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Abstract: Since the pioneering works of Newton (1643-1727), Mechanics has been constantly
reinventing itself: reformulated in particular by Lagrange (1736-1813) then Hamilton (1805-1865),
it now offers powerful conceptual and mathematical tools for the exploration of dynamical systems,
essentially via the action-angle variables formulation and more generally through the theory of
canonical transformations. We propose to the (graduate) reader an overview of these different
formulations through the well-known example of Foucault's pendulum, a device created by
Foucault (1819-1868) and first installed in the Panthéon (Paris, France) in 1851 to display the Earth’s
rotation. The apparent simplicity of Foucault's pendulum is indeed an open door to the most
contemporary ramifications of classical mechanics. We stress that adopting the formalism of action-
angle variables is not necessary to understand the dynamics of Foucault’s pendulum. The latter is
simply taken as well-known and simple dynamical system used to exemplify and illustrate modern
concepts that are crucial in order to understand more complicated dynamical systems. The
Foucault’s pendulum first installed in 2005 in the collegiate church of Sainte-Waudru (Mons,
Belgium) will allow us to numerically estimate the different quantities introduced.

Keywords: classical mechanics; Foucault’s pendulum; Hamiltonian formalism; action-angle
variables

1. Introduction: Sainte-Waudru’s Pendulum

The simple pendulum consists of a bob of mass m attached at one end of a rigid cable of length
I whose mass is negligible compared to m. The other end of the cable is attached at the vertical,
thereby suspending the bob of the pendulum. It can therefore be considered that the dynamics of the
bob is governed by Newton’s equations T + P =md, P and T being the weight of the bob and the
tension of the cable, respectively, and @ = ¥ the acceleration of the bob where f denotes the time
derivative of the dynamical variable f(t). A schematic representation of a simple pendulum is given
in Figure 1, particularized to the pendulum installed in the collegiate church of Sainte-Waudru
(Mons, Belgium). This Foucault’s pendulum (FP) was installed for the first time by the University of
Mons (UMONS) in 2005 and has regularly been exhibited since then [1,2]. As shown in any textbook
on classical mechanics, see for example [3-6], the resolution of Newton’s equation reveals that the
simple pendulum, once slightly set out of its equilibrium position (1, « [), performs a periodic swing

with period T = % , where w = % and g is gravitational acceleration. For small oscillations, the

period is independent of both the mass of the bob and of the amplitude 7, of the swing. For some
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original references, see e.g., [7-9]. Detailed explanations including a discussion of the special case of
the motion at the equator can be found in [10]. For other relevant references, see e.g., [11,12]. A precise
historical account of Foucault’'s experiment together with references to the various attempts at a
theoretical understanding can be found in the recent review [13].

The amplitude sets the total energy of the pendulum, E, which can be expressed as the potential

energy of the bob at release with zero initial velocity: E = mgh. For Saint Waudru’s FP one has w =
rad

0.626 —, T =10s, and E = 25]. Numerical quantities will be given with three significant digits.
Strictly speaking, frictional forces must be added to the model. They will be neglected here. Friction
dissipates the energy of the system: it does not influence the period and only causes a progressive
decrease of the amplitude. However, only the periodic behaviour of pendular dynamics is relevant
for our purpose.

In spite of the damping due to friction forces, a FP can oscillate for more than enough time to
prove that the Earth is rotating. The Earth surface rotates with an angular velocity of Qg =1, 1 lap
= 2n rad, with respect to an imaginary inertial sphere S; of same radius and centre as that of the
Earth. With respect to S; however, the normal to the instantaneous plane of oscillation of the FP
defines an inertial direction: as Newton's mechanics shows, it is a consequence of the fact that the
force undergone by the bob of mass m is always directed towards the center of the Earth. There is
no sideways force on the bob as viewed from §; ; see for example the extensive discussion in [10].
The invariance of the oscillation plane’s orientation in the reference frame S; causes an apparent
rotation of the oscillation plane in the local reference frame that goes in the direction opposite to the

one of the Earth, see Figure 2. Only the vertical component of Qy (whose norm is Q = Qg sing ) in
lap _

the local frame causes this rotation. In our case, FP’s latitude is ¢ = 50.5° and Q = 0.772 oo
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Figure 1. (a) Foucault’s pendulum installed in the nave of Sainte-Waudru’s collegiate church. (b)
Zoom on the bob. The rotation of the pendulum’s plane of swing is exemplified by the successive fall
of the neighbouring corks. (c) Schematic view of the latter pendulum at release. The constant [ is the
pendulum length. The amplitude is r,, causing a vertical displacement h with respect to the
equilibrium position. The oscillation period is T. The vectors P and T are the weight of the bob and
the tension of the cable, respectively.
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Figure 2. (a) Foucault’s pendulum in the inertial reference frame S; —the northern hemisphere is
shown. Changes in the angle 6 between the oscillation plane and the x axis of local frame (x,y) are
shown at times t; and t, =t; + 8t. Curved arrows show the counterclockwise and clockwise
rotations of the Earth and of the oscillation plane viewed from the local frame, respectively, (b)
Sectional view of the Earth and Foucault’s pendulum. Pendulum’s latitude, ¢, is shown as well as the
Earth angular velocity (55) and the oscillation plane’s angular velocity (ﬁ).

Newton’s equation leads, after calculations, to the radial trajectory

r(t) =1, |cos?(wt) + %Zsinz(wt). 1)

The angle 6(t) may be obtained from r(t) to get the trajectory (r(t),0(t)) in polar coordinates,
see Figure 3 and e.g., [9]. The trajectory in the horizontal plane is a hypocycloid (Figure 3). It can be
computed from (1) that the FP never turns back to its equilibrium position (r = 0): there is a minimal
radius i = %ro, whose origin is the Earth rotation. However, observing this minimum radius is

not easy: in Sainte-Waudru it is only 0.153 mm! Another way is more promising: it appears that 6(t)
is shifted by

A8 =QT 2

during one period [8], that is 0.0322° in our example. This remains very small, but just wait 10 min in
Saint-Waudru’s nave and the angle of deviation will be 1.93°, which corresponds to a perfectly
observable displacement of 5.73 cm on a circle of 1.7 m radius. This displacement is made visible in
Sainte-Waudru by the successive falls of the regularly spaced corks (see Figure 1).

rl) ................. e 1;

Y min re—

Figure 3. Typical trajectory of the FP in the horizontal plane (the pendulum is thus seen from above).
The position of the bob is expressed in polar coordinates (r,8) since the bob’s vertical motion is
negligible. The shift A8 and the instantaneous horizontal velocity ¥ of the bob are displayed. The
arrow outside of the circle indicates the direction of the oscillation plane’s rotation viewed from the
local frame. Conventions of Figure 2 are kept.
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2. Parallel Transport Along a Sphere

The FP illustrates an important geometric concept called parallel transport. In this very context,
see [14]. The velocity of the bob in the plane tangent to the Earth is a vector. Like any velocity it
represents an instantaneous displacement along a curve which traces the trajectory. The apparent
rotation of the oscillation plane can be thought of equivalently as a change in the direction of the
velocity vector of the bob. This picture hides an unsuspected difficulty. If it is true that in the
Euclidean space of Newtonian mechanics one can compare two vectors at different points by
dragging them parallel to themselves so as to bring their origin to the same point, it is however not
possible, in a more general space, to compare vectors at different points. The space to which the plane
coordinatized by (r,8) is tangent is nothing else than the surface of the Earth, i.e., a sphere. As can
be seen from Figure 2, the local plane tangent to the Earth at instant t; is not the one at t,: both
planes are tangent to S;, albeit not at the same points.

How can one compare vectors at different points on a sphere? Levi-Civita came up with a
method valid for general surfaces, that we summarize along the lines of [15,16]. To transport a vector
V, froma point P to another nearby point Q of S;, Levi-Civita proposed to embed the sphere into the
three-dimensional Euclidean space and to move the vector V from its initial point P to the
neighbouring point Q using the Euclidean notion of parallel displacement, the very notion of
“sliding” used by our schoolchildren who learn Newtonian mechanics. The resulting vector, 7, , is
generally not tangent to the sphere S;. It has then to be projected onto the surface of the sphere,
thereby obtaining a vector in Q denoted Vj,. Starting from this new vector and proceeding in a similar
way, step by step for all the points along a curve passing through P and Q, a whole family of vectors
tangent to the sphere S; can be constructed along the latter curve. This construction is illustrated in
Figure 4.

Nerth Pole

(a) (b)

Figure 4. (a) Parallel transport of vector VP along two meridians computed in the three-dimensional
Euclidean space. (b) Right: Parallel transport of vector A computed with Levi-Civita’s method for
the curves PRQ and PQ.

Without any specification of a particular curve, the parallel transport operation is ambiguous. It
is interesting to see what happens for two different curves that connect points P and Q on the Earth’s
surface. Taking the curves PQ and PRQ in Figure 4, depending on whether one follows the first or
the second curve, the vector ¥, obtained by parallel transport will point to the south or will be
tangent to the equator. Two different orthogonal vectors are thus obtained. Parallel transport of a
vector along all the curves that start from a point on the sphere and return to the same point gives
vectors at that point that actually differ from the initial vector by a rotation by an arbitrary angle. In
the case of the Foucault’s pendulum, the relevant curve is the parallel passing through the vertical of
its equilibrium position (the parallel of latitude 50.5° in our example). The parallel transport of the
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bob velocity vector along that parallel generates an apparent rotation of its direction for a local
observer. This rotation is measurable through the displacement of the oscillation plane of the
pendulum. An explicit calculation of bob velocity’s parallel transport based on spherical
trigonometry leads to Equation (2) [17].

3. Lagrange

Lagrange elaborated a formulation of mechanics that makes it possible to free oneself from the
complicated drawings asked to our high school students (Figure 1) in order to solve a problem in
mechanics by identifying the different forces at play, finding their resultant, and then solving
Newton’s equations [18]. Unlike Newton who strove to present his results in the most ancient
formalism possible, the way Euclid (around 300 ACN) would have done, Lagrange understood the
importance of no longer having to make “inspired drawings” to have a chance of solving a problem
of mechanics. Moreover, if Newton’s equations are simple in Cartesian coordinates, they become
much more complicated in other coordinate systems better suited to the geometry of the system
under study, such as polar coordinates in the FP case.

By invoking a “principle of least action”, Lagrange replaced Newton’s technical arsenal by the
search for a single function, named after him Lagrangian and denoted L. Typically, L = Ex — Ej,
which is the difference between the kinetic and potential energies of the system. Lagrange’s postulate
is that the system, during its temporal evolution between two instants t; and t,, will always
minimize the action, S = f ;12 L dt. The Lagrangian can be written in any coordinate system and the

real number it provides for a given state of the system will always be the same, regardless of the
m¢(.

. . . 5 2 m . A
coordinates used. For example the FP Lagrangianis L = — (rz +72(6 + Q) ) — - w’r? where (7,0)

are the rates of changes of (r,6) [19]. The space parameterized by the Lagrange variables (r, ) is
called configuration space.
From the principle of least action, equations of motion—called Euler-Lagrange equations—can

be deduced which take the same form in all coordinate systems and are, in the present case of the FP,

oL  d oL .
—_——— = with the
dqq dtdqg, 0, a

position coordinates, and the subscript a runs from 1 to the number of degrees of freedom of the
system under study. The symbols d and 0 denote the total and partial derivatives, respectively. But
that is not all. Lagrange’s analytical formalism also makes it possible to ignore the vast majority of
forces at play, such as the tension in the cable of the FP. It is therefore of little importance to know
the tensions and constraints imposed on the solid body whose motion is being studied. All that
matters is to know that the body remains solid, with a constant shape and subject to external forces

equivalent to Newton’s equation. The Euler-Lagrange equations read

and constraints such as the weight P and the constancy of the length of the cable suspending the bob.

A detailed discussion of the FP in the Lagrangian formalism can be found in [19]. In the rest of
this article, we will take inspiration from this book, extracting the key concepts while limiting the
associated mathematical developments.

4. From Configuration Space to Phase Space

The choice of a “good” coordinate system reflects the symmetries of the system under study.
Hamilton sought for even more symmetry by not limiting the visualization of a system to position
variables only. In his formalism he introduced from the very beginning the following fundamental
idea: the variables of position and velocity are independent. They can be chosen independently at
any moment and the dynamical equations will “propagate” these initial conditions into the future.

Hamilton defined variables named “momenta” P, = ;TL generalizing the velocities (one momentum
a
variable P, for each position coordinate gq,) and then constructed, for any Lagrangian L having a

regular Hessian matrix of components 35,05, anew function H = P,§, — L named Hamiltonian. The
a%dp
function H depends on the position and momentum variables only, once one expresses the velocities

q, in terms of the positions and momenta by inverting the relations P, =2

T The space
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parametrized by the independent position and momentum variables is called phase space. Using the
principle of least action extended to phase space, Hamilton obtained first-order differential

equations, P, = _:TI: and ¢, = :THa , quite differently from Newton’s and Lagrange’s equations

which are of the second order in the time-derivatives. The number of these first-order differential
equations is equal to the dimension of phase space. One half of Hamilton’s equations allows to
express the momenta as functions of the velocities while the other half gives equations which,
combined with the first half, reduce to the Euler-Lagrange equations.

The Hamiltonian for the FP is of the form H = Liid +

2m  2mr?

position (r,0) and momentum (B, Py) variables. The space (P, 1,Pg,0) is the FP phase space.
Hamilton's equations yield

m . .
- QP + ?wzrz , i.e., a function of the

P =mr, Pp=mr?(6+Q),
2 . 3)

Pr=—mw2r+m—f3,P9=0

They reveal the existence of a constant of motion, |Py| =j =mrfQ. In the case of Sainte-
Waudru’s FP, it takes the value 7.14 x 1073 Js. Moreover, Hamilton’s equations lead to # = —w?r +

mL; and finally to the radial trajectory given by Equation (1).

The dynamics of the FP can be visualized via the pairs of variables (r,P.) and (8, Pg), each
describing a plane in which the dynamics will draw curves. The phase space provides a succinct
geometrical representation of the dynamical evolution of the pendulum, illustrated in Figure 5. In the
plane (8, Py), Py is constant during the complete oscillation. Let us now go through the pendulum’s
oscillation cycle in the plane (r,P,), clockwise from point A. This point corresponds to FP’s release:
the amplitude is at its maximum and the velocity is null. Then the bob falls down, its radial velocity
decreasing (P. < 0) until its absolute value reaches a maximum in B. The radial position of bob
reaches a minimal value at C where the radial velocity goes back to zero. Then, the radial coordinate
r of the bob increases until P, > 0 reaches a maximal value at D. The pendulum finally returns to
point A, from where it starts a new oscillation cycle.

Why introducing this apparent complication created by the doubling of variables between the
configuration space and the phase space, if at the end of the day one recovers Lagrange’s equations?
The reason is that phase space has a remarkable geometrical structure that allows for canonical
transformations: transformations of the phase space coordinates that preserve the expression of
Hamilton’s equations of motion and mix the position and momentum variables among them,
rendering such a distinction actually artificial. The phase space variables can indeed mix and give
rise to new canonical variables that not only preserve the simple expression of Hamilton’s equations
but can also offer an immediate resolution of these equations of motion, as we will now explain.

A Pr D A PU
o
J
> A
- - - > > >
Vonin 1) r 2r 7]

B

L 4

(a) (b)

Figure 5. (a) Foucault’s pendulum trajectory in the plane (r,P,) of phase space, computed with
Equations. (1) and (3). (b) Same for the plane (6, Py).
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5. Motion on a Torus

For a bounded motion such as that of the FP, a canonical transformation always exists that starts
from (P, 1,Pg,0) and leads to new phase space coordinates called action-angle variables

Ur» ®r.Ja, Pg). A remarkable property is that the action variables (J,,/y) are invariant over time for

E+Qj
2w

the latter takes the value 20 Js in our example. These two action variables are proportional,

respectively, to the area of the rectangle shown to the right of Figure 5 and to the area inside the curve
shown to the left of the same figure. Each of the angle variables (¢,, ¢g) range from 0 to 2 and give
the position of the dynamical system in the corresponding cycle of the periodic motion. As shown in

given initial conditions. For the FP, calculations show that Jo = Py and ], = é Numerically,

Figure 6, the dynamical evolution of the FP in phase space can be seen as the displacement of a
particle on a torus—a doughnut. The surfaces of the two sections of the doughnut are equal to J, and
j while the two angles that describe the circulation of the particle on the torus are the angle variables

((pr! ¢9)

Figure 6. Representation of the phase space of the Foucault's pendulum in terms of the angle-action
variables [20]. The two sections of the torus (sections limited by the two grey circles) are of dimensions
Jr and Jy. The two curves on the surface of the torus correspond to the trajectory of the pendulum
neglecting the rotation of the Earth (in black) or including it (in red). A point of a curve on the torus
corresponds to a given value of the couple of angle variables (¢,,¢g). The infinitesimal Berry-
Hannay angle, 8¢y, is shown in blue font.

More generally, for a dynamical evolution which occurs in a compact volume of phase space, a
transformation exists which allows to see any such dynamical evolution as the displacement of a
particle on a torus of dimension 7, if 1 is the number of independent position variables. The surfaces
of the different sections of the torus are the action variables while the n angles that describe the
circulation of the particle on the torus are the angle variables.

Let us come back to FP. The Hamiltonian takes a simple form in action-angle coordinates:
H(P,,1,P,0) > H' (1, §r,Jo, $g) = w (2], +j) + Qj. Hamilton’s equations of motion lead to do =
oH' oH'

i w+ O and (i)r =% 2w . Would the Earth not rotate, one would have Q = 0 and the angle
r

variable ¢, would increase exactly two times faster than ¢g: in the representation proposed in
Figure 6, the complete trajectory of the FP would draw a closed curve (in black). However, the Earth
rotates and therefore Q) is different from zero: it causes a perturbation in the evolution of ¢4 and as
a result, the red curve that corresponds to the actual situation is not closed. There is a discrepancy
between the red and black curves and the resulting angular deviation is the infinitesimal Berry-
Hannay angle corresponding to one period of the pendulum. The cumulated angular deviation after
1 day is called the Berry-Hannay angle [21,22] for the FP. It is equal to A¢y = QT and corresponds
to the angular displacement of the oscillation plane over one day.

The geometric notion underlying the Barry-Hannay angle is that of holonomy. For extensive
discussions on this crucial concept in Physics and for more references, see the book [23] and the
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original papers reprinted in [24]. As it can be read in [23,24], the appearance of a Berry-Hannay angle
is observed in many other systems than the FP. As first shown by Foucault by using a gyroscope in
1852 and later exemplified by Bryan [25], vibrating bodies also define inertial directions and are
therefore subject to FP-like precession. Bryan's effect more specifically concerns standing waves in
rotating solids of revolution. This effect has since then been shown to occur in vibrating gyroscopes
and is related to the concept of holonomy [26]; it can even be used to design angle measuring MEMS
(microelectromechanical systems) gyroscopes [27].

6. Conclusions

The path that we have made through the different formulations of mechanics starts from a
formulation where the fundamental observables are the positions of the rigid body as well as its
velocities and accelerations, obtained by successive time derivatives of the positions. At the end of
our journey, the problem is represented in phase space in terms of the invariants of motion (the action
variables) and of the positioning of the moving body on the different cycles constituting this motion
(the angle variables). The evolution of mechanics thus tends to abstract itself from the particularities
of each problem in order to evolve towards a general formalism where any dynamical system with
(quasi-)periodic motion can be characterized by universal concepts. The Berry-Hannay angle is such
a concept. In the case of Foucault’'s pendulum, it gives a measure of the rotation of the oscillation
plane after one day, through the non-closed trajectory of the bob in phase space coordinatized by the
action-angle variables.

The particular behavior of the Foucault’s pendulum can also be interpreted in terms of the
parallel transport of the velocity vector of the bob. This notion has become central in modern Physics
through the concept of connection; here, the Levi-Civita connection on the sphere, which expresses
how the tangent vectors to the sphere are transported parallel to themselves along any given curve
on the sphere. The same Levi-Civita concept of parallel transport allowed Einstein (1879-1955), with
the help of Marcel Grossmann (1878-1936), to better understand Gravitation. Indeed, the
mathematics of General Relativity in its original formulation is entirely based on Levi-Civita’s notion
of parallel transport on a curved manifold representing our space-time populated with matter and
radiation.

The Hamiltonian formalism of mechanics makes it possible to completely solve many problems
that cannot be solved otherwise, such as the problem of a massive particle attracted by two centers
(for example the Earth subject to the combined gravitational attractions of the Sun and Jupiter), see
e.g., [19]. Hamilton’s approach is instrumental for controlling the position of a satellite or space probe,
or for understanding the general dynamics of chaotic systems [5]. For more references on the wide
variety of applications of Hamilton’s formulation of classical mechanics, see e.g., the Introduction of
the book [23]. Finally, we recall that Nature is quantum at its most fundamental level. Here as well,
the Hamiltonian formalism plays a crucial role in Quantum mechanics and Quantum Field Theory,
see e.g., [28,29] and references therein.
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