
23 11

Article 21.10.6
Journal of Integer Sequences, Vol. 24 (2021),2

3

6

1

47

Using Graph Theory to Derive

Inequalities for the Bell Numbers

Alain Hertz
Department of Mathematics and Industrial Engineering

Polytechnique Montréal and GERAD
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Abstract

The Bell numbers count the number of different ways to partition a set of n elements,

while the graphical Bell numbers count the number of non-equivalent partitions of the

vertex set of a graph into stable sets. This relation between graph theory and integer

sequences has motivated us to study properties on the average number of colors in the

non-equivalent colorings of a graph to discover new nontrivial inequalities for the Bell

numbers. Examples are given to illustrate our approach.
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1 Introduction

The Bell numbers (Bn)n≥0 count the number of different ways to partition a set that has
exactly n elements. Starting with B0 = B1 = 1, the first few Bell numbers are 1, 1, 2, 5, 15,
52, 203 (sequence A141390 in the On-Line Encyclopedia of Integer Sequences). The integer
Bn can be defined to be the sum

Bn =
n
∑

k=0

{

n

k

}

,

where
{

n

k

}

is the Stirling number of the second kind, with parameters n and k (i.e., the
number of partitions of a set of n elements into k blocks). Dobiński’s formula [4] gives

Bn =
1

e

∞
∑

k=0

kn

k!
.

The 2-Bell numbers (Tn)n≥0 count the total number of blocks in all partitions of a set of
n + 1 elements. Starting with T0 = 1 and T1 = 3, the first few 2-Bell numbers are 1, 3, 10,
37, 151, 674 (sequence A005493). More formally, the integer Tn is defined by

Tn =
n+1
∑

k=0

k

{

n+ 1

k

}

= Bn+2 −Bn+1.

Odlyzko and Richmond [12] have studied the average number An of blocks in a partition
of a set of n elements, which can be defined as

An =
Tn−1

Bn

.

A concept very close to the Bell numbers is also defined in graph theory. More precisely,
a coloring of a graph G is an assignment of colors to its vertices such that adjacent vertices
have different colors. The chromatic number χ(G) is the minimum number of colors in a
coloring of G. Two colorings are equivalent if they induce the same partition of the vertex
set into color classes. For an integer k > 0, we define S(G, k) as the number of proper non-
equivalent colorings of a graph G that use exactly k colors. Since S(G, k) = 0 for k < χ(G)
or k > n, the total number B(G) of non-equivalent colorings of a graph G is defined to be

B(G) =
n
∑

k=0

S(G, k) =
n
∑

k=χ(G)

S(G, k).

In other words, B(G) is the number of partitions of the vertex set of G whose blocks are
stable sets (i.e., sets of pairwise non-adjacent vertices). This invariant has been studied by
several authors in the last few years [1, 6, 7, 9, 10, 11] under the name of (graphical) Bell
number of G.
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Let T (G) be the total number of stable sets in the set of non-equivalent colorings of a
graph G. More precisely, we define

T (G) =
n
∑

k=χ(G)

kS(G, k).

We are interested in computing the average number A(G) of colors in the non-equivalent
colorings of G, that is,

A(G) =
T (G)

B(G)
.

Clearly, B(Kn) = Bn, T (Kn) = Tn−1 = Bn+1 − Bn, and A(Kn) =
Bn+1−Bn

Bn

, where Kn is
the empty graph with n vertices. As another example, consider the cycle C5 on 5 vertices.
As shown in Figure 1, there are five colorings of C5 with 3 colors, five with 4 colors, and one
with 5 colors, which gives B(C5) = 11, T (C5) = 40 and A(G) = 40
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Figure 1: The non-equivalent colorings of C5.

This close link between Bell numbers and graph colorings indicates that it is possible to
use graph theory to derive inequalities for the Bell numbers. This is the aim of this article.
The next section gives values of A(G) for some families of graphs and basic properties
involving A(G). In Section 3, we give several examples of inequalities for the Bell numbers
that can be deduced from relations involving A(G).

Let u and v be two vertices in a graph G. We let G|uv denote the graph obtained by
identifying (merging) the vertices u and v and, if u and v are adjacent vertices, by removing
the edge that links u and v. If parallel edges are created, we keep only one. Also, if u is
adjacent to v, we let G − uv denote the graph obtained from G by removing the edge that
links u with v, while if u is not adjacent to v, we let G + uv denote the graph obtained by
linking u with v. In what follows, we let Kn, Pn and Cn be the complete graph of order n,
the path of order n, and the cycle of order n, respectively. We denote the disjoint union of
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two graphs G1 and G2 by G1 ∪G2. We refer to Diestel [3] for basic notions of graph theory
that are not defined here.

2 Some values and properties of A(G)

The deletion-contraction rule (also often called the fundamental reduction theorem [5]) is a
well known method to compute B(G) [7, 11]. More precisely, let u and v be any pair of
distinct vertices of G. We have

S(G, k) = S(G− uv, k)− S(G|uv, k) for every pair u, v of adjacent vertices in G, (1)

S(G, k) = S(G+ uv, k) + S(G|uv, k) for every pair u, v of non-adjacent vertices in G. (2)

It follows that

B(G) = B(G− uv)− B(G|uv)
T (G) = T (G− uv)− T (G|uv)

}

for every pair u, v of adjacent vertices in G, (3)

B(G) = B(G+ uv) + B(G|uv)
T (G) = T (G+ uv) + T (G|uv)

}

for every pair u, v of non-adjacent vertices in G. (4)

Let v be a vertex in a graph G. We let G − v denote the graph obtained from G by
removing v and all its incident edges. A vertex of a graph G is dominating if it is adjacent
to all other vertices of G, and it is simplicial if its neighbors are pairwise adjacent.

Proposition 1. If G has a dominating vertex v, then A(G) = 1 +A(G− v).

Proof. Clearly, S(G, k) = S(G− v, k − 1) for all k, which implies

B(G) =
n
∑

k=χ(G)

S(G, k)

=
n
∑

k=χ(G)

S(G− v, k − 1) =
n−1
∑

k=χ(G−v)

S(G− v, k) = B(G− v)

and

T (G) =
n
∑

k=χ(G)

kS(G, k)

=
n
∑

k=χ(G)

kS(G− v, k − 1) =
n−1
∑

k=χ(G−v)

(k + 1)S(G− v, k) = T (G− v) + B(G− v).

Hence A(G) =
T (G− v) + B(G− v)

B(G− v)
= 1 +

T (G− v)

B(G− v)
= 1 +A(G− v).
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Duncan [7] proved that if G is a tree, then S(G, k) =
{

n−1
k

}

for k = 1, . . . , n. This leads
to our second proposition.

Proposition 2. Let G be a tree of order n. Then B(G) = Bn−1 and T (G) = Bn.

Proof. Since S(G, k) =
{

n−1
k−1

}

, we immediately get

B(G) =
n
∑

k=1

{

n− 1

k − 1

}

=
n−1
∑

k=0

{

n− 1

k

}

= Bn−1

and

T (G) =
n
∑

k=1

k

{

n− 1

k − 1

}

=
n−1
∑

k=0

(k + 1)

{

n− 1

k

}

=
n−1
∑

k=0

k

{

n− 1

k

}

+
n−1
∑

k=0

{

n− 1

k

}

= (Bn −Bn−1) + Bn−1 = Bn.

Proposition 3. Let T ∪ pK1 be the graph obtained from a tree T of order n ≥ 1 by adding

p isolated verices. Then B(T ∪ pK1) =

p
∑

i=0

(

p

i

)

Bn+i−1 and T (T ∪ pK1) =

p
∑

i=0

(

p

i

)

Bn+i.

Proof. For p = 0, the result follows from Proposition 2. For larger values of p, we proceed
by induction. Let T ′ be the tree obtained from T by adding a new vertex and linking it to
exactly one vertex in T . Equations (4) give the following:

B(T ∪ pK1) = B(T ′ ∪ (p− 1)K1) + B(T ∪ (p− 1)K1)

=

p−1
∑

i=0

(

p− 1

i

)

Bn+i +

p−1
∑

i=0

(

p− 1

i

)

Bn+i−1

=

p
∑

i=1

(

p− 1

i− 1

)

Bn+i−1 +

p−1
∑

i=0

(

p− 1

i

)

Bn+i−1

= Bn+p−1 +

p−1
∑

i=1

((

p− 1

i− 1

)

+

(

p− 1

i

))

Bn+i−1 + Bn−1

=

p
∑

i=0

(

p

i

)

Bn+i−1.

The proof for T (T ∪ pK1) is similar.

Proposition 4. Let Cn be a cycle of order n ≥ 3. Then,

B(Cn) =
n−1
∑

j=1

(−1)j+1Bn−j and T (Cn) =
n−1
∑

j=1

(−1)j+1Bn−j+1.
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Proof. Duncan [7] proved that B(Cn) =
∑n−1

j=1 (−1)j+1Bn−j. It is therefore sufficient to prove

that T (Cn) =
∑n−1

j=1 (−1)j+1Bn−j+1.
If n = 3, then T (C3) = 3 = B3 − B2. If n > 3, Equations (3) together with the fact

that Pn is a tree give T (Cn) = T (Pn)−T (Cn−1) = Bn −T (Cn−1), and the result follows by
induction.

Proposition 5. Let Cn ∪ pK1 be the graph obtained from a cycle of order n ≥ 3 by adding

p isolated verices. Then

B(Cn∪pK1) =
n−1
∑

j=1

(−1)j+1

p
∑

i=0

(

p

i

)

Bn+i−j and T (Cn∪pK1) =
n−1
∑

j=1

(−1)j+1

p
∑

i=0

(

p

i

)

Bn+i−j+1.

Proof. For p = 0, the result follows from Proposition 4. For larger values of p, we proceed
by induction. If n = 3 then Equations (3) and Proposition 3 give

B(C3 ∪ pK1) = B(P3 ∪ pK1)− B(P2 ∪ pK1)

=

p
∑

i=0

(

p

i

)

B3+i−1 −

p
∑

i=0

(

p

i

)

B2+i−1

=
2
∑

j=1

(−1)j+1

p
∑

i=0

(

p

i

)

B3+i−j .

Hence, the result is valid for n = 3. So assume n > 3 and that the statement holds for
smaller values of n:

B(Cn ∪ pK1) = B(Pn ∪ pK1)− B(Cn−1 ∪ pK1)

=

p
∑

i=0

(

p

i

)

Bn+i−1 −
n−2
∑

j=1

(−1)j+1

p
∑

i=0

(

p

i

)

Bn+i−j−1

=

p
∑

i=0

(

p

i

)

Bn+i−1 +
n−1
∑

j=2

(−1)j+1

p
∑

i=0

(

p

i

)

Bn+i−j

=
n−1
∑

j=1

(−1)j+1

p
∑

i=0

(

p

i

)

Bn+i−j.

The proof for T (Cn ∪ pK1) is similar.

Proposition 6. Let G be a graph with a simplicial vertex v. Then A(G) > A(G− v).

Proof. Let r be the number of neighbors of v in G. We have S(G, k) = (k− r)S(G− v, k) +
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S(G− v, k − 1). Assuming that G is of order n, we have

B(G) =
n
∑

k=0

S(G, k) =
n−1
∑

k=0

kS(G− v, k)− r

n−1
∑

k=0

S(G− v, k) +
n−1
∑

k=0

S(G− v, k)

=
n−1
∑

k=0

(k − r + 1)S(G− v, k)

and

T (G) =
n
∑

k=0

kS(G, k) =
n
∑

k=0

(k2 − kr)S(G− v, k) +
n
∑

k=0

kS(G− v, k − 1)

=
n−1
∑

k=0

(k2 − kr)S(G− v, k) +
n−1
∑

k=0

(k + 1)S(G− v, k)

=
n
∑

k=0

(k2 − k(r − 1) + 1)S(G− v, k).

We therefore have

B(G− v)T (G)− T (G− v)B(G)

=
n−1
∑

k=0

S(G− v, k)
n
∑

k′=0

(k′2−k′(r−1)+1)S(G− v, k′)−
n−1
∑

k=0

kS(G− v, k)
n−1
∑

k′=0

(k′−r+1)S(G− v, k′)

=
n−1
∑

k=0

(S(G− v, k))2 (k2 − k(r − 1) + 1− k(k − r + 1))

+
n−2
∑

k=0

n−1
∑

k′=k+1

S(G− v, k)S(G− v, k′)(k′2−k′(r−1)+1+k2−k(r−1)+1−k(k′−r+1)−k′(k−r+1))

=
n−1
∑

k=0

(S(G− v, k))2 +
n−2
∑

k=0

n−1
∑

k′=k+1

S(G− v, k)S(G− v, k′)
(

(k − k′)2 + 2
)

> 0

which impliesA(G)−A(G−v) =
T (G)

B(G)
−
T (G− v)

B(G− v)
=

B(G− v)T (G)− T (G− v)B(G)

B(G)B(G− v)
> 0.

Proposition 7. Let G,H and F1, . . . , Fr be r + 2 graphs, and let α1, . . . , αr be r positive

numbers such that

• B(G) = B(H) +
∑r

i=1 αiB(Fi)

• T (G) = T (H) +
∑r

i=1 αiT (Fi)

• A(Fi) < A(H) for i = 1, . . . , r.
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Then A(G) < A(H).

Proof. Since A(Fi) < A(H), we have T (Fi) <
T (H)B(Fi)

B(H)
for i = 1, . . . , r. Hence

A(G) =
T (G)

B(G)
=

T (H) +
∑r

i=1 αiT (Fi)

B(H) +
∑r

i=1 αiB(Fi)

<
T (H) +

∑r

i=1 αi
T (H)B(Fi)

B(H)

B(H) +
∑r

i=1 αiB(Fi)
=

T (H) (B(H) +
∑r

i=1 αiB(Fi))

B(H) (B(H) +
∑r

i=1 αiB(Fi))

=
T (H)

B(H)
= A(H).

3 Inequalities for the Bell numbers

In this section, we show how to derive inequalities for the Bell numbers, using properties
related to the average number A(G) of colors in non-equivalent colorings of G. We start by
analyzing paths. As already mentioned, Pn∪pK1 is the graph obtained by adding p isolated
vertices to a path on n vertices.

Theorem 8. A(Pn ∪ (p+ 1)K1) < A(Pn+1 ∪ pK1) for all n ≥ 1 and p ≥ 0.

Proof. It follows from Equations (4) that

B(Pn ∪ (p+ 1)K1) = B(Pn+1 ∪ pK1) + B(Pn ∪ pK1)

and

T (Pn ∪ (p+ 1)K1) = T (Pn+1 ∪ pK1) + T (Pn ∪ pK1).

Also, we know from Proposition 6 that A(Pn ∪ pK1) < A(Pn+1 ∪ pK1). Hence, it follows
from Proposition 7 that A(Pn ∪ (p+ 1)K1) < A(Pn+1 ∪ pK1).

Proposition 3 immediately gives the following corollary.

Corollary 9. If n ≥ 1 and p ≥ 0 then

(

p+1
∑

i=0

(

p+ 1

i

)

Bn+i

)(

p
∑

i=0

(

p

i

)

Bn+i

)

<

(

p+1
∑

i=0

(

p+ 1

i

)

Bn+i−1

)(

p
∑

i=0

(

p

i

)

Bn+i+1

)

.

Examples 10. For p = 0 and n ≥ 1, Corollary 9 provides the following inequality:

(Bn +Bn+1)Bn < (Bn−1 + Bn)Bn+1 ⇐⇒ B2
n < Bn−1Bn+1.

This inequality for the Bell numbers also follows from Proposition 6. Indeed, Pn is obtained
from Pn+1 by removing a vertex of degree 1, which implies

A(Pn) < A(Pn+1) ⇐⇒
Bn

Bn−1

<
Bn+1

Bn

⇐⇒ B2
n < Bn−1Bn+1.
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Note that Engel [8] has shown that the sequence (Bn)n≥0 is log-convex, which implies
B2

n ≤ Bn−1Bn+1 (with a non-strict inequality) for n ≥ 1. Recently, Alzer [2] proved that the
sequence (Bn)n≥0 is strictly log-convex by showing that

Bn−1Bn+1 −B2
n =

1

2e2

∞
∑

k=2

k−1
∑

j=1

jn−1(k − j)n−1

j!(k − j)!
(k − 2j)2

for all n ≥ 2. Since B2
1 = 1 < 2 = B0B2, this also implies B2

n < Bn−1Bn+1 for all n ≥ 1.

As a second example, assume p = 1 and n ≥ 1. Corollary 9 provides the following in-
equality for the Bell numbers, which also follows from the strict log-convexity of the sequence
(Bn)n≥0:

(Bn + Bn+1 + Bn+2)(Bn + Bn+1) < (Bn−1 + Bn + Bn+1)(Bn+1 + Bn+2)

⇐⇒ Bn(Bn +Bn+1) < Bn−1(Bn+1 + Bn+2).

For n ≥ 3 and r ≥ 0, we denote Hn,r the graph obtained by linking one extremity of Pr

to one vertex of Cn (see Figure 2). For r = 0, Hn,0 is equal to Cn. Also, Hn,r ∪ pK1 is the
graph obtained from Hn,r by adding p isolated vertices. We now compare A(H3,n−3 ∪ pK1)
with A(Pn+1 ∪ pK1) to derive new inequalities involving the Bell numbers.

v1 v2 v3 vn wrw1

Figure 2: The graph Hn,r

Theorem 11. A(H3,n−3 ∪ pK1) < A(Pn+1 ∪ pK1) for all n ≥ 4 and p ≥ 0.

Proof. Note first that Equations (3) give B(H3,n−3 ∪ pK1) = B(Pn ∪ pK1)− B(Pn−1 ∪ pK1)
and T (H3,n−3 ∪ pK1) = T (Pn ∪ pK1)− T (Pn−1 ∪ pK1). Hence

A(Pn+1 ∪ pK1)−A(H3,n−3 ∪ pK1) =
T (Pn+1 ∪ pK1)

B(Pn+1 ∪ pK1)
−

T (H3,n−3 ∪ pK1)

B(H3,n−3 ∪ pK1)

=
T (Pn+1 ∪ pK1)

B(Pn+1 ∪ pK1)
−

T (Pn ∪ pK1)− T (Pn−1 ∪ pK1)

B(Pn ∪ pK1)− B(Pn−1 ∪ pK1)

=
T (Pn+1 ∪ pK1) (B(Pn ∪ pK1)− B(Pn−1 ∪ pK1))− B(Pn+1 ∪ pK1) (T (Pn ∪ pK1)− T (Pn−1 ∪ pK1))

B(Pn+1 ∪ pK1)B(H3,n−3 ∪ pK1)
.

Let f(n, p) be the numerator of the above fraction. It follows from Proposition 3 that

f(n, p) =

p
∑

i=0

(

p

i

)

Bn+i+1

(

p
∑

ℓ=0

(

p

ℓ

)

(Bn+ℓ−1 −Bn+ℓ−2)

)

−

p
∑

i=0

(

p

i

)

Bn+i

(

p
∑

ℓ=0

(

p

ℓ

)

(Bn+ℓ −Bn+ℓ−1)

)

.
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It remains to prove that f(n, p) > 0 for all n ≥ 4 and p > 0. Since Bn = 1
e

∑∞
k=1

kn

k!
, we have

Bn −Bn−1 =
1

e

∞
∑

k=1

(

kn

k!
−

kn−1

k!

)

=
1

e

∞
∑

k=2

kn−1

k!
(k − 1).

Hence

e2f(n, p)

=

p
∑

i=0

p
∑

ℓ=0

∞
∑

j=1

∞
∑

k=2

(

p

i

)(

p

ℓ

)

jn+i+1

j!

kn+ℓ−2

k!
(k − 1)−

p
∑

i=0

p
∑

ℓ=0

∞
∑

j=1

∞
∑

k=2

(

p

i

)(

p

ℓ

)

jn+i

j!

kn+ℓ−1

k!
(k − 1)

=

p
∑

i=0

p
∑

ℓ=0

∞
∑

j=1

∞
∑

k=2

(

p

i

)(

p

ℓ

)

jn+i

j!

kn+ℓ−2

k!
(k − 1)(j − k)

=

p
∑

i=0

p
∑

ℓ=0

∑

j>k≥1

(

p

i

)(

p

ℓ

)(

jn+ikn+ℓ−2

j!k!
(k − 1)(j − k)−

jn+i−2kn+ℓ

j!k!
(j − 1)(j − k)

)

=

p
∑

i=0

p
∑

ℓ=0

∑

j>k≥1

(

p

i

)(

p

ℓ

)

jn−2kn−2

j!k!
(j − k)

(

ji+2kℓ(k − 1)− jikℓ+2(j − 1)
)

=
∑

j>k≥1

jn−2kn−2

j!k!
(j − k)

(

(k − 1)j2
p
∑

i=0

(

p

i

)

ji
p
∑

ℓ=0

(

p

ℓ

)

kℓ − (j − 1)k2

p
∑

i=0

(

p

i

)

ji
p
∑

ℓ=0

(

p

ℓ

)

kℓ

)

=
∑

j>k≥1

jn−2kn−2

j!k!
(j − k)(j + 1)p(k + 1)p

(

(k − 1)j2 − (j − 1)k2
)

.

Let g(j, k) = (k − 1)j2 − (j − 1)k2. We have proved that

e2f(n, p) =
∑

j>k≥1

jn−2kn−2

j!k!
(j − k)(j + 1)p(k + 1)pg(j, k).

Note that g(j, 1) = 1− j, g(j, 2) = (j − 2)2, and

g(j, k) = j2k − j2 − jk2 + k2 = (j − k)(jk − j − k) = (j − k)

(

k(
j

2
− 1) + j(

k

2
− 1)

)

.

Hence, g(j, k) > 0 for j > k ≥ 3, and it remains to prove that

2
∑

k=1

∞
∑

j=k+1

jn−2kn−2

j!k!
(j − k)(j + 1)p(k + 1)pg(j, k) > 0.
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We have

2
∑

k=1

∞
∑

j=k+1

jn−2kn−2

j!k!
(j − k)(j + 1)p(k + 1)pg(j, k)

=
∞
∑

j=3

2n−3 j
n−2

j!
3p(j + 1)p(j − 2)3 −

∞
∑

j=2

jn−2

j!
2p(j + 1)p(j − 1)2

≥ 12p

(

5
∑

j=3

2n−3 j
n−2

j!
(j − 2)3 −

5
∑

j=2

jn−2

j!
(j − 1)2

)

+
∞
∑

j=6

jn−2

j!
2p(j + 1)p

(

2n−3(j − 2)3 − (j − 1)2
)

= 12p
(

1

6
2n−33n−2 +

8

24
2n−34n−2 +

27

120
2n−35n−2 −

1

2
2n−2 −

4

6
3n−2 −

9

24
4n−2 −

16

120
5n−2

)

+

∞
∑

j=6

jn−2

j!
2p(j + 1)p

(

2n−3(j − 2)3 − (j − 1)2
)

.

It is easy to check that

1

6
2n−33n−2 +

8

24
2n−34n−2 +

27

120
2n−35n−2 −

1

2
2n−2 −

4

6
3n−2 −

9

24
4n−2 −

16

120
5n−2 > 0

for all n ≥ 4, and 2n−3(j− 2)3 − (j− 1)2 > 0 for all n ≥ 4 and j ≥ 4. Hence f(n, p) > 0.

As shown in the above proof, the above theorem is equivalent to the following inequalities
for the Bell numbers.

Corollary 12. If n ≥ 4 and p ≥ 0 then

p
∑

i=0

(

p

i

)

Bn+i+1

(

p
∑

ℓ=0

(

p

ℓ

)

(Bn+ℓ−1 −Bn+ℓ−2)

)

>

p
∑

i=0

(

p

i

)

Bn+i

(

p
∑

ℓ=0

(

p

ℓ

)

(Bn+ℓ − Bn+ℓ−1)

)

.

Example 13. For p = 0 and n ≥ 4 we get the following inequality for the Bell numbers:

Bn+1(Bn−1 −Bn−2) > Bn(Bn − Bn−1).

We now compare the average number of colors in colorings of Cn ∪ pK1 with the average
number of colors in colorings of H3,n−3 ∪ pK1.

Lemma 14. If n ≥ 3, r ≥ 0 and p ≥ 0 then

B(Hn,r ∪ pK1) =



























n−3

2
∑

i=0

(

n−3
2

i

)

B(H3,2i+r ∪ pK1), if n is odd;

n−4

2
∑

i=0

(

n−4
2

i

)

B(H3,2i+r+1 ∪ pK1) + B(P2+r ∪ pK1), if n is even
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and

T (Hn,r ∪ pK1) =



























n−3

2
∑

i=0

(

n−3
2

i

)

T (H3,2i+r ∪ pK1), if n is odd;

n−4

2
∑

i=0

(

n−4
2

i

)

T (H3,2i+r+1 ∪ pK1) + T (P2+r ∪ pK1), if n is even.

Proof. The result is clearly valid for n = 3. For n = 4, Equations (3) and (4) give

B(H4,r ∪ pK1) = B(P4+r ∪ pK1)− B(H3,r ∪ pK1)

= (B(H3,r+1 ∪ pK1) + B(P3+r ∪ pK1))− (B(P3+r ∪ pK1)− B(P2+r ∪ pK1))

= B(H3,r+1 ∪ pK1) + B(P2+r ∪ pK1).

Similarly, T (H4,r∪pK1)=T (H3,r+1∪pK1)+T (P2+r∪pK1) which shows that the result is valid
for n = 4. For larger values of n, we proceed by induction. Hence, it is sufficient to prove
that B(Hn,r∪pK1) = B(H3,n−3+r∪pK1)+B(Hn−2,r∪pK1) and T (Hn,r∪pK1)=T (H3,n−3+r∪
pK1)+T (Hn−2,r ∪ pK1). Using Equations (3) and (4), we get

B(Hn,r ∪ pK1) = B(Pn+r ∪ pK1)− B(Hn−1,r ∪ pK1)

= (B(H3,n−3+r∪pK1)+B(Pn+r−1∪pK1))− (B(Pn+r−1∪pK1)−B(Hn−2,r∪pK1))

= B(H3,n−3+r ∪ pK1) + B(Hn−2,r ∪ pK1).

The proof for T (Hn,r ∪ pK1) is similar.

We are now ready to compare A(Cn ∪ pK1) with A(H3,n−3 ∪ pK1).

Theorem 15. A(Cn ∪ pK1) < A(H3,n−3 ∪ pK1) for all n ≥ 3 and p ≥ 0.

Proof. Lemma 14 (with r = 0) gives the following:

B(Cn ∪ pK1) =



























B(H3,n−3 ∪ pK1) +

n−5

2
∑

i=0

B(H3,2i ∪ pK1), if n is odd;

B(H3,n−3 ∪ pK1) +

n−6

2
∑

i=0

B(H3,2i+1 ∪ pK1) + B(P2 ∪ pK1), if n is even

and

T (Cn ∪ pK1) =



























T (H3,n−3 ∪ pK1) +

n−5

2
∑

i=0

T (H3,2i ∪ pK1), if n is odd;

T (H3,n−3 ∪ pK1) +

n−6

2
∑

i=0

T (H3,2i+1 ∪ pK1) + T (P2 ∪ pK1), if n is even.
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We know from Proposition 6 that A(P2 ∪ pK1) < A(C3 ∪ pK1) = A(H3,0 ∪ pK1). Since
H3,n−3 ∪ pK1 is obtained from H3,i ∪ pK1 (i < n− 3) by repeatedly adding vertices of degree
1, we have A(P2∪pK1) < A(H3,i∪pK1) < A(H3,n−3∪pK1) for i = 0, . . . , n−5. Proposition
7 therefore implies A(Cn ∪ pK1) < A(H3,n−3 ∪ pK1).

Equations (3) give B(H3,n−3∪pK1) = B(Pn∪pK1)−B(Pn−1∪pK1) and T (H3,n−3∪pK1) =
T (Pn ∪ pK1)− T (Pn−1 ∪ pK1). Hence, Propositions 3 and 5 immediately give the following
corollary.

Corollary 16. If n ≥ 3 and p ≥ 0 then
(

n−1
∑

j=1

(−1)j+1

p
∑

i=0

(

p

i

)

Bn+i−j+1

)(

p
∑

i=0

(

p

i

)

(Bn+i−1 −Bn+i−2)

)

<

(

n−1
∑

j=1

(−1)j+1

p
∑

i=0

(

p

i

)

Bn+i−j

)(

p
∑

i=0

(

p

i

)

(Bn+i − Bn+i−1)

)

.

Example 17. For p = 0 and n ≥ 3, the above corollary provides the following inequalities
for the Bell numbers:

(Bn−1 −Bn−2)
n−1
∑

j=1

(−1)j+1Bn−j+1 < (Bn −Bn−1)
n−1
∑

j=1

(−1)j+1Bn−j.

It is easy to check that this inequality is also valid for n = 2.

We now compare the average number of colors in colorings of paths with the average
number of colors in colorings of cycles.

Theorem 18. A(Cn ∪ pK1) > A(Pn ∪ pK1) for all n ≥ 5 and p ≥ 0.

Proof. We know from Theorems 11 and 15 thatA(Pn∪pK1) > A(H3,n−4∪pK1) > A(Cn−1∪pK1),
which implies that

T (Cn−1∪pK1) <
T (Pn ∪ pK1)B(Cn−1∪pK1)

B(Pn∪pK1)
.

Equations (3) show that B(Cn ∪ pK1) = B(Pn ∪ pK1)−B(Cn−1 ∪ pK1) and T (Cn ∪ pK1) =
T (Pn ∪ pK1)− T (Cn−1 ∪ pK1). Hence:

A(Cn ∪ pK1) =
T (Cn ∪ pK1)

B(Cn ∪ pK1)
=

T (Pn ∪ pK1)− T (Cn−1 ∪ pK1)

B(Pn ∪ pK1)− B(Cn−1 ∪ pK1)

>
T (Pn ∪ pK1)−

T (Pn∪pK1)B(Cn−1∪pK1)
B(Pn∪pK1)

B(Pn ∪ pK1)− B(Cn−1 ∪ pK1)

=
T (Pn ∪ pK1) (B(Pn ∪ pK1)− B(Cn−1 ∪ pK1))

B(Pn ∪ pK1) (B(Pn ∪ pK1)− B(Cn−1 ∪ pK1))
=

T (Pn ∪ pK1)

B(Pn ∪ pK1)
= A(Pn ∪ pK1).
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Propositions 3 and 5 immediately give the following corollary.

Corollary 19. If n ≥ 5 and p ≥ 0 then

(

p
∑

i=0

(

p

i

)

Bn+i−1

)(

n−1
∑

j=1

(−1)j+1

p
∑

i=0

(

p

i

)

Bn+i−j+1

)

>

(

p
∑

i=0

(

p

i

)

Bn+i

)(

n−1
∑

j=1

(−1)j+1

p
∑

i=0

(

p

i

)

Bn+i−j

)

.

Example 20. For p = 0 and n ≥ 5 the above corollary provides the following inequality for
the Bell numbers:

Bn−1

n−1
∑

j=1

(−1)j+1Bn−j+1 > Bn

n−1
∑

j=1

(−1)j+1Bn−j.

Finally, we compare A(Cn ∪ pK1) with A(Cn−2 ∪ (p+ 2)K1).

Lemma 21. If n ≥ 3 and p ≥ 0 then

B(Cn ∪ (p+ 2)K1) = B(Hn,2 ∪ pK1) + 2B(Hn,1 ∪ pK1) + B(Hn,0 ∪ pK1)

T (Cn ∪ (p+ 2)K1) = T (Hn,2 ∪ pK1) + 2T (Hn,1 ∪ pK1) + T (Hn,0 ∪ pK1).

Proof. Equations (4) give

B(Cn ∪ (p+ 2)K1) = B(Hn,1 ∪ (p+ 1)K1) + B(Cn ∪ (p+ 1)K1)

= (B(Hn,2 ∪ pK1) + B(Hn,1 ∪ pK1)) + (B(Hn,1 ∪ pK1) + B(Hn,0 ∪ pK1))

= B(Hn,2 ∪ pK1) + 2B(Hn,1 ∪ pK1) + B(Hn,0 ∪ pK1).

The proof is similar for T (Cn ∪ (p+ 2)K1).

Theorem 22. A(Cn ∪ pK1) > A(Cn−2 ∪ (p+ 2)K1) for all n ≥ 5 and p ≥ 0.

Proof. We divide the proof into two cases, according to the parity of n.

Case 1: n is odd. Lemma 14 (with r = 0) shows that

B(Cn ∪ pK1) =

n−3

2
∑

i=0

B(H3,2i ∪ pK1) and T (Cn ∪ pK1) =

n−3

2
∑

i=0

T (H3,2i ∪ pK1)
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and Lemmas 21 and 14 give

B(Cn−2 ∪ (p+ 2)K1)

= B(Hn−2,2 ∪ pK1) + 2B(Hn−2,1 ∪ pK1) + B(Hn−2,0 ∪ pK1)

=

n−5

2
∑

i=0

(

n−5
2

i

)

B(H3,2i+2 ∪ pK1) + 2

n−5

2
∑

i=0

(

n−5
2

i

)

B(H3,2i+1 ∪ pK1) +

n−5

2
∑

i=0

(

n−5
2

i

)

B(H3,2i ∪ pK1)

=

n−3

2
∑

i=1

(

n−5
2

i− 1

)

B(H3,2i ∪ pK1) + 2

n−5

2
∑

i=0

(

n−5
2

i

)

B(H3,2i+1 ∪ pK1) +

n−5

2
∑

i=0

(

n−5
2

i

)

B(H3,2i ∪ pK1)

=

n−5

2
∑

i=1

((

n−5
2

i− 1

)

+

(

n−5
2

i

))

B(H3,2i ∪ pK1) + B(H3,n−3 ∪ pK1) + B(H3,0 ∪ pK1)

+ 2

n−5

2
∑

i=0

(

n−5
2

i

)

B(H3,2i+1 ∪ pK1)

=

n−3

2
∑

i=0

(

n−3
2

i

)

B(H3,2i ∪ pK1) + 2

n−5

2
∑

i=0

(

n−5
2

i

)

B(H3,2i+1 ∪ pK1)

= B(Cn ∪ pK1) +
n−4
∑

i=1

αiB(H3,i ∪ pK1),

where

αi =



















(n−3
2
i
2

)

− 1, if i is even;

2

(n−5
2

i−1
2

)

, if i is odd.

Similarly, T (Cn−2 ∪ (p+2)K1) = T (Cn ∪ pK1)+
∑n−4

i=1 αiT (H3,i ∪ pK1). Moreover, we know
from Theorems 11 and 18 that

A(H3,n−4 ∪ pK1) < A(Pn ∪ pK1) < A(Cn ∪ pK1).

Also, given i ∈ {1, . . . , n−5}, H3,n−4∪pK1 is obtained from H3,i∪pK1 by repeatedly adding
vertices of degree 1, and it follows from Proposition 6 that

A(H3,i ∪ pK1) < A(H3,n−4 ∪ pK1) < A(Cn ∪ pK1).

Since all αi are strictly positive, we can conclude from Proposition 7 that A(Cn−2 ∪ (p +
2)K1) < A(Cn ∪ (p+ 2)K1).

15



Case 2: n is even. The proof is similar to the previous case. More precisely, Lemma 14
shows that

B(Cn ∪ pK1) =

n−4

2
∑

i=0

B(H3,2i+1 ∪ pK1) + B(P2 ∪ pK1)

and

T (Cn ∪ pK1) =

n−4

2
∑

i=0

T (H3,2i+1 ∪ pK1) + T (P2 ∪ pK1)

and lemmas 21 and 14 give

B(Cn−2 ∪ (p+ 2)K1) = B(Hn−2,2 ∪ pK1) + 2B(Hn−2,1 ∪ pK1) + B(Hn−2,0 ∪ pK1)

=





n−6

2
∑

i=0

(

n−6
2

i

)

B(H3,2i+3∪pK1)+B(P4∪pK1)



+2





n−6

2
∑

i=0

(

n−6
2

i

)

B(H3,2i+2∪pK1)+B(P3∪pK1)





+





n−6

2
∑

i=0

(

n−6
2

i

)

B(H3,2i+1 ∪ pK1) + B(P2 ∪ pK1)





=

n−4

2
∑

i=1

(

n−6
2

i− 1

)

B(H3,2i+1 ∪ pK1) + 2

n−6

2
∑

i=0

(

n−6
2

i

)

B(H3,2i+2 ∪ pK1) +

n−6

2
∑

i=0

(

n−6
2

i

)

B(H3,2i+1 ∪ pK1)

+ B(P4 ∪ pK1) + 2B(P3 ∪ pK1) + B(P2 ∪ pK1)

=

n−6

2
∑

i=1

((

n−6
2

i− 1

)

+

(

n−6
2

i

))

B(H3,2i+1 ∪ pK1) + B(H3,n−3 ∪ pK1) + B(H3,1 ∪ pK1)

+ 2

n−6

2
∑

i=0

(

n−6
2

i

)

B(H3,2i+2 ∪ pK1) + B(P4 ∪ pK1) + 2B(P3 ∪ pK1) + B(P2 ∪ pK1)

=

n−4

2
∑

i=0

(

n−4
2

i

)

B(H3,2i+1 ∪ pK1) + 2

n−6

2
∑

i=0

(

n−6
2

i

)

B(H3,2i+2 ∪ pK1)

+ B(P4 ∪ pK1) + 2B(P3 ∪ pK1) + B(P2 ∪ pK1)

= B(Cn ∪ pK1) +
n−4
∑

i=2

αiB(H3,i ∪ pK1) + B(P4 ∪ pK1) + 2B(P3 ∪ pK1)

where

αi =



















(n−4
2

i−1
2

)

− 1, if i is odd;

2

(n−6
2

i−2
2

)

, if i is even.
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Similarly,

T (Cn−2 ∪ (p+ 2)K1) = T (Cn ∪ pK1) +
n−4
∑

i=2

αiT (H3,i ∪ pK1) + T (P4 ∪ pK1) + 2T (P3 ∪ pK1).

As already mentioned, we know that

A(H3,i ∪ pK1) < A(H3,n−4 ∪ pK1) < A(Pn ∪ pK1) < A(Cn ∪ pK1)

for i = 2, . . . , n− 4. Also, Pn ∪ pK1 is obtained from P3 ∪ pK1 by repeatedly adding vertices
of degree 1, and it follows from Proposition 6 that

A(P3 ∪ pK1) < A(P4 ∪ pK1) < A(Pn ∪ pK1) < A(Cn ∪ pK1).

Since all αi are strictly positive, we conclude from Proposition 7 that A(Cn−2∪ (p+2)K1) <
A(Cn ∪ (p+ 2)K1).

Proposition 5 immediately gives the following corollary.

Corollary 23. If n ≥ 5 and p ≥ 0 then
(

n−3
∑

j=1

(−1)j+1

p+2
∑

i=0

(

p+ 2

i

)

Bn+i−j−1

)(

n−1
∑

j=1

(−1)j+1

p
∑

i=0

(

p

i

)

Bn+i−j

)

<

(

n−3
∑

j=1

(−1)j+1

p+2
∑

i=0

(

p+ 2

i

)

Bn+i−j−2

)(

n−1
∑

j=1

(−1)j+1

p
∑

i=0

(

p

i

)

Bn+i−j+1

)

.

Example 24. For p = 0 and n ≥ 5, the above corollary provides the following inequalities
for the Bell numbers:

n−3
∑

j=1

(−1)j+1(Bn−j−1 + 2Bn−j + Bn−j+1)
n−1
∑

j=1

(−1)j+1Bn−j

<
n−3
∑

j=1

(−1)j+1(Bn−j−2 + 2Bn−j−1 + Bn−j)
n−1
∑

j=1

(−1)j+1Bn−j+1

⇐⇒

(

n−2
∑

j=2

(−1)jBn−j + 2
n−3
∑

j=1

(−1)j+1Bn−j +
n−4
∑

j=0

(−1)jBn−j

)

n−1
∑

j=1

(−1)j+1Bn−j

<

(

n−2
∑

j=2

(−1)jBn−j−1 + 2
n−3
∑

j=1

(−1)j+1Bn−j−1 +
n−4
∑

j=0

(−1)jBn−j−1

)

n−1
∑

j=1

(−1)j+1Bn−j+1

⇐⇒ (Bn + Bn−1 + 7(−1)n)
n−1
∑

j=1

(−1)j+1Bn−j < (Bn−1 + Bn−2 + 3(−1)n)
n−1
∑

j=1

(−1)j+1Bn−j+1.

It is easy to check that this inequality is also valid for n = 4.
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4 Conclusion

We have shown how the average number of colors in the non-equivalent colorings of a graph
G helps to derive inequalities for the Bell numbers. Among the inequalities, we have shown
that

• B2
n < Bn−1Bn+1 for all n ≥ 1,

• Bn(Bn + Bn+1) < Bn−1(Bn+1 +Bn+2) for all n ≥ 1,

• Bn(Bn − Bn−1) < Bn+1(Bn−1 − Bn−2) for all n ≥ 4,

• (Bn−1 − Bn−2)
n−1
∑

j=1

(−1)j+1Bn−j+1 < (Bn −Bn−1)
n−1
∑

j=1

(−1)j+1Bn−j for all n ≥ 2,

• Bn

n−1
∑

j=1

(−1)j+1Bn−j < Bn−1

n−1
∑

j=1

(−1)j+1Bn−j+1 for all n ≥ 5,

• (Bn +Bn−1 +7(−1)n)
n−1
∑

j=1

(−1)j+1Bn−j < (Bn−1 +Bn−2 +3(−1)n)
n−1
∑

j=1

(−1)j+1Bn−j+1

for all n ≥ 4.

We have no doubt that other inequalities for the Bell numbers can be generated by comparing
the average numbers of colors in the non-equivalent colorings of other types of graphs.
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