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Molecular associations in solution are opposed by the loss of entropy ( ��� ) that results from the restric-
tion of motion of each of the components in the complex. Theoretical estimates of ��� are essential for
rationalizing binding affinities as well as for calculating entropic contribution to enzyme catalysis.

Recently a statistical-mechanical framework has been proposed for estimating efficiently the translational
entropy loss ( �������
	�� ), while taking explicitely into account the complex intermolecular interactions be-
tween the solute and the solvent. This framework relates the translational entropy of a solute in solution to
its “free volume”, defined as the volume accessible to the center of mass of the solute in the presence of the
solvent and calculated using an extension of the cell model (CM) for condensed phases. The translational
entropy of pure water, estimated with the CM algorithm, shows good agreement with the experimental
information. The free volume of various solutes in water, calculated within the CM, using molecular dy-
namics simulations with explicit solvent, displays a strong correlation with the solutes’ polar and total
surface areas. This correlation is used to propose a parameterization that can be used to calculate routinely
the translational entropy of a solute in water.

We also applied the CM formalism to calculate the free volume and translational entropy loss ( ���
����	�� )
upon binding of benzene to a cavity in a mutant T4-lysozyme. Our results agree with previously published
estimates of the binding of benzene to this mutant T4-lysozyme. These and other considerations suggest
that the cell model is a simple yet efficient theoretical framework to evaluate the translational entropy loss
upon molecular association in solution.

I. INTRODUCTION

A Formulation of the problem

Molecular association in solution is opposed by the loss of
entropy ( ��� ) that results from the restriction of motion (trans-
lational, rotational, vibrational, conformational) of each of the
components upon formation of the complex. Evaluation of��� from first principles is crucial for understanding ligand
binding and for dissecting entropic contributions to enzyme
catalysis [1–10].

The noncovalent association of two molecules A and B in
solution (e.g., A = ligand, B = protein) to form a complex AB
in the reaction ����������� results in an entropy loss:

������� ��!#"$���%"�� ! (1)

The notation � & ( '(��� , � or ��� ) represents the entropy
of the species ' in solution and depends on the concentration.��� is generally calculated at a standard (fictitious) concentra-
tion of )+* to allow comparison between different systems on
a common basis [1, 11–13].
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Using classical statistical mechanics, we can express the
translational entropy �.-0/21�3& of a given concentration of solute' in solution (i.e., 4 & solute and 465 solvent molecules in a
volume 7 at a temperature 8 ) from the molecular partition
function of one solute, 9:& , defined as [14]

9 & � );=< >?>A@CBEDGFIHKJMLON PQLRN STPVU
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where
;

is Planck’s constant and ] =1/kT. The integral is per-
formed on the whole phase space of the solute, with

\ & the
position of its center of mass and

[ & its momentum. The no-
tation ^ \�_�` represents the positions of all solvent molecules
that create a potential field acb \ &Qde^ \ _ `Qf around the solute.
Assuming the solution is dilute enough to neglect the solute-
solute interactions, we obtain the Hamiltonian for the solute
of mass gh& : i�b [ &Cd \ &Qde^ \ _ `Vf � J LTjkYl L �(acb \ &Qde^ \ _ `Vf .

The translational entropy of the system of 4 & solute mole-
cules ( � -m/21�3& ) is linked to the total partition function n & of the4o& solute molecules [14]:

� -0/O1�3& �qp b0rts�n & �$8vu rts�n�&u 8 w x
f

(3)

where p is Boltzmann’s constant and n & �y9Vz L&|{ 4 &Q} if the4o& solutes are indistinguishable (e.g. gas or liquid state) orn�&~��9 z L&|{ 4 z L& otherwise (e.g. crystalline solid state or
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bound molecule). Therefore, even at the same density, the
entropy of 4o& liquid molecules is higher than that of a solid
containing the same number of molecules by p 4 & . This termp 4 & is sometimes called the “communal entropy” [15] and
reflects the ability of molecules in a liquid to occupy any po-
sition in a given volume, as opposed to these in a solid whose
positions are fixed [14].

Thus, the estimation of ��� -m/21�3 depends solely on the eval-
uation of the integral in Eq. 2 which, after integration over the
momenta

ZC[
, yields

9R&�� )� <&
>
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where
� & � �� k��Ql L	�	
 is the De Broglie wavelength of a

solute molecule [14].
If the 4 & solutes were an ideal gas (i.e., without solvent nor

intermolecular interactions, a�b \ &CdR^ \ _ `Vf ��� ), the integral in
Eq. 4 would be equal to 7 , leading to the so-called “Sackur-
Tetrode” (ST) formula for the translational entropy [14]:

� -0/O1�3& N 
 
 ��p bm4 & rts 74 & � <& �
�
� 4 & f (5)

This formula is sometimes used as the basis for estimating
the entropies of molecular association in solution [3, 13, 16].
However, in solution the presence of a nonzero potentiala�b \ &CdR^ \ _ `Vf complicates considerably the evaluation of the
configurational integral in Eq. 4, requiring approximate meth-
ods [1].

The goal of this paper is to provide a framework based on
cell models [2, 15, 17, 18], to approximate efficiently � � -0/O1�3 .

B Cell Model for � ����	���

The cell model (CM) was originally proposed by Eyring,
Hirschfelder and coworkers [15, 17] and developed more for-
mally by Kirkwood [18]. Its extension to the problem of
molecular association was recently suggested [2]. As the
intermolecular interactions in solution are dominated by the
short-range repulsive part of the potential a�b \ & de^ \�_�`Qf , the
exponential factor in Eq. 4 vanishes except on a small portion
of the space, which makes the calculation tractable.

The CM considers that the center of mass of each solute
molecule is confined in a cell delimited by the field of the
surrounding solvent molecules, a�b \ &Qde^ \ _ `Vf . In Eq. 4 we can
divide the integration space into 4 & ��4 5 parts, and define the
volume ��� N & of a cell, sometimes called “free volume”, as

��� N & � >
�� L�� ���

@CBED��
HKPQLON S�PVU
WTX
ZG\ & (6)

Eq. 4 leads to 9 & � bm4 & � 465 f ��� N & { � <& and the translational
entropy of the 4o& solutes immersed in 4 5 solvent molecules

becomes:

� -0/21�3& N ��� ��p bm4 & rts bm465h��4 & f ��� N &4o& � <& � �
� 4 & f (7)

In the limiting case of an ideal gas of 46& solutes without sol-
vent ( 4 5 ��� ), the free volume is � � N & �|7 { 4 & and we re-
cover Eq. 5. The problem of evaluating the configurational
integral in Eq. 4 is now reduced to the evaluation of the free
volume using Eq. 6.

The main approximations inherent to the CM are twofold:
1) the division of the space in cells, each containing only one
molecule and 2) the calculation of the free volume.

In the first part of this paper we calculate � � in Eq. 6 using
molecular dynamics (MD) simulations to evaluate directly the
potential a�b \ & de^ \�_�`Qf for a variety of solutes in water and
discuss the results in terms of the polarity and size of each so-
lute. We also use the CM to calculate the translational entropy
for the particular case of liquid water (i.e., ' is itself a water
molecule), which we can compare with experimental informa-
tion and with the Sackur-Tetrode (ST) estimate (Eq. 5).

C Cell Model for ��� ����	��
The loss of translational entropy in Eq. 1 ( ��� -0/O1�3 ��� -m/21�3��! "� -0/O1�3� "$� -0/O1�3! ) can be evaluated using an extension of the CM

for � -0/O1�3& , described in the previous section. The term �.-0/O1�3�
and � -0/21�3! are calculated directly using Eq. 7, with ' �|� or' �q� , respectively.

The term � -m/21�3��! is more complicated, in that � and � are
confined into a complex, which we will emphasize by denot-
ing them ��� and ��� , respectively. We cannot simply calcu-
late � -0/21�3��! using Eq. 7 with 'v� ��� , because this would cor-
respond to considering only the motion of the (noncovalent)
complex ��� as a whole, neglecting the residual translational
motion of � relative to � .

It is possible to use Eq. 7 to calculate �.-0/21�3�! and � -0/21�3!! , but
the integral giving the free volume of �"� (in Eq. 6) must be
restricted to the portion of space where �"� is bound to ��� .
This also obliterates the “communal entropy” of � � , lowering
its entropy by a factor p 4 !! .

The CM formalism gives then finally the loss of transla-
tional entropy loss upon molecular association, expressed at
a standard state of 1M of solute in 55M of water ( 4$#&% being
Avogadro’s number):

��� -0/O1�3�'� ��p 4 #	% b
" rKs �)( �$rts � � N �* +� � N !* ��� N � ��� N !
f "$p 4 #&% (8)

Conservation of mass imposes cancelation of the terms corre-
sponding to the integration over the momenta [1, 19].

As pointed out in [2], the last term of Eq. 8, p 4 #	% �-,��)�. /�0 @ . 1'.�b @ . 1'.M� � # 3l32 354 6
f

is sometimes used as an approxima-
tion of the translational entropy loss, assuming implicitly that
the ratio of the free volumes in Eq. 8 is unity. This assumption
will be discussed in the light of the results of this paper.
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In this study we apply the CM formalism to calculate the
free volume and translational entropy of a benzene molecule
binding to a mutant T4-lysozyme (Eq. 8). We use a normal-
mode analysis to demonstrate that the motion of benzene
within the binding site of lysozyme can indeed be treated as
a translation and compare our results with a recent estimate
based on a body-restrain algorithm for MD simulation [20].

II. METHODS

A Molecular dynamics simulation

Estimation of the free volume of a solute ' in a sol-
vent, given by the integral in Eq. 6, requires an evaluation
of the energy of interaction of the solute with the solvent,a�b \ &CdR^ \ _ `Vf . This energy must in principle be evaluated for
all positions of the solute (

\ & ) in the volume xz L�� z � around
its equilibrium position and averaged over a set of configura-
tions of the surrounding solvent molecules ^ \ _ ` representa-
tive of the 4%7�8 ensemble.

Using molecular dynamics (MD) simulations to gener-
ate trajectories of the solute and the solvent molecules,
we used individual “snapshots” to calculate the potentiala�b \ &CdR^ \ _ `Vf . In all the simulations described below we used
the CHARMm28 force field [21] and the SHAKE algorithm
[22] to allow an integration time step of 2 fs, saving snapshots
of configurations every 2 ps for analysis. Unless otherwise
stated, we maintained the temperature at 300K by adjusting
the kinetic energy term [23] and used a cutoff of 12 Å for
non-bonded interactions.

1 Solute in water

Trajectories of pure water were generated first. 512 wa-
ter molecules (TIP3 model) were placed in a cubic box of
side length = 24.8346 Å, to get the density of liquid water
at 300 K and 1 bar ( ��� )�� {�� g < , equivalent to 55 M). As
water molecules were treated explicitely, we used a dielectric
constant of 1 for the electrostatic interactions. Cubic periodic
boundary conditions were used, with a cutoff of 12 Å for the
interactions with the periodic images. We minimized the total
energy using 400 steps of steepest descent, heated the water
box from 0 to 300K for 20 ps, thermalized it for 40 ps at 300K
and generated 800 ps of trajectories at T=300K. We tested two
different methods for maintaining the temperature at 300K to
probe the sensitivity of the free volume calculations: adjusting
the kinetic energy [23] and using a Nose-Hoover thermostat
[24, 25].

We then inserted the solute (see Table I for the list of so-
lutes used in this study) into the center of the box of water
and into its periodic images, removing the water molecules
that overlapped with the solute. As the 12 Å cutoff is slightly
less than half the box side length, solute molecules do not

interact with their images. This mimics an ideal, infinitely di-
lute solution [1, 11–13]. The standard state concentration of)+* solute is obtained by adjusting 46& and 4 5 in Eq. 7. We
again minimized the total energy using 400 steps of steepest
descent, first with the solute constrained to relax only the sur-
rounding water, and then for 400 steps without restraints. We
heated the system from 0 to 300K for 20 ps, thermalized all
the molecules in the box for 40 ps at 300K, and produced 800
ps trajectories at 300K for each solute.

2 Benzene binding to a mutant T4-lysozyme

A mutant T4-lysozyme (L99A, C54T, C97A, hereafter
called TCM, for Triple Cavity Mutant) was designed to create
a hydrophobic cavity large enough to accommodate a benzene
molecule [26]. The 1.9 Å crystal structure provided coordi-
nates for 162 out of 164 residues of the TCM T4-lysozyme in
complex with benzene (PDB entry: 1L84, [26]). Two missing
amino acids, located at the C terminus, far from the cavity,
are unlikely to affect the results. As the cavity is quite rigid
and excludes solvent [20], these simulations were performed
in vacuum. The structure was minimized for 400 cycles of
steepest descent, and then subjected to a 60 ps equilibration
step at 300K. Small harmonic constraints (2.4 Kcal/mol Å

k
)

force constant on the 	�
 atoms were imposed to avoid un-
folding of the protein but still allow the ligand to move in the
cavity during 800 ps of production at 300K.

B Free volume calculations

The integral in Eq. 6 was approximated as a summation
over a three-dimensional fine grid (spacing u
� � u�� � u�� �� .t) Å) set up over the volume of the cell. The x, y and z
axes of the grid coincide with the principal axes of inertia of
the solute, so that all snapshots could be aligned. The poten-
tial a�b�� d�� d�� de^ \�_�`Qf of interaction between the solute located
at each grid point

\ & � b�� d��Ed�� f and the surrounding water
molecules, at positions ^ \�_ ` comprises the two nonbonded,
distance-dependent terms : Van der Waals and electrostat-
ics. It was calculated using as reference value the minimum
within the cell, i.e. �ca�b�� d�� d�� de^ \ _ `Qf � acb�� d��Ed�� de^ \ _ `Vf "a�b����ts � d����ts � d����ts � de^

\�_�`Qf
. For each selected snapshot (i)

we calculated

���� N & � ��
� N � N �� B ��!�"$#&% "I]
�ca'�Yb�� d�� d��=de^

\ _ `Qf)(
u � u � u � (9)

C Normal Mode Analysis

The motion of the bound ligand was also analyzed using the
normal modes analysis facility (“vibran”) of the CHARMm28
program [21] starting with the minimized structure of the
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complex. The TCM T4-lysozyme was kept fixed and the nor-
mal modes were calculated in the reduced basis corresponding
to the motion of the benzene in the field created by the fixed
lysozyme. The six modes of lowest frequency corresponded,
as expected, to translational/rotational motions. The energy
profiles along these modes were explored and compared with
those of the four internal modes with lowest frequency.

III. RESULTS AND DISCUSSION

A Solute � in water

The various solutes used in this analysis were chosen for
their different sizes and patterns of surface polarities (see Ta-
ble I).

The free volume of a solute ' in water reflects restriction
of the motion of its center of mass. This depends on the in-
teraction energy a�b 9 & de^ \�_�`Qf between the solute and the field
created by the surrounding water molecules. To use Eq. 9, this
interaction energy was calculated for each snapshot on a three-
dimensional grid centered around the equilibrium position of
the solute. Fig. 1a and Fig. 1c present a one-dimensional slice
(along the x axis, in the y=z=0 grid plane) of the interaction
energy a�b�� d�� d�� dR^ \ _ `Vf as well as a quadratic fit to this en-
ergy profile. This emphasizes the anharmonic character of the
energy profile, for solutes as different as glycerol (Fig. 1a) and
benzene (Fig. 1c). Fig. 1b and Fig. 1d show the 2D-profile
of the exponential factor !�"$#&% "��

�
H � N � N �eN STPVU WYX�&
 (
used in Eq. 9

and illustrate that the translation of the solute molecule in the
field created by the surrounding water molecules is restricted
to less than 1 Å in each direction, before the Boltzmann factor
falls to zero. Due to its higher surface polarity, the motion of
glycerol in water is more restricted than that of the nonpolar
benzene.

The corresponding energy profiles for methylacetate (data
not shown) are of the same order of magnitude and present
intermediate features between that of glycerol and benzene,
consistent with the respective surface polarities of these
molecules.

The free volume � �� was computed for each snapshot�
; a normalized probability distribution of � �� is plotted in

Fig. 2 for three selected solutes, of comparable size (glycerol,
methylacetate, benzene).

The distribution for glycerol (Fig. 2) shows a sharp peak
at low � �� , reflecting the tight packing of water molecules
hydrogen-bonded to the glycerol and a small tail at large � ��
that extends to about 0.1 Å

<
. In contrast, the histogram for

benzene is broader, with a much smoother cutoff at low � ��
and a wider tail at large � �� . The average free volume for ben-
zene shifts towards higher values (see Table I). This reflects
the looser packing of the clathrate-forming water molecules
around the hydrophobic benzene molecule. For methylac-
etate, the situation is intermediate between the glycerol and

(d) Boltzmann factor in the z=0 plane for benzene in a snapshot
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(c) Energy profile in the y=z=0 plane for benzene in a snapshot
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(b) Boltzmann factor in the z=0 plane for glycerol in a snapshot
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FIG. 1. Illustrations of the restriction of the motion of glycerol
(a, b) and benzene (c, d) in the field of the water molecules:
(a) One-dimensional energy profile in the plane y=z=0, for
displacements of the glycerol molecule along the x-axis. A
quadratic fit to the data illustrates the anharmonic behavior
of the energy. (b) Two-dimensional profile of the Boltzmann
factor !�"$#&% "��

�
H � N � N �eN S�PVU WYX�	
 (
for glycerol moving along x and

y in the plane z=0. (c) and (d) are the corresponding plots for
benzene.
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FIG. 2. Normalized probability distributions of free volume
for three solutes of similar size in water : Glycerol (green),
Methylacetate (blue) and Benzene (red). � �� data are binned in
10 Å

<
increments to generate the histograms.
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the benzene, because of the presence of both hydrophobic
(methyl) and hydrophilic (acetate) groups.

The average free volumes are computed as �� � ��z � z�  � � �� (where 4 = number of snapshots) with a stan-

dard deviation � b � � f ��b �z � z�  � b � �� "��� �
f k f ���Yk

, as sum-
marized in Table I. For each solute considered in this study,
the free volume is very small compared to the size of the so-
lute itself, because it corresponds to the volume defined by the
movement of the center of mass of the solute molecule. The
large standard deviations could be thought to arise from using
a limited number of steps in the simulations. However, the
histograms after 400 ps and 800 ps are very similar (data not
shown), indicating that these deviations are a reflection of the
local variations in density in the liquid state. Moreover, in the
next section we perform similar calculations for pure water,
for which we observe the same phenomenon.

In Table I we also report free volumes ��� N l � calculated
with potential energy profiles averaged over all the snapshots.
These calculations systematically underestimate the average
free volume. Two problems contribute to this effect, as seen
on Fig. 1: (1) the energy profile of the different snapshot
are not necessarily centered on the equilibrium position of
the solute molecule, due to the kinetic terms; (2) since at the
edges the energy rises very rapidly, energy averages are highly
weighted in favor of the small volumes. Therefore we will use�� � instead of � � N l � to calculate the translational entropies.

B The case of pure water

CM calculations for pure water require a slight adaptation
of Eq. 6. In this case, the solute itself is a water molecule
(denoted by ’ � ’ in the following), and the assumption (used
to write Eq. 2) that the solutes do not interact with each other
(ideal solution) is violated. Therefore, we need to take these
interactions into account in the potential term of the Hamilto-
nian. The derivation in the appendix leads to the free volume
of a specific water molecule (labeled ’ � ’)

� � N 5	� � >
����
@ B�
 j �
HKP U � N S�P
� U��� U � WTX ZM\ _ � (10)

and the translational entropy of the whole water box is

� -0/O1�35 N �'� �qp bm4 5 rts ��� N 5� <5 � �
� 4 5 f (11)

The energy profiles of Fig. 1 (glycerol or benzene in water)
and Fig. 3 (pure water) reveal that the range of motion of the
center of mass of a molecule of glycerol or benzene in water is
similar to that of a water molecule (less than 1 Å in each direc-
tion). This feature is not necessarily intuitive, considering the
difference of size between these solutes and water. It empha-
sizes once more that restriction of motion of the center of mass
of the molecule depends on the interactions of the molecule
with its neighbors more than on the size of the molecule itself.

(b) Boltzmann factor in the x=0 plane for water #30 in a snapshot
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(a) Energy profile in the x=y=0 plane for water #30 in a snapshot
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FIG. 3. Illustrations of the restriction of the motion of a wa-
ter molecule in the field of the other molecules: (a) One-
dimensional energy profile in the plane y=z=0, for displace-
ments of a water molecule (number ����� ) along the x-axis.
A quadratic fit to the data illustrates the anharmonic behavior
of the energy. (b) Two-dimensional profile of the Boltzmann

factor !�" # % " �
��� � � N � � N � � N STP U��� U � WTXk �&
 (

in the plane z=0, for the
same water molecule.

Nevertheless, motion of a bigger molecule requires a coordi-
nated displacement between more water molecules, which is
less probable and therefore likely to reduce the free volume,
as will be shown later in this study.

As in the previous section, we calculated the free volume
for each snapshot, ��� N 5 � and report in Fig. 4 the distribution
of ��� N 5	� for 4 different water molecules (labeled w1, w2, w3
and w4, respectively). The histograms for w1, w2 and w3
were calculated from the 800 ps simulation that used adjust-
ment of the kinetic energy [23] to maintain the temperature
at 300K, whereas that for w4 was calculated from a separate,
independent 800 ps simulation that used a Nose-Hoover ther-
mostat [24, 25].

The peak of Fig. 3br (pure water) is larger than that of
Fig. 1b (glycerol in water) but narrower than that of Fig. 1d
(benzene in water), which is again consistent with the ranking
of the polar surface areas of glycerol, water and benzene (see
Table I).

All four histograms in Fig. 4 have similar widths and are
skewed to the right (i.e., tail at larger values of � �� ). The sharp
cutoff at low � �� corresponds to densely packed regions and
the tail at high � �� to low-density regions. As in the previous
section, the width of the distribution reflects the local density
variations in liquid water [27].

The average value of the free volume from the combination
of these four histograms is 0.099 Å

<
, with a standard deviation

of 0.088 Å
<
. With this value, the translational entropy of water
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Table I. Comparison of free volumes (in Å
<
) for various solutes in water, for a molecule of pure water, and for benzene in the

TCM T4-lysozyme. �� � is the average free volume over all snapshots and � b � � f its standard deviation. � � N l � is the free volume
calculated after averaging the potential, as explained in the text. ASA



and ASA � are the total accessible surface area and the

polar accessible surface area of the molecule, respectively.

Molecule i ASA � [Å
�
] ASA � [Å

�
] ��� [Å

�
]

(by decreasing size) � �	� 
�� �� ��
���� � ���
4-methly, 1-hydroxyl naphthalene 322.8 47.17 0.035 0.053 
 0.030

naphthylhydroquinone 314.4 94.71 0.021 0.030 
 0.013
naphthylquinone 312.8 90.96 0.032 0.049 
 0.024

naphthalene 286.7 0.000 0.066 0.146 
 0.084
quinone 255.5 102.2 0.035 0.059 
 0.031
glycerol 238.2 154.6 0.024 0.030 
 0.013
benzene 225.0 0.000 0.101 0.245 
 0.147

methylacetate 218.8 64.46 0.070 0.120 
 0.059
methanol 148.9 61.54 0.078 0.129 
 0.073

pure water 113.1 113.1 0.049 0.099 
 0.088

benzene in TCM T4-Lysozyme 0.053 0.095 
 0.036
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FIG. 4. Normalized probability distributions of free volumes
for 4 different water molecules, calculated for snapshots taken
every 2 ps during the 800 ps simulation. � �� data are binned in
10 Å

<
increments to generate the histograms.

is � -m/21�35 N �'� � 0 . /���� )�.�� ( @ . 1'. (the error on the entropy is given

by � b � f ��,��
H %�� X�%�� ). The ST estimate (Eq. 5) at the density

of liquid water, gives � -m/21�35 N 
 
 � � � . �
@
. 1'. . To compare the

CM and ST estimates with the experimental value of the total
entropy of liquid water at 298 K [28] :

� - 2 - # 35 N � �"! � ) ( .�� @ . 1'.
we need to estimate the rotational entropy of water ( � / 2 -5 ), as-
suming that the vibrational and other contributions are com-
paratively small at this temperature [29]. We can approxi-
mately determine lower and higher bounds of � / 2 -5 from the
entropy of melting and from gas-phase values, respectively.
The experimental value [28] of the entropy of melting of ice
to water is � l$# 3 - N k&% < 6 � � . ��� 0

@
. 1'. . Corrected to 298K us-

ing the heat capacity ( 	�' ) of ice : � l$# 3 - N k&(&) 6 � ( . 0
� �
@
. 1�. .

Assuming the two main contributions to � l$# 3 - N k&(&) 6 are the
rotational and communal entropies [30], we obtain a value for
the rotational contribution to the entropy � / 2 -5 of * . 0 �

@
. 1'. .

This value is in reality the difference between the rotational
entropy in water and the librational entropy in ice and should
thus be considered a lower limit (i.e., � / 2 -5 N k	(&) 6 + * . 0 �

@
. 1'. ).

The gas-phase rotational entropy for water [14] gives the up-
per limit ( �./ 2 -5 N k&(	) 6 , ) � . * @ . 1'. ). Adding these rotational en-
tropy bounds to the CM estimate ( �.-0/21�35 N ��� � 0 . /��

@
. 1'. ), the

limiting values of the total entropy are:

) � . � � @ . 1'. , � - 2 - # 35 N -/. , ) 0 . * @ . 1'.
The same procedure with the ST estimate ( �.-0/21�35 N 
 
 � � � . �

@
. 1�. )

leads to

��� .�� �
@
. 1'. , � - 2 - # 35 N 021 , ��� . 0

@
. 1'.

These limiting values are compared with the experimental in-
formation in Table II.

The CM and ST estimates can also be compared to the ex-
perimental entropy of vaporization [28], at a standard state of
1 atm and 298K :

��� - 2 - # 3% # ' N � �"! � � 0 . � /
@
. 1'.

We assume the main contributions to the entropy of va-
porization are translational ( ��� -m/21�3%&# ' � � -0/O1�3� # 1 "?� -m/21�33 �43 �
, rts
b � � N � # 1 { � � N 3 �43

f
) and rotational ( ��� / 2 -%&# ' � � / 2 -� # 1 " � / 2 -3 �43 )

and use the same approximations as before for the rotational
contributions: * . 0 �

@
. 1�. , � / 2 -3 �43 , ) � . * @ . 1'.I� � / 2 -� # 1 . For

the translational contribution, � -m/21�3� # 1 can be estimated from
Eq. 5 (with 7 { 4 � � � N � # 1 � � * d&*���� � g < { g6587 , at 1 atm
and 298 K). Using the CM model, �.-0/21�33 �43 can be estimated

from Eq. 7 ( � � � � . ��/�/ Å
< { g6587

@ � 1"7 @ ), which leads to
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��� -0/21�3% # ' N ��� � � )�. � � @ . 1'. Using the ST model, � -m/21�33 � 3 can be
estimated from Eq. 5, at the density of liquid water, which
leads to ��� -m/21�3%&# ' N 
 
 � ) * . � � @ . 1'. .

Combining the rotational and translational estimates, we
get limiting values of the total entropy of vaporization for the
CM model:

� )�. � � @ . 1'. , ��� - 2 - # 3%&# ' N -/. , ��( . � �
@
. 1'.

and for the ST model:

) * . � � @ . 1'. , ��� - 2 - # 3% # ' N 021 , � � .t) ( @ . 1'.
The comparison between these values and the experimental
one is summarized in Table II.

This study reveals that CM provides a much better approx-
imation of the translational entropy of water than ST. This is
not very surprising, considering that ST is derived from ideal
gas statistical mechanics, neglecting the interactions between
molecules, whereas CM takes the intermolecular interaction
explicitely into account in calculating the free volume, as seen
in Eq. 7.

Table II. Comparison of the experimental values (EXP) with
our Cell Model (CM) and with the Sackur-Tetrode (ST) es-
timates. � - 2 - # 35 is the entropy of liquid water at 298K and��� - 2 - # 3% # ' is the entropy of vaporization of water at 298K. The
arrows indicate boundaries calculated as explained in the text.
Values are in entropic units (e.u. = � # 3l32 3 6 ).

ST CM EXP� � � � � �� 25.15 � 30.8 13.75 � 18.4 16.7��� � � � � ������ 14.27 � 20.16 21.02 � 26.57 28.29

Some of the discrepancies between CM and the experimen-
tal values might be a consequence of the assumption that each
cell is occupied by one molecule. This overlooks the regions
of low density that exist locally in water, as indicated by the
tail on the histogram of Fig. 4. Some modifications of CM,
notably the hole theories, take into account the possibility of
unoccupied cells, but these lead to many practical complica-
tions without significantly improving the results [14, 30].

C Benzene binding to the TCM T4-lysozyme

As mentioned above, the TCM T4-lysozyme was designed
to accomodate a benzene molecule in a cavity created by three
mutations : L99A, C54T and C97A.

1 Normal Mode Analysis

Fig. 5 presents the energy profile for small displacements of
the benzene molecule in the cavity of the TCM T4-lysozyme,
along each of the ten lowest-frequency modes. Modes 1 to 6

exhibit frequencies about 4 times lower than the next modes
and their energy profile has a relatively flat minimum corre-
sponding to anharmonic translational/rotational motions (sim-
ilar to a particle-in-a-box motion). Modes 7 to 10 correspond
to low frequency internal modes, with a clear harmonic be-
havior. This analysis shows that the motion of the benzene
within the binding site of the TCM T4-lysozyme can be best
described as a combination of translations.

0
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74
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FIG. 5. Energy profile along the ten lowest-frequency modes.
The frequency of each mode (in � g B �

) is listed in the fig-
ure. Modes 1 to 6 (51 to 148 � g B �

) exhibit a relatively
flat energy minimum corresponding to translations/rotations,
whereas modes 7 to 10 (434 to 683 � g B �

) correspond to
higher frequency harmonic motions.

2 Free volume

Fig. 6 shows a histogram of the free volume of benzene in
the hydrophobic cavity of TCM T4-lysozyme. A comparison
of Fig. 6 and Fig. 2 indicates that the average free volume
of benzene in the TCM T4-lysozyme is much smaller than
that of benzene in water (see Table I). Moreover, the general
shape of the histogram in Fig. 6 is similar to that of glycerol
in water. This reflects the tight encapsulation of the benzene
by the hydrophobic cavity as well as the higher density of the
protein interior (about 1.4 times that of water [31]).

Simple concentration estimates (such as the “cratic
entropy”[2, 12, 32]) as well as gas phase estimates (Sackur-
Tetrode equation) would disregard the difference in free vol-
ume between benzene in water and benzene in the TCM T4-
lysozyme, as mentioned in the section II B. Using Eq. 8 and
considering that the free volume of the TCM T4-lysozyme is
similar to that of the complex, we get � �.-0/O1�3�'� � "�)G)�.�� 0 @ . 1'. .

Hermans and Wang [20] estimated the rms displacements
of the benzene in the binding pocket using MD simulations
and obtained a value of 0.13 Å for the motion perpendicular
to the benzene ring, and 0.3 Å in two orthogonal directions in
the plane of the ring, which corresponds to a volume of about
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FIG. 6. Normalized probability distributions of free volume
for benzene in TCM T4-lysozyme. � �� data are binned in 10
Å
<

increments to generate the histogram.

� . �)(�� � . (�� � . ( � � . ��/
� ( Å
<
, in excellent agreement with

our free volume calculations.

D Parameterization

The results obtained for the free volumes shown in Fig. 2
suggest some degree of correlation between the free volume
and the hydrogen-bonding ability or polarity of the solute.
To quantify this, we calculated the total (ASA



) and polar

(ASA � ) surface area of each solute listed in Table I (including
the case of pure water), using an algorithm originally devel-
opped by Lee and Richards [33]. The free volume calculated
with the cell model ( �

���
� ) was fitted to a linear combination

of polar and total surface areas of the molecule :

� � � -� ��� ����� � �
	 ����� 
 � �
with good agreement (Fig. 7). The value of the fitting param-
eters are :

� � "�)�.t) 0 ) � B < ˚
� 	 �~" * .�� 0 ) � B�� ˚

� � � � . � / �)0 ˚
� <

This indicates that for the range of solutes considered in this
study, the maximum free volume is c=0.2978 Å

<
. It also in-

dicates that the free volume of a molecule is more influenced
by its polarity than by its size (i.e. ��
�	 ). This correlation
applies to molecules with ASA



smaller than about 600 Å

k
.

Larger molecules, including proteins, are expected to have a
free volume of approximately 0.03 Å

<
or smaller.

Even though more data on several other solutes are neces-
sary to establish this correlation more precisely, this promis-
ing result opens the possibility to obtain estimates of the trans-
lational entropy of a solute in water bypassing the molecular
dynamics simulations.
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FIG. 7. Free volume calculated with the Cell Model ( �
���
� )

vs. free volume calculated from a correlation with total and
polar surface areas ( � � � -� ) for the various solutes used in this
study as well as for pure water. The perfect fit is given by the
line ( �

�'�
� � � � � -� ).

IV. SUMMARY AND CONCLUSION

Theoretical estimation of the loss of entropy upon molec-
ular association ( ��� ) is essential for rationalizing binding
affinities as well as predicting entropic contribution to enzyme
catalysis [1–9]. The main difficulty in estimating ��� from
first principles resides in the intricacy of the intermolecular
interactions in solution.

In this study we developed and analysed a framework,
based on cell models (CM) of liquids, to evaluate the loss of
translational entropy ��� -0/21�3 [2]. The CM, as implemented in
this study, takes the intermolecular potential explicitly into ac-
count using information gathered during molecular dynamics
(MD) simulations in solution. In the CM framework, the en-
tropy of a solute in solution is related to the volume in which
the center of mass is allowed to move without the molecule
colliding with the neighboring, fixed, water molecules. This
so-called “free volume” was calculated for various solutes in
water, as well as for pure water.

The estimated free volume seems to vary significantly from
compound to compound (Table I), ranging from 0.029 Å

<
(for

naphthylhydroxyquinone) to 0.245 Å
<

(for benzene). We ob-
served a correlation between this free volume and a linear
combination of the total and polar surface area of the solute,
suggesting that the free volume (and therefore the transla-
tional entropy) of a molecule can be estimated based solely
on its surface area (total and polar), without having to carry
out costly MD simulations.

The Sackur-Tetrode (ST) equation, based on gas-phase sta-
tistical mechanics, is sometimes used for proteins to cir-
cumvent the difficulties of liquid-state statistical mechanics
[3, 13]. The CM predictions for pure water agree with the
experimental data, much better than the ST equation, suggest-
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ing that CM rather than ST should be used to estimate the
translational entropy loss in solution. We also applied the CM
to the estimation of ��� -0/21�3 upon binding of benzene to the
TCM T4-lysozyme. The results are in excellent agreement
with previous estimates [20], demonstrating the applicability
of the CM.

The CM also provides a theoretical explanation of the sim-
ple concentration estimates based on the “cratic entropy”
[12, 32]: these neglect the difference in free volume be-
tween a ligand in water and a ligand in the binding site.
For the case of benzene binding to the TCM T4-lysozyme
( ��� N � ������������� �
	���
���� � � . � * � Å < ; ��� N � ������������� �
� ������������� �
� . ��/ � Å < ), this leads to an error in the entropy of approxi-
mately )�. 0�0 @ . 1'. .

We therefore propose the CM as a simple method to eval-
uate the loss of translational entropy upon molecular associ-
ation. An extension of this model for the other components
(e.g., rotational) of this entropy loss will be considered in a
future publication.
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APPENDIX A: PARTICULAR CASE : PURE WATER

This appendix contains derivations for the calculation of the
free volume and translational entropy of pure water, which can
be considered a particular case of a solute ' in water, in which
the solute itself is a water molecule. However, as mentioned in
the text, in this case the assumption (used to write Eq. 2) that
the “solutes” do not interact with each other (ideal solution)
cannot be used. Therefore, two modifications are necessary:
1) take these interactions into account in the potential term of
the Hamiltonian and 2) use the partition function of the systemn 5 instead of the partition function of one molecule 9 5 (used
in Eq. 2). For 4 5 molecules of water in a volume 7 at a
temperature 8 , the translational entropy of water is given by
(cf. Eq. 3):

� -0/21�35 � p b0rtsIn 5h�$8vu rts�n 5u 8 w x
f

(A1)

where the partition function of the whole system is

n�5#� ); < z � 4 5 }
>?> @ BEDGF HtJCU N PVU X ZC[ _ ZG\ _

(A2)

and the Hamiltonian:

i�b [ _ d \ _If �
[ _ k
� g & � acb \ _�f (A3)

Integration of Eq. A2 over the momenta yields

n � )� < z �5 465 } � (A4)

Where
� 5 � ; { � ��� g 5 p 8 is the De Broglie wavelength of

a water molecule [14] and we introduced the configurational
integral Z:

� � >A@ B=D � HtPVU X ZM\ _
(A5)

By analogy with the gas phase entropy, we write the liquid
entropy as

� -0/O1�35 N 3 �43 �qp bm4 5 rts ��� N 5� <5 � �
� 4 5 f (A6)

This defines the free volume as

� � bm4 ��� f z � >
� . . .

>
z
@CB=D � HKP �

4 4 4
P
� X�ZM\ ! . . . ZG\ " (A7)

Dividing the space in 4 5 cells for each of the integrals: # �# �%$ � . . .+� # � ��� , with one water molecule in each cell.

� � � ��

&$  �%$

. . .
� ��


 �  �%$
>

&$ . . .

>

 �

@CBED��
H'�
4 4 4
P ��X
ZM\ ! . . . ZG\ "

(A8)
As there are 4 z ways to place N molecules into N cells, we
get

� �q4 z >
�%$ . . .

>
� �
@ BED��
HKP(�

4 4 4
P ��X ZM\ ! . . . ZG\ " (A9)

Assuming pairwise additivity of the potential:

a�b \ ! . . . \ " f � )� z�
�  �

z�)  � a �
) b \+* d \ ,Of (A10)

To reduce the N-dimensional integral to one dimension, we
consider that each molecule is moving in the mean field cre-
ated by the others. Therefore we are reduced to the evaluation
of the integral for one given water molecule (labeled ’ � ’) lo-
cated in the cell ’ ��- ’

� � bm4 ��� f z �q4 z b > � �
@CB 
 j �
HKP � N S�P/. P � WYX�ZM\ - f " (A11)

which gives the free volume of a water molecule:

� � N 5 � � >
� �
@CB 
 j �
HKP � N STP/. P � WTX
ZM\ - (A12)
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(8) Villà, J., Strajbl, M., Glennon, T. M., Sham, Y. Y., Chu,
Z. T., and Warshel, A. How important are entropic con-
tributions to enzyme catalysis ? Proc. Natl. Acad. Sci.
USA 97(22):11899–11904, 2000.

(9) Luo, H. and Sharp, K. On the calculation of absolute
macromolecular binding energies. Proc. Natl. Acad. Sci.
USA 99(16):10399–10404, 2002.

(10) Steinberg, I. Z. and Scheraga, H. A. Entropy changes
accompanying association reactions of proteins. J. Biol.
Chem. 238(1):172–181, 1963.

(11) Janin, J. For Guldberg and Waage, with love and cratic
entropy. Proteins 24:i–ii, 1996.

(12) Janin, J. Elusive affinities. Proteins 21:30–39, 1995.
(13) Finkelstein, A. V. and Janin, J. The price of lost freedom:

Entropy of bimolecular complex formation. Protein En-
gineering 3(1):1–3, 1989.

(14) Hill, T. L. An introduction to statistical thermodynamics.
Dover Publications Inc., New York, 1960.

(15) Hirschfelder, J. O., Stevenson, D., and Eyring, H. A
theory of liquid structure. J. Chem. Phys. 57:896–912,
1937.

(16) Yu, Y. B., Privalov, P. L., and Hodges, R. S. Contribu-
tion of translational and rotational motions to molecular
association in aqueous solution. Biophys. J. 81(3):1632–
1642, 2001.

(17) Eyring, H. and Hirschfelder, J. O. The theory of the liq-
uid state. J. Chem. Phys. 41:249–257, 1937.

(18) Kirkwood, J. G. Critique of the free volume of the liquid

state. J. Chem. Phys. 18(3):380–382, 1950.
(19) Luo, R. and Gilson, M. K. Synthetic adenine receptors:

Direct calculation of binding affinity and entropy. J. Am.
Chem. Soc. 122(12):2934–2937, 2000.

(20) Hermans, J. and Wang, L. Inclusion of loss of trans-
lational and rotational freedom in theoretical estimates
of free energies of binding. Application to a complex of
benzene and mutant T4 lysozyme. J. Am. Chem. Soc.
119:2707–2714, 1997.

(21) Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States,
D. J., Swaminathan, S., and Karplus, M. CHARMm - a
program for macromolecular energy, minimization, and
dynamics calculations. J. Comput. Chem. 4(2):187–217,
1983.

(22) Ryckaert, J. P., Cicotti, G., and Berendsen, H. J. C. Nu-
merical integration of Cartesian equations of motion of
a system with constraints: Molecular dynamics of � -
alkanes. J. Comput. Phys. 23:327–341, 1977.

(23) Berendsen, H. J. C., Postma, J. P. M., VanGunsteren,
W. F., Dinola, A., and Haak, J. R. Molecular-dynamics
with coupling to an external bath. J. Chem. Phys.
81(8):3684–3690, 1984.

(24) Hoover, W. G. Canonical dynamics - Equilibrium phase-
space distributions. Phys. Rev. A 31(3):1695–1697,
1985.

(25) Nose, S. A unified formulation of the constant tem-
perature molecular-dynamics methods. J. Chem. Phys.
81(1):511–519, 1984.

(26) Eriksson, A. E., Baase, W. A., Wozniak, J. A., and
Matthews, B. W. A cavity-containing mutant of T4
lysozyme is stabilized by buried benzene. Nature
355(6358):371–373, 1992.

(27) Eisenberg, D. and Kauzman, W. The structure and prop-
erties of water. Oxford University Press, London, 1969.

(28) Cox, J. D., Wagman, D. D., and Medvedev, V. A. CO-
DATA Key Values for Thermodynamics. Hemisphere
Publishing Corp., New York, 1989.

(29) Dunitz, J. D. The entropic cost of bound water in crystals
and biomolecules. Science 264(5159):670–670, 1994.

(30) Hirschfelder, J. O., Curtiss, C. F., and Bird, R. Molecular
theory of gases and liquids. John Wiley and Sons Inc.,
New York, 1964.

(31) Richards, F. M. The interpretation of protein structures:
Total volume, group volume distributions and packing
density. J. Mol. Biol. 82(1):1–14, 1974.

(32) Murphy, K. P., Xie, D., Thompson, K. S., Amzel, L. M.,
and Freire, E. Entropy in biological processes: Estima-
tion of translational entropy loss. Proteins 18(1):63–67,
1994.

(33) Lee, B. and Richards, F. M. The interpretation of pro-
tein structures: Estimation of static accessibility. J. Mol.
Biol. 55(3):379–400, 1971.


