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Abstract

The notion of concordance is central to many multiple criteria techniques relying on ordinal information, e.g.

outranking methods. It leads to compare alternatives by pairs on the basis of a comparison of coalitions of attributes in

terms of ‘‘importance’’. This paper proposes a characterization of the binary relations that can be obtained using such

comparisons within a general framework for conjoint measurement that allows for intransitive preferences. We show

that such relations are mainly characterized by the very rough differentiation of preference differences that they induce

on each attribute.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A classical problem in the field of decision

analysis with multiple attributes is to build a

preference relation on a set of multi-attributed

alternatives on the basis of preferences expressed

on each attribute and ‘‘inter-attribute’’ informa-
tion such as weights. The classical way to do so is

to build a value function that aggregates into a real

number the evaluations of each alternative on the

set of attributes (see French, 1993; Keeney and

Raiffa, 1976). The construction of such a value

function requires a detailed analysis of the trade-
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offs between the various attributes. When such an

analysis appears difficult, one may resort to tech-

niques for comparing alternatives that have a more

ordinal character. Several such techniques, the

so-called outranking methods, were proposed by

B. Roy (for presentations in English, see Bouys-

sou, 2001; Roy, 1991, 1996; Vincke, 1992, 1999).
Most outranking methods use the notion of con-

cordance. It leads to compare alternatives by pairs

on the basis of a comparison of coalitions of

attributes in terms of ‘‘importance’’. Such pairwise

comparisons do not lead to preference relations

having nice transitivity properties (Bouyssou,

1996). These relations, henceforth called concor-

dance relations, are therefore quite distinct from
the transitive structures usually dealt with in con-

joint measurement (Krantz et al., 1971; Roberts,

1979; Wakker, 1989).
ed.
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The aim of this paper is to propose a charac-
terization of concordance relations within a gen-

eral framework for conjoint measurement allowing

for incomplete and/or intransitive relations that

was introduced in Bouyssou and Pirlot (2002b). It

will turn out that, within this framework, the main

distinctive feature of concordance relations is the

very rough differentiation of preference differences

that they induce on each attribute. Our results
extend to the case of––possibly incomplete––

reflexive preference relations (interpreted as ‘‘at

least as good as’’ relations), the results proposed in

Bouyssou and Pirlot (2002a,c) for asymmetric

relations (interpreted as ‘‘strict preference’’). Pirlot

(1997) proposes an alternative approach to the

analysis of concordance relations that is not based

on a conjoint measurement model.
The paper is organized as follows. Section 2

introduces our main definitions and notation.

Concordance relations are defined and illustrated

in Section 3. Section 4 characterizes concordance

relations within our general framework for con-

joint measurement. A final section compares our

results with other approaches to concordance

relations and presents directions for future re-
search. All proofs are relegated in Appendix A.
2. Definitions and notation

A binary relation R on a set A is a subset of

A� A; we write aRb instead of ða; bÞ 2 R. A bin-

ary relation R on A is said to be:

• reflexive if ½aRa�,
• complete if ½aRb or bRa�,
• symmetric if ½aRb� ) ½bRa�,
• asymmetric if ½aRb� ) ½Not½bRa��,
• transitive if ½aRb and bRc� ) ½aRc�,
• Ferrers if ½ðaRb and cRdÞ ) ðaRd or cRbÞ�,
• semi-transitive if ½ðaRb and bRcÞ ) ðaRd or

dRcÞ�

for all a; b; c; d 2 A.
A weak order (respectively, an equivalence) is a

complete and transitive (respectively, reflexive,

symmetric and transitive) binary relation. If R is

an equivalence on A, A=R will denote the set of
equivalence classes of R on A. An interval order is
a complete and Ferrers binary relation. A semi-

order is a semi-transitive interval order.

In this paper % will always denote a reflexive

binary relation on a set X ¼
Qn

i¼1 Xi with nP 2.

Elements of X will be interpreted as alternatives

evaluated on a set N ¼ f1; 2; . . . ; ng of attributes

and % as an ‘‘at least as good as’’ relation between

these alternatives. We note � (respectively, �) the
asymmetric (respectively, symmetric) part of %. A

similar convention holds when % is starred, su-

perscripted and/or subscripted.

For any nonempty subset J of the set of attri-

butes N , we denote by XJ (respectively, X�J ) the setQ
i2J Xi (respectively,

Q
i 62J Xi). With customary

abuse of notation, ðxJ ; y�J Þ will denote the element

w 2 X such that wi ¼ xi if i 2 J and wi ¼ yi other-
wise. When J ¼ fig we shall simply write X�i and

ðxi; y�iÞ.
Let J be a nonempty set of attributes. We define

the marginal preference %J induced by % on XJ

letting, for all xJ ; yJ 2 XJ

xJ%J yJ iff ðxJ ; z�J Þ%ðyJ ; z�J Þ; for all z�J 2 X�J :

When J ¼ fig we write %i instead of %fig.

If, for all xJ ; yJ 2 XJ , ðxJ ; z�J Þ%ðyJ ; z�J Þ, for

some z�J 2 X�J implies xJ%J yJ , we say that % is

independent for J . If % is independent for all

nonempty subsets of attributes we say that % is

independent. It is not difficult to see that a binary
relation is independent if and only if it is inde-

pendent for N n fig, for all i 2 N (Wakker, 1989).

A relation is said to be weakly independent if it is

independent for all subsets containing a single

attribute; while independence implies weak inde-

pendence, it is clear that the converse is not true

(Wakker, 1989).

We say that attribute i 2 N is influent (for %) if
there are xi; yi; zi;wi 2 Xi and x�i; y�i 2 X�i such

that ðxi; x�iÞ%ðyi; y�iÞ and Not½ðzi; x�iÞ%ðwi; y�iÞ�
and degenerate otherwise. It is clear that a degen-

erate attribute has no influence whatsoever on the

comparison of the elements of X and may be

suppressed from N .

We say that attribute i 2 N is weakly essential

for % (respectively, essential) if ðxi; a�iÞ � ðyi; a�iÞ,
for some xi; yi 2 Xi and some a�i 2 X�i (respec-

tively, if �i is not empty). For a weakly indepen-
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dent relation, weak essentiality and essentiality are
equivalent. It is clear that an essential attribute is

weakly essential and that a weakly essential attri-

bute is influent. The reverse implications do not

hold. In order to avoid unnecessary minor com-

plications, we suppose henceforth that all attri-

butes in N are influent. This does not imply that all

attributes are weakly essential.
3. Concordance relations

3.1. Definition

The following definition, building on Bouyssou

and Pirlot (2002a) and Fargier and Perny (2001),

formalizes the idea of a concordance relation, i.e. a
preference relation that has been obtained com-

paring alternatives by pairs on the basis of the

‘‘importance’’ of the attributes favoring each ele-

ment of the pair.

Definition 1 (Concordance relations). Let % be a

reflexive binary relation on X ¼
Qn

i¼1 Xi. We say

that % is a concordance relation (or, more briefly,
that % is a CR) if there are

• a complete binary relation Si on each Xi

(i ¼ 1; 2; . . . ; n),
• a binary relation D between subsets of N having

N for union that is monotonic w.r.t. inclusion,

i.e. for all A;B;C;D � N such that A [ B ¼ N
and C [ D ¼ N ,

½ADB;C � A;B � D� ) CDD; ð1Þ
such that, for all x; y 2 X ,

x%y () Sðx; yÞDSðy; xÞ; ð2Þ
where Sðx; yÞ ¼ fi 2 N : xiSiyig. We say that

hD; Sii is a representation of %.

Hence, when % is a CR, the preference between

x and y only depends on the subsets of attributes
favoring x or y in terms of the complete relation Si.
It does not depend on ‘‘preference differences’’

between the various levels on each attribute be-

sides the distinction between levels indicated by Si.
As shown below, although our definition imposes

a comparison between two coalitions of attributes
in order to decide whether or not x is at least as
good as y, it is sufficiently flexible to include the

case in which x is declared at least as good as y as

soon as the attributes in Sðx; yÞ are ‘‘sufficiently’’

important, as in ELECTRE I (see Roy, 1968).

Let % be a CR with a representation hD; Sii. We

denote by Ii (respectively, Pi) the symmetric part

(respectively, asymmetric part) of Si. We define the

relations ,, . and ffl between subsets of N having
N for union letting, for all A;B � N such that

A [ B ¼ N ;

A,B () ½ADB and BDA�;
A . B () ½ADB and Not½BDA��;
A ffl B () ½Not½ADB� and Not½BDA��:

The following lemma takes note of some ele-

mentary properties of concordance relations; it

uses the hypothesis that all attributes are influent.
Lemma 2. If % is a CR with a representation
hD; Sii, then:

1. for all i 2 N , Pi is nonempty,
2. for all A;B � N such that A [ B ¼ N exactly one

of A . B, B . A, A,B and A ffl B holds and we
have N,N ,

3. for all A � N , NDA,
4. N .£,

5. % is independent,
6. % is marginally complete, i.e., for all i 2 N ; all

xi; yi 2 Xi and all a�i 2 X�i, ðxi; a�iÞ%ðyi; a�iÞ or
ðyi; a�iÞ%ðxi; a�iÞ,

7. for all i 2 N , either %i ¼ Si or xi �i yi for all
xi; yi 2 Xi,

8. % has a unique representation.
Proof. See Appendix A. h

We say that a CR % is responsive if, for all

A � N , ½A 6¼ £� ) N . N n A. As shown by the

examples below, there are CR that are not respon-

sive. It is not difficult to see that a CR is responsive

if and only if all attributes are (weakly) essential on

top of being influent. This implies %i ¼ Si. This
shows that in our nontransitive setting, assuming

that all attributes are (weakly) essential is far from
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being as innocuous an hypothesis as it traditionally
is in conjoint measurement.

The main objective of this paper is to charac-

terize CR within a general framework of conjoint

measurement, using conditions that will allow us

to isolate their specific features.

Remark 3. In most outranking methods, the con-

cordance relation is modified by the application of
the so-called discordance condition (Roy, 1991).

Discordance amounts to refuse to accept the

assertion x%y when y is judged ‘‘far better’’ than x
on some attribute. This leads to defining a binary

relation Vi � Pi on each Xi and to accept the

assertion x%y only when (2) holds and it is not true

that yjVixj, for some j 2 N . Our analysis does not

take discordance into account.
3.2. Examples

The following examples show that CR arise

with a large variety of ordinal aggregation models

that have been studied in the literature.

Example 4 (Simple majority preferences (Sen,
1986)). The binary relation % is a simple major-

ity preference relation if there is a weak order Si on
each Xi such that

x%y () jfi 2 N : xiSiyigjP jfi 2 N : yiSixigj:

A simple majority preference relation is easily seen

to be a CR defining D letting, for all A;B � N such
that A [ B ¼ N ,

ADB () jAjP jBj:

It is easy to see that % is complete but that, in

general, neither % nor � are transitive. This CR is

responsive. For all A;B � N such that A [ B ¼ N ,
we have either ADB or BDA.

Example 5 (ELECTRE I (Roy, 1968, 1991)). The

binary relation % is an ELECTRE I preference

relation if there are a real number s 2 ½1=2; 1� and,
for all i 2 N ,

• a semiorder Si on Xi,
• a positive real number wi > 0,
such that, for all x; y 2 X ,

x%y ()
P

i2Sðx;yÞ wiP
j2N wj

P s:

An ELECTRE I preference relation is easily seen

to be a CR defining D letting, for all A;B � N such
that A [ B ¼ N ,

ADB ()
P

i2A wiP
j2N wj

P s:

Such a CR may not be responsive. It may well

happen that, for some A;B � N such that A [ B ¼
N , neither ADB nor BDA, i.e. A ffl B. The impor-

tance relation D is such that, for all A;B � N ,

ADB ) ADN . Simple examples show that, in gen-
eral, % is neither complete nor transitive. It may

happen that � is not transitive and has circuits.

Example 6 (Semiordered weighted majority (Van-
snick, 1986)). The binary relation % is a semior-

dered weighted majority preference relation if

there are a real number eP 0 and, for all i 2 N ,

• a semiorder Si on Xi,

• a real number wi > 0,

such that

x%y ()
X

i2Sðx;yÞ
wi P

X
j2Sðy;xÞ

wj � e:

An semiordered weighted majority preference

relation is easily seen to be a CR defining D letting,

for all A;B � N such that A [ B ¼ N :

ADB ()
X
i2A

wi P
X
j2B

wj � e:

The relation % may not be transitive (the same is

true for �). It is always complete. Unless in special
cases, this CR is not responsive. Clearly, for all

A;B � N such that A [ B ¼ N , we have either ADB
or BDA.
4. A characterization of concordance relations

4.1. Concordance relations without attribute

transitivity

Our general framework for conjoint measure-

ment tolerating intransitive and incomplete rela-
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tions is detailed in Bouyssou and Pirlot (2002b).
We briefly recall here its main ingredients and its

underlying logic. It mainly rests on the analysis of

induced relations comparing preference differences

on each attribute. The importance of such rela-

tions for the analysis of conjoint measurement

models is detailed in Wakker (1988, 1989).
Definition 7 (Relations comparing preference dif-
ferences). Let % be a binary relation on a set

X ¼
Qn

i¼1 Xi. We define the binary relations %	
i and

%
		
i on X 2

i letting, for all xi; yi; zi;wi 2 Xi,

ðxi; yiÞ%	
i ðzi;wiÞ ()

½for all a�i; b�i 2 X�i; ðzi; a�iÞ%ðwi; b�iÞ )

ðxi; a�iÞ%ðyi; b�iÞ�

ðxi; yiÞ%		
i ðzi;wiÞ ()

½ðxi; yiÞ%	
i ðzi;wiÞ and ðwi; ziÞ%	

i ðyi; xiÞ�:

The definition of %
	
i suggests that

ðxi; yiÞ%	
i ðzi;wiÞ can be interpreted as saying that

the preference difference between xi and yi is at

least as large as the preference difference between zi
and wi. Indeed, as soon as ðzi; a�iÞ%ðwi; b�iÞ,
ðxi; yiÞ%	

i ðzi;wiÞ implies ðxi; a�iÞ%ðyi; b�iÞ. The defi-

nition of %	
i does not imply that the two ‘‘oppo-

site’’ differences ðxi; yiÞ and ðyi; xiÞ are linked. This
is at variance with the intuition concerning pref-

erence differences and motivates the introduction

of the relation %
		
i . We have ðxi; yiÞ%		

i ðzi;wiÞ when
we have both ðxi; yiÞ%	

i ðzi;wiÞ and ðwi; ziÞ%	
i ðyi; xiÞ.

By construction, %
		
i is reversible, i.e.

ðxi; yiÞ%		
i ðzi;wiÞ () ðwi; ziÞ%		

i yi; xiÞ.
The asymmetric and symmetric parts of %	

i are,

respectively, denoted by �	
i and �	

i , a similar
convention holding for %

		
i . By construction, %	

i

and %
		
i are reflexive and transitive. Therefore, �	

i

and �		
i are equivalence relations (the hypothesis

that attribute i 2 N is influent meaning that �	
i has

at least two distinct equivalence classes). It is

important to notice that %	
i and %

		
i may not be

complete. As will be apparent soon, interesting

consequences obtain when this is the case.
We note below a few useful connections be-

tween %
	
i , %

		
i and %.
Lemma 8

(1) % is independent if and only if ðxi; xiÞ �	
i ðyi; yiÞ,

for all i 2 N and all xi; yi 2 Xi.
(2) For all x; y 2 X and all zi;wi 2 Xi,

½x%y and ðzi;wiÞ%	
i ðxi; yiÞ�

) ðzi; x�iÞ%ðwi; y�iÞ; ð3Þ

½ðzi;wiÞ �	
i ðxi; yiÞ; for all i 2 N �

) ½x%y () z%w�: ð4Þ
Proof. See Bouyssou and Pirlot (2002b, Lemma

3). h

We now introduce two conditions, taken from

Bouyssou and Pirlot (2002b), that will form the

basis of our framework for conjoint measurement.
Their main rôle is to ensure that %	

i and %
		
i are

complete.

Definition 9 (Conditions RC1 and RC2). Let % be a

binary relation on a set X ¼
Qn

i¼1 Xi. This relation

is said to satisfy:

RC1i if

ðxi; a�iÞ%ðyi; b�iÞ
and

ðzi; c�iÞ%ðwi; d�iÞ

9=
; )

ðxi; c�iÞ%ðyi; d�iÞ
or

ðzi; a�iÞ%ðwi; b�iÞ;

8<
:

RC2i if

ðxi; a�iÞ%ðyi; b�iÞ
and

ðyi; c�iÞ%ðxi; d�iÞ

9=
; )

ðzi; a�iÞ%ðwi; b�iÞ
or

ðwi; c�iÞ%ðzi; d�iÞ;

8<
:

for all xi; yi; zi;wi 2 Xi and all a�i; b�i; c�i; d�i 2 X�i.

We say that % satisfies RC1 (respectively, RC2) if it
satisfies RC1i (respectively, RC2i) for all i 2 N .

Condition RC1i (inteR-attribute Cancellation)

strongly suggests that, w.r.t. the relation %
	
i , either

the difference ðxi; yiÞ is at least as large as the dif-

ference ðzi;wiÞ or vice versa. Indeed, suppose that

ðxi; a�iÞ%ðyi; b�iÞ and ðzi; c�iÞ%ðwi; d�iÞ. If the pref-
erence difference between zi and wi is at least as
large as the difference between xi and yi, we should
obtain ðzi; a�iÞ%ðwi; b�iÞ. Similarly, if the prefer-

ence difference between xi and yi is at least as large
as the preference difference between zi and wi, we
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should obtain ðxi; c�iÞ%ðyi; d�iÞ. This is precisely
what RC1i says.

Condition RC2i suggests that the preference

difference ðxi; yiÞ is linked to the ‘‘opposite’’ pref-

erence difference ðyi; xiÞ. Indeed, it amounts to

saying that either the preference difference between

xi and yi is at least as large as the preference dif-

ference between zi and wi or that the preference

difference between wi and zi is at least as large as
the preference difference between yi and xi. Taking
xi ¼ yi, zi ¼ wi, a�i ¼ c�i and b�i ¼ d�i shows that

RC2i implies that % is independent for N n fig and,
hence, independent.

The following lemma summarizes the main

consequences of RC1 and RC2 on %
	
i and %

		
i .

Lemma 10
(1) RC1i () ½%	

i is complete�,
(2) RC2i () [for all xi; yi; zi;wi 2 Xi, Not½ðxi; yiÞ

%
	
i ðzi;wiÞ� ) ðyi; xiÞ%	

i ðwi; ziÞ�,
(3) ½RC1 and RC2i� () ½%		

i is complete�.
(4) In the class of reflexive relations, RC1 and RC2

are independent conditions.

Proof. See Bouyssou and Pirlot (2002b, Lemmas 1
and 2). h

We envisage here binary relations % on X that

can be represented as:

x%y ()
F ðp1ðx1; y1Þ; p2ðx2; y2Þ; . . . ; pnðxn; ynÞÞP 0; ðMÞ

where pi are real-valued functions on X 2
i that are

skew symmetric (i.e. such that piðxi; yiÞ ¼ �piðyi; xiÞ
for all xi; yi 2 XiÞ and F is a real-valued function onQn

i¼1 piðX 2
i Þ being nondecreasing in all its argu-

ments and such that, abusing notation, F ð0ÞP 0.

The following lemma takes note of a few proper-

ties of binary relations satisfying model (M).

Lemma 11. Let % be a binary relation on X ¼Qn
i¼1 Xi that has a representation in model (M). Then

(1) % is reflexive, independent and marginally com-
plete,

(2) ½xi �i yi, for all i 2 J � N � ) ½xJ �J yJ �,
(3) % satisfies RC1 and RC2.
Proof. See Bouyssou and Pirlot (2002b, Proposi-

tion 1 and Lemma 2). h

The conditions envisaged above allow us to

completely characterize model (M) when, for all

i 2 N , X 2
i = �		

i is finite or countably infinite.

Theorem 12. Let % be a binary relation on
X ¼

Qn
i¼1 Xi. If, for all i 2 N , X 2

i = �		
i is finite or

countably infinite, then % has a representation (M)
if and only if it is reflexive and satisfies RC1 and
RC2.

Proof. See Bouyssou and Pirlot (2002b, Theorem

1). h

Remark 13. It should be noticed that the frame-

work offered by model (M) is quite flexible. It is not

difficult to see that preference relations that have a

representation in the additive value model (see

Fishburn, 1970; Krantz et al., 1971; Wakker, 1989):

x%y ()
Xn

i¼1

uiðxiÞP
Xn

i¼1

uiðyiÞ ðUÞ

(where ui is a real-valued function on Xi), or the

additive difference model (see Fishburn, 1992;

Tversky, 1969)

x%y ()
Xn

i¼1

UiðuiðxiÞ � uiðyiÞÞP 0 ðADMÞ

(where Ui is increasing and odd), are all included in

model (M). We show below that model (M) also
contains all CR.

Remark 14. Following Bouyssou and Pirlot

(2002b), it is not difficult to extend Theorem 12 to

sets of arbitrary cardinality adding a, necessary,

condition implying that the weak orders %		
i have a

numerical representation. This will not be useful

here.We also refer the reader to Bouyssou and Pirlot
(2002b) for an analysis of the, obviously very weak,

uniqueness properties of the numerical representa-

tion in Theorem 12. Let us simply observe here that

the proof of Theorem 12 shows that if % has a rep-

resentation in model (M), it always has a regular
representation, i.e. a representation such that:

ðxi; yiÞ%		
i ðzi;wiÞ () piðxi; yiÞP piðzi;wiÞ: ð5Þ
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Although (5) may be violated in some represen-

tations, it is easy to see that we always have:

ðxi; yiÞ �		
i ðzi;wiÞ ) piðxi; yiÞ > piðzi;wiÞ: ð6Þ

When an attribute is influent, we know that

there are at least two distinct equivalence classes

of �	
i . When RC1i and RC2i hold, this implies

that %
		
i must have at least three distinct equiv-

alence classes. Therefore, when all attributes are

influent, the functions pi in any representation of

% in model (M) must take at least three distinct

values.

Consider a binary relation % that has a repre-

sentation in model (M) in which all functions pi take
at most three distinct values. Intuition suggests that
such a relation % is quite close from a concordance

relation. We formalize this intuition below.

The following two conditions aim at capturing

the ordinal character of the aggregation underly-

ing CR and, hence, at characterizing CR within

the framework of model (M).
Definition 15 (Conditions UC and LC). Let % be a
binary relation on a set X ¼

Qn
i¼1 Xi. This relation

is said to satisfy:

UCi if

ðxi; a�iÞ%ðyi; b�iÞ
and

ðzi; c�iÞ%ðwi; d�iÞ

9=
; )

ðyi; a�iÞ%ðxi; b�iÞ
or

ðxi; c�iÞ%ðyi; d�iÞ;

8<
:

LCi if

ðxi; a�iÞ%ðyi; b�iÞ
and

ðyi; c�iÞ%ðxi; d�iÞ

9=
; )

ðyi; a�iÞ%ðxi; b�iÞ
or

ðzi; c�iÞ%ðwi; d�iÞ;

8<
:

for all xi; yi; zi;wi 2 Xi and all a�i; b�i; c�i; d�i 2 X�i.

We say that % satisfies UC (respectively, LC) if it
satisfies UCi (respectively, LCi) for all i 2 N .

The interpretation of these two conditions is

easier considering their consequences on the rela-
tions %	

i and %
		
i .
Lemma 16

(1) UCi () ½Not½ðyi; xiÞ%	
i ðxi; yiÞ� )

ðxi; yiÞ%	
i ðzi;wiÞ; for all xi; yi; zi;wi 2 Xi�.
(2) LCi () ½Not½ðyi; xiÞ %	
i ðxi; yiÞ� ) ðzi;wiÞ%	

i ðyi;
xiÞ; for all xi; yi; zi;wi 2 Xi�.

(3) ½RC2i;UCi and LCi� ) RC1i.
(4) ½RC2i;UCi and LCi� ) ½%		

i has at most three
equivalence classes�.

(5) In the class of reflexive relations, RC2, UC and
LC are independent conditions.

(6) ½RC2i;UCi; LCi� ) all xi; yi 2 Xi such that
ðxi; yiÞ%		

i ðyi; yiÞ satisfy one and the same of
the following:
I ðxi; yiÞ �	

i ðyi; yiÞ �	
i ðyi; xiÞ,

II ðxi; yiÞ �	
i ðyi; yiÞ and ðyi; yiÞ �	

i ðyi; xiÞ,
III ðxi; yiÞ �	

i ðyi; yiÞ and ðyi; yiÞ �	
i ðyi; xiÞ.
Proof. See Appendix A. h

Hence, condition UC amounts to saying that if

a preference difference ðyi; xiÞ is not larger than its

opposite ðxi; yiÞ, it is the smallest possible prefer-

ence difference in that every other preference is at

least as large as ðyi; xiÞ. Condition LC has an

obvious dual interpretation.

Together with RC2i, conditions UCi and LCi

imply that %
		
i has at most three equivalence

classes, that RC1i holds and that each attribute has

type I, II or III as defined in part 6. In presence of

RC2, these two conditions seem to adequately

capture the ordinal character of the aggregation at

work in a CR. Indeed, when RC2, LC and UC
hold, a preference difference is either ‘‘positive’’,

‘‘null’’ or ‘‘negative’’; there is no possibility to
further differentiate the size of preference differ-

ences. When an attribute has type I, it has the

above three distinct types of preference differences.

For type II attributes, it is only possible to dis-

tinguish between positive and nonpositive differ-

ences. For type III it is only possible to distinguish

negative and nonnegative differences.

The following lemma shows that all CR satisfy
UC and LC while having a representation in model

(M).

Lemma 17. Let % be a binary relation on a set
X ¼

Qn
i¼1 Xi. If % is a CR then,

(1) % satisfies RC1 and RC2,
(2) % satisfies UC and LC.
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Proof. See Appendix A. h

We are now in position to present our general

characterization of CR.

Theorem 18. Let % be a binary relation on
X ¼

Qn
i¼1 Xi. Then % is a CR iff it is reflexive and

satisfies RC2, UC and LC.

Proof. See Appendix A. h

Remark 19. An easy corollary of the above

result is that a binary relation is a CR if and

only if it has a representation in model (M) in

which all functions pi take at most three distinct

values.

4.2. Concordance relations with attribute

transitivity

Our definition of CR relations in Section 3 does

not require the relations Si to possess any

remarkable property besides completeness. This is

at variance with what is done in most ordinal
aggregation methods (see the examples in Section

3.2). We show here how to characterize CR with

all relations Si being semiorders. Our results are

easily extended, using conditions introduced in

Bouyssou and Pirlot (2003), to cover the case in

which all relations Si are weak orders.

We first show, following Bouyssou and Pirlot

(2003), how to introduce a linear arrangement of
the elements of each Xi within the framework of

model (M).
Definition 20 (Conditions AC1, AC2 and AC3). We

say that % satisfies:

AC1i if

x%y
and

z%w

9=
; )

ðzi; x�iÞ%y
or

ðxi; z�iÞ%w;

8<
:

AC2i if

x%y
and

z%w

9=
; )

x%ðwi; y�iÞ
or

z%ðyi;w�iÞ;

8<
:

AC3i if

z%ðxi; a�iÞ
and

ðxi; b�iÞ%y

9=
; )

z%ðwi; a�iÞ
or

ðwi; b�iÞ%y;

8<
:

for all x; y; z;w 2 X , all a�i; b�i 2 X�i and all

xi;wi 2 Xi. We say that % satisfies AC1 (respec-

tively, AC2, AC3) if it satisfies AC1i (respectively,
AC2i, AC3i) for all i 2 N .

These three conditions are transparent varia-

tions on the theme of the Ferrers (AC1 and AC2)
and semi-transitivity (AC3) conditions that are

made possible by the product structure of X . The
rationale for the name ‘‘AC’’ is that these condi-

tions are ‘‘intrA-attribute Cancellation’’ condi-
tions. Condition AC1i suggests that the elements of

Xi (instead of the elements of X had the original

Ferrers condition been invoked) can be linearly

ordered considering ‘‘upward dominance’’: if xi
‘‘upward dominates’’ zi then ðzi; c�iÞ%w entails

ðxi; c�iÞ%w. Condition AC2i has a similar inter-

pretation considering now ‘‘downward domi-

nance’’. Condition AC3i ensures that the linear
arrangements of the elements of Xi obtained con-

sidering upward and downward dominance are

not incompatible. The study of the impact of these

new conditions on model (M) will require an

additional definition.

Definition 21 (Linearity, Doignon et al. (1988)).

Let R be a binary relation on a set A2. We say
that

• R is right-linear iff ½Not½ðb; cÞRða; cÞ� )
ða; dÞRðb; dÞ�,

• R is left-linear iff ½Not½ðc; aÞRðc; bÞ� )
ðd; bÞRðd; aÞ�,

• R is strongly linear iff ½Not½ðb; cÞRða; cÞ� or

Not½ðc; aÞRðc; bÞ�� ) ½ða; dÞRðb; dÞ and ðd; bÞ
Rðd; aÞ�

for all a; b; c; d 2 A.

We have the following:

Lemma 22

(1) AC1i () %
	
i is right-linear.

(2) AC2i () %
	
i is left-linear.
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(3) AC3i () ½Not½ðxi; ziÞ%	
i ðyi; ziÞ� for some zi 2

Xi ) ðwi; xiÞ%	
i ðwi; yiÞ, for all wi 2 Xi�.

(4) [AC1i, AC2i and AC3i� () %
	
i is strongly linear

() %
		
i is strongly linear.

(5) In the class of reflexive relations satisfying RC1
and RC2, AC1, AC2 and AC3 are independent

conditions.
Proof. See Bouyssou and Pirlot (2003, Lemma

4). h

We envisage binary relations % on X that can

be represented as:

x%y () F ðu1ðu1ðx1Þ; u1ðy1ÞÞ; . . . ;
unðunðxnÞ; unðynÞÞÞP 0; ðM	Þ

where ui are real-valued functions on Xi, ui are

real-valued functions on uiðXiÞ2 that are skew

symmetric, nondecreasing in their first argument

(and, therefore, nonincreasing in their second

argument) and F is a real-valued function onQn
i¼1 uiðuiðXiÞ2Þ being nondecreasing in all its

arguments and such that F ð0ÞP 0. We summarize

some useful consequences of model (M*) in the

following:

Lemma 23. Let % be a binary relation on
X ¼

Qn
i¼1 Xi. If % has a representation in (M*), then

(1) it satisfies AC1, AC2 and AC3,
(2) for all i 2 N , the binary relation Ti on Xi defined

by xiTiyi () ðxi; yiÞ%		
i ðxi; xiÞ is a semiorder.

Proof. See Bouyssou and Pirlot (2003, Lemma

4). h

The conditions introduced so far allow to

characterize model (M*) when each Xi is denu-
merable.

Theorem 24. Let % be a binary relation on a finite
or countably infinite set X ¼

Qn
i¼1 Xi. Then % has a

representation (M*) if and only if it is reflexive and
satisfies RC1, RC2, AC1, AC2 and AC3.
Proof. See Bouyssou and Pirlot (2003, Theorem
2). h
Remark 25. Note that, contrary to Theorems 12

and 24 is only stated here for finite or countably

infinite sets X . This is no mistake: we refer to

Bouyssou and Pirlot (2003) for details and for the

analysis of the extension of this result to the gen-

eral case.

Many variants of model (M*) are studied in

Bouyssou and Pirlot (2003) including the ones in
which u is increasing in its first argument (and,

thus, decreasing in its second argument) and F is

odd. Clearly, although model (M*) is a particular

case of model (M), it is still flexible enough to

contain as particular cases models (U) and

(ADM). We show below that it also contain all CR

in which the relations Si are semiorders.

The following lemma shows that all CR ob-

tained on the basis of semiorders satisfy the con-

ditions of model (M*).

Lemma 26. Let % be a binary relation on
X ¼

Qn
i¼1 Xi. If % is a CR with a representation

hD; Sii in which Si is a semiorder then % satisfies
AC1i, AC2i and AC3i.
Proof. See Appendix A. h

Although Lemma 22 shows that, in the class of

reflexive binary relations satisfying RC1 and RC2,
AC1, AC2 and AC3 are independent conditions,

the situation is more delicate when we bring

conditions UC and LC into the picture since they
impose strong requirements on %

	
i and %

		
i . We

have:

Lemma 27

(1) Let % be a reflexive binary relation on a set
X ¼

Qn
i¼1 Xi satisfying RC2, UC and LC. Then

% satisfies AC1i iff it satisfies AC2i.
(2) In the class of reflexive binary relations satisfy-

ing RC2, UC and LC, conditions AC1 and AC3
are independent.
Proof. See Appendix A. h

This leads to our characterization of CR in

which all relations Si are semiorders.
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Theorem 28. Let % be a binary relation on
X ¼

Qn
i¼1 Xi. Then % is a CR having a representa-

tion hD; Sii in which all Si are semiorders iff it is
reflexive and satisfies RC2, UC, LC, AC1 and AC3.

Proof. See Appendix A.

Remark 29. An easy corollary of the above result
is that a binary relation on a finite or countably

infinite set X is a CR with a representation hD; Sii
in which all relations Si are semiorders if and only

if it has a representation in model (M*) in which

all functions ui take at most three distinct values.
5. Discussion and comments

A number of recent papers (see Dubois et al.,

2002; Dubois et al., 2001, 2003; Fargier and Perny,

2001; Greco et al., 2001) have close connections

with the results proposed here. We briefly analyze

them below and give possible directions for future

research.

5.1. Relation to Greco et al. (2001)

Greco et al. (2001) have proposed a character-

ization of concordance relations in which all

attributes are of type III in the sense of Lemma 16.

Their analysis is based on a very clever condition

limiting the number of equivalence classes of %	
i .

We say that % is super-coarse on attribute i 2 N if,
for all xi; yi; zi;wi; ri; si 2 Xi and all

a�i; b�i; c�i; d�i 2 X�i,

ðxi; a�iÞ%ðyi; b�iÞ
and

ðzi; c�iÞ%ðwi; d�iÞ

9=
; )

ðxi; c�iÞ%ðyi; d�iÞ
or

ðri; a�iÞ%ðsi; b�iÞ:

8<
:

This condition is clear strengthening of RC1i. It is
not difficult to see that a % is super-coarse on
attribute i 2 N if and only if %	

i is complete and �	
i

has at most two equivalence classes.

Note, however, that super-coarseness, on its

own, does not imply independence. Therefore

nothing prevents ðxi; xiÞ and ðyi; yiÞ from belonging

to distinct equivalence classes of �	
i . Greco et al.

(2001) attain their aim, imposing, on top of super-

coarseness, a strong condition imposing at the
same time independence and the fact that the null
differences ðxi; xiÞ belong to the first equivalence

class of %
	
i on each attribute. On top of super-

coarseness, this additional condition is necessary

and sufficient to characterize concordance rela-

tions in which all attributes are of type III. Since

this additional condition implies RC2, the results

in Greco et al. (2001) are in the same spirit as ours

as they allows to characterize concordance rela-
tions within the framework of the broader model

(M).

Greco et al. (2001) have shown how to extend

their characterization to cope with discordance

effects as in outranking methods. This is a major

advantage of their approach. This appears to be

much more difficult within our framework (note,

however, that when discordance is introduced, it is
clear that all relations %

		
i have at most five

equivalence classes, see Bouyssou and Pirlot

(2002a)). We have no satisfactory answer at this

time.
5.2. Relation to Fargier and Perny (2001)

Fargier and Perny (2001) (closely related results
appear in Dubois et al. (2001, 2002, 2003)) have

proposed an alternative characterization of CR.

The central condition in this approach is a condi-

tion that extends the ‘‘noncompensation’’ condi-

tion proposed in Fishburn (1975, 1976, 1978) to

reflexive relations. It says that, for all x; y; z;w 2 X ,

%ðx; yÞ ¼ %ðz;wÞ
%ðy; xÞ ¼ %ðw; zÞ

�
) ½x%y () z%w�; ð7Þ

where %ðx; yÞ ¼ fi 2 N : x%iyg.
The close relation between CR and noncom-

pensatory preferences in the sense of Fishburn

(1976) was already noted in Bouyssou (1986, 1992)

and Bouyssou and Vansnick (1986).

Although condition (7) may seem an obvious

way to pinpoint the ordinal character of the

ordinal aggregation at work in a CR and may

look more transparent than our conditions LC
and UC, its use raises problems. Indeed, as shown

by the following two examples, it will be vio-

lated in CR in which some attributes are not

essential.
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Example 30. Let X ¼ R4. Let p1 ¼ p2 ¼ p3 ¼
p4 ¼ 1=4. For all i 2 N , let Si ¼ P . Consider the

relation % on X defined by

x%y ()
X

i2Sðx;yÞ
pi P

X
j2Sðy;xÞ

pj � 1=4:

It is easy to see that such a relation is a CR (see

Example 5 above).

Observe that, for all i 2 N , any two elements of

Xi are linked by �i. Therefore, for all x; y 2 X , we
have %ðx; yÞ ¼ N . While all attributes are influent,

none is essential. Now, we clearly have

ð10; 10; 10; 10Þ%ð0; 0; 0; 0Þ and Not½ð0; 0; 0; 0Þ%
ð10; 10; 10; 10Þ�. Hence, condition (7) is violated.
Example 31. Let X ¼ R4. Let p1 ¼ p2 ¼ p3 ¼
p4 ¼ 1=4. For all i 2 N , let Si ¼ P . Consider the

relation % on X defined by

x%y ()
X

i2Sðx;yÞ
pi P 3=4:

It is easy to see that such a relation is a CR (see
Example 6 above).

Observe that, for all i 2 N , any two elements of

Xi are linked by �i. Therefore, for all x; y 2 X , we
have %ðx; yÞ ¼ N . While all attributes are influent,

none is essential. We clearly have ð10; 10; 10; 10Þ%
ð0; 0; 0; 0Þ and Not½ð0; 0; 0; 0Þ% ð10; 10; 10; 0Þ�.
Hence, condition (7) is violated.

Condition (7) uses the marginal relations %i to

model ‘‘ordinality’’. The above examples show

that this is problematic as soon as one deals with

CR in which some attributes may not be essential.

Our analysis amounts to using, instead of %i, an

appropriately defined ‘‘trace’’ on each attribute

(see Bouyssou and Pirlot (2003) for a detailed

analysis of traces in models (M) and (M*)). In our
results, the central relation on each attribute is not

%i but the relation Ti such that xiTiyi () ðxi; yiÞ%		
i

ðyi; yiÞ. It may well happen that %i is trivial while Ti
is not. The use of trace allows us to deal with all

CR whether or not attributes are essential. The

price to pay for this is that, apparently, our con-

ditions may appear less transparent than condi-

tions like (7).
The various characterizations of CR proposed
in Fargier and Perny (2001) and Dubois et al.

(2001, 2002, 2003) all use condition (7) (called

‘‘ordinal invariance’’) or a strengthening of this

condition incorporating a notion of monotonicity

(inspired from ‘‘neutrality and monotonicity’’

conditions used in Social Choice Theory (see Sen,

1986). The above examples show that these results

do not characterize the class of all CR. It is not
difficult to see that, in fact, they characterize the

class of CR in which all attributes are essential.

Furthermore, condition (7) appears to be very

specific to concordance relations in which all

attributes are essential. In view of comparing

concordance relations with other types of rela-

tions, as is possible via models (M) and (M*), this

seems a serious defect. For a more detailed com-
parison between our approach and the one fol-

lowing the idea of noncompensation, we refer to

Bouyssou and Pirlot (2002a).

It should finally be observed that the charac-

terization of CR is not the central point in Fargier

and Perny (2001) and Dubois et al. (2001, 2002,

2003). These papers mostly aim at underlining the

limitation of ‘‘ordinal approaches’’ to MCDM as
modelled by (7). Indeed, supposing at the same

time that a binary relation % satisfies (7) and has

‘‘nice’’ properties (e.g. being such that � is tran-

sitive) leads to a very uneven distribution of

importance between the various attributes. This

should be no surprise in that (7) is nothing but the

classical ‘‘neutrality’’ condition used in social

choice theory (see Sen, 1986) which is well-known
to be instrumental in precipitating impossibility

results. We show in Bouyssou and Pirlot (2002a,c)

that similar results can be obtained for all CR

using the broader framework of this paper.

5.3. Final comments

This paper has proposed a characterization of
CR within the framework of a general model for

nontransitive conjoint measurement. This charac-

terization makes it possible to recast CR relations

within a general class of relations and to isolate

their specific features. Following the analysis in

Bouyssou and Pirlot (2002a,c), it is not difficult to

extend the proposed results to:
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• analyze the case in which D is supposed to have

some transitivity properties;

• analyze the, sweeping, consequences of support-

ing that % has nice transitivity properties (see

also Bouyssou, 1992; Fargier and Perny, 2001;

Fishburn, 1975).

Further work is clearly needed in order to char-
acterize CR in which all attributes have the same

type (in the sense of part 6 of Lemma 16) and to

include in our analysis the possibility of discordance.

We would like to conclude with a note on the

purpose of axiomatic analysis as we understand it.

Our aim in providing an axiomatic analysis of CR

was not to find properties that would characterize

them; this would be an easy and somewhat futile
exercise. Rather, our main aim was to take take

advantage of this characterization to compare CR

with other types of relations so as to underline

their specific features. This explains our central use

of a general framework for conjoint measurement

in this analysis. More generally, we would like to

emphasize the role of axiomatic analysis as a tool

to uncover structures rather than a tool to achieve
characterizations.
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Appendix A

Proof of Lemma 2. Part 1. If Pi is empty, then,

since Si is complete, for all xi; yi; zi;wi 2 Xi and all

a�i; b�i 2 X�i,
Sððxi; a�iÞ; ðyi; b�iÞÞ ¼ Sððzi; a�iÞ; ðwi; b�iÞÞ and

Sððyi; b�iÞ; ðxi; a�iÞÞ ¼ Sððwi; b�iÞ; ðzi; a�iÞÞ:

This implies, using (2), that attribute i 2 N is

degenerate, contrarily to our hypothesis.

Part 2. Since all relations Pi are nonempty, for

all A, B � N such that A [ B ¼ N , there are x,
y 2 X such that Sðx; yÞ ¼ A and Sðy; xÞ ¼ B. We
have, by construction, exactly one of x � y, y � x,
x � y and ½Not½x%y� and Not½y%x��. Hence, using

(2), we have exactly one of A . B, B . A, A,B and

A ffl B. Since the relations Si are complete, we have

Sðx; xÞ ¼ N . Using the reflexivity of %, we know

that x � x, so that (2) implies N,N .

Parts 3 and 4. Let A � N . Because N,N , the

monotonicity of D implies NDA. We thus have
ND£. Suppose now that £DN . Then the mono-

tonicity of D would imply that ADB, for all

A;B � N such that A [ B ¼ N . This would con-

tradict the fact that each attribute is influent.

Hence, we have N .£.

Part 5. Using the completeness of all Si, we

have, for all xi, yi 2 Xi and all a�i; b�i 2 X�i,

Sððxi; a�iÞ; ðxi; b�iÞÞ ¼ Sððyi; a�iÞ; ðyi; b�iÞÞ and

Sððxi; b�iÞ; ðxi; a�iÞÞ ¼ Sððyi; b�iÞ; ðyi; a�iÞÞ:

Using (2), this implies that, for all i 2 N , all

xi; yi 2 Xi and all a�i, b�i 2 X�i ðxi; a�iÞ%
ðxi; b�iÞ () ðyi; a�iÞ%ðyi; b�iÞ. Therefore, % is

independent for N n fig and, hence, independent.

Part 6. Follows from the fact that Si is com-

plete, N,N and NDN n fig for all i 2 N .
Part 7. Let i 2 N . We know that NDN n fig. If

N,N n fig, then (2) implies xi%iyi for all xi; yi 2 Xi.

Otherwise we have N . N n fig and N,N . It fol-

lows that xiSiyi ) xi%iyi and xiPiyi ) xi �i yi. Since
Si and %i are complete, it follows that Si ¼ %i.

Part 8. Suppose that % is a CR with a repre-

sentation hD; Sii. Because i 2 N is influent, there

are xi; yi; zi, wi 2 Xi and a�i; b�i 2 X�i such that
ðxi; a�iÞ%ðyi; b�iÞ and Not½ðzi; a�iÞ%ðwi; b�iÞ�. Since
% is a CR, we must have either:

½xiPiyi and wiPizi� or ½xiPiyi and wiIizi� or

½xiIiyi and wiPizi�:



D. Bouyssou, M. Pirlot / European Journal of Operational Research 167 (2005) 427–443 439
This, respectively, implies the existence of two
subsets of attributes A and B such that

A [ B [ fig ¼ N , i 62 A, i 62 B and either:

A [ figDB and Not½ADB [ fig� or ðA:1aÞ

A [ figDB and Not½A [ figDB [ fig� or

ðA:1bÞ

A [ figDB [ fig and Not½ADB [ fig�: ðA:1cÞ

Since Pi is nonempty, consider any ai; bi 2 Xi such

that aiPibi. Respectively using (A.1a), (A.1b) and
(A.1c), we have either

ðai;a�iÞ%ðbi;b�iÞ and Not½ðbi;a�iÞ%ðai;b�iÞ� or

ðA:2aÞ

ðai;a�iÞ%ðbi;b�iÞ and Not½ðbi;a�iÞ%ðbi;b�iÞ� or

ðA:2bÞ

ðai; a�iÞ%ðai; b�iÞ and Not½ðbi; a�iÞ%ðai; b�iÞ�
ðA:2cÞ

for some a�i; b�i 2 X�i.

Suppose now that % has a representation

hD0; S0
ii. Suppose that a0iI 0i bi. Any of (A.2a), (A.2b)

and (A.2c), implies the existence of two subsets of

attributes C and D such that C [ D [ fig ¼ N ,

i 62 C; i 62 D and C0 [ figD0D [ fig and Not½C [
figD0D [ fig�, which is contradictory. Suppose

therefore that biP 0
i ai. Respectively, using (A.2a),

(A.2b), (A.2c) together with the fact that % is a

CR, implies the existence of two subsets of attri-

butes C and D such that C [ D [ fig ¼ N , i 62 C;
i 62 D and either

CD0D [ fig and Not½C [ figD0D� or ðA:3aÞ

CD0D [ fig and Not½C [ figD0D [ fig� or

ðA:3bÞ

C [ figD0D [ fig and Not½C [ figD0D�:
ðA:3cÞ

In any of these three cases, the monotonicity of D0

is violated. Hence we have shown that, for all ai,
bi 2 Xi, aiPibi ) aiP 0
i bi. A similar reasoning shows

that the converse implication is true. Hence, we

must have Si ¼ S0
i . Using (2), it follows that

D ¼ D
0. h
Proof of Lemma 16. Part 1. By definition, we have

Not½UCi� () ½Not½ðyi; xiÞ%	
i ðxi; yiÞ� and Not½ðxi;

yiÞ%	
i ðzi;wiÞ��. The proof of part 2 is similar.

Part 3. Suppose that RC1i is violated so that

Not½ðxi; yiÞ%	
i ðzi;wiÞ� and Not½ðzi;wiÞ%	

i ðxi; yiÞ� for
some xi, yi, wi, zi 2 Xi. Using RC2i, we have

ðyi; xiÞ%	
i ðwi; ziÞ and ðwi; ziÞ%	

i ðyi; xiÞ, so that

ðyi; xiÞ �	
i ðwi; ziÞ. Suppose that Not½ðyi; xiÞ%	

i

ðxi; yiÞ�; then UCi implies ðxi; yiÞ%	
i ðzi;wiÞ, a con-

tradiction. Similarly, if Not½ðxi; yiÞ%	
i ðyi; xiÞ�, then

LCi implies ðzi;wiÞ%	
i ðxi; yiÞ, a contradiction.

Hence, we have ðxi; yiÞ �	
i ðyi; xiÞ. In a similar way,

using UCi and LCi, it is easy to show that we must

have ðzi;wiÞ �	
i ðwi; ziÞ. Now, using the transitiv-

ity of �	
i , we have ðxi; yiÞ �	

i ðzi;wiÞ, a contradic-

tion.

Part 4. Using part 3, we know that %
		
i is

complete. Since %
		
i is reversible, the conclusion

will be false if and only if there are xi; yi; zi;wi 2 Xi

such that ðxi; yiÞ �		
i ðzi;wiÞ �		

i ðxi; xiÞ. There are

four cases to examine.

(1) Suppose that ðxi; yiÞ �	
i ðzi;wiÞ and ðzi;wiÞ �	

i

ðxi; xiÞ. Using RC2i, we know that ðxi; xiÞ%	
i

ðwi; ziÞ. Using the fact that %	
i is a weak order,

we have ðzi;wiÞ �	
i ðwi, ziÞ. This violates UCi

since ðxi; yiÞ �	
i ðzi;wiÞ.

(2) Suppose that ðxi; yiÞ �	
i ðzi;wiÞ and ðxi; xiÞ �	

i

ðwi; ziÞ. Using RC2i, we know that ðzi;wiÞ%	
i

ðxi; xiÞ. This implies ðzi;wiÞ �	
i ðwi; ziÞ. This vio-

lates UCi since ðxi; yiÞ �	
i ðzi;wiÞ.

(3) Suppose that ðwi; ziÞ �	
i ðyi; xiÞ and ðzi;wiÞ �	

i

ðxi; xiÞ. Using RC2i, we know that ðxi; xiÞ%	
i

ðwi; ziÞ so that ðzi;wiÞ �	
i ðwi; ziÞ. This violates

LCi since ðwi; ziÞ �	
i ðyi; xiÞ.

(4) Suppose that ðwi; ziÞ �	
i ðyi; xiÞ and ðxi; xiÞ �	

i

ðwi; ziÞ. Using RC2i we have ðzi;wiÞ%	
i ðxi; xiÞ

so that ðzi;wiÞ �	
i ðwi; ziÞ. This violates LCi

since ðwi; ziÞ �	
i ðyi; xiÞ.

Part 5. We provide below the required three

examples.
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Example 32 (UC, LC, Not½RC2�). Let X ¼ fa;bg�
fx;yg. Consider % on X linking any two elements

of X except that ða;xÞ � ðb;yÞ and ða;yÞ � ðb;xÞ.
We have, abusing notation,

• ½ða; bÞ; ða; aÞ; ðb; bÞ� �	
1 ðb; aÞ and

• ½ðx; xÞ; ðy; yÞ� �	
2 ½ðx; yÞ; ðy; xÞ�.

It is easy to check that RC21, UC and LC hold.

RC22 is violated since ðx; xÞ �	
2 ðx; yÞ and ðx; xÞ �	

2

ðy; xÞ.

Example 33 (RC2, LC, Not½UC�). Let X ¼ fa;bg�
fx;y; zg and % on X be identical to the linear order

(abusing notation in an obvious way):

ða; xÞ � ða; yÞ � ða; zÞ � ðb; xÞ � ðb; yÞ � ðb; zÞ;
except that ða; zÞ � ðb; xÞ.

We have, abusing notation,

• ða; bÞ �	
1 ½ða; aÞ; ðb; bÞ� �	

1 ðb; aÞ and
• ðx; zÞ �	

2 ½ðx; xÞ; ðy; yÞ; ðz; zÞ; ðx; yÞ; ðy; zÞ� �	
2

½ðy; xÞ; ðz; xÞ; ðz; yÞ�.

Using Lemma 10, it is easy to check that % satisfies

RC2. It is clear that UC1, LC1 and LC2 hold. UC2 is

violated since we have ðx; yÞ �	
2 ðy; xÞ and

Notðx; yÞ%	
2ðx; zÞ.

Example 34 (RC2, UC,Not½LC�). Let X ¼ fa;bg�
fx;y; zg and % on X be identical to the linear order
(abusing notation in an obvious way):

ða; xÞ � ðb; xÞ � ða; yÞ � ðb; yÞ � ða; zÞ � ðb; zÞ;

except that ðb; xÞ � ða; yÞ. We have, abusing

notation,

• ða; bÞ �	
1 ½ða; aÞ; ðb; bÞ� �	

1 ðb; aÞ and
• ½ðx; yÞ; ðx; zÞ; ðy; zÞ� �	

2 ½ðx; xÞ; ðy; yÞ; ðz; zÞ�
�	

2 ðy; xÞ �	
2 ½ðz; xÞ; ðz; yÞ�.

Using Lemma 10, it is easy to check that % satisfies
RC2. It is clear that UC1, LC1 and UC2 hold. LC2 is

violated since we have ðx; yÞ �	
2 ðy; xÞ and

Notðz; xÞ%	
2ðy; xÞ.

Part 6. Let xi; yi; zi;wi 2 Xi be such that

ðxi; yiÞ �		
i ðyi; yiÞ and ðzi;wiÞ �		

i ðwi;wiÞ. By con-
struction, we have either ðxi; yiÞ �	
i ðyi; yiÞ or

ðyi; yiÞ �	
i ðyi; xiÞ.

(1) Suppose first that ðxi; yiÞ �	
i ðyi; yiÞ and

ðyi; yiÞ �	
i ðyi; xiÞ. Consider zi;wi 2 Xi such that

ðzi;wiÞ �		
i ðwi;wiÞ. If either ðzi;wiÞ �	

i ðwi;wiÞ
or ðwi; ziÞ �	

i ðwi;wiÞ, it is easy to see, using

the independence of % and the definition of

%
		
i , that we must have

ðxi; yiÞ �		
i ðzi;wiÞ �		

i ðyi; yiÞ �		
i ðwi; ziÞ

�		
i ðyi; xiÞ;

violating the fact that �		
i has at most three

distinct equivalence classes. Hence we have,

for all zi, wi 2 Xi such that ðzi;wiÞ �		
i ðwi;wiÞ,

ðzi;wiÞ �	
i ðwi, wiÞ and ðwi;wiÞ �	

i ðwi; ziÞ.
(2) Suppose that ðxi; yiÞ �	

i ðyi; yiÞ and ðyi; yiÞ �	
i

ðyi; xiÞ and consider any zi;wi 2 Xi such that

ðzi;wiÞ �		
i ðwi;wiÞ. If ðzi;wiÞ �	

i ðwi, wiÞ and

ðwi;wiÞ �	
i ðwi; ziÞ, we have, using the indepen-

dence of % and the definition of %		
i ,

ðzi;wiÞ �	
i ðxi; yiÞ �	

i ðyi; yiÞ �	
i ðyi; xiÞ �	

i ðwi; ziÞ;

violating the fact that �		
i has at most three

distinct equivalence classes. If ðzi;wiÞ �	
i

ðwi;wiÞ and ðwi;wiÞ �	
i ðwi; ziÞ, then RC2i is

violated since we have ðxi; yiÞ �	
i ðzi;wiÞ and

ðyi; xiÞ �	
i ðwi; ziÞ. Hence, it must be true that

ðzi;wiÞ �		
i ðwi;wiÞ implies ðzi;wiÞ �	

i ðwi;wiÞ
and ðwi;wiÞ �	

i ðwi; ziÞ.
(3) Suppose that ðxi; yiÞ �	

i ðyi; yiÞ and ðyi; yiÞ �	
i

ðyi; xiÞ and consider any zi;wi 2 Xi such that
ðzi;wiÞ �		

i ðwi;wiÞ. If ðzi;wiÞ �	
i ðwi;wiÞ and

ðwi;wiÞ �	
i ðwi; ziÞ, we have, using the indepen-

dence of % and the definition of %		
i ,

ðzi;wiÞ �	
i ðxi; yiÞ �	

i ðyi; yiÞ �	
i ðyi; xiÞ �	

i ðwi; ziÞ;

violating the fact that �		
i has at most three

distinct equivalence classes. If ðzi;wiÞ �	
i

ðwi;wiÞ and ðwi;wiÞ �	
i ðwi; ziÞ, then RC2i is

violated since we have ðzi;wiÞ �	
i ðxi; yiÞ and

ðwi; ziÞ �	
i ðyi; xiÞ. Hence, it must be true that

ðzi;wiÞ �		
i ðwi;wiÞ implies ðzi;wiÞ �	

i ðwi;wiÞ
and ðwi;wiÞ �	

i ðwi; ziÞ. h

Proof of Lemma 17. Let hD; Sii be a representation
of % (this representation is unique by Lemma 2).
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Part 1. Let us show that RC1i holds, i.e. that
ðxi; a�iÞ%ðyi; b�iÞ and ðzi; c�iÞ%ðwi; d�iÞ imply

ðzi; a�iÞ%ðwi; b�iÞ or ðxi; c�iÞ%ðyi; d�iÞ. There are

nine cases to envisage:

Cases (i), (v) and (ix) clearly follow from (2). All
other cases easily follow from (2) and the mono-

tonicity of D. The proof for RC2 is similar.

Part 2. Let us show that UCi holds, i.e. that

ðxi; a�iÞ%ðyi; b�iÞ and ðzi; c�iÞ%ðwi; d�iÞ imply

ðyi; a�iÞ%ðxi; b�iÞ or ðxi; c�iÞ%ðyi; d�iÞ. If xiPiyi then,
using (2) and the monotonicity of D, we have

ðzi; c�iÞ%ðwi; d�iÞ ) ðxi; c�iÞ%ðyi; d�iÞ. If yiPixi then,
using (2) and the monotonicity of D, we have
ðxi; a�iÞ%ðyi; b�iÞ ) ðyi; a�iÞ%ðxi; b�iÞ. If xiIiyi, then
yiIixi so that, using (2), ðxi; a�iÞ%ðyi; b�iÞ )
ðyi; a�iÞ%ðxi; b�iÞ. The proof for LCi is similar. h

Proof of Lemma 18. Necessity follows from

Lemma 17. We show that if % satisfies RC1 and

RC2 and is such that, for all i 2 N , �		
i has at most

three distinct equivalence classes then % is a CR.
In view of part 4 of Lemma 16, this will establish

sufficiency.

For all i 2 N , define Si letting, for all xi; yi 2 Xi,

xiSiyi () ðxi; yiÞ%		
i ðyi; yiÞ. By hypothesis, we

know that %		
i is complete and % is independent. It

easily follows that Si is complete.

Since attribute i 2 N has been supposed influent,

it is easy to see that Pi is nonempty. Indeed, %	
i

being complete, the influence of i 2 N implies that

there are zi;wi; xi; yi 2 Xi such that ðxi; yiÞ �	
i ðzi;wiÞ.

Since %
		
i is complete, this implies ðxi; yiÞ �		

i

ðzi;wiÞ. If ðxi; yiÞ �		
i ðyi; yiÞ then xiPiyi. If not, then

ðyi; yiÞ%		
i ðxi; yiÞ so that ðyi; yiÞ �		

i ðzi;wiÞ and,

using the reversibility of %		
i and the independence

of %, wiPizi. Therefore Pi is not empty. This implies

that %
		
i has exactly three distinct equivalence

classes, since xiPiyi () ðxi; yiÞ �		
i ðyi; yiÞ ()

ðyi; yiÞ �		
i ðyi; xiÞ. Therefore, xiPiyi if and only if

ðxi; yiÞ belongs to the first equivalence class of %		
i

and ðyi; xiÞ to its last equivalence class. Consider

ziPiwi ziIiwi wiPizi

xiPiyi (i) (ii) (iii)
xiIiyi (iv) (v) (vi)

yiPixi (vii) (viii) (ix)
any two subsets A, B � N such that A [ B ¼ N and
let

ADB () ½x%y; for some x; y 2 X

such that Sðx; yÞ ¼ A and Sðy; xÞ ¼ B�:
If x%y then, by construction, we have Sðx; yÞD
Sðy; xÞ. Suppose now that Sðx; yÞDSðy; xÞ. This
implies that there are z;w 2 X such that z%w,
Sðz;wÞ ¼ Sðx; yÞ and Sðw; zÞ ¼ Sðy; xÞ. The last two
conditions imply ðxi; yiÞ �		

i sðzi;wiÞ, for all i 2 N .

Using (4), we have x%y. Hence (2) holds. The

monotonicity of D easily follows from (3). This

completes the proof. h

Proof of Lemma 26. ½AC1i�. Suppose that ðxi; x�iÞ%
ðyi; y�iÞ and ðzi; z�iÞ%ðwi;w�iÞ. We want to show

that either ðzi; x�iÞ%ðyi; y�iÞ or ðxi; z�iÞ%ðwi;w�iÞ.
If yiPixi or wiPizi, the conclusion follows from

the monotonicity of D.

If xiPiyi and ziPiwi, we have, using the fact that Pi
is Ferrers, ziPiyi or xiPiwi. In either case the desired

conclusion follows using the fact that % is a CR.

This leaves three exclusive cases: ½xiIiyi and
ziPiwi� or ½xiPiyi and ziIiwi�, or ½xiIiyi and ziIiwi�.
Using Ferrers, either case implies xiSiwi or ziSiyi. If
either xiPiwi or ziPiyi, the desired conclusion fol-

lows from monotonicity. Suppose therefore that

xiIiwi and ziIiyi. Since we have either xiIiyi or ziIiwi,

the conclusion follows using the fact that % is a

CR.

Hence AC1i holds. The proof for AC2i is simi-
lar, using Ferrers.

½AC3i�. Suppose that ðzi; z�iÞ%ðxi; a�iÞ and

ðxi; b�iÞ%ðyi; y�iÞ. We want to show that either

ðzi; z�iÞ%ðwi; a�iÞ or ðwi; b�iÞ%ðyi; y�iÞ.
If either yiPixi or xiPizi, the conclusion follows

from monotonicity.

If xiPiyi and ziPixi, then semi-transitivity implies

wiPiyi or ziPiwi. In either case, the conclusion fol-
lows from monotonicity.

This leaves three exclusive cases: ½xiIiyi and
ziPixi� or ½xiPiyi and ziIixi� or ½xiIiyi and ziIixi�. In

either case, semi-transitivity implies wiSiyi or ziSiwi.

If either wiPiyi or ziPiwi, the desired conclusion

follows from monotonicity. Suppose therefore that

wiIiyi and ziIiwi. Since in each of the remaining

cases we have either xiIiyi or ziIixi, the conclusion
follows because % is a CR. h
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Proof of Lemma 27. Part 1. We prove that

AC1i ) AC2i, the proof of the reverse implication

being similar. Suppose AC2i is violated so that

there are xi; yi; zi;wi 2 Xi such that ðxi; yiÞ �	
i ðxi;wiÞ

and ðzi;wiÞ �	
i ðzi; yiÞ. Using Lemma 16, we know

that attribute i has a type. We analyze each type

separately. If i 2 N has type II or III, then �	
i has

only two distinct equivalence classes. We therefore
have: ½ðxi; yiÞ �	

i ðzi;wiÞ� �	
i ½ðxi;wiÞ �	

i ðzi; yiÞ�. This
implies ðxi; yiÞ �	

i ðzi; yiÞ. Using AC1i, we have

ðxi;wiÞ%	
i ðzi;wiÞ, a contradiction.

If i 2 N has type I then �	
i has only three dis-

tinct equivalence classes. We distinguish several

cases.

(1) Suppose that both ðxi; yiÞ and ðzi;wiÞ belong to
the middle equivalence class of %

	
i . This im-

plies ½ðxi; yiÞ �	
i ðzi;wiÞ� �	

i ½ðxi;wiÞ �	
i ðzi; yiÞ�,

so that ðxi; yiÞ �	
i ðzi; yiÞ. Using AC1i, we have

ðxi;wiÞ%	
i ðzi;wiÞ, a contradiction.

(2) Suppose that both ðxi; yiÞ and ðzi;wiÞ belong to

the first equivalence class of %	
i . We therefore

have ðxi; yiÞ �	
i ðzi;wiÞ, ðxi; yiÞ �	

i ðxi;wiÞ and

ðzi;wiÞ �	
i ðzi; yiÞ. This implies ðxi; yiÞ �	

i

ðzi; yiÞ. Using AC1i, we have ðxi;wiÞ%	
i ðzi;wiÞ,

a contradiction.

(3) Suppose that ðxi; yiÞ belongs to the first equiv-

alence class of %
	
i and ðzi;wiÞ belong to the

central class of %
	
i . This implies, using the

reversibility of %
		
i , ½ðxi; yiÞ �	

i ðyi; ziÞ� �	
i

½ðzi;wiÞ �	
i ðwi; ziÞ� �	

i ½ðzi; yiÞ �	
i ðyi; xiÞ�. Hence,

we have ðyi; ziÞ �	
i ðwi; ziÞ and using AC1i, we

have ðyi; xiÞ%	
i ðwi; xiÞ. This implies that ðxi;wiÞ

must belong to the first equivalence class of

%
	
i violating the fact that ðxi; yiÞ �	

i ðxi;wiÞ’’.

Part 2. We provide below examples showing

that, in the class of reflexive relations satisfying

RC2, UC and LC, AC1 and AC3 are independent

conditions.
Example 35 (RC2, UC, LC, AC1, Not½AC3�). Let
X ¼ fa; b; c; dg � fx; yg. We build the CR in

which:

• aP1b, aI1c, aP1d, bI1c, bP1d, cI1d,
• xP2y,
• f1; 2g .£, ½1; 2�,f2g, f1; 2g,f1g, f2g,f1g.
Therefore, % links any two elements of X except

that we have: ða; xÞ � ðb; yÞ, ðb; xÞ � ðd; yÞ and

ða; xÞ � ðd; yÞ. It is easy to see that AC1 and AC32
hold. AC31 is violated since ðc; yÞ%ða; xÞ, ðd; yÞ%
ðc; xÞ but neither ðb; yÞ%ða; xÞ nor ðd; yÞ%ðb; xÞ.

Example 36 (RC2, UC, LC, AC3, Not½AC1�). Let
X ¼ fa; b; c; dg � fx; yg. We build the CR in
which:

• aI1b, aP1c, aI1d, bI1c, bP1d, cI1d,
• xP2y,
• f1; 2g .£, f1; 2g,f2g, f1; 2g,f1g, f2g,f1g.

Therefore, % links any two elements of X except

that we have: ða; xÞ � ðc; yÞ and ðb; xÞ � ðd; yÞ. It is
easy to see that AC3 and AC12 holds. AC11 is

violated since ðd; yÞ%ða; xÞ and ðc; yÞ%ðb; xÞ but
neither ðc; yÞ%ða; xÞ nor ðd; yÞ%ðb; xÞ. h

Proof of Lemma 28. The proof of Theorem 28

follows from combining Lemmas 23, 26 and 27

with the results in Section 4.1. h
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