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We study the spontaneous scalarization of spherically symmetric, static and asymptotically anti–de Sitter
(aAdS) black holes in a scalar-tensor gravity model with nonminimal coupling of the form ϕ2ðαRþ γGÞ,
where α and γ are constants, whileR and G are the Ricci scalar and Gauss-Bonnet term, respectively. Since
these terms act as an effective “mass” for the scalar field, nontrivial values of the scalar field in the black
hole space-time are possible for a priori vanishing scalar field mass. In particular, we demonstrate that the
scalarization of an aAdS black hole requires the curvature invariant −ðαRþ γGÞ to drop below the
Breitenlohner-Freedman bound close to the black hole horizon, while it asymptotes to a value well above
the bound. The dimension of the dual operator on the AdS boundary depends on the parameters α and γ and
we demonstrate that—for fixed operator dimension—the expectation value of this dual operator increases
with decreasing temperature of the black hole, i.e., of the dual field theory. When taking backreaction of the
space-time into account, we find that the scalarization of the black hole is the dual description of a phase
transition in a strongly coupled quantum system, i.e., corresponds to a holographic phase transition.
A possible application are liquid-gas quantum phase transitions, e.g., in 4He. Finally, we demonstrate that
extremal black holes with AdS2 × S2 near-horizon geometry cannot support regular scalar fields on the
horizon in the scalar-tensor model studied here.
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I. INTRODUCTION

With the advent of high precision, multimessenger
observations of black holes in a broad interval of masses
and sizes (see e.g., [1–3]), it will soon be possible to test
theoretical predictions of general relativity related to these
objects. One of the most interesting questions is whether
classical black holes are, indeed, very simple, structureless
objects that can be described by a very small number of
parameter—the mass, charge and angular momentum—and
as such fulfill the No hair conjecture. Theoretical black
holes in asymptotically flat, 4-dimensional Einstein-
Maxwell theory have been proven to possess this feature
[4], but the existence of black holes with primary [5,6] and
secondary hair [7] in models with nonlinear matter sources
demonstrates clearly that it is far from obvious that this
conjecture holds true in other settings. In fact, while a
number of theorems for scalar fields in black hole space-
times exist [8], black holes can carry nontrivial scalar
fields on their horizon when they are e.g., nonminimally
coupled to the curvature of the space-time. This has been
investigated extensively over the past years in the context of
Horndeski scalar-tensor gravity models [9–11]. Indeed, in
these models, static, asymptotically flat black holes that
carry scalar hair can be constructed [12,13]. “Spontaneous

scalarization” is a phenomenon that appears typically in
models that contain nonminimal coupling terms of the form
fðϕÞIðgμν;ΣÞ, where fðϕÞ is a function of the scalar field,
while I depends on the metric gμν and/or other fields Σ. The
scalar field then gets “sourced” by I and spontaneously
scalarized black holes can be constructed for sufficiently
large couplings. Recent examples include the scalarization
of static, uncharged, asymptotically flat black holes using
I ¼ G, where G is the Gauss-Bonnet term and fðϕÞ ¼ ϕ2

[14], different other forms of fðϕÞwith a single term in fðϕÞ
[15–17] or a combination of different powers of ϕ [18,19].
These studies have been extended to include charge [20–22]
as well as a positive cosmological constant [23–25].
Modifications of general relativity are usually motivated

by assuming general relativity to be only a classical, low
energy limit of a (more general) quantum theory of gravity
that should be applicable as well at and close to the Planck
scale. One of the best candidates for such a theory remains
string theory. One remarkable prediction of string theory is
the so-called gauge/gravity duality, a conjecture that relates
gravity theories in (dþ 1) space-time dimensions to gauge
theories in d dimensions [26]. The best tested and well
studied example is the anti–de Sitter/conformal field theory
(AdS=CFT) correspondence [27], which connects a gravity
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theory in (dþ 1)-dimensional AdS space-time to an SU(N)
gauge theory on the d-dimensional boundary of AdS. This
duality is a weak-strong coupling duality such that “weakly
coupled”, classical gravity theories in AdS can be used to
describe strongly coupled quantumsystemson the conformal
boundary of AdS. With a black hole present in the bulk of
AdS, the quantum system can be studied at a given temper-
ature. Holographic phase transitions typically appear when
lowering the black hole temperature and correspond to
nontrivial matter fields forming on the black hole below a
certain critical temperature [28]. These ideas have mainly
been applied to the description of high-temperature super-
conductivity in the framework of holographic superconduc-
tors [29,30] as well as the description of the quark-gluon
plasma (see e.g., [31] and references therein). The first
studies have typically been conducted using scalar fields.
In fact, as shown in [32], a scalar field becomes unstable in
AdS if its mass m drops below the so-called Breitenlohner-
Freedman (BF) bound, i.e., if m2 ≤ m2

BF. This bound is
dimension-dependent and can be shown to lead to formation
of nontrivial scalar hair in a number of settings within
asymptotically AdS (aAdS) space-time.
In this paper, we discuss a scalar-tensor gravity model in

(3þ 1)-dimensional aAdS space-time. In this model, the
scalar field is a priori massless, but couples nontrivially to
the Ricci scalar and Gauss-Bonnet term, respectively, of the
space-time. As we will demonstrate in the following, this
nontrivial coupling corresponds to an “effective mass” for
the scalar field and generates the formation of nontrivial
scalar hair on the black hole for sufficiently low temper-
ature of the latter. When taking backreaction of the space-
time into account, this “spontaneous scalarization” can be
interpreted as a holographic phase transition, i.e., a phase
transition on a spatially 2-dimensional surface with
order parameter given by a real-valued scalar field and
appearing in a strongly coupled quantum system. Note that
uncharged, static, spherically symmetric, aAdS black holes
in a scalar-Gauss-Bonnet model have been studied briefly
in [23], however, not with the emphasis on solutions that
possses a power law fall-off on the AdS boundary, a
requirement that will be crucial for us in the following.
Our paper is organized as follows: in Sec. II, we discuss

the model, while Sec. III deals with the probe limit, i.e., the
limit of vanishing backreaction of the space-time. In
Sec. IV, the inclusion of backreaction is presented, while
Sec. V contains our conclusions.

II. THE MODEL

In this paper, we study a scalar-tensor gravity model with
the following action

S ¼
Z
d4x

ffiffiffiffiffiffi
−g

p hR
2
− Λþ ϕ2ðαRþ γGÞ

− ∂μϕ∂μϕ −
1

4
FμνFμν

i
; ð1Þ

where R is the Ricci scalar, G the Gauss-Bonnet term,
Λ < 0 the cosmological constant, Fμν ¼ ∂μAν − ∂νAμ the
field strength tensor of a U(1) gauge field Aμ and ϕ a real-
valued, massless scalar field that is coupled to the Ricci
scalar R as well as the Gauss-Bonnet term G given by

G ¼ ðRμνρσRμνρσ − 4RμνRμν þ R2Þ ð2Þ

via the couplings α and γ, respectively. Variation of the
action with respect to the metric, scalar field and U(1)
gauge field leads to a set of coupled differential equations
that have to be solved numerically given appropriate
boundary conditions. Variation with respect to the scalar
field, U(1) gauge field and metric, respectively, leads to the
following set of coupled, nonlinear differential equations:

□ϕþ ðαRþ γGÞϕ ¼ 0;
1ffiffiffiffiffiffi−gp ∂μð

ffiffiffiffiffiffi
−g

p
FμνÞ ¼ 0;

Gμν þ Λgμν ¼ TðϕÞ
μν þ TðEMÞ

μν ; ð3Þ

where

TðϕÞ
μν ¼ ∂μϕ∂νϕ −

1

2
gμν∂σϕ∂σϕ

þ 4α½Dμðϕ∂νϕÞ − gμνDσðϕ∂σϕÞ�
− 2γðgρμgλν þ gλμgρνÞηκλβδηριστRστβδDιðϕ∂κϕÞ ð4Þ

and

TðEMÞ
μν ¼ FμαFα

ν −
1

4
FαβFαβ: ð5Þ

In the following, we will consider spherically symmetric,
static black hole solutions. The Ansatz for the metric reads:

ds2 ¼ −Nσ2dt2 þ 1

N
dr2 þ r2ðdθ2 þ sin2 θdφ2Þ ð6Þ

with N ≡ NðrÞ and σ ≡ σðrÞ depending on the radial
coordinate r only. The explicit form of the curvature
invariants is then:

R ¼ 1

r2σ
ð−N00r2σ − 3N0σ0r2 − 4N0rσ − 2Nσ00r2 − 4Nσ0r

− 2Nσ þ 2σÞ; ð7Þ

G ¼ 4

r2σ
ðN00Nσ − N00σ þ ðN0Þ2σ þ 5N0σ0N − 3N0σ0

þ 2σ00N2 − 2σ00NÞ: ð8Þ

Assuming the symmetries of the U(1) gauge field and the
scalar field, respectively, to be equivalent to those of the
space-time, we choose Aμdxμ ≡ VðrÞdt and ϕ≡ ϕðrÞ.
Inserting the Ansätze into the equations of motions leads
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to a coupled set of nonlinear ordinary differential equations
of the form

N0 ¼F 1ðN;σ;V;V 0;ϕ;ϕ0Þ; σ0 ¼F 2ðN;σ;V;V 0;ϕ;ϕ0Þ;
V 00 ¼F 3ðN;σ;V;V 0;ϕ;ϕ0Þ; ϕ00 ¼F 4ðN;σ;V;V 0;ϕ;ϕ0Þ;

ð9Þ

where the prime now and in the following denotes the
derivative with respect to r and F i, i ¼ 1, 2, 3, 4 are
functions of the arguments. The system (9) has to be solved
according to appropriate boundary conditions. At the
regular horizon r ¼ rh with Nðr ¼ rhÞ ¼ 0 the condition
for the scalar field reads:�

ϕ0

ϕ

�
r¼rh

¼ −
�
αRþ γG

N0

�
r¼rh

; ð10Þ

while for the U(1) gauge field we have Vðr ¼ rhÞ ¼ 0. As
long asR and G are well behaved on the horizon, we would
expect ϕ and ϕ0 to be also well behaved there except when
N0 becomes zero. This corresponds to the extremal limit,
where the Hawking temperature of the black hole given by

TH ¼ 1

2π
ðσN0Þjr¼rh ð11Þ

tends to zero. For r → ∞, we assume the space-time to be
asymptotically AdS and the black hole to possess an
electric charge Q, i.e.,

σðr → ∞Þ → 1; Nðr → ∞Þ → 1 −
Λ
3
r2;

Vðr → ∞Þ → Q
rh

−
Q
r
≡ μ −

Q
r
; ð12Þ

where μ corresponds to the value of the U(1) gauge field on
the conformal boundary r → ∞ and can be interpreted as
chemical potential in gauge/gravity applications. Finally,
for Λ < 0, the scalar field has a power-law fall-off of the
form:

ϕðr → ∞Þ → ϕþ
rλþ

þ ϕ−

rλ−
ð13Þ

with

λ� ¼ 3� ffiffiffiffi
Δ

p

2
; Δ≡ 9þ 48αþ 32γΛ; ð14Þ

i.e., the couplings α and γ together with Λ determine the
dimension of the dual operator on the conformal boundary
in gauge/gravity applications and ϕ� can be interpreted as
the expectation value of this operator. Note that Λ ¼ 0,
i.e., the asymptotically flat case, is explicitly excluded here
and is not a “smooth limit” of (14). In fact, as shown

in [14,15,22] the scalar field always falls off like
ϕðr → ∞Þ ∼ ϕ0=r for Λ ¼ 0 (independent of α and γ),
where ϕ0 is interpreted as the scalar charge of the solution.
This interpretation is no longer possible in aAdS and we
will hence in the following refer to ϕ� as “the expectation
value of the dual operator on the conformal boundary”—
using gauge/gravity terminology. Note that although our
calculation is done in Schwarzschild-like coordinates, the
result for the power of the scalar-field fall-off agrees with
that obtained in the Fefferman-Graham construction, see
Appendix B.
Let us mention as well that there is a scaling symmetry in

the model, which reads (including all parameters and field):

r→ βr; t→ t; M → βM; Q→ βQ; Λ→
Λ
β2

;

α→ α; γ → β2γ; ϕ� → βλ�ϕ�; μ→ βμ; ð15Þ

which scales the metric by β2 and Aμdxμ by β. This allows
to set one parameter to a fixed value without loss of
generality. In our numerical construction (see below), we
will often fix the horizon radius to rh ¼ 1.

III. THE PROBE LIMIT

For vanishing scalar fieldϕðrÞ≡ 0, themodel has explicit
solutions: the Schwarzschild-anti–de Sitter (SAdS) solution
for vanishing electric charge and the Reissner-Nordström-
anti–de Sitter (RNAdS) solution for nonvanishing electric
charge, respectively. These solutions read:

NðrÞ ¼ 1 −
2M
r

þ Q2

2r2
−
Λ
3
r2; σ ≡ 1;

VðrÞ ¼ Q

�
1

rh
−
1

r

�
≡ μ −

Q
r
: ð16Þ

M is the mass andQ the electric charge of the solution. The
event horizon rh is the largest root of the equationNðrhÞ ¼ 0
and leads to the following relations

M ¼ 1

2
rh −

Λ
6
r3h þ

Q2

4rh
; Λ ¼ 3

�
1

r2h
−
2M
r3h

þ Q2

2r4h

�
;

Q ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2r2h þ

2

3
Λr4h þ 4Mrh

r
: ð17Þ

The Hawking temperature (11) of the RNAdS black hole
reads

2πTH ¼ −Λrh −
Q2

2r3h
þ 1

rh
ð18Þ

and becomes zero for the extremal solution, which fulfills
Nðrh;exÞ ¼ N0ðrh;exÞ ¼ 0. This latter condition gives:
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rh;ex ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2ΛQ2

ex

p
2Λ

s
;

Qex ¼ �rh;ex
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − Λr2h;exÞ

q
: ð19Þ

Hence, the extremal possible charge Qex increases
(decreases) fromþ ffiffiffi

2
p

rh;ex (from −
ffiffiffi
2

p
rh;ex) at Λ ¼ 0 when

decreasing Λ, which is related to the additional attractive
nature of the negative cosmological constant.
In the following, we will assume this space-time back-

ground to be fixed and will consider a scalar field that does
not backreact onto the space-time. The linear scalar field
equation then reads:

1

r2
ðr2Nϕ0Þ0 þ ðαRþ γGÞϕ ¼ 0; ð20Þ

where the explicit form of the Gauss-Bonnet term and the
Ricci scalar, respectively, for the RNAdS solution are:

G¼8

3
Λ2þ 2

r8
ð24r2M2−24rMQ2þ5Q4Þ; R¼4Λ: ð21Þ

Moreover, as is obvious from these expressions, both R
and G are constant on the AdS boundary at r → ∞. Hence,
all arguments related to the holographic interpretation,
regularization and renormalization of a scalar field model
with massive scalar field in asymptotically AdS apply also
here (see e.g., [33] for a discussion on these issues).

A. The Breitenlohner-Freedman bound
and parameter restrictions

The (dþ 1)-dimensional asymptotically AdS (aAdS)
space-time with AdS radius l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−dðd − 1Þ=ð2ΛÞp
pos-

sesses a classical instability for a massive, real scalar field
with equation ð□ −m2Þϕ ¼ 0 if the mass m is below the
so-called Breitenlohner-Freedman (BF) bound [32],
i.e., for m2 < m2

BF ¼ −d2=ð4l2Þ, a nontrivial scalar field
will form. In our case, the “mass” is given by the term
m2 ≡m2

eff ¼ −ðαRþ γGÞ, i.e., we would expect (dþ 1)-
dimensional aAdS to form a nontrivial scalar for

αRþ γG ¼ 4αΛþ γG ≥
d2

4l2
¼ −

dΛ
2ðd − 1Þ : ð22Þ

In the following, we will require that (3þ 1)-dimensional
aAdS is stable with respect to the formation of a scalar field,
i.e., that asymptotically, the space-time is “pure” AdS. We
hence obtain the following restriction on the parameters
when using the asymptotic forms of the curvature tensors

4αΛþ 8

3
γΛ2 ≤

9

4l2
: ð23Þ

A quick inspection of (14) demonstrates that the require-
ment Δ ≥ 0 is exactly (23).
On the other hand, we would like a nontrivial scalar field

to form close to the black hole horizon. In the following, we
will demonstrate that (22) is fulfilled close to the event
horizon of the scalarized black holes that we present in this
paper. Note that the scalarization of black holes for α > 0,
γ ¼ 0 is impossible due to the above argument.

B. Numerical results

Equation (20) has to be solved numerically since—to our
knowledge—no analytical solutions to this equation exist
for generic values of α and γ. We have solved the equations
using an adaptive grid collocation solver [34]. We have also
chosen ϕ− ¼ 0 for all our calculations. Moreover, we can
choose ϕðrhÞ ¼ 1 as well as rh ¼ 1 without losing general-
ity. The latter condition fixes the massM in terms of Q and
Λ. In the following we will only discuss cases with Λ > −3
in order to ensure that the AdS radius l ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

−Λ=3
p

is larger
than the horizon radius rh.

1. α= 0

In the limit Q ¼ 0, the black hole is given by the
Schwarzschild-AdS (SAdS) solution which has vanishing
chemical potential μ ¼ 0. As is well known from the Λ ¼ 0
case, spontaneous scalarization of the Schwarzschild black
hole appears for a very specific value of γ ¼ γcr, in our
choice of couplings and prefactors for γcrðΛ ¼ 0Þ ≈ 0.18
[14]. We would hence expect something similar to appear
in an asymptotically AdS space-time. Indeed, we find that
spontaneous scalarization appears for γ ¼ γcrðΛÞ. We show
the dependence of γcr on Λ in Fig. 1 (black solid curve).
Decreasing Λ, γcr first increases slightly and then decreases
again, but shows little dependence on the value of Λ. This
means that the value of the curvature radius of the space-
time, i.e., the AdS radius, has little influence on the
scalarization process of the black hole as long as this
radius is (much) larger than the horizon radius of the black
hole. This seems reasonable since the scalarization happens
on and close to the horizon. Λ can only be decreased to a
minimal value of Λ� ≈ −1.65 corresponding to an AdS
radius of l ≈ 1.35 which is comparable in size to the
horizon radius rh ¼ 1.0. At this value of Λ, the power-law
fall off of the scalar field function is no longer possible
since Δ (black dashed) tends to zero. Inserting Λ� into the
equation Δ ¼ 0 gives γ� ≈ 0.17, which is in perfect agree-
ment with our numerical results. Accordingly, the power of
the scalar field fall-off λþ (equivalent to the dimension of
the dual operator on the conformal boundary, black dotted-
dashed) ranges from three at Λ ¼ 0 to 3=2 at Λ�.
The case for Λ ¼ 0 and Q ≠ 0 has been studied in [22].

In particular, it was found that two independent and
disjoined branches of charged, spontaneously scalarized
black holes exist: one is the solution that tends to the
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uncharged solution of [14–16] and exists for γcr > 0, while
the second branch appears close to extremality of the RN
solution and requires γcr < 0. In order to understand the
pattern, we have first fixedQ ¼ 1 and compared the results
with those for Q ¼ 0, see Fig. 1. Qualitatively, the results
are very similar to those of the uncharged case when
considering only γcr > 0. Quantitatively, we observe that
γcr (solid green) is always larger than in the uncharged case
and that the value of Λ� at which Δ → 0 increases with
charge. For Q ¼ 1 we find Λ� ≈ −0.84, which—using
Δ ¼ 0—gives the value γ� ≈ 0.33, again in excellent
agreement with our numerics (see green dashed curve).
We observe that again λþ ∈ ½3

2
∶3� (green dotted-dashed

curve), but that this variation is related to a smaller variation
of Λ as in the uncharged case.
In Fig. 2 we show some typical solutions for Λ¼−0.006

and different charges Q. Following the discussion in III A,
wewould expect−γcrG to drop below the BF bound close to
the horizon of the black hole. For our choice of Λ, the value
of BF bound is m2

BF ¼ −0.0045. Inspection of Fig. 2 (left)
demonstrates that close to the horizon rh ¼ 1, we find
−γcrG < −0.0045, while asymptotically the requirement
Δ ≥ 0 ensures stability of AdS. Correspondingly, nontrivial
scalar fields appear close to the horizon, see Fig. 2 (right).
We also observe that the larger the charge Q, the larger we
have to choose γcr to find scalarized black holes. E.g., for the
charges given in Fig. 2 we find γcr ¼ 0.48, 0.60, 1.00 and
2.00 forQ2 ¼ 0.9946, 1.1032, 1.3083, 1.8106, respectively.
To state it differently: charged black holes require a stronger
scalar-tensor coupling in order to be scalarized as compared
to their uncharged counterparts.
When increasing Q, we observe a phenomenon that

exists also forΛ ¼ 0 and was first discussed in [22]: the GB
term becomes negative close to the black hole horizon due
to the approach of extremality, i.e., the approach to a
solution with near-horizon geometry AdS2 × S2. For Λ ¼
−0.006 and rh ¼ 1, the value of the extremal charge is
Q2

ex ¼ 1.988, but we see the appearance of a negative
valued GB term already at Q2 ¼ 1.3083 and Q2 ¼ 1.8106.
To evaluate the influence of the cosmological constant on

this phenomenon in more detail, we have chosen Λ ¼ −0.6
(with Q2

ex ¼ 3.2) and compared the two γcr branches with
those present for Λ ¼ 0 (with Q2

ex ¼ 2.0). The results are
shown in Fig. 3. We observe that while the positive γcr
branches exists forQ2 ∈ ½0∶Q2

ex� forΛ ¼ 0, this is no longer
true for Λ ¼ −0.6. The positive γcr branch stops when
Δ ¼ 0, i.e., for γcr ¼ 0.46875. We find the corresponding
value of the charge to beQ2 ≈ 1.44, well below the extremal
charge Q2

ex ¼ 3.2. To state it differently, the requirement of
asymptotically AdS space-time being stable, i.e., the BF
bound, imposes a stronger restriction on the solutions—at

FIG. 2. We show the Gauss-Bonnet term γcrG for the RNAdS solutions with rh ¼ 1, Λ ¼ −0.006 and different values of Q2 (left) as
well as the scalar field solution ϕðrÞ in the corresponding background RNAdS space-time (right).

FIG. 1. We give the value of γ (solid) for which nontrivial
solutions of the scalar field equation (20) exist in dependence on
−Λ=3≡ 1=l2 for a SAdS background (Q ¼ 0, black) and a
RNAdS background with Q ¼ 1 (green). We also give Δ
(dashed) as well as the value of λþ (dotted-dashed). The latter
corresponds to the dimension of the operator on the conformal
boundary in the gauge/gravity duality interpretation. Note that all
curves stop at a given value of Λ because Δ → 0 there.
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least for sufficiently small Λ—than the requirement
for the existence of a black hole horizon. This also leads
to the observation that close to the extremal limit, aAdS
black holes can only be scalarized for γcr < 0. While for
Λ ¼ 0 an interval of Q2 exists, for which black holes
can be scalarized for positive and negative γcr, this is no
longer the case for Λ ¼ −0.6. In fact, we find that
Q2 → 1.6 for γ → −∞. Hence, nontrivial scalar field
solutions to (20) exist either for γ positive or γ negative
if −Λ is sufficiently large.

2. α ≠ 0

We have studied the case Λ ¼ −0.006 and our results are
shown in Fig. 4, where we present the domain of existence
of scalarized RNAdS black holes in the γ − α-plane. This
clearly shows that solutions for γ ¼ 0 are not possible and
that the αR term always requires the presence of the γG
term as well in order to achieve scalarization. The domain
of existence is limited by two phenomena: Δ tending to
zero, which gives a lower bound on α and Q ¼ 0, which
gives an upper bound on α, respectively. From Δ ¼ 0 using

Λ ¼ −0.006, we find αðminÞ
cr ¼ 0.004γ − 0.1875, hence the

Δ ¼ 0 curve in Fig. 4 shows little dependence on γ. Since
the presence of the charge Q leads to the presence of
negative valued terms in G, we would expect that decreas-
ingQ allows to increase α. This can be done untilQ ¼ 0. In
this limit, the requirement for scalarized black holes to exist
is [see (23)]:

4αΛþ γ

�
8

3
Λ2 þ 48M2

r6

�
≥ −

3Λ
4

ð24Þ

close to the black hole horizon. Using rh ¼ 1.0, Λ ¼
−0.006 this becomes

α ≤ −0.01875þ γ

�
0.0004þ 50.2002

r6

�
: ð25Þ

Now, we would need this bound to be fulfilled somewhere
outside and close to the horizon in order to observe
scalarization, i.e., the bound depends on the actual value
of r (or better: range of r), which can only be found
numerically. But (25) clearly demonstrates that when
increasing γ, we can increase α, in agreement with our
numerical results.
In summary, we can scalarize the SAdS solution and

then increase the charge Q up to the point where Δ ¼ 0. In
Fig. 4 (right), we show the approach to Q ¼ 0 for α ¼ 0.0.
We observe that close to Q ¼ 0, the value of the derivative
of the scalar function on the horizon changes sign and
becomes negative.

3. Fixing the operator dimension

In gauge/gravity duality applications it is often useful to
fix the dimension of the dual operator. This corresponds to
fixing λþ, i.e., fixing Δ. We can then express the Hawking
temperature (18) in terms of λþ and Q2 as follows

2πTH ¼ ½ð3 − λþÞλþ þ 12α�r4h þ 4ð2r2h −Q2Þγ
8γr3h

ð26Þ

where

γ ¼ −
12αþ λþð3 − λþÞ

8Λ
: ð27Þ

We have investigated this case for α ¼ 0, γ > 0 for which
λþ can be chosen to lie within the interval λþ ∈ ½3

2
∶3½. Note

that we cannot reach λþ ¼ 3, because this would require
either γ ¼ 0, in which the scalar field would always be
trivial due to existing no-hair theorems, or Λ ¼ 0, in which
case the space-time is asymptotically flat and the scalar
field falls off like ∼1=r.
Our results for various fixed values within the given

interval for λþ are shown in Fig. 5. We find that Q2 is a
decreasing function of −Λ (or equivalently decreasing AdS
radius l)—independent of the value of λþ, see Fig. 5 (left).
The largest possible −Λ on each individual branch is
reached at the Q ¼ 0 solution, i.e., when the background
is given by the Schwarzschild-Anti-de Sitter (SAdS)
solution. To state it differently: in order for charged black
holes in aAdS to scalarize, we have to choose the AdS
radius larger (as compared to the horizon radius) than for an
uncharged aAdS black hole. The larger the charge Q, the
larger we have to choose l in order to achieve scalarization.
When decreasing λþ, we find that for a fixed value of the

charge Q, we have to increase −Λ (decrease l) in order for

FIG. 3. We give the value of γcr for which nontrivial solutions of
the scalar field equation (20) exist in dependence on Q2 and for
Λ ¼ 0 (black) and Λ ¼ −0.6 (green), respectively. The dashed
vertical line indicates the extremal limit Q2

ex ¼ 2.0 of the charged
background solution for Λ ¼ 0, i.e., the RN solution, while
Q2

ex ¼ 3.2 for Λ ¼ −0.6.
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the black hole to scalarize, i.e., the smaller the dimension of
the dual operator on the conformal boundary, the smaller
we have to choose the AdS radius l (in comparison to the
horizon radius) in order to find nontrivial scalar fields. In
Table I, we give the values of −Λ=3 (or equivalently l) as
well as the corresponding value of γ [see (27)] for which
nontrivial solutions to (20) exist in the Q ¼ 0 background
in dependence on λþ. For these values, the scalar field
behaves according to (13) for ϕ− ≡ 0. Using the termino-
logy of the gauge/gravity duality, we can then interpret ϕþ
as the expectation value of the corresponding dual operator
with dimension λþ. In Fig. 5 (right) we show the value of
ðϕþÞ1=λþ in dependence on the Hawking temperature TH of
the black hole, which is equal to the temperature of the dual
field theory on the AdS boundary. We find that for all fixed
λþ that we have studied, ðϕþÞ1=λþ increases with decreasing
temperature, which is equivalent to increasing charge Q. In
fact, the branches shown here start at Q ¼ 0 (large TH) and

end at the extremal solution with TH ¼ 0. We find that—
except for λþ ¼ 2.97, i.e., a value of λþ close to the limiting
value λþ ¼ 3—the strongest increase of ðϕþÞ1=λþ happens
approximately at the same TH.

FIG. 4. We show the domain of existence of nontrivial solutions to (20) in the γ − α-plane for Λ ¼ −0.006 (left). We demonstrate the
approach to Q ¼ 0 for α ¼ 0.0 (right). Clearly, the derivative ∂rϕðrhÞ changes sign close to the approach, but stays finite.

FIG. 5. We show the value of Q2 in dependence on −Λ=3 ¼ 1=l2 for which nontrivial solutions to (20) exist for various values of
fixed λþ, i.e., dimension of the dual operator on the conformal boundary, and α ¼ 0 (left). We also give the value of the expectation value
of the dual operator with dimension λþ, ðϕþÞ1=λþ , on the boundary in function of the Hawking temperature TH (right, same color coding
as left).

TABLE I. Values of −Λ, l and γ in dependence on λþ for which
nontrivial solutions to (20) exist in the background of a Schwarzs-
child-Anti-de Sitter (SAdS) solution, i.e., for Q ¼ 0, and for
α ¼ 0. We also give the corresponding value of the expectation
value of the dual operator on the boundary, ϕþ.

λþ −Λ=3 l γ ϕþ
2.97 0.0172 7.625 0.216 9.380
2.90 0.0504 4.454 0.240 3.535
2.50 0.2000 2.236 0.260 1.249
2.00 0.3860 1.610 0.216 0.917
1.50 0.5900 1.302 0.159 0.816
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IV. INCLUDING BACKREACTION

With the knowledge of the parameters for which non-
trivial solutions to (20) exist, we can treat the full back-
reacted problem and construct spontaneously scalarized
black holes as solutions to the set of coupled, nonlinear
differential equations (9). In fact, while ϕjr¼rh ≡ ϕh is fixed
in the linearized problem, it can now be varied continuously
and is a free parameter. We have hence chosen the set of
parameters ðΛ; α; γÞ for which a solution to (20) exists
(again choosing rh ¼ 1) and have numerically constructed
a branch of solutions characterized by ϕh. Our numerical
results indicate that ϕh ∈ ½0; ϕ̃h�. While the Hawking
temperature TH, the mass M and the electric charge Q
depend very weakly on ϕh, we observe that the derivative
of the metric function σ—which itself is no longer trivially
equal to unity—at the horizon, ∂rσjr¼rh≡∂rσðrhÞ, diverges
when ϕh → ϕ̃h indicating that the branch of spontaneously
scalarized black holes tends to a singular solution. Equally,
the Ricci scalar R [see (7)] and the Gauss-Bonnet term G
[see (8)] diverge on the horizon. Our numerical results
indicate that we reach this singular solution before reaching
the extremal limit with TH ¼ 0. The fact that black holes
with strong curvature cannot be scalarized to give regular
black holes with hair has recently been discussed in [25]
and our results indicate that this is also true in aAdS. To
state it differently: the nonminimal coupling between
curvature and scalar field does not allow to find an
extremal, spontaneously scalarized black hole—a state-
ment that we prove explicitly in the Appendix A. In fact,
this is shown in Fig. 6 (left) for α ¼ 0, γ ¼ 0.3 and different
fixed dimensions of the dual operator λþ (or equivalently
different values of Λ). In the limit ϕh → 0, the solution
tends to the RNAdS solution with ϕðrÞ≡ 0 and σðrÞ≡ 1.
Increasing ϕh from zero, the solution becomes a (only
numerically known) charged black hole with scalar hair for
which ∂rσðrhÞ increases. The value of ϕþ also increases

with increasing ϕh, see Fig. 6 (right). We find that the larger
the λþ, the larger ϕþ for a given value of ϕh.

A. Holographic phase transitions

In the case without backreaction, the scalar field equa-
tion (20) is linear and hence the value of the scalar field
ϕðrÞ has no physical meaning. In our model it is thence
possible to describe holographic phase transitions only
when including the backreaction of the metric. Note that
this is in contrast with the study of holographic super-
conductors [29,30], where the scalar field equation is
nonlinear already for a fixed background metric due to a
minimal coupling to a U(1) gauge field [28].
When solving the full set of nonlinear equations, we find

that the model in the bulk can be interpreted as the dual
description of a phase transition in a strongly coupled
quantum system that “lives” on the boundary of AdS.
This is shown in Fig. 7 (left), where we give the dimen-
sionless value of the condensate ϕ1=λþþ =Tc in dependence of
the temperature T ≡ TH, which we now interpret as the
temperature of the dual field theory and hence omit the
index “H”. Close to the critical temperature T ¼ Tc,
the condensate curve shows the typical Ginzburg-Landau
type behavior ðϕþÞ1=λþ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − T=Tc

p
, which signals a

second order phase transition at T ¼ Tc. Increasing the
operator dimension λþ, the value of the condensate
increases at a given temperature T. We have also studied

the behavior of the condensate ϕ1=λþþ =μc in dependence of
the value of the U(1) gauge field on the AdS boundary, i.e.,
the chemical potential μ. Our results are shown in
Fig. 7 (right). For μ ≥ μc, we find that nontrivial con-
densates exist and, again, we find that increasing the
operator dimension increases the value of the condensate
for a fixed value of μ. The described phase transition,
however, cannot be extended all the way down to T ¼ 0
because of the reasons mentioned above. Rather, we find

FIG. 6. We show the derivative of the metric function σðrÞ at the horizon, ∂rσðrhÞ, in dependence on the value of the scalar field on the
horizon, ϕh, for spontaneously scalarized black holes including backreaction, γ ¼ 0.3 and different values of λþ (left). We also give the
value of the condensate ϕþ in dependence on ϕh for these solutions (right, same color coding as left).
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that below a given temperature (above a given chemical
potential) the value of the condensate becomes constant,
i.e., is practically independent of the temperature (chemical
potential), when decreasing (increasing) it further.
Let us mention that in our numerical study here, we have

fixed rh ¼ 1, i.e., the entropy of the black hole S ¼ πr2h to
be constant. In gauge/gravity applications it is often more
interesting to study the case of fixed chargeQ. Our data can
easily be transformed to this latter case by using the scaling
symmetry (15) that leaves λþ unchanged. The relevant
quantities (denoted by a hat, Q̂ ¼ 1) then are

T̂H ¼QTH; ϕ̂� ¼ ϕ�
Qλ�

; γ̂ ¼ γ

Q2
; μ̂¼ μ

Q
ð28Þ

where we have to exclude the Q ¼ 0 case. Since the
uncharged case is of importance in our study and
scalarization happens due to the nonminimal coupling
(in contrast to e.g., studies of holographic superconductors,
where the presence of the U(1) gauge field is essential
for the minimally coupled scalar field to form, see e.g.,
[28,29]), we have presented our results for fixed entropy S
of the black hole.
Due to the fact that the scalar field in our model is real,

applications of our results are phase transitions that involve
real-valued order parameters rather than complex valued
ones. Examples are the difference between the density of
the liquid and the density of the gas in a liquid-gas phase
transition, the difference in concentrations in binary liquids
or the magnetization in uniaxial magnets. Since the
AdS=CFT correspondence is designed to describe quantum
rather than thermal phase transitions on the one hand and
strong coupling rather than weak coupling scenarios on the
other, the question remains whether such transitions appear
in nature. One example is the investigation of liquid-gas
quantum phase transitions in bosonic fluids as discussed
recently e.g., in [35]. Since 4He is known to be a strongly

interacting system, it would be interesting to compare our
results with those obtained using other approaches.

V. CONCLUSIONS

In this paper, we have studied spontaneously scalarized,
static, spherically symmetric (un)charged black holes in
asymptotically AdS space-time. We find that the scalar field
power law fall-off on the AdS boundary depends on the
coupling constants α and γ—very different to the asymp-
totically flat case—and that this fall-off is possible when the
asymptotic form of the scalar-tensor coupling term fulfills
the Breitenlohner-Freedman bound. We also find that while
black holes can be scalarized with only the Gauss-Bonnet
term G present, this is not the case for the Ricci scalar R.
This latter term needs “the support” of the Gauss-Bonnet
term for scalarization to appear. Very similar to the
asymptotically flat case, RNAdS black holes close to
extremality can only be scalarized for negative values
of γ. Including backreaction of the space-time leads to
the observation that increasing the value of the scalar field
on the horizon ϕh from zero that the branch of solutions
terminates in a singular solution for which σ0 on the horizon
and with itR and G diverge. The value of the scalar field on
the boundary of AdS can then be interpreted as the
expectation value of a dual operator in a quantum field
theory. This value increases with decreasing temperature
and the system describes a phase transition of the
Ginzburg-Landau form. However, since the temperature
cannot be decreased to zero, the transition stops at finite
temperature. In order to study temperatures closer to zero,
we would have to study solutions for negative values of γ.
However, our results indicate that in this case, the con-
densate increases with increasing temperature. For the
moment, we have no proper dual interpretation of this
fact, but will report more details including a detailed study
of phase transitions in this system in the future.

FIG. 7. We give the dimensionless condensate ϕ1=λþþ =Tc (ϕ1=λþþ =μc) in dependence on the temperature T divided by the critical
temperature Tc (in dependence on the chemical potential μ divided by the critical chemical potential μc) for scalarized black holes
including backreaction with γ ¼ 0.3 and several values of λþ [left (right)].
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APPENDIX A: SPONTANEOUS SCALARIZATION
OF EXTREMAL BLACK HOLES

In the following, we will use the so-called attractor
formalism developed in [36] for higher derivative gravity,
in [37] for higher derivative gravity in AdS and including
scalar fields in [38], respectively. For that, we assume that
the near horizon geometry of a near-extremal spherically
symmetric, static black holes is of the form AdS2 × S2

and1 hence can be written as

ds2¼ v1

�
−ρ2dτ2þ 1

ρ2
dρ2

�
þv2ðdθ2þ sin2 θdφ2Þ; ðA1Þ

where v1 and v2 are two positive constants and r¼rh;exþρ
such that the extremal horizon is located at ρ ¼ 0.
Furthermore, we have Fρτ ¼ −Fτρ ¼ constant≡ e, which
follows from the Maxwell equation using (A1).
The entropy function F is given by: Fðv1; v2; e; Q;ϕhÞ∼

fðv1; v2; e;ϕhÞ − eQ, where f reads:

fðv1; v2; e;ϕhÞ ¼
Z
S2
d2x

ffiffiffiffiffiffi
−g

p
L ðA2Þ

and

L¼
�
R
2
−Λþϕ2ðαRþ γGÞ−∂μϕ∂μϕ−

1

4
FμνFμν

�
: ðA3Þ

Inserting Fρτ ¼ −Fτρ ¼ e and the metric (A1), we find:

F ¼ 4π

�
v1 − v2 −

Λ
v1v2

þ ϕ2
hð2αðv1 − v2Þ − 8γÞ þ 1

2

e2v2
v1

�
− eQ: ðA4Þ

The attractor conditions then read:

∂F
∂v1 ¼ 0 ⇒ 4αϕ2

hv
2
1v2 − e2v22 þ 2Λþ 2v21v2 ¼ 0

∂F
∂v2 ¼ 0 ⇒ −4αϕ2

hv1v
2
2 þ e2v22 þ 2Λ − 2v1v22 ¼ 0

∂F
∂e ¼ 0 ⇒ 4πe

v2
v1

¼ Q

∂F
∂ϕh

¼ 0 ⇒ ϕhðαðv1 − v2Þ − 4γÞ ¼ 0 ðA5Þ

The latter expression clearly demonstrates that for ϕh ≠ 0
the choice α ¼ 0 implies γ ¼ 0 (and vice versa) and hence
scalarization of black holes with near horizon geometry
given by AdS2 × S2 is excluded if either term is absent,
unless v1 ¼ v2 in the case α ≠ 0, γ ¼ 0. Setting v1 ¼ v2,
however, leads to Λ ¼ 0 [using the first two relations
in (A5)], a case we want to exclude here.
Now, for the general case, α ≠ 0, γ ≠ 0 and ϕh ≠ 0, let us

consider the scalar field equation. Using the metric (A1),
this reads:

8γϕ − 2αϕðv1 − v2Þ − 2ϕ0v2ρ − ϕ00v2ρ2 ¼ 0: ðA6Þ

Implementing the condition αðv1 − v2Þ ¼ 4γ from (A5),
this equation can be integrated to give

ϕ0 ∼ ρ−2: ðA7Þ

Hence, ϕ0 diverges when approaching the extremal horizon,
i.e., for ρ → 0, such that regular, extremal black holes with
scalar hair do not exist in scalar-tensor gravity with
coupling of the form ϕ2ðαRþ γGÞ.

APPENDIX B: FEFFERMAN-GRAHAM
CONSTRUCTION

In the Fefferman-Graham construction [39] the bulk
metric is of the form:

ds2 ¼ l2

4ρ2
dρ2 þ 1

ρ
gijðx; ρÞdxidxj; ðB1Þ

where ρ is the radial coordinate that drives the RG flow in
the holographic interpretation. Anti–de Sitter space-time
(AdS) corresponds to the choice

gijðx; ρÞdxidxj ¼ −dt2 þ dx2 þ dy2; ðB2Þ

where x, y, z are standard Cartesian coordinates, and is a
solution to the Einstein equation with negative cosmologi-
cal constant Λ ¼ − 3

l2. Since we are dealing with a scalar-
tensor gravity model here, we have checked that the space-
time, indeed, tends to AdS asymptotically. For that, we
have chosen

1Strictly speaking, this is an assumption. However, we know
that for ϕ≡ 0 this is true and assume here that the presence of the
scalar field would not change the geometry.
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gijðx;ρÞ¼−ð1þaðρÞÞdt2þð1þbðρÞÞðdx2þdy2Þ;

with aðρÞ¼
X∞
k¼1

akρk; bðρÞ¼
X∞
k¼1

bkρk ðB3Þ

where the ak and bk are constants. This seems a suitable
Ansatz given the symmetries of the space-time. Moreover,
we assume ϕ ∼ ρβ with β ≥ 1 at ρ → 0. Inserting this into
the gravity equation [see rhs of (3)] it is straightforward to

show that the dominant term in TðϕÞ
μν is the scalar field term

∼ρ2ðβ−1Þ. Moreover, this can never be matched with the

terms from aðρÞ and bðρÞ appearing in Gμν. Hence, we
conclude that ak ¼ 0 and bk ¼ 0 for all k when ρ → 0 and
that the space-time does tend to “pure” AdS, i.e., (B2), in
our scalar-tensor gravity model. Note that this is also in
agreement with our numerical results. Now, using this fact,
it is straightforward to show using the scalar field equation
[lhs of (3)] that the scalar field behaves like (13) with r
replaced by ρ−1 for ρ → 0. This means that the power of
the fall-off that we have derived in Schwarzschild-like
coordinates agrees with that in the Fefferman-Graham
construction.
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