

PERFORMANCE OF NEW WAVEFORMS AND NON UNIFORMS CONSTELLATION APPLIED TO DVB-T2 TRANSMISSIONS

SYSTEM IMPLEMENTED, METHOD AND PARAMETERS

System implemented			Simulation parameters				Fading channel, method		
	FBMC and UFMC waveforms	Parameters	OFDM	UFMC	FBMC	Typical	Urban	6	
NUCs substitution	substitution	M	1024/32768	1024/32768	1024 <mark>32768</mark>	channel	is the chai	nnel	

Data sub-carriers	853 <mark>27841</mark>	936/ <mark>29952</mark>	1024/32768	Which emulates DVB-
QAM	256-QAM	256-QAM	256-QAM	and includes only a
Code rate	<mark>3/</mark> 5, 1/2	<mark>3/5</mark> , 1/2	3/5, 1/2	Non Line of Sight
Cyclic prefix	1/128 1/16			(NLOS) path.
Overlapping factor			4	The BER after QAM
Filter length		K*CP=64 256	K*2M=8192/262142	demapper and Low-
Sub-band number		4/128		Density Parity Check
Sub-band bandwidth		234		(LDPC) have been
Side Lobe Level		40 60dB		computed

SIMULATION RESULTS AND DISCUSSIONS

BER after LDPC decoder (UFMC, FBMC and OFDM)

BER after LDPC decoder (UFMC/NUCs and OFDM/QAM)

DISCUSSIONS							
UFMC/QAM	CR	BER	10-2	3.10^{-3}	2.10^{-3}	10-3	
vs	1/2	Gain[dB]	0.2	0.7	0.6	1.2	
OFDM/QAM	3/5	Gain[dB]	0.2	0.8	0.8	1.2	
UFMC/NUCs	CR	BER	10^{-2}	3.10^{-3}	2.10^{-3}	10^{-3}	
vs	1/2	Gain[dB]	0.9	1.2	0.6	-1.5	
OFDM/QAM	3/5	Gain[dB]	0.7	1.2	1	1	

Dica

Sight

Both FBMC and UFMC are suitable for DVB-T2

 \Box UFMC gain: 1.2dB at BER=10⁻³, spectral efficiency: 128%, equal complexity

 \Box FBMC gain: 1 dB at BER=10⁻³, spectral efficiency: 133%, complexity equal to two time OFDM complexity

 \Box UFMC/NUCs gain: 1.2dB at BER=3.10⁻³

CONCLUSIONS

From all the results obtained, UFMC is chosen as the compromise between the complexity, the spectral efficiency and the SNR performance gain. This waveform has been combined jointly with NUCs in order to obtain the maximum reachable gain in DVB-T2 using these techniques. One can conclude that these techniques allow DVB-T2 system to be closer to the Shannon capacity limit.

REFERENCES

[1] A-C Honfoga, T. T. Nguyen, M. Dossou and V. Moeyaert, "Application of FBMC to DVB-T2: a comparison vs classical OFDM transmissions," IEEE GlobalSIP conference, 2019. [2] A-C. Honfoga, M. Dossou, P. Dassi, V. Moeyaert, "Filtered based UFMC waveform applied on joint DVB-T2/NUC system", EAI AFRICOMM – 12th EAI International Conference on e-Infrastructure and e-Services for Developing Countries, 2020. [3] European Broadcasting Union, "Digital Video Broadcasting (DVB); implementation guidelines for a second generation digital terrestrial television broadcasting system (DVB-T2)," ETSI TS 102 831 V1.2.1, 2012.

Université de Mons

Anne-Carole HONFOGA (anne-carole.honfoga@umons.ac.be)