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Abstract
This paper presents a closed-form solution on the steady dynamic response of circular piles embedded in inhomogeneous

soil. The soil is modeled as a viscoelastic continuum, and the pile is modeled as a one-dimensional elastic shaft. Fictitious

soil pile model and Hamilton’s energy principle are introduced to deduce the equations governing the layered pile–soil

system. Impedance transfer method and iterative algorithm are deduced to decouple the pile–soil dynamic interaction. The

results show that the modulus and thickness of inhomogeneous soil profile play a more significant role in the dynamic

stiffness than the damping effects. The variation pattern of the dynamic impedance against the modulus of layered soil is

dominated by the cut-off frequency. Particularly, in Gibson soil, the stiffer surface soil yields the greater pile-head

stiffness. The dynamic stiffness of piles in Gibson soil could be approximated by two or more soil layers with equivalent

Young’s modulus.

Keywords Dynamic impedance � Fictitious soil pile � Hamilton’s energy principle � Inhomogeneous soil �
Piles

1 Introduction

The model of beam-on-dynamic-Winkler-foundation

(BDWF) [2, 5, 23] is a widely used method to analyze the

dynamic responses of pile-supported superstructures such

as bridges, buildings, transmission tower, oil drilling plat-

forms. To obtain the required Winkler coefficients in

BDWF model, the pile-head dynamic impedance should be

accurately calculated. It is well admitted that the

mechanical behaviors of piles rely on their interaction with

surrounding soil [4, 7, 8, 10, 16–18, 26]. Voigt model

considers the soil resistance as discrete springs and

damping spots around a pile [19, 20], which means the

coupled pile–soil vibration is neglected. Moreover,
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conventional Voigt model requires intricate calibration

process to determine the parameters of springs and damp-

ing spots, which significantly affect the calculated results

and the applicability of the approach. Novak [15] proposed

a plane strain method accounting for the vertical pile–soil

interaction by treating the soil as independent and infinitely

thin layers. However, neglecting the mechanical interaction

among soil layers makes that the plane strain model could

solely capture the horizontal wave propagation in soil. Wu

et al. [25] introduced the Voigt model to formulate the

stress transfer between adjacent soil layers to investigate

the influences of soil anisotropy on the velocity admittance

at the pile head. Their results showed that soil modulus

variation in the vertical plane caused more notable influ-

ence than that in the horizontal plane. Cui et al. [1] for-

mulated the dynamic impedance of floating piles in

saturated soil by assuming the pile base soil as spring-

dashpot elements. Zheng et al. [29] and Gan et al. [6]

analytically studied the vertical vibration of piles in half-

space and finite-thickness soil layer, respectively. In their

studies, the soil beneath the pile tip is treated as a homo-

geneous continuum, whereas the surrounding soil adopts

the plane strain assumption. By modeling the whole pile–

soil system as a continuum and taking the vertical stress

gradient and radial displacement into consideration, Zheng

et al. [28] deduced a rigorous analytical solution for the

vertical dynamic impedance of end-bearing piles in

homogeneous soil. They found that the dynamic stiffness

was underestimated at low frequency range under the plane

strain assumption of surrounding soil. In addition, two cut-

off frequencies were obtained in Zheng et al. [28], which

indicated the resonance of shear waves and longitudinal

waves in soil. In contrast, the solution method based on

plane strain model did not reflect any cut-off frequency.

Using the extended Hamilton’s principle in continuum

mechanics, Gupta and Basu [3] developed a relatively

convenient method for the vertical dynamic response of

piles in a homogeneous soil. Since the radial displacement

was ignored, Gupta and Basu’s method only predicted one

cut-off frequency but did not bring significant difference

from the rigorous analytical technique. However, studies

on the effects of inhomogeneous soil profile on the

dynamic impedance based on the continuum model are far

from sufficient.

This paper presents a closed-form solution for the ver-

tical dynamic impedance of piles in inhomogeneous soil.

The motion of the pile–soil continuum system is formu-

lated by the product of pile displacement and a decay

function. A variational analysis is used to deduce the

governing dynamic equations. Impedance transfer method

[11, 27] and iterative technique (Seo et al.) [22] are used to

decouple the dynamic pile–soil interaction in layered soil.

The present solution is compared with existing analytical

solutions to validate its feasibility. Finally, the effects of

inhomogeneous deposit profile on the dynamic stiffness

and damping of piles are examined in layered soil and

Gibson type of soil, respectively.

2 Problem definition

A circular pile is considered, embedded in a horizontally

layered soil as illustrated in Fig. 1. The pile has a Young’s

modulus Ep, a density qp, a diameter 2rp, a cross-section

area Ap and a length L. The soil profile contains a total of N

layers with M layers around the pile shaft and N-M layers

below the pile tip. The pile–soil system is assumed as a

linear continuum, and no physical slippage could occur at

pile–soil interface. The soil behavior is viscoelastic with a

hysteretic damping ratio b0, a Young’s modulus Es, a

Poisson’s ratio of ts and a density qs. The soil column

beneath the pile tip is modeled by a fictitious soil pile. For

the dynamic analysis, complex forms of Young’s modulus,

shear modulus and Lame’s constant are introduced as

E�
s ¼ Es 1 þ 2ib0ð Þ, G�

s ¼ E�
s

�
½2 1 þ tsð Þ� and k�s ¼ E�

s ts

�

½ð1 þ tsÞð1 � 2tsÞ�, respectively. The pile head is subjected

to a harmonic force FðtÞ ¼ F0e
ixt at the vertical direction,

where F0 denotes the force amplitude, x represents the

force frequency, t and i are time and the imaginary unit,

respectively. The objective of this study is to analyze the

effects of inhomogeneous soil profile on the dynamic

impedance of piles subjected to axial loads.

3 Displacement model

Figure 2 depicts the displacement components of a pile–

soil system and the stress components of a soil element in

the cylindrical coordinates. The radial displacement ur and

Fig. 1 Axially loaded circular pile embedded in layered soil
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circumferential displacement uh of a pile–soil system are

trivial under the vertical load and thus are neglected in this

study. The vertical displacement uz of the pile–soil system

is defined as a function of the radial distance r, the depth z

and the time t as

uzðr; z; tÞ ¼ wðz; tÞ/ðrÞ ð1Þ

where wðz; tÞ is equal to the axial displacement of pile shaft

wpðz; tÞ when 0� z� L; and when L\z�HN, wðz; tÞ rep-

resents the vertical displacement of the fricticious soil pile

wsðz; tÞ, so as:

wðz; tÞ ¼ wpðz; tÞ; ðz� LÞ ð2aÞ

wðz; tÞ ¼ wsðz; tÞ; ðz[ LÞ ð2bÞ

/ðrÞ is a dimensionless decay function that is introduced to

evaluate the soil displacement attenuation in the radial

direction. Since the displacement variation along the pile

cross-section (r� rp) is small, the pile is assumed as one-

dimensional shaft and the soil beneath pile tip is treated as

a virtual pile. Therefore, /ðrÞ should satisfy the following

inherent boundary conditions:

/ðrÞ ¼ 1; 0� r� rp

0; r ! 1

�
: ð3Þ

The relationship between stress and strain in an elastic

soil medium is written as:

rzz
rrr
rhh
srz
szh
srh

2

666666664

3

777777775

¼

k�s þ 2G�
s k�s k�s 0 0 0

k�s k�s þ 2G�
s k�s 0 0 0

k�s k�s k�s þ 2G�
s 0 0 0

0 0 0 G�
s 0 0

0 0 0 0 G�
s 0

0 0 0 0 0 G�
s

2

666666664

3

777777775

ezz
err
ehh
crz
czh
crh

2

666666664

3

777777775

:

ð4Þ

The relationship between displacement and strain is

given by:

ezz
err
ehh
crz
czh
crh

2

6666664

3

7777775

¼

� ouz
oz

� our
or

� ur
r
� 1

r

ouh
oh

� ouz
or

� our
oz

� 1

r

ouz
oh

� ouh

oz

� 1

r

our
oh

� ouh

or
þ uh

rh

2

666666666666666664

3

777777777777777775

¼

�/ðrÞ ow
oz

0

0

�w
o/ðrÞ
or

0

0

2

666666664

3

777777775

: ð5Þ

Substituting Eq. (5) into Eq. (4), the strain energy den-

sity in soil fsoil can be expressed as:

fsoil ¼ ðrzzezz þ rrrerr þ rheh þ srzcrz þ szhczh þ srhcrhÞ=2

¼ 1

2
k�s þ 2G�

s

� �
/
ows

oz

� �2

þG�
sw

2
s

o/ðrÞ
or

� �2
 !

:

ð6Þ

Similarly, the strain energy density in pile fpile can be

expressed as:

fpile ¼
1

2
EpAp

owp

oz

� �2

ð7Þ

Fig. 2 Displacement and stress components for a pile–soil system in

cylindrical coordinates
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4 Energy formations and Hamilton’s
principle in a pile–soil system

For a vibrating pile–soil system, the total energy (<)

includes the kinetic energy T, the potential energy U and

the work W made by external forces. Integrating the energy

in pile shaft and all soil layers, these three types of energy

components are given by the following:where Hi is the

depth of the ith soil layer (subscripts i and j indicate each

layer for displacement wpi and wsj).

W ¼ F0uz¼0 ð10Þ

Following the Hamilton variational principle, the energy

function < during the period from t1 to t2 of a mechanical

system approaches the equilibrium state when the variation

of the function < gets its minimal value, which yields:

d< ¼
Zt2

t1

dT � dU þ dWð Þdt ¼ 0 ð11Þ

where dð�Þ denotes the variational operator.

Introducing the steady vibration condition wðz; tÞ ¼
wðzÞeixt in Eq. (8) and substituting Eqs. (8), (9) and (10)

into Eq. (11) yield the following equation:

5 Governing equations and solving process

5.1 Pile and the soil column beneath the pile tip

Collecting the coefficients wpi from the variational formula

in Eq. (12), the governing equation of a pile subjected to

axial loads can be obtained:

U ¼ Upile þ Usoil

¼
XM

i¼1

ZHiþ1

Hi

1

2
EpAp

owpi

oz

� �2

dzþ
ZHiþ1

Hi

Z2p

0

Z1

rp

1

2
k�s þ 2G�

s

� �
/2 owpi

oz

� �2

þG�
sw

2
pi

o/ðrÞ
or

� �2
 !

rdrdhdz

2

64

3

75

þ
XN

j¼Mþ1

ZHiþ1

Hi

1

2
k�s þ 2G�

s

� �
A

owsi

oz

� �2

dzþ
ZHjþ1

Hj

Z2p

0

Z1

0

1

2
k�s þ 2G�

s

� �
/
owsi

oz

� �2

þG�
sw

2
si

o/ðrÞ
or

� �2
 !

rdrdhdz

2

64

3

75

ð9Þ

T ¼ Tpile þ Tsoil

¼
XM

i¼1

ZHiþ1

Hi

1

2
qpAp

owpi

ot

� �2

dzþ
ZHiþ1

Hi

Z2p

0

Z1

rp

1

2
qsi/

2 owpi

ot

� �2

rdrdhdz

2

64

3

75

þ
XN

j¼Mþ1

ZHjþ1

Hj

1

2
qsjAp

owsj

ot

� �2

dzþ
ZHjþ1

Hj

Z2p

0

Z1

rp

1

2
qsj/

2 owsj

ot

� �2

rdrdhdz

2

64

3

75

ð8Þ
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EpiAþ ti
� � o2wpi

oz2
� ki � ðai þ qpiAÞx2
� 	

wpi ¼ 0: ð13Þ

Similarly, the governing equation of soil beneath the

pile bottom can be written:

k�si þ 2G�
si

� �
Aþ 2ti

� 	 o2wsi

oz2
� ki � ðai þ qsiAÞx2
� 	

wsi ¼ 0

ð14Þ

where

ti ¼ p k�si þ 2G�
si

� � Z
1

rp

/2rdr ð15aÞ

ai = 2pqsi

Z1

rp

/2rdr ð15bÞ

ki ¼ 2pG�
si

Z1

rp

o/
or

� �2

rdr: ð15cÞ

The general solutions of Eq. (13) and Eq. (14) are given

by:

wpiðzÞ ¼ Bpie
kpiz þ Cpie

�kpiz; ð1� i�MÞ ð16aÞ

wsiðzÞ ¼ Bsie
ksiz þ Csie

�ksiz; ðM þ 1� i�NÞ ð16bÞ

where

kpi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ki � ðai þ qiAÞx2

EpAþ 2ti

s

ð17aÞ

ksi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ki � ðai þ qiAÞx2

k�si þ 2G�
si

� �
Ap þ 2ti

s

ð17bÞ

d< ¼
XM

i¼1

x2qpAp

Zt2

t1

ZHiþ1

Hi

wpdwpdtdz

8
<

:
þ 2pqsx

2

Zt2

t1

ZHiþ1

Hi

Z1

rp

/2wpdwprdrdzdt þ 2pqsx
2

Zt2

t1

ZHiþ1

Hi

Z1

rp

r/w2
pd/drdzdt

9
>=

>;

þ
XN

j¼Mþ1

x2qsAp

Zt2

t1

Z1

L

wsdwsdtdz

8
<

:
þ2pqsx

2

Zt2

t1

ZHjþ1

Hj

Z1

rp

r/2wsdwsdrdzdt þ 2pqsx
2

Zt2

t1

ZHjþ1

Hj

Z1

rp

r/w2
sd/drdzdt

9
>=

>;

þ
XM

i¼1

�EpAp

Zt2

t1

owp

oz
dwp

Hiþ1

Hi

�� �
ZHiþ1

Hi

o2wp

oz2
dwpdz

0

@

1

Adt � p k�si þ 2G�
si

� � Z
t2

t1

8
<

:

2

Z1

rp

owp

oz

� �
/2rdwp

Hiþ1

Hi

�� � 2

ZL

0

Z1

rp

r/2 o2wp

oz2

� �
dwpdrdzþ 2

ZL

0

Z1

rp

/
owp

oz

� �2

d/rdrdz

2

64

3

75dt

� pG�
s

Zt2

t1

2

ZHiþ1

Hi

Z1

rp

o/
or

� �2

wprdwpdrdzþ 2

ZHiþ1

Hi

w2
p

o/
or

rd/dz 1
rp

��� � 2

ZHiþ1

Hi

Z1

rp

w2
p r

o2/
or2

þ o/
or

� �
d/drdz

2

64

3

75dt

9
>=

>;

þ
XN

j¼Mþ1

� k�s þ 2G�
s

� �
Ap

Zt2

t1

ows

oz
dws

Hjþ1

Hj

��� �
ZL

0

o2ws

oz2
dwsdz

0

@

1

Adt

8
<

:

�p k�sj þ 2G�
sj

� 
Zt2

t1

2

Z1

rp

ows

oz

� �
/2rdws

Hjþ1

Hj

��� � 2

Z1

rp

Z1

L

r/2 o2ws

oz2

� �
dwsdzdr þ 2

ZHjþ1

Hj

Z1

rp

r/
ows

oz

� �2

d/drdz

2

64

3

75dt

� pG�
s

Zt2

t1

2

ZHjþ1

Hj

w2
s

o/
oz

� �
rd/dz 1

rp

��� � 2

Z1

rp

ZHjþ1

Hj

w2
s r

o2/
or2

þ o/
oz

� �
d/dzdr þ 2

ZHjþ1

Hj

Z1

rp

ws
o/
or

� �2

dwsrdrdz

2

64

3

75dt

9
>=

>;
¼ 0:

ð12Þ
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The solutions in Eqs. (16a) and (16b) for the vibration of

a pile and the soil beneath the pile have a similar form. For

the sake of simplification, the terms of k�si þ 2G�
si in

Eq. (17b) and Ep in Eq. (17a) are expressed in the form of

equivalent elastic modulus Ei, i.e.,

Ei ¼ Ep; ð1� i�MÞ; Ei ¼ k�si þ 2G�
si; ðM þ 1� i�NÞ.

Consequently, Eqs. (16a) and (16b) can be integrated into a

unified expression, that is:

wiðzÞ ¼ Bie
kiz þ Cie

�kiz; ð1� i�NÞ ð18Þ

The axial force QiðzÞ in pile shaft in the ith layer is given

by:

QiðzÞ ¼ � EiAþ 2tið Þ owi

oz
¼ �Bifie

kiz þ Cifie
�kiz ð19Þ

where

fi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ki � ðai þ qiAÞx2½ � EiAþ 2tið Þ

p
: ð20Þ

The expressions in Eq. (18) and Eq. (19) have 2 N

unknown constants (B1, B2…Bi,..BN; C1, C2…Ci,..CN),

which needs 2 N boundary conditions to determine their

values. Firstly, the displacement and force between any

two adjacent layers should be identical, which gives 2 N-2

boundary conditions as follows:

ekiHiBi þ e�kiHiCi � ekiþ1HiBiþ1 � e�kiþ1HiCiþ1

¼ 0; ð1� i�N � 1Þ ð21Þ

�fiBie
kiHi þ fiCie

�kiHi þ fiþ1e
kiþ1HiBiþ1 � fiþ1e

�kiþ1HiCiþ1

¼ 0; ð1� i�N � 1Þ:
ð22Þ

Secondly, the force at the pile head should be equal to

the external load, which yields:

�B1f1e
k1z þ C1f1e

�k1z ¼ F0: ð23Þ

Finally, the vertical soil displacement must be zero on

the rigid rock at z = HN, which is given by:

wsiðzÞ i¼Nj ¼ 0: ð24Þ

Substituting Eq. (18) into Eq. (24), we obtain:

BN

CN
¼ �e�2kNHN : ð25Þ

By solving the equations above, the unknown constants

can be either analytically or numerically determined. Here,

a method through impedance transfer is applied to obtain

the explicit solution of Bi and Ci for all the soil layers.

The axial dynamic impedance Kd zð Þ of a pile and soil

column below the pile tip at any depth z from 0 to H can be

expressed as:

Kd zð Þ ¼ �Bifiekiz þ Cifie�kiz

Biekiz þ Cie�kiz
; ð1� i�NÞ: ð26Þ

Since the dynamic impedances at any adjacent layers are

identical, the following equation can be written:

Bi

Ci
¼

� Biþ1

Ciþ1

fiþ1

fi
þ 1

� 

e2kiþ1z þ fiþ1

fi
� 1

Biþ1

Ciþ1

fiþ1

fi
� 1

� 

e2 kiþ1þkið Þz � ðfiþ1

fi
þ 1Þe2kiz

; ð1� i�N

� 1Þ:
ð27Þ

Combining Eq. (25) with Eq. (27), the ratios

BN�1=CN�1,BN�2=CN�2,…, B2=C2 and B1=C1 in any layer

can be explicitly expressed.

From the formula in Eq. (21), the recurrence relation-

ship between Ci and Ciþ1 can be given by:

Ciþ1 ¼ Ci

e kiþkiþ1ð ÞHi Bi

Ci
þ e kiþ1�kið ÞHi

e2kiþ1Hi
Biþ1

Ciþ1
þ 1

: ð28Þ

Transforming the load boundary at the pile head in

Eq. (23) gives the following:

C1 ¼ F0

f1 1 � B1

C1

� 
 : ð29Þ

Combining Eq. (25) with Eqs. (27)–(29), all the

unknown constants can be explicitly solved. The dynamic

impedance at the pile head can be obtained from

Kd 0ð Þ ¼ �B1f1 þ C1f1

B1 þ C1

: ð30Þ

5.2 Attenuation function /(rÞ

Collecting the coefficients of d/ from the variational for-

mula in Eq. (12), the following equation can be obtained:

o2/
or2

þ 1

r

o/
or

� b2/ ¼ 0 ð31Þ

where

b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ns1 � ns2x2

ms

s

ð32Þ

ms ¼
XM

i¼1

ZHi

Hi�1

2pG�
siw

2
pidzþ

XN

j¼Mþ1

ZHj

Hj�1

2pG�
siw

2
sidz ð33aÞ

3344 Acta Geotechnica (2021) 16:3339–3353

123



ns1 ¼
XM

i¼1

ZHi

Hi��1

Z1

rp

2p k�si þ 2G�
si

� � owpi

oz

� �2

dz

þ
XN

j¼Mþ1

ZHj

Hj�1

2p k�si þ 2G�
si

� � owsi

oz

� �2

dz

ð33bÞ

ns2 ¼
XM

i¼1

ZHi

Hi¼1

2pqsiw
2
pidzþ

XN

j¼Mþ1

ZHj

Hj�1

2pqsiw
2
sidz: ð33cÞ

By solving Eq. (31), the general solution of /ðrÞ is

written as:

/ðrÞ ¼ c1I0(br) + c2K0(br) ð34Þ

where I0 and K0 are the modified Bessel function of the first

and second kinds of zero order, respectively. Given the

boundary conditions in Eq. (3), the coefficients c1 and c2 in

Eq. (34) are determined, which yields:

/ðrÞ ¼ K0ðbrÞ
K0ðbrpÞ

: ð35Þ

Once the displacement decay function is known, the

displacement of surrounding soil can be obtained from

Eqs. (1) and (18).

6 Solution technique

The pile displacement at any given depth z can be finally

expressed by the soil parameters ki, ti, ai, which rely on the

displacement decay function /. It is clear that / is deter-

mined by other groups of soil parameters ms, ns1, ns2 and b
from Eqs. (33a), (33b) and (33c). Consequently, there are

(a) (b)

Fig. 3 Dynamic impedance of piles resting on a rigid base

Fig. 4 Dynamic impedance of piles in soil half-space
Fig.5 Dynamic impedance of piles in two-layered soil
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eight undetermined coefficients including ki,ti,ai, ms, ns1,

ns2,b and /. These unknown parameters can be determined

by solving the corresponding eight equations in Eqs. (32)

and (35). Nevertheless, directly solving is not convenient

since the undetermined coefficients are intercoupled. An

iterative procedure [3, 9, 21, 24] is thus applied to obtain

the expected results. First, an initial empirical value of 1.0

is made for the parameter b to calculate the decay function

/ through Eq. (35). Then, the other six undetermined

coefficients can be instantly calculated through Eqs. (15),

(33). In detail, the values of ki,ti,ai can be determined

through Eqs. (15a), (15b) and (15c). The pile displacement

subsequently can be obtained through Eqs. (18), (27) and

(28). After calculating ms, ns1, ns2 through Eqs. (33a),

(33b), (33c), the value of b can be updated by Eq. (32).

Repeating the entire process until the tolerance between the

new and old value of b is less than 10–3. Finally, the pile-

head dynamic impedance can be calculated through

Eq. (30).

7 Comparison and validation with existing
analytical solutions

By modifying the soil profile and corresponding mechan-

ical properties, the present solution is capable to analyze

the dynamic responses of the vertically loaded pile in

various geotechnical cases. In Fig. 3, the present solution is

compared with the analytical results for the dynamic

impedance of end-bearing piles obtained by Gupta and

Basu [3], Zheng et al. [28] and Novak’s plane strain

method. In this case, the slender ratio of the pile is L/

rp = 20, and the other parameters are: Ep/Gs = 2500,

b0 = 0.02, qs = 2200 kg/m3, qp = 2500 kg/m3, ts = 0.3.

To apply the present model, the soil profile contains two

layers: The soil parameters of the upper one are the same

with those in the previously published solutions, whereas

the soil modulus of the lower soil layer is set 104Gs to

simulate the rigid rock base. Figure 3 shows that the pre-

sent solution agrees well with Gupta and Basu [3], which is

anticipated since their deduction also restricted the radial

displacement in soil. Zheng et al. [28] relaxed that

restriction and obtained a rigorous analytical solution that

is eligible to capture two cut-off frequencies. Novak’s

plane strain method neglected the vertical stress gradient in

soil and thus can only consider the horizontal wave prop-

agation in soil. Figure 3 reveals that Novak’s method

overestimates the dynamic damping and underestimates the

dynamic stiffness in low frequency range of 0\ a0\ 0.1.

Compared with the existing methods, the present solution

could produce one cut-off frequency, and the accuracy of

dynamic impedance is overall acceptable.

Figure 4 compares the curves of dynamic pile-head

impedance versus frequency in half soil-space. Note that

that the impedance Kd is nondimensionalized as Kd=ðGsrpÞ
and frequency x is nondimensionalized as xrp=Vs, where

Gs and Vs denote the shear modulus and the speed of shear

wave in the first soil layer. To apply the present model, the

soil profile contains two layers with identical parameters,

whereas the depth of the lower soil layer is set 40L to

simulate the half soil-space. Compared with this present

solution, Zheng et al. [29] and Novak [14] solution both

predict a slightly smaller dynamic stiffness and larger

dynamic damping in low frequency range less than 0.1,

which owes that they treat the surrounding soil as inde-

pendent thin layers, and thus, the pile–soil system becomes

more flexible than the actual condition at low frequencies.

As frequency increases, the waves in soil tend to propagate

in a horizontal manner and the energy transfer between

(a)

(b)

Fig. 6 Variation of dynamic impedance Kd versus dimensionless

frequency a0 for different thickness of the lower soil layer
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(a) (b)

(c) (d)

(e) (f)

Fig. 7 Variation of dynamic impedance Kd versus dimensionless frequency a0 for different Young’s modulus of the lower soil layer
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adjacent soil layers becomes less significant [12, 13].

Unsurprisingly, the dynamic stiffness calculated by this

present solution and Zheng et al.’s method [29] could make

a better match as excitation frequency grows. Besides,

Novak [14] overestimates the dynamic impedance at res-

onance frequencies because it fails to account for the

infinite nature of soil half-space by modeling the soil

beneath the pile tip as Winkler springs and damping

dashpots.

Furthermore, in Fig. 5, a comparison of the dynamic

pile-head impedance in a two-layered ground from this

present solution is performed with the results in Gan et al.

[6], where elastodynamic theory and the method of Hankel

transformation are employed to produce the analytical

solutions of vibrating pile in two layers. The results show

that the pile impedances calculated by this present study

and Gan et al. [6] agree very well for a[ 0.3. Mild dif-

ference occurs at a low frequency range of 0\ a\ 0.3,

which is due to the independent thin layers assumption for

surrounding soil in Gan et al. [6].

8 Results and discussion

8.1 Influence of substrtum on pile-head dynamic
impedance

8.1.1 The thickness of substrtum

Figure 6 shows the dynamic impedance variation of piles

supporting by soil layers with various thickness H2. The

soil profile is assumed homogenous, and pile length

remains unchanged in this section. H2 is chosen to range

from 0 to !, which means the pile tip condition varies

from end-bearing to infinite half soil-space. The results

show that the static impedance (a0 = 0) falls with a

decreasing rate as H2 increases in Fig. 6a. The static

impedance for the case at end-bearing condition is around

14% greater than that at infinite half soil-space condition.

As frequency grows from a0 = 1 to a0 = 0.5, the dynamic

impedance gradually decreases before cut-off frequency

occurs and then continuously increases until the end. The

cut-off frequency slightly decreases with H2 increases,

whereas the minimum values of dynamic impedance

decrease from H2 = 0 to H2 = 10rp and then behave a

relatively slow growth as H2 becomes greater. Figure 6b

shows a clear variation of cut-off frequency versus H2.

Besides, the dynamic damping for the case of H2 = 2rp

tends to coincide with that of H2 = ! as a0 exceeds a

threshold value around 0.18; for the cases of H2 = 5rp,

H2 = 10rp and H2 = 20rp that threshold values decrease to

around 0.1, 0.6 and 0.4. The falling process of threshold

value reflects that the curves of dynamic impedance against

frequency move toward the case in infinite half soil-space

as H2 continuously increases.

8.1.2 Influence of Young’s modulus of the lower soil layer

Figure 7 depicts the variation of dynamic pile-head impe-

dance as substratum modulus varies. The thickness of

substratum in this section is considered as infinite, and the

modulus of the upper soil layer remains constant. The

results show that increasing substratum modulus evidently

increases the dynamic stiffness before cut-off frequency in

Fig. 7a. An increase of four times on substratum modulus

brings around 17% growth of dynamic stiffness before cut-

off frequency. That growth gradually becomes smaller as

frequency increases. Because the dynamic stiffness in

(a) (b)

Fig. 8 Variation of dynamic impedance Kd versus dimensionless frequency a0 for different thicknesses of the middle soil layer
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weaker substratum increases relatively faster than that in

stiffer one, it appears that the curves of dynamic stiffness

versus frequency coincide at around a0 = 0.3. After that,

the dynamic stiffness in weaker substratum tends to exceed

that in the stiffer counterpart. In Fig. 7b, it is found that the

curves of dynamic damping versus frequency are approx-

imately parallel for four types of substratum modulus. The

weaker substratum modulus causes greater dynamic

damping, whereas that difference is generally limited.

Figure 7c, e shows the dynamic stiffness of piles as

substratum modulus varies for cases of pile slender ratio L/

rp = 30 and L/rp = 15, respectively. The results show that

increasing substratum modulus brings in a more significant

increase for dynamic stiffness as L/rp decreases. Increasing

substratum modulus to four times produces around 43%

growth for the static stiffness when L/rp = 30, and that

growth is around 76% when L/rp = 30. That phenomenon

is understandable since a greater portion of the load is

transferred to the substratum in the piles with a greater pile

slender ratio. Besides, the dynamic stiffness reduction

around cut-off frequency is less prominent as L/rp increa-

ses. A significant difference in dynamic stiffness occurs

with the variation of substratum modulus in the given

frequency range 0\ a0\ 0.5.

Figure 7d, f shows the corresponding dynamic damping

of Fig. 7c, e, respectively. It is observed that the dynamic

damping tends to decrease, and substratum modulus exerts

a greater influence as L/rp increases.

Fig. 9 Variation of Kd versus dimensionless frequency a0 for different Young’s modulus of the middle soil layer

(a) (b)

Fig. 10 Variation of dynamic impedance versus true frequency as the modulus of Gibson soil varies (L = 25 m, rp = 0.25 m, Ep = 25GPa, qp/

qs = 1.25, ls = 0.3)
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8.2 Influence of lateral interlayer on pile-head
dynamic impedance

In this section, the soil profile contains three layers with

two layers surrounding the pile and one below the pile. The

lateral interlayer is set as the second or the middle one.

Note that the third layer is extended to the infinite and the

pile length is constant.

8.2.1 Influence of the thickness of the lateral interlayer

Figure 8 shows the variation of dynamic impedance as the

thickness of the middle layer H2 varies. The Young’s

modulus of middle layer Es2 is assumed to be half of Es1

and Es3. The results show that dynamic stiffness increases

when the middle soft layer becomes thinner in Fig. 8a. A

growth of around 21% for dynamic stiffness is observed at

the given frequency range (0\ a0\ 0.5) as H1:H2

decreases from 12:3 to 2:13. Figure 8b shows that dynamic

damping slightly increases as the weak interlayer becomes

thicker, whereas the influence of weak interlayer is not

significant when the frequency is relatively low or

a0\ 0.3. Moreover, Fig. 8 demonstrates that the cut-off

frequency of dynamic impedance is barely affected by the

thickness ratio of H1/H2.

8.2.2 Influence of Young’s modulus of lateral interlayer

In this part, the thickness of the middle layer remains the

same, but Young’s modulus varies. Figure 9 reflects that

the value of cut-off frequency controls the variation of

dynamic impedance. In Fig. 9a, it is shown that the influ-

ence of the interlayer modulus also relies on the frequency:

When a0\ acut-off, the reduction of dynamic stiffness

induced by weak interlayer has a limited variation with

frequency; when a0[ acut-off, that reduction gradually turn

down with frequency increases. As the frequency continues

to increase to a0[ 0.4, the dynamic stiffness for the

weaker middle layer case tends to be greater than that for

the stiffer middle layer case. In Fig. 9b, it is shown that the

influence of interlayer modulus on dynamic damping

slightly intensifies as frequency increases. At a0 = 0.1, and

Fig. 11 Illustration of end-bearing piles in Gibson soil and its equivalent layered soil on rigid bed rock, Es0:EsL = 1:4

(a) (b)

Fig. 12 Comparison of the dynamic impedance of end-bearing piles in Gibson soil and equivalently homogeneous layered soil. L = 10 m,

rp = 0.25 m, Ep = 25 GPa, qp/qs = 1.25, ls = 0.3
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a0 = 0.5, the corresponding reduction of dynamic damping

is around 5% and 10%, respectively.

8.3 Influence of Gibson-type soil on pile-head
dynamic impedance

For natural sedimentary ground, the modulus of soil is

often depth-dependent. Here, we consider the case of

Gibson soil, i.e., the soil modulus linearly increases with

the depth from Es0 to EsL. To calculate the dynamic

impedance using the presented solution, the Gibson soil is

treated as infinite soil layers. The influences of Gibson soil

on the dynamic impedance are investigated for the end-

bearing and floating piles, respectively.

8.3.1 Dynamic impedance of end-bearing piles

Figure 10 depicts the dynamic impedance of end-bearing

piles in Gibson soil. The results show that the pile-head

dynamic stiffness increases as the surface modulus

increases. Moreover, the dynamic stiffness of piles in

Gibson soil is prominently smaller than that in the

homogeneous soil with a modulus of (Es0 ? EsL)/2 in a

given frequency range. Dynamic stiffness in case ˆ is 26%

smaller than that in case �. That phenomenon owes that

the surface modulus in Gibson soil is larger than that in the

corresponding homogeneous soil. Besides, a relatively

small variation of the curve shape of dynamic stiffness

versus frequency is observed for the cases �, `, ´ and ˆ.

Furthermore, it appears that the cut-off frequency of pile

impedance is insensitive to the variation of surface mod-

ulus in Gibson soil on the condition that the average

modulus remains constant.

To make a convenient approximation on pile behaviors,

a common approach is to treat the inhomogeneous soil

profile as equivalently layered soil as shown in Fig. 11.

When representing the ground with one homogeneous soil

layer, the equivalent modulus is calculated by (Es0 ? EsL)/

2. When representing the ground with two soil layers, the

equivalently homogenized modulus of the upper layer can

be written as (Es0 ? (Es0 ? EsL))/2, because the actual

modulus of the upper layer varies from Es0 to (Es0 ? EsL)/

2. Similarly, the equivalent modulus of the lower soil layer

is given by (EsL ? (Es0 ? EsL))/2.

Fig. 13 Illustration of floating piles in Gibson soil and its equivalent layered soil: a Gibson soil; b one soil layer for the whole soil domain; c one

layer for lateral soil and pile tip soil, respectively; d two layers for lateral soil and pile tip soil, respectively; e three layers for lateral soil and pile

tip soil, respectively

(a) (b)

Fig. 14 Comparison of the dynamic impedance of piles in Gibson soil and equivalently homogeneous layered soil. L = 10 m, rp = 0.1 m,

Ep = 25GPa, qp/qs = 1.25, ls = 0.3
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Figure 12 shows that the effects of the equivalent soil

layer numbers on the dynamic impedance of piles in Gib-

son soil. The ratio of surface modulus and bottom modulus

is 1:4. The results show that the equivalently homogeneous

approach could give approximately close cut-off frequency

for the pile-head impedance in Gibson-type soil. Further-

more, the one-layer approach produces a deviation of 15%

for dynamic stiffness; the two-layer approach produces a

much better result with a deviation of 5%; and the devia-

tion decreases to less 3% for the three-layer approach. The

above comparison demonstrates that replacing Gibson soil

with two or more layers with equivalent modulus can

predict the dynamic impedance with acceptable accuracy

for engineering design.

8.3.2 Dynamic impedance of floating piles

For the cases of floating piles in Gibson soil (see Fig. 13a),

four types of equivalent layered soil are illustrated in

Fig. 13b–e. The soil profile in Fig. 13b treats the Gibson

soil as a homogeneous ground, and the corresponding

equivalent soil modulus is the average of surface modulus

Es0 and bottom modulus E2L. In Fig. 13c, the lateral soil

(0 B H\ L) and pile tip soil (L B H\ 2L) are treated as a

homogeneous soil layer with Young’s modulus of

175 MPa and 325 MPa, respectively. Similar treatment

with that in Fig. 11 is employed to the lateral soil and pile

tip soil, respectively, to produce equivalently homogeneus

soil profiles with one layer, two layers and three layers as

illustrated in Fig. 13c–e.

Figure 14 compares the vertical dynamic impedance of

the piles in Gibson soil and aforementioned four types of

equivalently homogeneous layered soil. The results show

that equivalent soil ` brings an overestimation of around

56% for dynamic stiffness. That overestimation decreases

to around 26% when the lateral soil and pile tip soil are

separately treated as one homogeneous layer (case ´). It

appears that one equivalent layer approach induces more

prominent deviation of dynamic impedance for floating

piles than end-bearing piles in Gibson soil. Moreover,

increasing the number of layers to two and three overes-

timates the pile-head dynamic stiffness up to around 10%

and 6%, respectively. Good agreement also can be found

for the curves of dynamic damping against frequency when

increasing the number of equivalent soil layers.

9 Conclusions

A novel close-form solution is developed to obtain the

dynamic responses of axially loaded piles in inhomoge-

neous soil by applying Hamilton’s energy principle. Vis-

coelastic property is attributed to soil domain and its

displacement field is formulated as the product of pile

displacement and decay function. The soil column beneath

the pile tip is considered as a fictitious soil pile to imple-

ment the displacement description for the whole pile–soil

continuum system. This present model is capable to obtain

the responses of longitudinal vibrating pile in various

horizontal ground profiles —homogeneous, layered and

Gibson soil. Additionally, it can distinguish the effects of

material damping and radical damping and thus gives a

satisfactory prediction for dynamic impedance at low fre-

quencies. The conclusions can be drawn as follows:

1. The influence of substratum modulus and thickness on

dynamic stiffness depends on the cut-off frequency.

When 0\ a\ acut-off, the dynamic stiffness generally

decreases as frequency increases, and the piles with

thicker and weaker substratum layers undergo a more

significant reduction of dynamic stiffness. When

a[ acut-off, the difference of dynamic stiffness induced

by the substratum layer tends to decrease as frequency

increases.

2. The influences of substratum on dynamic impedance

are highly associated with the pile geometry. Espe-

cially, the piles with short and stubby shape undergo a

more significant variation of dynamic impedance than

that with a long and slim shape.

3. The thickness variation of the surrounding interlayer

soil generally causes more significant influences on the

dynamic stiffness than the modulus variation in given

cases.

4. The dynamic stiffness of piles in Gibson soil is more

sensitive to the surface modulus than the bottom

modulus. Representing the Gibson soil with one

homogeneous soil layer produces more remarkable

overestimation for the dynamic stiffness of floating

piles than end-bearing piles. As the number of

equivalent soil layers increases, the deviation of pile

dynamic stiffness in layered soil and Gibson type

dramatically decreases.
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