= bi together with a � b. In view of WWR, it should be possible to
6nd a′

i6ai such that b¡ (a
′
i ; a−i). But, this is impossible, since ai=0.
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Taking into account the ICE property, we obtain the following modi6cations of Proposition 4 and
Proposition 3.

Proposition 8. If a procedure enjoys properties TI, ICE and WWR, then for all pairs of alterna-
tives (a; b)∈ A2,

a∗ = b∗ ⇒ a ∼ b (25)

and

a∗¡b∗ ⇒ b¡ a: (26)

Proof. Because of Corollary 6, we can compare the modi6ed pro6le a∗=(1E ; a−E) and b∗=
(1E ; b−E).
For establishing the 6rst part of the proposition, we use the TI property with K = − a∗= − b∗.

Applying the translation tK to a∗ and b∗ yields the vectors a∗′ and b∗′. There exist two di=erent
indices i 
= j, such that a∗

i
′=0 
= b∗

i
′ and b∗

j
′=0 
= a∗

j
′. Applying Lemma 7 for both indices i and j

yields b¡ a and a¡ b.
For proving the second part, K is chosen equal to −a∗; a∗′ and b∗′ denote the corresponding

translation of the vectors a∗; b∗. Since there exist a∗
i
′=0 
= b∗

i
′, we have by Lemma 7, b∗′ ¡ a∗′ and,

by TI, b∗ ¡ a∗, which amounts to b¡ a.

Proposition 9. If a procedure enjoys properties TI, ICE and SR, then, for all pairs of alternatives
(a; b)∈ A2,

a∗¡b∗ ⇒ b � a: (27)

Proof. Let us again compare the modi6ed pro6les a∗ and b∗.
Let a∗¡b∗ and assume that a∗ ¡ b∗. Use the TI property with K = − a∗¡1. The corresponding

translated pro6les are such that a∗′ ¡ b∗′ together with a∗′=0¡b∗′. This contradicts Lemma 2(b).

Putting together the above two propositions yields the following characterization of the DiscriMin.

Theorem 10. The “DiscriMin” procedure is the only one that satis2es TI, ICE, WWR and SR.

4.3. The LexiMin procedure

In view of a characterization of LexiMin, which is more discriminant than DiscriMin, we need
relax the weak reversal axiom and modify the independence axiom. W’WR essentially requires that
the “zero-pro6le”, 0, is not preferred to any alternative (see Lemma 11). The independence axiom
(IRE) consists in a modi6cation of ICE, where rank matters instead of criterion index.

4.3.1. Axiom

Axiom 6 (Weakest Weak Reversal—W’WR): If a¡ b then there exists a′ ∈ A with a′
i6ai ∀i, such

that b¡ a′.
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Axiom 7 (Independence w.r.t. Rank–Equality—IRE): If a¡ b and for some i∈ I; a[i] = b[i],
let k (resp. l) be such that a[i] = ak (resp. b[i] = bl). Then, ∀ xk = xl ∈ [0; 1]; (xk ; a−k)¡
(xl; b−l).

4.3.2. Characterization

Lemma 11. For any procedure satisfying W ’WR, for all pairs of alternatives (a; b)∈ A2,

(∀i; ai = 0) ⇒ b¡ a:

The proof of the lemma is straightforward. The next two propositions parallel Propositions 8
and 9.

Proposition 12. If a procedure enjoys properties IRE and W’WR, then for all pairs of alternatives
(a; b)∈ A2,

(∀i; a[i] = b[i]) ⇒ a ∼ b: (28)

Proof. IRE allows us to substitute a[i] = b[i] by 0 for all i and we conclude using Lemma 11.

Notice that, contrary to Proposition 8, the TI property is not needed in Proposition 12; it cannot
be dispensed of in the next one however.

Proposition 13. If a procedure enjoys properties TI, IRE and SR, then for all pairs of alternatives
(a; b)∈ A2,

∃j ∈ I :
∀i¡j; a[i] = b[i]
and a[ j]¡b[ j]


 ⇒ b � a: (29)

Proof. Suppose that a¡ b. We denote by ki (resp. li) the index corresponding to rank i in pro6le
a (resp. b). We consider the pro6les a′ and b′ such that

∀i¡j; a′
ki = b

′
li = 1¿b[ j] = blj

∀i¿j; a′
ki = aki ; b′

li = bli :

By IRE, we still have a′ ¡ b′. Apply the translation tK to these pro6les with K =− a[ j] =− akj =− a′
kj .

We get the pro6les a′′ and b′′, with ∀i¡j,

a′′
ki = b

′′
li ¿ b′′

lj¿0 and a′′
kj = 0:

By TI, we have a′′ ¡ b′′. The fact that a′′=0¡b′′= b′′
lj contradicts Lemma 2(b).

Corollary 14. A procedure satisfying TI, IRE and SR is either ¡lex or its asymmetric part �lex.
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Fig. 1. Axiomatic framework: in the set of TI+SR aggregation procedures, ovals represent subsets enjoying an additional
axiom (written in bold); procedures are in italics.

Proof. In view of Proposition 13, it is clear that if a 
= b, either a¡ b or b¡ a but not both and
a¡ b i= a�lex b. Furthermore, any relation that satis6es IRE is either reAexive or irreAexive, i.e.
[∀a; a¡ a] or [∀a;Not[a¡ a]].

In view of Corollary 14, the sole role played by W’WR is forcing the reAexivity of ¡. Putting
together Propositions 12 and 13 yields the following characterization of LexiMin (that was already
in [30]).

Theorem 15. The LexiMin procedure is the only one which satis2es TI, IRE, W’WR and SR.

4.4. The common axiomatic framework

The axiomatic framework, depicted in Fig. 1, focusses on the procedures that satisfy TI and SR.
Inside the family TISR, WR determines the Min. The di=erence between the three procedures under
investigation is explained by the WR axiom and its variants on the one hand and by the independence
axioms on the other hand.
Min satis6es WR as well as WWR and W’WR, while DiscriMin enjoys the weakened and weakest

versions, and LexiMin only satis6es the latter. While the chain of implications between the various
versions of WR is quite evident, the relationships between ICE and IRE are less clear. In general,
under no additional condition, neither ICE implies IRE nor the contrary. In the subset TISR, IRE
obviously implies ICE, due to Corollary 14 since both ¡lex and �lex satisfy ICE. Conversely, in
the same subset TISR, ICE does not imply IRE. Indeed, ¡disc does not satisfy IRE (neither does
¡min). Take for instance n=3; a=(0:2; 0:2; 0:3) and b=(0:4; 0:3; 0:2); we have a¡disc b; changing
a[1] = b[1] = 0:2 into 0.4 yields a′ and b′ with b′ �disc a′, which proves that IRE does not apply. In
the oval “+IRE” representing the set of procedures satisfying TI, SR and IRE, there are only two
procedures, the one, ¡lex, denoted “LexiMin” in Fig. 1, inside the zone labelled “+W’WR” and the
other, �lex, outside that zone (and not represented on the picture).
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5. Conclusion

We have shown that a common axiomatic framework allows for the characterization of several
ordinal procedures, namely the Min procedure as well as two of its re6nements: DiscriMin and
LexiMin. These aggregation procedures are widely used in practical situations, in Flexible Constraint
Satisfaction Programming, in Multi-Criteria Decision-Aiding, in Game Theory or in Social Welfare.
The kind of axioms we propose have an intuitive content that should allow for questioning the

Decision Maker in order to select the most appropriate procedure. Since this choice is context-
dependent, it has to be reconsidered for each new problem. Our proposal aims also at clarifying the
di=erences between the investigated procedures.

References

[1] J. AczSel, On weighted synthesis of judgements, Aequationes Math. 27 (1984) 288–307.
[2] J. AczSel, C. Alsina, Synthesising judgements: a functional equations approach, Math. Modelling 9 (1987)

311–320.
[3] J. AczSel, F. Roberts, On the possible merging functions, Math. Social Sci. 17 (1989) 205–243.
[4] J. AczSel, F. Roberts, Z. Rosenbaum, On scienti6c laws without dimensional constants, J. Math. Anal. Appl. 119

(1986) 389–416.
[5] V.A. Barbadym, The modi6cations of algorithms for general lexicographic bottleneck optimisation problem, in: Proc.

Fifth Twente Workshop, 1997.
[6] S. BarberTa, M. Jackson, Maximin, leximin, and the protective criterion: characterizations and comparisons, J. Econom.

Theory 46 (1988) 34–44.
[7] F.A. Behringer, On optimal decisions under complete ignorance: a new criterion stronger than both pareto and

maxmin, Eur. J. Oper. Res. 1 (1977) 295–306.
[8] F.A. Behringer, Lexmaxmin in fuzzy multiobjective decision making, Optimization 21 (1990) 23–49.
[9] R.E. Bellman, M. Giertz, On the analytic formalism of the theory of fuzzy sets, Inform. Sci. 5 (1973)

149–156.
[10] R.E. Bellman, L.A. Zadeh, Decision-making in a fuzzy environment, Management Sci. 17 (4) (1970) 141–164.
[11] D. Bouyssou, Some remarks on the notion of compensation in MCDM, Eur. J. Oper. Res. 26 (1986) 150–160.
[12] D. Bouyssou, M. Pirlot, Choosing and ranking on the basis of fuzzy preference relations with the ‘Min in Favor’, in:

G. Fandel, T. Gal (Eds.), Multiple Criteria Decision Making—Proc. 12th Internat. Conf. Hagen, Germany, Springer,
Berlin, 1997, pp. 115–127.

[13] D. Bouyssou, J.-C. Vansnick, Noncompensatory and generalized noncompensatory preference structures, Theory and
Decision 21 (1986) 251–266.

[14] G. Brewka, Preferred subtheories: an extended logical framework for default reasoning, in: Proc. 11th Joint Conf.
on Arti6cial Intelligence (IJCAI 89), Detroit, MI, 1989, pp. 1043–1048.

[15] R.E. Burkard, F. Rendl, Lexicographic bottleneck problems, Oper. Res. Lett. 10 (1991) 303–308.
[16] E. Czogala, J. Drewniak, Associative monotonic operations in fuzzy set theory, Fuzzy Sets and Systems 12 (3)

(1984) 249–269.
[17] F. Della Croce, V.Th. Paschos, A. Tsoukias, An improved general procedure for lexicographic bottleneck problems,

Oper. Res. Lett. 24 (1999) 187–194.
[18] J. Derks, H. Peters, Orderings, excess functions, and the nucleolus, Math. Social Sci. 36 (1998) 175–182.
[19] D. Dubois, H. Fargier, H. Prade, Fuzzy constraints in job-shop scheduling, J. Intell. Manuf. 6 (1995) 215–234.
[20] D. Dubois, H. Fargier, H. Prade, Re6nements of the maximin approach to decision-making in a fuzzy environment,

Fuzzy Sets and Systems 81 (1996) 103–122.
[21] D. Dubois, P. Fortemps, Computing improved optimal solutions to max-min Aexible constraint satisfaction problems,

Eur. J. Oper. Res. 118 (1999) 95–126.



P. Fortemps, M. Pirlot / Fuzzy Sets and Systems 148 (2004) 211–229 229

[22] H. Fargier, ProblTemes de satisfaction de contraintes Aexibles: application Ta l’ordonnancement de production, Ph.D.
Thesis, UniversitSe Paul Sabatier, Toulouse, 1994.

[23] P.C. Fishburn, Noncompensatory preferences, Synthese 33 (1976) 393–403.
[24] J.C. Fodor, M. Roubens, Fuzzy Preference Modelling and Multicriteria Decision Support, Kluwer, Dordrecht, 1994.
[25] M. Justmann, Iterative processes with ‘nucleolar’ restrictions, Internat. J. Game Theory 6 (1977) 62–66.
[26] D.H. Krantz, R.D. Luce, P. Suppes, A. Tversky, Foundations of Measurement, Additive and Polynomial

Representations, vol. 1, Academic Press, New York, 1971.
[27] J.-L. Marichal, Aggregation operations for multicriteria decision aid, Ph.D. Thesis, UniversitSe de LiTege,

Belgium, 1998.
[28] J.-L. Marichal, On Sugeno integral as an aggregation function, Fuzzy Sets and Systems 114 (3) (2000)

347–365.
[29] M.J. Osborne, A. Rubinstein, A Course in Game Theory, The MIT Press, Cambridge, MA, 1994.
[30] M. Pirlot, A characterization of ‘min’ as a procedure for exploiting valued preference relations and related results,

J. Multi-Criteria Decision Anal. 4 (1995) 37–56.
[31] F.S. Roberts, Measurement Theory with Applications to Decision Making, Utility and the Social Sciences,

Addison-Wesley, Reading, MA, 1979.
[32] A.K. Sen, Social choice theory, in: K.J. Arrow, M.D. Intriligator (Eds.), Handbook of Mathematical Economics,

vol. 3, North-Holland, Amsterdam, 1986, pp. 1073–1181.
[33] D. von Winterfeldt, W. Edwards, Decision Analysis and Behavioral Research, Cambridge University Press,

Cambridge, 1986.
[34] L.A. Zadeh, Fuzzy Sets, Inform. Control 8 (1965) 338–353.


	*-10ptConjoint axiomatization of Min, DiscriMin and LexiMin
	Introduction
	A bottleneck assignment problem
	Min and its refinements
	Notation
	Min
	DiscriMin
	No reason for regret
	Remark on Justmann order

	LexiMin

	Characterization of the Min, DiscriMin and LexiMin
	The Min procedure
	Axioms
	Characterization
	Relationship between translation invariance and ordinality

	The DiscriMin procedure
	Axioms
	Characterization

	The LexiMin procedure
	Axiom
	Characterization

	The common axiomatic framework

	Conclusion
	References


