
ar
X

iv
:h

ep
-t

h/
06

10
27

8v
4 

 2
6 

Ju
n 

20
08

ULB-TH/06-26

A Special Class of Rank 10 and 11 Coxeter Groups†

Marc Henneaux ♠♦, Mauricio Leston ♣△, Daniel Persson ♠ and Philippe Spindel ♥
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♥ Service de Mécanique et Gravitation,
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Abstract

In the course of investigating regular subalgebras of E10(10) related to

cosmological solutions of 11-dimensional supergravity supporting an electric

4-form field, a class of rank 10 Coxeter subgroups of the Weyl group of E10(10)

was uncovered (hep-th/0606123). These Coxeter groups all share the prop-

erty that their Coxeter graphs have incidence index 3, i.e. that each node

is incident to three and only three single lines. Furthermore, the Coxeter

exponents are either 2 or 3, but never ∞. We here go beyond subgroups of

the Weyl group of E10(10) and classify all rank 10 Coxeter graphs with these

properties. We find 21 distinct Coxeter groups of which 7 were already de-

scribed in hep-th/0606123. Moreover, we extend the classification to the rank

11 case and we find 252 inequivalent rank 11 Coxeter groups with incidence

index 4, of which at least 28 can be regularly embedded into E11(11).

†This version contains an Erratum, correcting a mistake regarding the number of symmetric rank 11

Coxeter graphs with incidence index 4. The bulk of the paper is unchanged, except for scattered comments

drawing the reader’s attention to where the Erratum applies.
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1 Introduction

The study of hidden symmetries of supergravity theories has revealed an intriguing con-

nection with the theory of infinite dimensional Kac-Moody algebras. This correspondence

has been most extensively explored from various directions in the context of eleven di-

mensional supergravity. In particular, the theory exhibits an exceptional coset symmetry

Ed(d)/K(Ed(d)) when compactified on a d-torus T d (see e.g. [1][2]). This symmetry combines

the non-perturbative S-duality and the perturbative T-duality of string theory into the so-

called U-duality group Ed(d). It has been conjectured that the discrete subgroup Ed(d)(Z)

lifts to a symmetry of the full string theory [3][4].

The appearance of these symmetries is well established for compactification down to

D = 2 + 1 dimensions where the U-duality symmetry is described by the split form of

the largest of the exceptional Lie groups, namely E8(8). It is furthermore known that in

D = 1 + 1 dimensions there is an affine symmetry group leaving the equations of motion

invariant. This group is the analogue of the Geroch group and has been identified with

the affine extension of E8(8), denoted E9(9) ≡ E+
8(8). The affine symmetry is responsible for

the emergence of an integrable structure of N = 16 supergravity reduced to 2 dimensions

[5][6][7].

Further compactification on T 10 and T 11 is much less understood but it was conjec-

tured long ago by Julia [8] that the chain of extended symmetries should somehow remain

unbroken, thus giving rise to E10(10) and E11(11) as symmetry groups of eleven dimensional

supergravity appropriately compactified to D = 1 and D = 0 dimensions, respectively.

Subsequently, West showed [9][10] that eleven dimensional supergravity could be refor-

mulated as a non-linear realization based on a finite dimensional Lie algebra called G11

whose structure corresponded in part to the low-level structure of the infinite dimensional

Kac-Moody algebra E11(11) = Lie
[

E11(11)

]

. This led him to conjecture that E11(11) should

in fact be a symmetry of the full (uncompactified) eleven dimensional supergravity, or even

of M-theory itself.

Another window into the Kac-Moody structure of M-theory was later opened through

the study of eleven dimensional supergravity close to a spacelike singularity. It was found

that the effective dynamics at each spatial point could be mapped onto a piecewise linear

particle motion in an auxiliary space of Lorentzian signature. The piecewise nature of the

motion is due to reflections against hyperplanes in the Lorentzian space and these reflections

form a Coxeter group which could be identified with the Weyl group of E10(10) = Lie
[

E10(10)

]

[11][12]. This unexpected result was taken to be a strong indication that the E10(10)-

symmetry should play a fundamental role in the ultimate formulation of M-theory.

The relation between E10(10) and M-theory was pushed even further in [13] where a

Lagrangian based on the coset space E10(10)/K(E10(10)) was explicitly constructed and whose

dynamics reproduced the dynamics of a certain regime of eleven dimensional supergravity.

This conjectural and somewhat mysterious relation between the dynamics of M-theory and

2



the geodesic flow on E10(10)/K(E10(10)) has up until now been thoroughly tested and verified

only within consistently truncated versions of both theories.

By a consistent truncation we mean a truncation such that a solution to the truncated

equations of motion is also a solution to the equations of motion of the full theory. A natural

truncation from the algebraic point of view is the level truncation. The level provides a

grading of E10(10) and one may consistently truncate the theory to any finite level by setting

all higher level “covariant derivatives” to zero [13]. Another useful type of truncation is that

of a subgroup truncation. One restricts the dynamics on the coset space to an appropriately

chosen subgroup, say Ḡ ⊂ E10(10). The equations of motion imply that the evolution of

initial data in Ḡ remain in Ḡ. As long as we restrict to subgroups generated by fields that

live within the established region of compatibility with the supergravity dynamics we know

that solutions of the equations of motion for the sigma model Ḡ/K(Ḡ) also correspond to

exact solutions on the supergravity side.

In the cosmological regime one usually imposes conditions on the metric and the 4-

form field strength in order to simplify the dynamics. A class of electric solutions to 11-

dimensional supergravity was found long ago in [14] by considering a diagonal spatial metric

and a diagonal energy momentum tensor of the 4-form. An interesting subclass of this class

of solutions can be encoded in so-called geometric configurations (nm, g3). These consist of

n points and g lines, drawn on the plane with the following rules; (i) each line is incident

to three points, (ii) each point is incident to m lines and (iii) two points determine at most

one line. One then associates a non-vanishing component of the electric field, F0ijk, for each

line in the configuration and one takes a zero magnetic field. The third condition above

encodes the diagonality of the energy-momentum tensor of Fµνρσ .

Cosmological solutions to eleven-dimensional supergravity were recently reinvestigated

in [15] from the point of view of the proposed connection between M-theory and E10(10). This

was further pursued by the present authors in [16] where it was found that each geometric

configuration discussed in [14] corresponds in fact to a regular subalgebra, ḡ, of E10(10) and

that the solutions of the corresponding sigma model, i.e. truncated to the relevant regular

subalgebra, generalize the cosmological solutions described in [14]. Some of these solutions

correspond to so-called S-brane solutions and it was noted that the geometric configurations

provide information about the intersection rules between S-branes1. This result is in spirit

very similar to the analysis of [21], where brane solutions were analyzed in the context of

very extended Kac-Moody algebras.

The Dynkin diagram Dḡ derived from a certain configuration (nm, g3) is the line-

incidence diagram of (nm, g3), meaning that each line in (nm, g3) defines a node in Dḡ

and two nodes in Dḡ are connected only if the corresponding lines in (nm, g3) are paral-

lel. In particular, a set of six rank 10 Lorentzian subalgebras of E10(10) was uncovered in

this way from the configurations with 10 points and 10 lines, (nm, g3) = (103, 103). As a

1See [17][18] for the original analysis of intersection rules for p- and S-branes. See also [19][20] for related

discussions in the context of hyperbolic Kac-Moody algebras.
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consequence of the rules for constructing the configurations, the Dynkin diagrams of these

algebras displayed a remarkable regularity: all nodes in the diagrams are connected to three

and only three other nodes, or, in other words, each node in the Dynkin diagrams is in-

cident to three single lines. Furthermore, the Cartan indices (off-diagonal entries of the

corresponding Cartan matrix, which is symmetric in the present context) are equal to 0 or

−1 and do not take lower negative values (−2,−3, · · · ) even though these are in principle

allowed within E10(10) (as pointed out in the next section).

Since none of these algebras are hyperbolic, the corresponding gravitational dynamics is

non-chaotic and, in the BKL-limit, the solution settles asymptotically into a Kasner solution

after finitely many oscillations [22, 23].

In the billiard analysis for generic solutions of 11-dimensional supergravity, one only

sees the Weyl group of E10(10) because this is the group of reflections in the walls bounding

the billiard table, i.e. reflections in the simple roots of E10(10). From this point of view

the analysis of [16] revealed a new class of rank 10 Coxeter subgroups of the Weyl group

of E10. Because of the fact that the Dynkin diagrams of the Kac-Moody algebras derived

from the configurations (103, 103) are all connected and the corresponding Cartan matrices

are symmetric, it follows that the associated Coxeter exponents can only be 2, 3 or ∞ [28].

However, the value ∞ corresponding to the infinite dihedral group does not arise in the

particular subclass analyzed in [16] since the only values of the Cartan integers are 0 or −1.

The Coxeter graphs inherit in addition the property of the Dynkin diagrams that the nodes

are all incident to exactly three lines.

In fact, it was shown in [16] that in all geometric configurations, (nm, g3), each line is

parallel to a number k of different lines, where k depends on the configuration but not on

the individual lines. This implies that the Coxeter graphs derived from such configurations

have the property that each node, P , in the graph is connected to a number k of other

nodes, such that k depends on the configuration but not on the node P itself. Henceforth

we will refer to the number k as the incidence index and denote it by I.

The purpose of this short note is to go beyond Coxeter groups determined by geometric

configurations and classify all rank 10 Coxeter groups with the following two properties:

• the incidence index I is equal to 3, I = 3;

• the Coxeter exponents mij (i 6= j, see below) are equal to 2 or 3.

The classification is equivalent to the classification of all symmetric rank 10 Cartan matrices

with off-diagonal terms equal to 0 or −1.

The classification is done by constructing the Cartan matrices from scratch in a step-by-

step procedure. In this way we find that the rank 10 Coxeter groups come in three distinct

classes:

• 9 Cartan matrices of Lorentzian signature, 6 of which correspond to geometric con-

figurations.
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• 2 degenerate cases whose Cartan matrices both have vanishing determinants but with

one negative eigenvalue each. One of these cases can be derived from a geometric

configuration.

• 10 Cartan matrices with positive determinants but with signatures (2
∣

∣

−
, 8

∣

∣

+
).

The same classification scheme is further pursued for the case of rank 11 Coxeter groups

with the following result2:

• 71 Cartan matrices of Lorentzian signature, 15 of which correspond to geometric

configurations and so can be embedded into E11(11).

• 5 Cartan matrices with negative determinants, all of which have signature (3
∣

∣

−
, 8

∣

∣

+
).

• 9 Cartan matrices with vanishing determinants, all of which have one zero eigenvalue

and one negative eigenvalue. 7 of these can be derived from geometric configurations.

• 1 Cartan matrix with vanishing determinant and with two negative and one zero

eigenvalue.

• 166 Cartan matrices with positive determinants but with signatures (2
∣

∣

−
, 9

∣

∣

+
).

Subsequent sections are organized as follows. We begin by briefly recalling some relevant

properties of Coxeter groups and how they are realized as the Weyl groups of Kac-Moody

algebras. In Section 3 we display in detail the complete classification of all rank 10 Coxeter

groups with incidence index 3 and Coxeter exponents equal to 2 or 3. Section 4 is devoted

to a similar classification for the rank 11 case. Finally, we end the paper with a concluding

discussion of our results and directions for future research.

Discussions of subalgebras of Kac-Moody algebras and in particular E10(10) along dif-

ferent but related lines may be found in [24, 25, 26, 27].

2 Coxeter Groups - A Reminder

The following section gives a very brief overview of some relevant aspects of Coxeter groups

and their geometric realization. More information may be found in [28] [29].

A Coxeter group C is abstractly defined in terms of generators σi (i = 1, . . . , r) that

obey the following relations

(σiσj)
mij = 1, (1)

where the Coxeter exponents mij are positive integers with the following properties

mij = mji

mii = 1

mij ≥ 2 for i 6= j. (2)

2This list is incomplete; see the Errata added on page 19.
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Note that mii = 1 implies

σ2
i = 1, (3)

which explains why the Coxeter groups are called reflection groups. We focus in the sequel

on the exponents mij with i 6= j. These Coxeter exponents contain the complete information

about the group C. It is convenient to encode this information in a diagram, called a Coxeter

graph, GC. We associate a node in GC to each reflection generator σi. The rank r of C is

then equal to the number of nodes in GC. If mij = 2, the generators σi and σj commute, in

which case there is no line connecting nodes i and j in GC. Whenever mij > 2 the nodes i

and j are connected by a single line and one writes explicitly the component mij over the

line, except if mij = 3 in which case the space over the line is left blank.

In order to see the connection with Weyl groups of Kac-Moody algebras it is useful to

exhibit a geometric realization of C. This can be achieved by considering the Coxeter group

as a group of linear transformations acting in a vector space, V , of dimension r = Rank C.

We will be interested in crystallographic Coxeter groups, which are the ones that stabilize

a lattice, L, in V . This is the class of Coxeter groups that appear as Weyl groups of Kac-

Moody algebras, and the lattice L then corresponds to the root lattice of the Kac-Moody

algebra in question. For crystallographic Coxeter groups, the exponents mij are restricted

to lie in the set {2, 3, 4, 6,∞}.

The action of C on V is explicitly given by

σi(αj) = αj − 2
B(αi, αj)

B(αi, αi)
αi, (4)

where B( , ) denotes the scalar product in V and where {α1, . . . , αr} is a basis of of V .

The form of Eq. (4) is precisely that of a Weyl reflection in the set of simple roots, αi, of

some Kac-Moody algebra, g. The bilinear form B( , ) is then the g-invariant bilinear form

restricted to the Cartan subalgebra. The integers

2
B(αi, αj)

B(αi, αi)

are called Cartan integers and form the off-diagonal entries of the Cartan matrix.

In the particular case where the simple roots αi of the algebra g all have the same length

squared, conveniently taken to be equal to 2, the Cartan matrix is symmetric and given by

Aij = B(αi, αj). (5)

The relation between the Cartan integers and the Coxeter exponents is given (in the sym-

metric case) by [29]

Aij = 0 ⇔ mij = 2, (6)

Aij = −1 ⇔ mij = 3, (7)

Aij < −1 ⇔ mij = ∞. (8)
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For the case of connected Kac-Moody algebras with a symmetric Cartan matrix with

only 2’s, 0’s and −1’s, the Dynkin diagrams and the Coxeter graphs of the associated Weyl

groups coincide. In order to see this we recall the rules for constructing the Dynkin diagram

associated to a Cartan matrix Aij. For each simple root there corresponds a node in the

diagram. The nodes i and j (i 6= j) are connected by |Aij | lines. Thus for the cases under

consideration we have always |Aij | = 1 or |Aij | = 0 so the Dynkin diagram indeed coincides

with the Coxeter graph. Hence, in this case they carry the same information and instead

of classifying all Coxeter exponents mij we perform the classification of all Cartan matrices

whose Dynkin diagrams have the desired structure. The result is the same.

Note that even though the Cartan matrix of g = E10(10) is symmetric and has only 0 and

−1 off the diagonal, the Cartan matrix of regular subalgebras of E10(10) constructed along

the lines of [24], while necessarily symmetric, might have integers < −1 off the diagonal.

The corresponding Coxeter exponents might then be equal to infinity. This is because the

scalar product of real, (non simple) positive roots of E10(10) might be < −1. For instance,

even if one restricts one’s attention to symmetry, electric, magnetic or gravitational roots,

one finds that the scalar products are in the set {2, 1, 0,−1,−2,−3} with −3 reached for the

scalar products of some gravitational roots among themselves. Let us show this explicitly

for a few examples.

Consider the roots, α, in the β-space basis [12], where they are written as linear forms

on the Cartan subalgebra, i.e.

α(β) =

10
∑

i=1

αiβ
i, (9)

where a general element of the Cartan subalgebra is h = βiα∨
i . The metric in the root space

of E10(10) is Lorentzian and takes the following form

(α|α′) =

10
∑

i=1

αiα
′
i −

1

9

(

10
∑

i=1

αi

)(

10
∑

j=1

α′
j

)

. (10)

To illustrate the procedure, we choose arbitrarily two magnetic roots (level 2) of the form

αM
1 (β) = β1 + β2 + β3 + β4 + β5 + β6; αM

2 (β) = β1 + β2 + β7 + β8 + β9 + β10, (11)

and using the bilinear form ( | ) one may check that the scalar product between them is

(αM
1 |αM

2 ) = −2. (12)

By ascending to gravitational roots at level 3 one finds scalar products with lowest negative

value being −3. For example, the two roots

αG
1 (β) = 2β1 + β2 + · · · + β8 and αG

2 (β) = β2 + · · · + β7 + 2β9 + β10, (13)

are real and their scalar product is

(αG
1 |α

G
2 ) = −3. (14)
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The same procedure can be applied for real roots at any level yielding scalar products taking

lower and lower negative integer numbers.

In principle one can obtain arbitrarily negative scalar products by choosing real roots

of higher and higher level. Coxeter subgroups of the Weyl group of E10(10) with Coxeter

exponents equal to 2 or 3 (and not ∞) are thus rather special.

3 Classification of Rank 10 Coxeter Groups with I = 3

Let GC be a rank 10 Coxeter graph with I = 3 and mij = 2, 3 (i 6= j). The structure of GC

is completely encoded in its associated Cartan matrix, AGC
, which is a 10 × 10 symmetric

matrix with 2 on each diagonal entry and zeroes on the off-diagonal except for exactly

three entries in each row (and column) which are equal to −1. If an off-diagonal entry is

non-vanishing, the corresponding nodes in GC are connected by a single line. Similarly, a

vanishing off-diagonal entry in AGC
implies that the associated nodes in GC are disconnected.

Our task is now to find all inequivalent such matrices. We shall not give the details of the

computations here but shall only outline the derivation.

We construct the matrices row by row as follows. A choice has to be made for the first

row but any choice fulfilling the aforementioned requirements is acceptable. We denote a

general Cartan matrix by C and take without generality the first row to be

[C1i] =
(

2 −1 −1 −1 0 0 0 0 0 0
)

, (15)

where i = 1, . . . , 10. Because C is symmetric the next row must start as

[C2i] =
(

−1 2 . . .
)

, (16)

and we know that two more entries must be equal to −1. There are only three distinct

choices. To understand this it is helpful to keep the Coxeter graph in mind. The first row

tells us that node 1 is connected to nodes 2, 3 and 4. As we take the next step we want to

determine the number of distinct connections to node 2. The possibilities are: (i) node 2 is

further connected to 3 and 4, (ii) node 2 is connected to 3 or 4 and then to any of the nodes

in the set {5, . . . , 10}, (iii) node 2 is connected to two of the nodes in the set {5, . . . , 10}.

Hence, we arrive at

[C2i](1) =
(

−1 2 −1 −1 0 0 0 0 0 0
)

(17)

[C2i](2) =
(

−1 2 −1 0 −1 0 0 0 0 0
)

(18)

[C2i](3) =
(

−1 2 0 0 −1 −1 0 0 0 0
)

. (19)

We now proceed to the third row. For C(1) and C(2), the off-diagonal components {3, 1} and

{3, 2} are already fixed to −1 by symmetry. We must find the inequivalent ways to add the

third non-vanishing entry. C(1) admits two possibilities: [C34](1) = −1 or [C35](1) = −1. For

C(2), there are three distinct choices for the entry −1, namely [C34](2), [C35](2) or [C36](2).
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In the third case, C(3), only the first entry of the third row is determined by symmetry.

This gives us five different possibilities for the distribution of two non-vanishing off-diagonal

entries:

[C3i](3)1 =
(

−1 0 2 −1 −1 0 0 0 0 0
)

(20)

[C3i](3)2 =
(

−1 0 2 −1 0 0 −1 0 0 0
)

(21)

[C3i](3)3 =
(

−1 0 2 0 −1 −1 0 0 0 0
)

(22)

[C3i](3)4 =
(

−1 0 2 0 −1 0 −1 0 0 0
)

(23)

[C3i](3)5 =
(

−1 0 2 0 0 0 −1 −1 0 0
)

. (24)

At this point we thus have ten different cases to consider. Repeating the same procedure

we find 33 possibilities after adding the fourth row, 98 possibilities after the fifth row, 296

after the sixth and 574 possibilities after the seventh row.

The remaining task is to add rows eight, nine and ten. These last steps will actually

considerably restrict the number of distinct possibilities because many of the matrices we

have found so far cannot be extended up to rank 10 in such a way as to preserve the condition

I = 3: the construction might get obstructed. First of all, we know that the tenth row will

be completely fixed by symmetry. Hence, we must find the various possibilities for rows

eight and nine. Only the entries [C89], [C8(10)] and [C9(10)] are undetermined by symmetry.

To this end we consider the triple (s8, s9, s10), where s8, s9 and s10 denote the three sums

sk =

7
∑

i=1

|[Cki]| k = 8, 9, 10. (25)

The various possibilities for the values of the triple, (s8, s9, s10), fixes the distinct choice for

the remaining entries [C89], [C8(10)] and [C9(10)] according to

s8 s9 s10

1 1 1

1 2 2

2 1 2

2 2 1

2 2 3

2 3 2

3 2 2

3 3 3

[C98] [C8(10)] [C9(10)]

−1 −1 −1

−1 −1 0

−1 0 −1

0 −1 −1

−1 0 0

0 −1 0

0 0 −1

0 0 0.

(26)

All other choices of (s8, s9, s10) are incompatible with having incidence index 3. For instance

the first two 1’s in the triple (1, 1, 2) forces [C89] = [C8(10)] = [C9(10)] = −1 with the resulting

contradiction that there are four −1’s on the last line. Therefore, out of the 574 Cartan

matrices we had up to seven rows, we find that only 256 of them allow for an extension to
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rank 10 in accordance with Eq. (26). Among these 10×10 matrices, 109 are Lorentzian (i.e.

have negative determinant), 12 are degenerate (one null, one negative and eight positive

eigenvalues) and 135 of them have positive determinant but come with signature (2
∣

∣

−
, 8

∣

∣

+
).

The final step consists of determining how many of these matrices are actually equivalent

up to a permutation of the vertices in the associated Coxeter graphs, or, in other words, up

to a simultaneous exchange of rows and columns so as to preserve the occurrence of 2 on the

diagonal. We have done this explicitly and found that many of the matrices obtained so far

were in fact equivalent. We obtained that in addition to the 6 Lorentzian cases discovered

in [16] there are only 3 distinct Cartan matrices with Lorentzian signature. Furthermore, in

[16] we uncovered one case which was degenerate and it turns out that only one additional

case exists. Finally, out of the 135 matrices with positive determinants, 10 are distinct (and

have signature with 8 +’s and 2 −’s). The result is thus that there exist 21 rank 10 Coxeter

groups, or, equivalently, 21 rank 10 indefinite Kac-Moody algebras, with incidence index 3.

The corresponding Coxeter graphs are reproduced in Tables 1 − 4.

4 Classification of Rank 11 Coxeter Groups with I = 4

The particular class of rank 10 Coxeter groups discussed above were discovered by examining

geometric configurations of the type (nm, g3) = (103, 103). A similar analysis can be done for

the geometric configurations with 11 points and 11 lines, (nm, g3) = (113, 113). There exist

31 such configurations [30] and each of these gives rise, through its line-incidence diagram,

to a Coxeter subgroup of the Weyl group of E11(11), whose significance in the context of

M-theory was first pointed out in [10]. The procedure is identical to the one performed for

the (103, 103)-configurations in [16]. This is easy to understand given the fact that the field

contents for E10(10) and E11(11) at low levels are the same. All (113, 113)-configurations have

the property that each line is parallel to four other lines and hence the associated Coxeter

graphs have incidence index I = 4. Moreover the Coxeter exponents lie in the set {2, 3}.

Following the procedure outlined in Section 3 we have classified all rank 11 Coxeter

groups with these properties. The end result is that there exist 252 rank 11 Coxeter groups

with I = 4. Of these, 28 can be obtained from geometric configurations and so correspond

to subgroups of the Weyl group of E11(11).

Some new features arise in comparison to the rank 10 case: (i) also Cartan matrices with

non-vanishing determinants come with a degeneracy, (ii) one of the Cartan matrices with

vanishing determinant have two negative eigenvalues, (iii) some of the Cartan matrices with

negative determinants have signatures (3
∣

∣

−
, 8

∣

∣

+
). The various classes of Cartan matrices

were listed in Section 1 so we will not repeat it here.

Because of obvious restrictions of space we do not exhibit the full list of rank 11 Coxeter

graphs. However, in Table 5 we display some selected graphs that do not arise as line-

incidence diagrams of geometric configurations. All the 252 Cartan matrices are assembled

in the file “Coxeter11-4.nb” which is included in “Coxeter.zip” that can be downloaded
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from the database arXiv.org of Cornell University [33].3

5 Conclusions

In this note we have extended the results of [16] by classifying all rank 10 Coxeter groups

with incidence index I = 3 and Coxeter exponents mij = 2, 3 (i 6= j), including those

that are not determined by geometric configurations. We find that except for the 7 cases

that were uncovered in [16], there exist 14 additional Coxeter groups with similar properties.

Among those, 10 cannot be regularly embedded in E10(10) since they do not have the correct

signature. Although we do not know if the other Coxeter groups correspond to subgroups

of the Weyl group of E10(10), one might speculate that they can perhaps be associated

with some other class of subalgebras of E10(10) that goes beyond the “electric” subalgebras

previously considered.

The natural starting point for such an investigation would be to ascend to level 2 in

the decomposition of E10(10) and investigate “magnetic” subalgebras. These correspond to

geometric configurations of the type (nm, g6), i.e. with 6 points on each line. It is possible

that some of the rank 10 Coxeter groups derived in this way could have I = 3 and Coxeter

exponents mij = 2, 3 and would thus fall into the classification scheme of this paper.

We have also classified all rank 11 Coxeter groups with incidence index I = 4. The

analysis revealed 252 such Coxeter groups, including 28 that can be obtained from (113, 113)

configurations and so can be regularly embedded in E11(11).

We should mention here the following related fact. Because the exponent ∞ does not

occur among the Coxeter exponents, any pair of elements in the set of generating reflec-

tions generates a finite group (the group is called “2-spherical” [32]). 2-spherical Coxeter

subgroups of E10(10) and E11(11) are rather rare - in fact, up to conjugation, there are only

a finite number of them [32]. It would be of interest to determine them all.
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Coxeter Graph CC det C Coxeter Graph CC det C

−121 −256

−25 −16

−64 −49

Table 1: Lorentzian rank 10 Coxeter graphs with incidence index I = 3 and Coxeter

exponents 2 or 3. All of these graphs correspond to line-incidence diagrams of geometric

configurations of the type (nm, g3).



Coxeter Graph CC det C Coxeter Graph CC det C

−165 −125

−192

Table 2: Lorentzian rank 10 Coxeter graphs with incidence index I = 3 and Coxeter

exponents 2 or 3. None of these graphs correspond to line-incidence diagrams of geometric

configurations of the type (nm, g3).

Coxeter Graph CC det C Coxeter Graph CC det C

0 0

Table 3: Degenerate rank 10 Coxeter graphs with incidence index I = 3 and Coxeter

exponents 2 or 3. Only the leftmost graph correspond the line-incidence diagram of a

geometric configuration of the type (nm, g3).



Coxeter Graph CC det C Coxeter Graph CC det C

52 55

96 192

384 399

576 1152

1728 2160

Table 4: Rank 10 Coxeter graphs with incidence index I = 3, Coxeter exponents 2 or 3,

and signature (2
∣

∣

+
, 8

∣

∣

−
). None of these graphs correspond to line-incidence diagrams of

geometric configurations of the type (nm, g3).



Coxeter Graph CC det C Coxeter Graph CC det C

−3698 −666

41472 1248

Table 5: A selection of the Rank 11 Coxeter graphs with incidence index I = 4 and Coxeter

exponents equal to 2 or 3. The top left graph is the one whose determinant is most negative

and the bottom left is the one whose determinant is the most positive. None of these graphs

correspond to line-incidence diagrams of geometric configurations of the type (nm, g3).



Erratum

In [34] we classified all rank 10 (resp. 11) Coxeter groups with incidence index I equal

to 3 (resp. 4) and Coxeter exponents equal to 2 or 3. This problem is equivalent to

the classification of all symmetric rank 10 (resp. 11) Cartan matrices with off-diagonal

components equal to 0, except for three (resp. four) on each line equal to −1. The method

we used was to first construct a redundant set of all such Cartan matrices, after which we

extracted from this the subset of matrices differing by their set of eigenvalues (characteristic

polynomial). In this way we obtained the 19 different rank 10 Coxeter groups, but only

252 of the 266 existing rank 11 Coxeter graphs with these properties [35]. The origin

of this discrepancy is due to the inadequacy of the method adopted. Indeed, there exist

distinct symmetric rank 11 Cartan matrices that have the same set of eigenvalues, but

are not equivalent, in the sense that they cannot be related through conjugation by any

permutation matrix.

Table 6: An example of two rank 11 Coxeter graphs with incidence index I = 4. The left

hand graph admits a Z2 automorphism group, while the right hand one does not admit any

non-trivial automorphism. Both have the same characteristic polynomial: −X11 +22X10 −

198X9+916X8−2123X7+1088X6+6578X5−17658X4+19939X3−10988X2+2583X−170.

Table 6 provides an example of two such configurations, whose adjacency matrices give

the same invariant polynomial, but nevertheless correspond to inequivalent Dynkin dia-

grams. Thus, given these considerations, the results presented in [34] have to be amended

in the following way.

There exist 266 rank 11 Coxeter groups that split into the following subsets:

• 73 Cartan matrices of Lorentzian signature, 15 of which correspond to geometric con-

figurations and so can be embedded into E11(11). Among them two pairs have the same

eigenvalues, but are inequivalent.

• 5 Cartan matrices with negative determinants, all of which have signature (3
∣

∣

−
, 8

∣

∣

+
).



• 11 Cartan matrices with vanishing determinants, all of which have one zero eigenvalue

and one negative eigenvalue. Among them three inequivalent ones have the same set

of eigenvalues, and seven can be derived from geometric configurations.

• 1 Cartan matrix with vanishing determinant and with two negative and one zero eigen-

value.

• 176 Cartan matrices with positive determinants but with signatures (2
∣

∣

−
, 9

∣

∣

+
). In

terms of their set of eigenvalues they split into 157 singlets, 8 pairs and 1 triplet.

All the 266 inequivalent Cartan matrices are assembled in the file “Coxeter11-4v4.nb”

which is included in “Coxeterv4.zip” that can be downloaded from the database arXiv.org

of Cornell University [33].
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