
An Ecosystemic and Socio-Technical View
on Software Maintenance and Evolution

(Invited Paper)

Tom Mens

Software Engineering Lab, COMPLEXYS and INFORTECH Research Institutes

University of Mons, Belgium

Email: tom.mens@umons.ac.be

Abstract—In this invited paper I focus on the difficulties
of maintaining and evolving software systems that are part
of a larger ecosystem. While not every software system falls
under this category, software ecosystems are becoming ubiquitous
due to the omnipresence of open source software. I present
several challenges that arise during maintenance and evolution
of software ecosystems, and I argue how some of these challenges
should be addressed by adopting a socio-technical view and
by relying on a multidisciplinary and mixed methods research
approach. My arguments are accompanied by an extensive,
though unavoidably incomplete, set of references to the state-
of-the-art research in this domain.

Keywords-software ecosystem; socio-technical network; inter-
disciplinary research; mixed methods research; collaborative
software engineering; empirical software engineering

I. INTRODUCTION

This paper presents some insights I have gained through the

empirical research that I have been conducting on software

ecosystems maintenance in the context of an interdisciplinary

project ECOS (“Ecological Studies of Open Source Software

Ecosystems”, 2012-2017), as well as through some recent

results that have been reported by other researchers in the

domain of software ecosystem evolution.

In 2015 we conducted a survey on the open challenges

in software ecosystem research [1]. Twenty-six respondents

(researchers active in the field) answered open questions

related to the current research, future trends, lack of tooling

and specific challenges that software ecosystem researchers are

confronted with. Focusing on software evolution specifically, I

will report on some of the identified challenges in more detail.

Many researchers have proposed different definitions of

software ecosystems. A software ecosystem is often studied

from a business perspective [2]. For example, Jansen et al. [3]

define a software ecosystem as “a set of businesses functioning

as a unit and interacting with a shared market for software

and services, together with the relationships among them.”

From the point of view of software evolution, however, a

more technical perspective seems more adequate. Lungu [4]

therefore defined a software ecosystem as “a collection of

software projects that are developed and evolve together in

the same environment”. Manikas [5] combined all these per-

spectives into a single encompassing definition of a software

ecosystem as “the interactions of a set of actors on top of a

common technological platform that results in a number of

software solutions or services. Each actor is motivated by a

set of interests or business models and connected to the rest

of the actors and the ecosystem as a whole with symbiotic

relationships, while the technological platform is structured

in a way that allows the involvement and contribution of the

different actors.” The latter definition will be adopted in this

article.

The remainder of this article is structured as follows.

Section II starts by presenting some well-known examples of

important problems that can arise during software ecosystem

evolution. Section III claims that, in order to understand

and cope with these problems, one needs to adopt a socio-

technical view of the ecosystem. Section IV justifies the use

of an interdisciplinary and mixed methods approach to analyse

software ecosystems and to propose solutions that facilitate

evolution and increase maintainability. Section V presents

what I believe to be the most important challenges in software

ecosystems research. Finally, Section VI concludes.

II. WHEN THINGS GO WRONG

Complicated and changing dependencies are a burden for

many developers [6], and are sometimes referred to as the

“dependency hell”. As will be illustrated by several examples

throughout this section, many large and very well-known

software ecosystems (e.g., CRAN, npm, Eclipse, Debian,

Gentoo and Gnome) have experienced important maintain-

ability problems at some point in their lifetime.

Through interviews conducted with contributors of the

CRAN ecosystem, we observed that developers are struggling

with backward-incompatible updates of packages they depend

on [7]. Bogart et al. explored similar problems related to

breaking changes through interviews with contributors of

Eclipse, CRAN and npm [8].

Some striking problems have been reported for the

JavaScript package ecosystem, and more specifically for the

packages of its runtime environment Node.js, managed by the

npm package manager [9]. Since its creation in 2009, npm
has grown very rapidly, hosting more than 240K packages in

August 2016. Some of these packages are required by many

other packages, sometimes in an extreme way. For example,

the package isarray1 essentially contains three lines of code:

1https://www.npmjs.com/package/isarray

2016 IEEE International Conference on Software Maintenance and Evolution

978-1-5090-3806-0/16 $31.00 © 2016 IEEE

DOI 10.1109/ICSME.2016.19

1

var toString = {}.toString;
module.exports = Array.isArray || function (arr) {
return toString.call(arr) == ’[object Array]’;
};

Yet, over 150 packages still depend on it (counted in August

2016). Related problems to dependencies have been criticized

by David Haney in his blog2. An even more severe example is

the package leftpad, which essentially contains a few lines of

source code but has thousands of dependent projects, including

Node and Babel. When its developer decided to unpublish

all his modules for npm, this had important consequences,

“almost breaking the internet”3.

The R ecosystem, a very popular and rapidly evolving

open source environment for statistical computing [10], relies

on a central gatekeeper system called CRAN4. It is steadily

growing and contains almost 9,000 packages (counted in

August 2016). It has been criticized of becoming too large

[11] and suffers from problems with its dependency manage-

ment system [12]. An additional difficulty arises due to the

increasing use of GitHub for distributing packages that are

not available on CRAN [13], [14]. Empirical studies confirm

these maintainability problems [15], and automated solutions

are being proposed.

Gentoo, one of the open source Linux distributions, is

another example of a popular ecosystem that has witnessed

important problems during its evolution history. Zanetti et

al. studied the social organisation structure, by analyzing

the collaboration structure and dynamics of Gentoo’s bug

tracking system over a period of ten years [16]. An increasing

centralisation towards a single central contributor, followed

by an unexpected departure of this contributor, caused a major

disruption in the community’s bug handling performance. This

case study reveals that, next to analyzing the technical aspects

of an ecosystem (such as its package dependencies), it is

equally important to address the social aspects.

The expectations, values, tooling and (versioning) policies

suggested or imposed by the community may differ signifi-

cantly from one ecosystem to another. In addition, ecosystem

contributors may not necessarily be fully aware of these

practices or do not properly adhere to them. For example, in

a study of the Maven Central Repository, Raemakers et al.

observed that the recommended semantic versioning policy5

is not always adhered to, causing many unintended breaking

changes [17]. A similar observation was made by Businge

et al. for Eclipse third-party plug-ins [18]. It is therefore

important to make the “community values and accepted trade-

offs explicit and transparent in order to resolve conflicts and

negotiate change-related costs” [8].

Yet, the degree to which a community is willing to cope

with maintainability issues and breaking changes is highly

ecosystem dependent. The Eclipse ecosystem, for example,

2http://www.haneycodes.net/npm-left-pad-have-we-forgotten-how-to-program/
3http://uk.businessinsider.com/npm-left-pad-controversy-explained-2016-3
4https://cran.r-project.org
5See http://semver.org for more details.

aims for long-term stability and preservation of backward

compatible changes. While imposing a significant burden

on its developers, this policy is supported by the Eclipse
API Tools component6 that reduces the chance of accidental

breaking changes. npm, on the other hand, does not have a

central gatekeeper and aims for rapid evolution. Its developers

“are less concerned about breaking changes as long as they

are signalled clearly through version numbering” [8]. Tools

like Greenkeeper7 help identify and reduce the impact of

breaking changes.

While solutions to analyse and reduce the impact of de-

pendencies and changes are often technical in the form of

automated tools, social solutions may be equally effective. For

example, de Souza et al. present several strategies through

which software developers manage dependencies in their

software projects [19]. One of these strategies consists of

giving specific team members the task of communicating and

synchronizing with external developers that provide software

components to the team.

A challenge of a different nature is how to perform a major

upgrade or migration of the software ecosystem itself, while

limiting the negative impact of such a major disturbance of

the ecosystem. A possible strategy would be to have both

versions of the ecosystem co-exist during the migration (as is

the case with Python 3.0, the first ever intentionally backwards

incompatible Python release that continues to co-exist with

Python 2 until 2020 8). Sometimes, however, major upgrades

may cause disillusions in the ecosystem community. This was

the case for the Gnome 3 Linux desktop environment (a

replacement of Gnome 2) that caused many Linux users to

stop using Gnome and choose Xfce as an alternative9.

III. A SOCIO-TECHNICAL VIEWPOINT

From the case studies presented in Section II it should

be clear that providing proper automated support for the

maintainability of software ecosystems is not trivial, and needs

to consider both the technical and the social dimension. To

fully understand the dynamics of a software ecosystem, one

should therefore consider a software ecosystem as a kind of

socio-technical network, which is a graph structure featuring

two types of nodes: the contributors (people) to the ecosystem,

and the technical artefacts (e.g., software packages, documen-

tation, bug reports, patches) produced by these contributors.

Such a graph will have dependencies between all types of

nodes: contributors will communicate or collaborate with other

contributors, technical artefacts may depend on each other, and

contributors will produce or modify technical artefacts.

Socio-technical congruence

As early as 1968 already, Melvin Conway [20] hypothe-

sized that “Any organization that designs a system (defined

broadly) will produce a design whose structure is a copy

6http://www.eclipse.org/pde/pde-api-tools/
7https://greenkeeper.io
8http://python3porting.com/strategies.html
9http://www.pcworld.com/article/2691192

2

of the organization’s communication structure.”10 Cataldo et

al. introduced the concept of socio-technical congruence to

reflect the alignment between the technical dependencies and

the social coordination in a project [21]. In a company setting,

they investigated its impact on developer productivity [21] and

failure-proneness of the software system [22]. Kwan et al.

[23] analyzed its effect on software build success. McCormack

et al. introduced the term mirroring hypothesis to reflect the

socio-technical alignment, and also found empirical evidence

for software developed by individual companies [24]. How-

ever, together with [25] they also observed that collaborative

open source software projects appear to follow an approach

that is more modular and decoupled from the organisational

structure. One of the reasons for this seems to be that “digital

technologies make possible new modes of coordination that

enable groups to deviate from classical mirroring as seen

within firms.” Further studies remain needed on whether or not

socio-technical congruence can be observed in collaborative

open source software ecosystems, and whether or not this is

beneficial in any way.

Socio-technical software development networks tend to have

a dual nature: techniques or tools that are defined or used

to understand or support the technical dependency network

often also make sense for the social dependency network, and

vice versa. Let me illustrate this by means of two concrete

examples.

Technical versus social debt

At the technical side, the notion of technical debt (coined by

Cunningham [26]) is a well-known concept advocated by the

agile development community. It can be defined as “a concept

in programming that reflects the extra development work that

arises when code that is easy to implement in the short run is

used instead of applying the best overall solution”. Software

refactoring techniques can be used to reduce the technical

debt. The SQALE quality model and method aims to manage

technical debt, and tool support is commonly available.11

Some ecosystems, like Eclipse, are more subject to technical

debt, because of their strong requirement to preserve backward

compatibility. This requirement is not always easy to reconcile

with the need to accommodate new changes rapidly.

The analogy with technical debt would be social debt. Tam-

burri et al. define it as the “unforeseen project cost con-

nected to sub-optimal organisational-social structures” [27].

In a company setting, they identified a set of community
smells, or socio-technical anti-patterns that may be indicators

of social debt. Examples are the lack of communication

between teams, egocentric or unresponsive team members,

and problems related to differences in culture or experience.

Just like refactoring techniques help in reducing the technical

debt, reorganisations in the social and organisational structure

would help in reducing the social debt. It should, however,

10Quote taken from http://www.melconway.com/Home/Conways Law.html
11See www.sqale.org. SQALE is implemented as a plug-in of SonarQube.

be clear that social debt and technical debt cannot be seen in

isolation. Due to the intricate socio-technical relationships, and

the possible presence of a socio-technical congruence, social

debt is likely to have an impact on technical debt and vice

versa.

Social debt not only arises in individual software projects, but

also in software ecosystems. The types of smells that may be

indicators of social debt are likely to be different for such

highly collaborative systems. For example, the Gentoo case

mentioned in Section II witnessed an increased reliance on a

single central contributor, combined with a “disruptive social

environment” and “increased bureaucracy” [16].

Social versus technical bus factor

The so-called bus factor (a.k.a. truck factor) is a well-

known, but understudied, concept in collaborative software

development. It refers to the number of team members that

need to be “run over by a bus” before the project gets in

trouble. In extreme cases, the loss of a single key person

may lead to serious problems, as was illustrated in Section II

for the Gentoo case [16]. Cosentino et al. proposed a tool

to automatically measure the bus factor of projects stored in

Git repositories [28]. Avelino et al. proposed and validated

a new way of measuring the bus factor [29]. The risks

related to developer turnover can be mitigated by resorting

to techniques such as pair programming and shared code

ownership. Rigby et al. proposed to identify successors (and

involve them as co-owners) to reduce the risk associated to

developer turnover [30]. They also presented a method to

predict the developer with the most related expertise as a suc-

cessor. Garcia et al. proposed a machine learning classifier for

measuring online contributor motivation to predict contributor

turnover [31].

The technical equivalent of the social bus factor phenomenon

would refer to serious problems in a project because of the

unexpected removal (getting “run over by a bus”) of technical

artefacts. Several cases of this were already presented in

Section II. For example, the removal of the package leftpad
from npm caused a massive amount of breaking dependencies.

Incidentally, the cause of this removal was another instance of

the social bus factor, since the owner of leftpad abandoned

npm after having removed all his packages.

IV. INTERDISCIPLINARY RESEARCH

Researchers have embraced the intrinsic socio-technical

nature of software ecosystems, and many empirical analyses

consider both the technical and social factors. These research

results often have an interdisciplinary nature, drawing inspira-

tion or using techniques originating from other domains.

Complex socio-technical networks

Several researchers have analyzed the presence and evo-

lution of complex network properties in the socio-technical

networks of software projects and ecosystems [32]–[35]. Such

properties appear to emerge as a side effect of the development

3

process, without any particular software design principle ex-

plicitly dictating their presence. Examples of such properties

are the presence of power law behavior, a scale-free network

topology12 and a small-world structure13. Myers and Concas

et al. have proposed models attempting to explain the process

leading to complex network properties [32], [34]. It still re-

mains an open challenge to come up with explanatory models

that most naturally resemble the collaborative development

process that one can observe in socio-technical networks of

software ecosystems.

Social network analysis (SNA) techniques [36] have been

used frequently to study open source software developer

communities [37], [38]. A well-known success story is the

use of SNA to improve prediction of software failures. For

example, Pinzger et al. [39] empirically investigated the effect

of developer contribution fragmentation on the number of post-

release failures. They applied so-called centrality measures
to the socio-technical network, and found that more central

modules are more failure-prone. The closeness centrality mea-

sure turned out to be the most significant for predicting the

number of post-release failures. Bird et al. [40] did something

similar, by combining technical network properties (which

software components have dependencies on others) with social

network properties (who has worked on which components

and how much). The reasoning behind this is that the social

and technical aspects interact to influence the quality of

the resulting software. The combined use of technical and

social properties was found to predict software failures more

accurately than when using each set of properties in isolation.

In a tutorial, Madey proposed to borrow techniques from

complex systems theory to study large-scale software devel-

opment [41]. This theory provides a scientific framework to

study problems that are difficult to solve and systems that

are hard to understand because the causes and effects are

not obviously related. In particular, he proposed to consider

a software (eco)system as a complex adaptive system, i.e., “a

system that exhibits behaviors arising from non-linear spatio-

temporal interactions among a large number of components

and subsystems.” Next to SNA, a wide portfolio of techniques

and associated tools could be used to study such systems:

dynamical systems theory, cellular automata and agent-based

simulation.

Ecological, economical and other statistical measures

Ecological modelling techniques have been proposed based

on an analogy between natural ecosystems and software

ecosystems. In [42] I explored this analogy in more detail.

Ecological measures have been proposed to study socio-

technical networks of software ecosystems. In ecological re-

search, a wide range of diversity metrics have been proposed to

measure the biodiversity of species belonging to the ecosys-

tem. Examples are Piélou’s index (a.k.a. species evenness),

12A distribution is considered scale-free if it appears the same whatever the
scale of the observation.

13This means that the average path length between any two nodes is very
small, and there is a large amount of clusters.

Shannon diversity (a.k.a. entropy), and Simpson’s diversity

index. I have provided an overview of these diversity indices

and their application to software ecosystems in [43]. Posnett

et al. [44] used the notion of relative entropy (a.k.a. Kullback-

Liebler divergence) to define and measure the attention focus

(of developers and software modules, respectively) and its

effect on defects found in modules. They observed that more

focused developers introduce fewer defects, while files that

receive narrowly focused activity are more likely to contain

defects than other files. Linguistic diversity in software projects

and the related risk of using a programming language was

explored by Vasilescu et al. [45]. The same authors also used

diversity measures to measure gender diversity and tenure
diversity in GitHub teams [46]. For gender diversity they

used the Blau index (a variant of the Simpson index); for

tenure diversity they relied on the coefficient of variation. They

observed that increased diversity was associated with greater

productivity. Unfortunately, however, women still remain un-

derrepresented in most open source software ecosystems.

Next to the use of diversity measures, econometric indices
(used to assess the inequalities in a distribution) have been

borrowed from research in economy to study socio-technical

characteristics of software ecosystems [47], [48]. As an exam-

ple, Vasilescu et al. defined a series of metrics based on the

Gini index to assess the degree of specialisation of projects

and contributors in the socio-technical network of the Gnome
software ecosystem [49]. Among many other results, they

observed the presence of two quite distinct subcommunities of

contributors (essentially, coders and translators), with different

activity patterns and different needs. This implies that, in order

to provide adequate tool support for an ecosystem community,

it is important to identify and support the specific needs of its

subcommunities. It could even be useful to provide person-

alized support for individual ecosystem contributors, based

on an automatic identification of their specific contributor

profiles (in terms of their specific activity, communication and

contribution patterns).

An example of a statistical technique that has been borrowed

from another scientific discipline is survival analysis [50]. It

originates from biomedical sciences where it is used to study

factors affecting the time to death of patients or laboratory

animals. More broadly, it is also widely used in social sciences

to analyse the time to event for a variety of events (such as

child birth, switching employment, marriage or divorce, etc.)

Survival analysis uses concepts like censoring to deal with

observations that suffer from incomplete information (such

as dropout of subjects during the study). In the context of

software ecosystems, Samoladas et al. applied this technique

to assess the expected duration of open source software

projects [51]. After partitioning projects by type or domain,

they used Kaplan-Meier estimations of the survival functions

to compare the survival of projects belonging to different

domains. They also observed that survivability increases as

projects become larger.

4

Natural language processing

Originating from the research domain of natural language

processing (NLP), an emerging technique for studying socio-

technical aspects of software ecosystems is the use of senti-
ment analysis [52]. Applying sentiment analysis techniques

to the domain of software ecosystems requires tuning the

tools and lexicons to this domain, in order to avoid producing

unreliable results [53]. In the context of Apache’s JIRA issue

tracking system, Ortu et al. observed that human affectiveness

(measured by the presence of positive or negative emotions)

has an impact on productivity (measured by the time required

to fix issues) [54]. In the context of the Gentoo ecosystem,

Garcia et al. analyzed the emotions of contributors to the

e-mail archives and bug tracker [31]. They observed that

contributors are more likely to become inactive when they

express strong positive or negative emotions in the bug tracker,

or when they deviate from the expected value of emotions

in the mailing list. Based on such observations, a Bayesian

classifier was proposed to predict the risk of contributors

leaving the project.

To summarize, since engineering of software ecosystems is

to a large extent a social activity, a combined focus on human

and software engineering aspects is required. This has spawned

a thriving new research area called collaborative software
engineering [55] or behavioral software engineering [56].

Analyzing and predicting how software ecosystems evolve

over time necessarily requires empirical studies that adopt

mixed methods research [57]. By involving theories from

other disciplines like sociology and psychology, and by com-

bining quantitative methods with qualitative ones (such as

user surveys and interviews), a mixed approach increases

confidence of the findings, by combining the strengths of the

complementary research methods used.

V. SOFTWARE ECOSYSTEM CHALLENGES REVISITED

This section revisits some of the challenges in software

ecosystems research previously identified [1]. In line with the

previous sections, we will mainly explore them from a socio-

technical viewpoint.

The main challenge for any software community resides

in how to design and structure its ecosystem in such a

way that it fosters a lively community, while at the same

time maintaining the quality, stability and reliability of the

ecosystem. We have observed in Section II that proposed

solutions tend to be very ecosystem-specific. They will depend

on the values and habits of its community members, but they

will also depend on the specific tools used by the community.

For example, the decision to choose GitHub as the main

repository hosting service will inevitably impact the way in

which developers collaborate. Indeed, GitHub favours (but

does not impose) a pull-based development process that comes

with its specific advantages and shortcomings [58], [59]. The

analysis of software development data mined from GitHub
repositories should also consider the many perils reported by

Kalliamvakou et al. [60].

In many cases, the boundaries of a software ecosystem

are ill-defined. Some ecosystems naturally emerge and grow

over time. This phenomenon was observed by Blincoe et al.

when studying GitHub-hosted projects [61]. They proposed a

method to identify ecosystems within GitHub based on the

technical dependencies across projects, and found that most

identified ecosystems were clustered around a single project.

In addition to this, these ecosystems tend to be interconnected.

Automated tool support to detect and support such “ad hoc”
emerging ecosystems is highly desirable. A better understand-

ing the socio-technical network of such ecosystems is also

required in order to understand how ecosystems emerge and

become more or less popular and successful over time.

One a software ecosystem has been established (or has

naturally emerged), the obvious next challenge resides in how
to evolve and maintain it. This challenge has been discussed at

length in previous sections of this paper. The focus was mainly

on managing breaking changes between dependent software

components belonging to the same ecosystem, but also on how

to migrate an ecosystem to a new major release.

Comparing software ecosystems in order to understand their

differences is a challenge that remains wide open. As observed

by Vasilescu et al. [49], such differences even arise between

different subcommunities of the same ecosystem. Being aware

of these differences can be valuable for all contributors of the

ecosystem. For researchers, it is important to study how the

specificities of each ecosystem affect its maintainability and

evolution.

Big data

From a research point of view, undoubtedly the most impor-

tant is the big data challenge [62]. Traditionally, this challenge

is broken up into four dimensions, commonly referred to as

the 4 V’s of big data: Volume, Variety, Veracity and Velocity.14

With respect to the first V, software ecosystems contain

a huge volume of data (often in the range of terabytes)

that is worthwhile to be analyzed. Because of this, software

ecosystem analysis faces similar issues as big data in many

other scientific domains.

Software ecosystem researchers also need to cope with the

variety or heterogeneity of data sources, that can be either

structured (e.g. programs), semi-structured (e.g. e-mails) or

unstructured (e.g. unformatted texts). Examples illustrating

the wide variety of data sources used include version control

repositories (containing the source code and other software

artefacts), issue trackers (containing bug reports, feature re-

quests and how they have been addressed), mailing lists

(capturing communication between members of the ecosys-

tem community, e.g. developers and users), Q&A websites

(answering questions raised by developers or users), Twitter

communication, surveys and interviews. Socha et al. even go

a step further by proposing wide-field ethnography, combining

data from a wide variety of sensors such as video recordings,

14www.ibmbigdatahub.com/infographic/four-vs-big-data

5

screen capture software, audio recordings, photographs and

field notes of software developers collaborating in situ [63].

The third big data dimension concerns its veracity. The

data that needs to be analyzed is often partially incomplete,

uncertain or inconsistent. For example, Bruntink reported on

a series of problems related to implausible, inconsistent or

missing data, which he encountered while analyzing Ohloh,

a large-scale on-line index and analytics platform for open

source projects [64]. Similar issues can be observed in other

data sources.

Velocity, the final V, is also an issue in some cases, with new

data appearing faster than can be processed. As an example,

new commits are made to GitHub several times every second.

This may be less of an issue for empirical studies, in which

the data is typically analyzed off-line. For automated tools that

support the activities of a software ecosystem community (e.g.

web-based dashboards), however, it may be important to rely

in the most recent data in order to make informed decisions.

Big data can also benefit from techniques such as deep
learning algorithms to open up new opportunities for improved

understanding of, and better support for, evolving software

ecosystems. A first step in the direction of deep learning

software repositories was proposed by White et al. [65].

Wang et al. applied deep learning for improved software

defect prediction [66], and Corley et al. used it for improving

developer effectiveness in feature location [67].

Privacy versus Reproducibility

Another very important issue is preserving privacy. Soft-

ware ecosystem data typically contains information about

contributors involved in the development and maintenance

of components of the ecosystem. Researchers are interested

in such data, for example to understand how the expertise

and work patterns of individual contributors may affect the

software ecosystem as a whole. Techniques such as identity

merging have been proposed to facilitate this analysis [68],

[69]. It is, however, imperative to preserve privacy of those

individuals. For example, in May 2016, a new EU directive

for the protection of personal data has been published, giving

citizens more control over of the use of their personal data.

Persons or organisations collecting and managing personal

information must protect it from misuse and must respect

certain rights of the data owners which are guaranteed by EU

law. Satisfying these laws can be quite challenging, since it

is technically possible to infer personal information (such as

gender, personality traits, and even beliefs and perceptions)

from data gathered from software ecosystems (such as e-mail

correspondence). Therefore, appropriate techniques need to be

developed and put into place to guarantee anonymity. Fung et

al. presented a survey of research results and future directions

in privacy-preserving data publishing [70]. Malik et al. pro-

vided an overview of privacy-preserving data mining tools and

techniques, and proposed future research directions [71].

It remains a challenge to reconcile the need to preserve

privacy with the needs of researchers to make their data and

results openly accessible to other researchers for reproducibil-
ity purposes [72], [73]. A directly related practical challenge is

the difficulty of sharing this data, since a variety of different

formats, tools, and operating systems are used, and because of

the storage problems due to the fact that we are dealing with

huge amounts of data. Partial solutions to these problems are

being proposed by the research community, such as the use

of Docker containers [74] or dedicated experimental software

engineering research workbenches such as TraceLab [75].

VI. CONCLUSION

In this paper, I explored the active research domain of

software ecosystems, and in particular the challenges of

their maintenance and evolution. Typical problems relate to

breaking software components due to backward incompatible

updates in their dependencies, and difficulties to perform

major upgrades of the ecosystem as a whole because of all

these interdependencies. Every software ecosystem has its

own specificities, requiring customized tools to address these

problems.

Nevertheless, empirical research reveals that, in order to

provide such solutions, it is important to consider not only

the technical aspects of the ecosystem dynamics but also the

social or human aspects of its community of contributors.

This socio-technical viewpoint opens up a new domain of

collaborative software engineering research, combining ideas

from traditional software engineering research with those from

computer-supported collaborative work.

In addition to this, empirical research on the socio-technical

dynamics of software ecosystems is becoming increasingly

interdisciplinary, borrowing techniques and ideas from many

other scientific disciplines. Examples include the use of social

network analysis techniques from social sciences, the use

of diversity metrics borrowed from ecology, the adoption of

econometric indices used in economy, the use of survival

analysis techniques coming from medial sciences, and many

more. The socio-technical nature of software ecosystems also

requires a mixed methods research approach, combining quan-

titative empirical methods with more qualitative ones such as

those used in sociology and psychology.

While socio-technical research on software ecosystem evo-

lution is very active, as can be witnessed by the many recent

references cited in this paper, I have identified many remaining

open challenges. It is my hope that researchers in this field will

be inspired by this article to take up some of these challenges,

and as such further advance this important field of research.

ACKNOWLEDGMENT

This research was carried out in the context of ARC

research project AUWB-12/17-UMONS- 3. I would like to

thank my research collaborators Bogdan Vasilescu, Alexander

Serebrenik, Alexandre Decan, Maelick Claes and Mathieu

Goeminne for very useful feedback on an earlier version of

this article.

6

REFERENCES

[1] A. Serebrenik and T. Mens, “Challenges in software ecosystems re-
search,” in European Conference on Software Architecture Workshops,
2015, pp. 40:1–40:6.

[2] S. Jansen, M. Cusumano, and S. Brinkkemper, Eds., Software Ecosys-
tems: Analyzing and Managing Business Networks in the Software
Industry. Edward Elgar, 2013.

[3] S. Jansen, A. Finkelstein, and S. Brinkkemper, “A sense of community:
A research agenda for software ecosystems,” in Int’l Conf. Software
Engineering, May 2009, pp. 187–190.

[4] M. Lungu, “Towards reverse engineering software ecosystems,” in Int’l
Conf. Software Maintenance, 2008, pp. 428–431.

[5] K. Manikas and K. M. Hansen, “Software ecosystems: A systematic
literature review,” J. Systems and Software, vol. 86, no. 5, pp. 1294–
1306, May 2013.

[6] C. Artho, K. Suzaki, R. D. Cosmo, R. Treinen, and S. Zacchiroli,
“Why do software packages conflict?” in Int’l Conf. Mining Software
Repositories, Jun. 2012, pp. 141–150.

[7] T. Mens, “Anonymized e-mail interviews with R package maintainers
active on CRAN and GitHub,” University of Mons, Tech. Rep., 2015.
[Online]. Available: http://arxiv.org/abs/1606.05431

[8] C. Bogart, C. Kästner, J. Herbsleb, and F. Thung, “How to break an API:
Cost negotiation and community values in three software ecosystems,”
in Int’l Symp. Foundations of Software Engineering, 2016.

[9] E. Wittern, P. Suter, and S. Rajagopalan, “A look at the dynamics
of the JavaScript package ecosystem,” in Int’l Conf. Mining Software
Repositories. ACM, 2016, pp. 351–361.

[10] D. M. Germán, B. Adams, and A. E. Hassan, “The evolution of the
R software ecosystem,” in European Conf. Software Maintenance and
Reengineering, 2013, pp. 243–252.

[11] K. Hornik, “Are there too many R packages?” Austrian Journal of
Statistics, vol. 41, no. 1, pp. 59–66, 2012.

[12] J. Ooms, “Possible directions for improving dependency versioning in
R,” R Journal, vol. 5, no. 1, pp. 197–206, Jun. 2013.

[13] A. Decan, T. Mens, M. Claes, and P. Grosjean, “On the development and
distribution of R packages: An empirical analysis of the R ecosystem,”
in European Conference on Software Architecture Workshops, 2015, pp.
41:1–41:6.

[14] ——, “When GitHub meets CRAN: An analysis of inter-repository
package dependency problems,” in Int’l Conf. Software Analysis, Evo-
lution, and Reengineering. IEEE, Mar. 2016, pp. 493–504.

[15] M. Claes, T. Mens, and P. Grosjean, “On the maintainability of CRAN
packages,” in Int’l Conf. Software Maintenance, Reengineering, and
Reverse Engineering. IEEE, 2014, pp. 308–312.

[16] M. S. Zanetti, I. Scholtes, C. J. Tessone, and F. Schweitzer, “The
rise and fall of a central contributor: Dynamics of social organization
and performance in the Gentoo community,” in Int’l Workshop on
Cooperative and Human Aspects of Software Engineering, May 2013,
pp. 49–56.

[17] S. Raemaekers, A. van Deursen, and J. Visser, “Semantic versioning
versus breaking changes: A study of the Maven repository,” in Working
Conf. Source Code Analysis and Manipulation, Sept 2014, pp. 215–224.

[18] J. Businge, A. Serebrenik, and M. G. J. van den Brand, “Eclipse API
usage: the good and the bad,” Software Quality, vol. 23, no. 1, pp. 107–
141, 2015.

[19] C. R. B. de Souza and D. F. Redmiles, “An empirical study of software
developers’ management of dependencies and changes,” in Int’l Conf.
Software Engineering. ACM, 2008, pp. 241–250.

[20] M. Conway, “How do committees invent?” Datamation Journal, pp.
28–31, April 1968.

[21] M. Cataldo, J. D. Herbsleb, and K. M. Carley, “Socio-technical con-
gruence: A framework for assessing the impact of technical and work
dependencies on software development productivity,” in Int’l Symp.
Empirical Software Engineering and Measurement. ACM , 2008,
pp. 2–11.

[22] M. Cataldo, A. Mockus, J. A. Roberts, and J. D. Herbsleb, “Software
dependencies, work dependencies, and their impact on failures,” IEEE
Transactions on Software Engineering, vol. 35, no. 6, pp. 864–878, Nov
2009.

[23] I. Kwan, A. Schroter, and D. Damian, “Does socio-technical congruence
have an effect on software build success? A study of coordination in a
software project,” IEEE Trans. Soft. Eng., vol. 37, no. 3, pp. 307–324,
May 2011.

[24] A. MacCormack, C. Baldwin, and J. Rusnak, “Exploring the duality be-
tween product and organizational architectures: A test of the “mirroring”
hypothesis,” Research Policy, vol. 41, no. 8, pp. 1309 – 1324, 2012.

[25] L. J. Colfer and C. Y. Baldwin, “The mirroring hypothesis: Theory,
evidence and exceptions,” Harvard Business School, Tech. Rep. Finance
Working Paper No. 16-124, May 2016.

[26] W. Cunningham, “The WyCash portfolio management system – experi-
ence report,” in OOPSLA ’92, Mar. 1992.

[27] D. A. Tamburri, P. Kruchten, P. Lago, and H. van Vliet, “Social debt in
software engineering: insights from industry,” J. Internet Services and
Applications, vol. 6, no. 1, pp. 1–17, 2015.

[28] V. Cosentino, J. L. C. Izquierdo, and J. Cabot, “Assessing the bus factor
of Git repositories,” in Int’l Conf. Software Evolution, Analysis and
Reengineering. IEEE, Mar. 2015, pp. 499–503.

[29] G. Avelino, L. Passos, A. Hora, and M. T. Valente, “A novel approach
for estimating truck factors,” in Int’l Conf. Program Comprehension,
2016.

[30] P. C. Rigby, Y. C. Zhu, S. M. Donadelli, and A. Mockus, “Quantifying
and mitigating turnover-induced knowledge loss: case studies of Chrome
and a project at Avaya,” in Int’l Conf. Software Engineering. ACM ,
2016, pp. 1006–1016.

[31] D. Garcia, M. S. Zanetti, and F. Schweitzer, “The role of emotions in
contributors activity: A case study on the Gentoo community,” in Int’l
Conf. Cloud and Green Computing, Sept 2013, pp. 410–417.

[32] C. R. Myers, “Software systems as complex networks: Structure, func-
tion, and evolvability of software collaboration graphs,” Physical Review
E, vol. 68, no. 4, 2003.

[33] A. Potanin, J. Noble, M. Frean, and R. Biddle, “Scale-free geometry in
oo programs,” Commun. ACM, vol. 48, no. 5, pp. 99–103, May 2005.

[34] G. Concas, M. Marchesi, S. Pinna, and N. Serra, “Power-laws in a large
object-oriented software system,” IEEE Trans. Soft. Eng., vol. 33, no. 10,
pp. 687–708, 2007.

[35] P. Louridas, D. Spinellis, and V. Vlachos, “Power laws in software,”
ACM Trans. Software Engineering and Methodology, vol. 18, no. 1, pp.
1–26, Oct. 2008.

[36] J. Scott, Social Network Analysis. SAGE, 2012.

[37] G. Madey, V. Freeh, and R. Tynan, “The open source software devel-
opment phenomenon: An analysis based on social network theory,” in
Americas Conf. Information Systems, 2002.

[38] J. Xu, Y. Gao, S. Christley, and G. Madey, “A topological analysis of the
open source software development community,” in Hawaii Int’l Conf.
System Sciences, 2005.

[39] M. Pinzger, N. Nagappan, and B. Murphy, “Can developer-module
networks predict failures?” in Int’l Symp. Foundations of Software
Engineering. ACM, 2008, pp. 2–12.

[40] C. Bird, N. Nagappan, H. Gall, B. Murphy, and P. Devanbu, “Putting
it all together: Using socio-technical networks to predict failures,” in
Int’l Symp. Software Reliability Engineering. IEEE Computer Society,
2009, pp. 109–119.

[41] G. Madey and S. Kaisler, “[Tutorial:] Complex Adaptive Systems: Emer-
gence, self-organization, tools, analysis and case studies,” in Hawaii Int’l
Conf. on System Sciences, 2009.

[42] T. Mens, M. Claes, P. Grosjean, and A. Serebrenik, “Studying evolving
software ecosystems based on ecological models,” in Evolving Software
Systems. Springer, 2014, pp. 297–326.

[43] T. Mens, “Evolving software ecosystems A historical and ecological
perspective,” in Dependable Software Systems Engineering, ser. NATO
Science for Peace and Security Series, D: Information and Communi-
cation Security. IOS Press, 2015, vol. 40, pp. 170–192.

[44] D. Posnett, R. D’Souza, P. Devanbu, and V. Filkov, “Dual ecological
measures of focus in software development,” in Int’l Conf. Software
Engineering. IEEE, 2013, pp. 452–461.

[45] B. Vasilescu, A. Serebrenik, and M. G. J. van den Brand, “The Babel
of software development: Linguistic diversity in open source,” in Int’l
Conf. Social Informatics. Springer, 2013, pp. 391–404.

[46] B. Vasilescu, D. Posnett, B. Ray, M. G. van den Brand, A. Serebrenik,
P. Devanbu, and V. Filkov, “Gender and tenure diversity in GitHub
teams,” in Int’l Conf. Human Factors in Computing Systems. ACM,
2015, pp. 3789–3798.

[47] R. Vasa, M. Lumpe, P. Branch, and O. Nierstrasz, “Comparative analysis
of evolving software systems using the Gini coefficient,” in Int’l Conf.
Software Maintenance, 2009, pp. 179–188.

7

[48] E. Giger, M. Pinzger, and H. Gall, “Using the Gini coefficient for
bug prediction in Eclipse,” in Int’l Workshop on Principles of Software
Evolution. ACM , 2011, pp. 51–55.

[49] B. Vasilescu, A. Serebrenik, M. Goeminne, and T. Mens, “On the
variation and specialisation of workload: A case study of the Gnome
ecosystem community,” J. Empirical Software Engineering, vol. 19, pp.
955–1008, Aug. 2014.

[50] D. G. Kleinbaum and M. Klein, Survival Analysis: A Self-Learning Text,
3rd ed. Springer, 2012.

[51] I. Samoladas, L. Angelis, and I. Stamelos, “Survival analysis on the
duration of open source projects,” Information & Software Technology,
vol. 52, no. 9, pp. 902–922, 2010.

[52] B. Liu, “Sentiment analysis and opinion mining,” Synthesis Lectures on
Human Language Technologies, vol. 5, no. 1, pp. 1–167, 2012.

[53] N. Novielli, F. Calefato, and F. Lanubile, “The challenges of sentiment
detection in the social programmer ecosystem,” in Int’l Workshop on
Social Software Engineering. ACM , 2015, pp. 33–40.

[54] M. Ortu, B. Adams, G. Destefanis, P. Tourani, M. Marchesi, and
R. Tonelli, “Are bullies more productive? Empirical study of affective-
ness vs. issue fixing time,” in Int’l Conf. Mining Software Repositories.
IEEE, 2015, pp. 303–313.

[55] I. Mistrı́k, J. Grundy, A. Hoek, and J. Whitehead, Eds., Collaborative
Software Engineering. Springer, 2010.

[56] P. Lenberg, R. Feldt, and L. G. Wallgren, “Behavioral software engi-
neering: A definition and systematic literature review,” J. Systems and
Software, vol. 107, pp. 15 – 37, 2015.

[57] R. B. Johnson and A. J. Onwuegbuzie, “Mixed methods research: A
research paradigm whose time has come,” Educational Researcher,
vol. 33, no. 7, pp. 14–26, Oct. 2004.

[58] G. Gousios, A. Zaidman, M.-A. Storey, and A. van Deursen, “Work
practices and challenges in pull-based development: The integrator’s
perspective,” in Int’l Conf. Software Engineering. IEEE Press, 2015,
pp. 358–368.

[59] G. Gousios, M.-A. Storey, and A. Bacchelli, “Work practices and
challenges in pull-based development: The contributor’s perspective,”
in Int’l Conf. Software Engineering. ACM, 2016, pp. 285–296.

[60] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,
and D. Damian, “The promises and perils of mining GitHub,” in Int’l
Conf. Mining Software Repositories. ACM, 2014, pp. 92–101.

[61] K. Blincoe, F. Harrison, and D. Damian, “Ecosystems in GitHub and a
method for ecosystem identification using reference coupling,” in Int’l
Conf. Mining Software Repositories, 2015.

[62] Y. Demchenko, P. Grosso, C. De Laat, and P. Membrey, “Addressing
big data issues in scientific data infrastructure,” in Collaboration Tech-
nologies and Systems, May 2013, pp. 48–55.

[63] D. Socha, R. Adams, K. Franznick, W.-M. Roth, K. Sullivan, J. Tenen-
berg, and S. Walter, “Wide-field ethnography: Studying software en-
gineering in 2025 and beyond,” in Int’l Conf. Software Engineering.
ACM , 2016, pp. 797–802.

[64] M. Bruntink, “An initial quality analysis of the Ohloh software
evolution data,” ECEASST, vol. 65, 2014. [Online]. Available:
http://journal.ub.tu-berlin.de/eceasst/article/view/906

[65] M. White, C. Vendome, M. Linares-Vásquez, and D. Poshyvanyk,
“Toward deep learning software repositories,” in Int’l Conf. Mining
Software Repositories. IEEE Press, 2015, pp. 334–345.

[66] S. Wang, T. Liu, and L. Tan, “Automatically learning semantic features
for defect prediction,” in Int’l Conf. Software Engineering. ACM, 2016,
pp. 297–308.

[67] C. S. Corley, K. Damevski, and N. A. Kraft, “Exploring the use of deep
learning for feature location,” in Int’l Conf. Software Maintenance and
Evolution, Sep. 2015, pp. 556–560.

[68] M. Goeminne and T. Mens, “A comparison of identity merge algorithms
for software repositories,” Science of Computer Programming, vol. 78,
no. 8, pp. 971–986, Aug. 2013.

[69] E. Kouters, B. Vasilescu, A. Serebrenik, and M. G. J. van den Brand,
“Who’s who in Gnome: using LSA to merge software repository
identities,” in Int’l Conf. Software Maintenance. IEEE, 2012, pp. 592–
595.

[70] B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu, “Privacy-preserving
data publishing: A survey of recent developments,” ACM Comput. Surv.,
vol. 42, no. 4, pp. 14:1–14:53, Jun. 2010.

[71] M. B. Malik, M. A. Ghazi, and R. Ali, “Privacy preserving data
mining techniques: Current scenario and future prospects,” in Int’l Conf.
Computer and Communication Technology, Nov. 2012, pp. 26–32.

[72] F. J. Shull, J. C. Carver, S. Vegas, and N. Juristo, “The role of
replications in empirical software engineering,” J. Empirical Software
Engineering, vol. 13, no. 2, pp. 211–218, 2008.

[73] J. M. González-Barahona and G. Robles, “On the reproducibility of
empirical software engineering studies based on data retrieved from
development repositories,” J. Empirical Software Engineering, vol. 17,
no. 1-2, pp. 75–89, 2012.

[74] J. Cito, V. Ferme, and H. C. Gall, “Using Docker containers to improve
reproducibility in software and web engineering research,” in Int’l Conf.
Web Engineering. Springer, 2016, pp. 609–612.

[75] B. Dit, E. Moritz, M. Linares-Vásquez, D. Poshyvanyk, and J. Cleland-
Huang, “Supporting and accelerating reproducible empirical research
in software evolution and maintenance using TraceLab Component
Library,” J. Empirical Software Engineering, vol. 20, no. 5, pp. 1198–
1236, 2015.

8

