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a b s t r a c t

In [T. Brihaye, C. Michaux, C. Rivière, Cell decomposition and dimension function in the
theory of closed ordered differential fields, Ann. Pure Appl. Logic (in press).] the authors
proved a cell decomposition theorem for the theory of closed ordered differential fields
(CODF ) which generalizes the usual Cell Decomposition Theorem for o-minimal structures.
As a consequence of this result, a well-behaving dimension function on definable sets
in CODF was introduced. Here we continue the study of this cell decomposition in
CODF by proving three additional results. We first discuss the relation between the δ-
cells introduced in the above-mentioned reference and the notion of Kolchin polynomial
(or dimensional polynomial) in differential algebra. We then prove two generalizations
of classical decomposition theorems in o-minimal structures. More exactly we give a
theorem of decomposition into definably d-connected components (d-connectedness is
a weak differential generalization of usual connectedness w.r.t. the order topology) and
a differential cell decomposition theorem for a particular class of definable functions in
CODF .

© 2008 Elsevier B.V. All rights reserved.

0. Outline

This paper is in direct filiation with paper [1]. Even though we recall in Section 1 some of the developments of the
previous paper, it is certainly helpful to have a look at it before reading this one. In the sequel, we will denote by L the
language {+,−, ∗, <, 0, 1} of ordered rings and by L′ the language {+,−, ∗,′ , <, 0, 1} of ordered differential rings.
The first section of this paper contains a brief summary of the work presented in [1]. In the latter, the authors study

a differential analogue of o-minimality in the theory CODF of closed ordered differential fields. In particular we recall the
statement of the differential cell decomposition theorem for definable sets in CODF (Theorem 1.6).
Section 2 was motivated by a question of T. Scanlon and contains the developments required to link the notion of δ-cell

introduced in [1] with the Kolchin polynomial defined in partial1 differential algebra [2, Theorem 6,p.115]. In the particular
case of a differential field M equipped with a single derivation, the Kolchin polynomial describes, for any tuple ā in an
extension ofM , the asymptotic behavior of the algebraic transcendence degree of the fieldM(ā, ā′, . . . , ā(n)) overM (when
n tends to∞). Furthermore W.-Y. Pong proved in [4] that this polynomial has a very simple form dX + b where d is the
differential transcendence degree of ā over M and b is a positive integer. Our aim here is to explain how some further
investigations concerning δ-cells allow recovering the integers d and b (and then theKolchin polynomial) in caseM is amodel
of CODF . For this we first define a notion of K-type for a particular class of δ-cells called engaged δ-cells (Definitions 2.4–2.6).
In fact the K -type provides a rank on δ-cells which is more precise than the δ-dimension and allows associating a K-rank
with any tuple ā in a differential extension ofM (Definition 2.8).We finally prove that this K -rank is equivalent to the Kolchin
polynomial associated to ā in the sense that it easily permits computing the integers d and b described above (Theorem2.10).
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The third section contains a summary of our efforts to generalize a well-known consequence of the Cell Decomposition
Theorem for o-minimal structures. This result asserts that any definable set in an o-minimal structure can be partitioned
into finitelymany definably connected components (see Theorem 3.2).We first quickly remark that the analogue of this result
has no chance of holding if we consider a model of CODF and the δ-connectedness (i.e. connectedness w.r.t. the δ-topology,
see Definition 1.4). This forces us to introduce a weaker notion of connectedness (d-connectedness, Definition 3.3) for which
we can prove a result of decomposition for any L′-definable set in CODF (Theorem 3.5). We conclude with a result showing
that the number of definably d-connected components of any L′-definable set is strongly related to the number of definably
connected components of its different L-definable sources (Theorem 3.7).
Finallywe consider in Section 4 apossible differential analogue of theCell Decomposition Theorem for definable functions

(see [9, 2.11 (IIm)]). In other words: given an L′-definable function f : A → M where M is a model of CODF , can we
find a finite partition C of A into δ-cells such that the restriction of f to any of these δ-cells is δ-continuous?. After some
preliminary definitions and results, we give a positive partial answer for a restricted class of L′-definable functions in CODF
called admissible functions (Definition 4.5, Theorem 4.11). Unfortunately, even for an admissible function f : A → M ,
Theorem 4.11 does not ensure the δ-continuity of f on a partition of A. This theorem only asserts that for any positive
integer n there exists a finite partition Cn of A into δ-cells such that the restriction of f to each of these δ-cells is continuous
at order n (Definition 4.7) which is a weaker result than the δ-continuity. Nevertheless in the (very) particular case where
the admissible L′-definable function commutes with the derivation, we obtain a stronger result (Theorem 4.15) which is
the exact differential analogue of [9, 2.11 (IIm)]. We finish this paper with a simple example showing that the hypothesis of
commutativity in Theorem 4.15 is not a necessary condition.

1. Preliminaries [1]

The theory CODF is the complete L′-theory of an ordered differential field. This theory has quantifier elimination in L′ and
a model M of CODF is called a closed ordered differential field [7]. Note that any model of CODF is a real closed field (we
denote by RCF the L-theory of real closed fields).

Definition 1.1. Let M be a model of CODF . For any k ∈ N and any (n1, . . . , nk) ∈ INk, we define the (n1; . . . ; nk)-jet-space
ofMk to be the following L′-definable set:

J(n1;...;nk)(M
k) := {(x1, x′1, . . . , x1

(n1); . . . ; xk, x′k . . . , xk
(nk)) | (x1; . . . ; xk) ∈ Mk}

= Jn1(M)× · · · × Jnk(M).

Let A be a L′-definable subset of Mk. By quantifier elimination there exists a quantifier free L′-formula ϕ(x̄) such that
A = Aϕ := {x̄ ∈ Mk | ϕ(x̄)}. For each i ∈ {1, . . . , k}, assume that the highest derivative of the variable Xi appearing non-
trivially in ϕ is X (ni)i . The L

′-formula ϕ can then be considered as a quantifier free L-formula ϕL in the differential variables
X1, X1′, . . . , X1(n1); . . . ; Xk, Xk′, . . . , Xk(nk) with:

∀X1, . . . , Xk
(
ϕ(X1, . . . , Xk)⇔ ϕL(X1, X1′, . . . , X1(n1); . . . ; Xk, Xk′, . . . , Xk(nk))

)
.

Let N = (n1 + 1)+ · · · + (nk + 1), we associate two subsets ofMN with A:

Aϕ L := {(x10, . . . , x1n1; . . . ; xk0, . . . , xknk) ∈ M
N
| M |= ϕL(x̄1; . . . ; x̄k)};

Aϕ∗ := {(x1, . . . , x1(n1); . . . ; xk, . . . , xk(nk)) ∈ MN | M |= ϕ(x1; . . . ; xk)}

= Aϕ L ∩ J(n1;...;nk)(M
k).

Weremark thatAϕ L is L-definable and the second equality above holds because the L′-formulaϕ (and hence the L-formulaϕL)
is quantifier free. For the same reason, Aϕ is the projection of Aϕ∗ onto some appropriate coordinates (namely X10, . . . , Xk0).
We call the latter the canonical projection of Aϕ∗ (or of Aϕ L when the context is clear). We also say that the L-definable set
Aϕ L gives rise to (or is a source of) the L′-definable set Aϕ .

Remark 1.2. In order to simplify the notation, we drop the subscript ϕ in the sets Aϕ , Aϕ L and Aϕ∗ defined above and simply
denote them by A, AL and A∗ respectively.

Unfortunately, the equivalence of two L′-formulas ϕ,ψ in CODF does not imply the equivalence of the corresponding
L-formulas ϕL and ψ L in RCF . We formalize this ambiguity between different sources of a given L′-definable set via the
following definition.

Definition 1.3. Two L-definable sets are δ-equivalent (denoted by≡δ) if they both give rise to the same L′-definable set.

Any modelM of CODF is equipped with the order topology. Unfortunately this topology appears to be not very efficient
to study L′-definable sets inM . This is why we consider a possibly more natural topology onM [1, Section 3].
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Definition 1.4. An L′-definable subset A of M is a basic open set for the δ-topology (we say that A is a basic δ-open set) if
AL ⊆ Mn is δ-equivalent to a basic open L-definable set for the product topology inMn. In the sequel, we will use the prefix
‘‘δ-’’ before any topological object to specify that we consider it in the δ-topology (e.g. δ-closed, δ-interior, δ-continuous,
etc.). Unless otherwise stated, all topological objects will be considered in the order topology.
Definition 1.5. Let M |= CODF and C be an L′-definable subset of Mk. C is an (i1; . . . ; ik)-δ if C L is δ-equivalent to an
(i10, . . . , i1n1; . . . ; ik0, . . . , iknk)-cell D

L such that: for any j ∈ {1, . . . , k},{
ij = 1 if ijl = 1 for each l ∈ {0, . . . nj},
ij = 0 otherwise.

The tuple (i1; . . . ; ik) is called the δ-type of C .
It is proved in [1] that the δ-type of a δ-cell does not depend on the cellDL appearing inDefinition 1.5 and so iswell-defined.

Furthermore, as in the o-minimal case, the (1; . . . ; 1)-δ-cells are exactly the δ-cells which are δ-open in their ambient space.
Theorem 1.6 (Differential Cell Decomposition Theorem [1, Theorem 4.9]). Let M be a closed ordered differential field. For any
finite collection A = {A1, . . . , Al} of L′-definable (over P ⊂ M) subsets of Mk there exists a finite δ-decomposition C of Mk
(definable over P) compatible withA (i.e. partitioning each of the Ai).
Recall that:

. a δ-decomposition of M is a partition of M into finitely many δ-cells;

. a δ-decomposition of Mk (k > 1) is a partition C of Mk into finitely many δ-cells such that πk−1(C) is still a δ-decomposition
of Mk−1 (where πk−1 is the projection onto the (k− 1) first coordinates).

2. δ-cells and the Kolchin polynomial

In [1, Section 4], Theorem 1.6 is used to define a notion of δ-dimension for any definable set in CODF . Although the latter
enjoys a lot of nice properties, it can be interesting to obtain a finer notion of dimension (or rank) in CODF . This is the goal
of this section.

2.1. Dimensional polynomial of Kolchin

The differential dimensional polynomial (orKolchin polynomial) first appeared in [2, Theorem 6, p.115] in the general
case of differential fields equippedwith finitelymany commuting derivations. Herewe only consider it in the particular (and
rather simple) case of CODF . If ā is a tuple in some differential extension of a differential fieldM , the Kolchin polynomial of
ā describes the asymptotic behavior of the transcendence degree of the field extensionM(ā, ā′, . . . , ā(n)) overM

(
denoted

by trM(M(ā, ā′, . . . , ā(n)))
)
when n tends to∞.

In our particular case of a differential fieldM equipped with a single derivative, W.-Y. Pong proved the following result.
Theorem 2.1 ([4, Proposition 2.4]). Let M be a differential field and ā be in a differential extension of M. Then there exist positive
integers d and b such that

trM(M(ā, ā′, . . . , ā(n))) = d(n+ 1)+ b
for all sufficiently large n ∈ N. Furthermore d is the differential transcendence degree of ā over M.
Example. Let (a1, a2) belong to a differential extension ofM and assume that:

(i) a1, a′1 are algebraically independent over M and a
′′

1 is algebraic over M(a1, a
′

1)
(
remark that a(3)1 , a

(4)
1 , . . . are also

algebraic overM(a1, a′1), see Lemma 2.11 below
)
.

(ii) a2 is differentially transcendental overM〈a1〉.

Then 
trM(M(a1, a2)) = 2;
trM(M(a1, a2, a′1, a

′

2)) = 4;
trM(M(a1, a2, a′1, a

′

2, a
′′

1, a
′′

2)) = 5;
trM(M(a1, a2, a′1, a

′

2, a
′′

1, a
′′

2, a
(3)
1 , a

(3)
2 ))= 6;

. . .

Also, one can see that for any n ≥ 1,

trM(M(a1, a2, a′1, a
′

2, . . . , a
(n)
1 , a

(n)
2 )) = 1 · (n+ 1)+ 2

where 1 is the differential transcendence degree ofM〈a1, a2〉 overM .
Remark 2.2 ([5]). The Kolchin polynomial of ā is clearly determined by the type of ā over M and hence one can define
the Kolchin polynomial of an n-type p over M to be the Kolchin polynomial of any realization of p. On the other hand,
the Kolchin polynomial is not a differential bi-rational invariant; i.e. two tuples may generate the same differential field
extension over M even if their respective Kolchin polynomials are different. Consider for example the tuples a and (a, a′)
where a is differentially transcendental overM . Then a and (a, a′) clearly generate the same differential field extension over
M but the Kolchin polynomial of a is X + 1 while the one of (a, a′) is X + 2.
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2.2. Recovering the Kolchin polynomial from the δ-decomposition

From now on,M is a closed ordered differential field.

Definition 2.3. Let C L be an (i10, . . . , i1n1; . . . ; ik0, . . . , iknk)-cell giving rise to a δ-cell C ⊆ M
k. The type of algebraicity of

C L
(
denoted by al-type(C L)

)
is equal to (t1; . . . ; tk)where tj is the least l ∈ {0, . . . , nj} such that ijl = 0 if such an l exists and

tj = ∞ otherwise (j ∈ {1, . . . , k}). Furthermore, each ti is called the type of algebraicity of C L in variable Xi.

Examples.

. For any i ∈ N, let C Li := {(x0, . . . , xi) ∈ M
i+1
| xi = 0}. Then for each i, C Li is a (1, . . . , 1︸ ︷︷ ︸

i times

, 0)-cell giving rise to the (0)-δ-cell

Ci = {x ∈ M | x(i) = 0} and al-type(C Li ) = i.
. Let C L1 := {(x0, x1, x2) ∈ M

3
| x0 = 0∧ x1 = 0∧ x2 = 0} and C L2 := {(x0, x1, x2) ∈ M

3
| x1 = 0∧ x0 = x2}. Then C L1 (resp.

C L2) is a (0, 0, 0)-cell (resp. (1, 0, 0)-cell) and al-type(C
L
1) = 0 (resp. al-type(C

L
2) = 1).

Remark that in the second example above, the cells C L1 and C
L
2 are δ-equivalent (since they both give rise to the singleton

{0} ⊆ M) but they do not have the same type of algebraicity. This fact stops us from directly defining a similar notion of type
of algebraicity for δ-cells.

Definition 2.4. Let C be a δ-cell inM . The K -type of C is equal to (t)where t is minimal w.r.t. the property that there exists
a source cell of C which has the type of algebraicity t .

Examples.

. Consider again the second example above. Since al-type(C L1) = 0, the (0)-δ-cell C1 = {0} has K -type (0).

. Since any source cell of a δ-open δ-cell is open in its ambient space, the K -type of any δ-open δ-cell in M is (+∞).
Furthermore one can see that any δ-cell inM with K -type (+∞) is δ-open inM .

The case where C is a δ-cell inMk (k > 1) is a bit more complicated. In order to define the K -type of C we have to treat
all coordinate axes independently.

Definition 2.5. Let C ⊆ Mk be a δ-cell. TheK -type of C is equal to (t1; . . . ; tk)where, for each i ∈ {1, . . . , k}, ti ∈ (N∪{+∞})
is minimal w.r.t. the property that there exists a cell CiL giving rise to C and whose type of algebraicity in variable Xi is equal
to ti.

Hence to any δ-cell C ⊆ Mk there may correspond k different source cells C L1, . . . , C
L
k which are necessary to determine

the K -type of C . In order to get rid of this constraint we introduce the following definition.

Definition 2.6. A δ-cell C inMk is engaged if its K -type is determined by a single source cell. In other words, C is engaged
if there exists a source cell C L of C such that, for any i ∈ {1, . . . , k}, C L has the same type of algebraicity in the variable Xi as
the source cell C Li appearing in Definition 2.5.

We now apply the notion of K -type to the study of finitely generated differential extensions of M . For this we consider
two models M,N of CODF where N is an | M |+-saturated elementary extension of M and a tuple ā = (a1; . . . ; ak) ∈ Nk.
For any definable (with parameters in M) set A ⊆ Mk we denote by AN the subset of Nk defined by the same formula as A.
We are interested in the δ-cell C of minimal2 K -rank which is definable overM and such that CN contains ā. We say that C
is K -minimal w.r.t. ā.
The next lemma ensures the existence of such a K -minimal δ-cell which furthermore is engaged. Together with

Definitions 2.4 and 2.5, it will allow us to associate a rank with any tuple ā ∈ Nk.

Lemma 2.7. (i) Let C1, C2 ⊆ Mk be two δ-cells such that (C1)N and (C2)N contain ā. Then there exists a δ-cell C ⊆ Mk such
that CN also contains ā and the K-type of C is not greater than the ones of C1 and C2

(
for the product order in (N∪{+∞})k

)
.

(ii) Let C ⊆ Mk be a K-minimal δ-cell w.r.t. ā. Then there exists an engaged δ-cell D ⊆ Mk such that ā ∈ DN and K-type(C) = K-
type (D).

Proof. (i) Let (t1; . . . ; tk) and (u1; . . . ; uk) be the K -types of C1 and C2 respectively. For each i ∈ {1, . . . , k}, let C L1i (resp.
C L2i) denote a source cell of C1 (resp. C2) whose type of algebraicity in variable Xi is equal to ti (resp. ui). We can assume
that, for a sufficiently large3 m ∈ N, the non-empty L-definable set

AL := C L1 ∩ C
L
2 ∩

k⋂
i=1

(C L1i ∩ C
L
2i)

2 We consider here the product order in (N ∪ {+∞})k .
3 It suffices to takem greater than the ti, uj ’s.
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is a subset ofMkm+k. The Cell Decomposition Theorem for o-minimal structures then provides a cell partition (CL)N of
(AL)N . Assume that (C L)N ∈ (CL)N contains (a1, . . . , a

(m)
1 ; . . . ; ak, . . . , a

(m)
k ). Since (C L)N ⊆ (AL)N , its (o-minimal) type

is not greater component by component than the ones of C L1, C
L
2, C

L
11, C

L
21, . . . , C

L
1k, C

L
2k. The type of algebraicity of C

L in
any variable Xi is then lower than ti and ui.
It follows that C is a δ-cell such that CN contains ā and whose K -type is not greater component by component than

the ones of C1 and C2.
(ii) The argument is similar to the one in part (i). Let C have K -type (t1; . . . ; tk)where each ti is determined by a source cell
C Li of C and assume that this K -type is minimal amongst all the δ-cells B such that ā ∈ BN . Consider a cell D

L from a cell
decomposition partitioning AL =

⋂k
i=1 C

L
i such that ā ∈ (D

L)N . This cell has an o-minimal type not greater (component
by component) than the ones of each C Li . Hence the K -type of the δ-cell D is at most the one of C . The minimality of the
latter implies that D has exactly the same K -type as C . This K -type is then entirely determined by a unique o-minimal
cell DL. �

Lemma 2.7 ensures the coherence of the following definition.
Definition 2.8. The K -rank of ā overM is the k-tuple

K-rank(ā/K) := min{K-rank(C) | ā ∈ CN and C is an engaged δ-cell}
where the minimum is taken for the product order in (N ∪ {+∞})k.
Definition 2.9. We say that a δ-cell C ⊆ Mk ismarriedwith the tuple ā ∈ Nk if C is engaged and K -minimal w.r.t. ā.
The following theorem links the K -rank and the Kolchin polynomial.
Theorem 2.10. Let M,N |= CODF where N is an | M |+-saturated elementary extension of M and ā = (a1; . . . ; ak) ∈ Nk.
Assume that the K-rank of ā is (t1; . . . ; tk) with ti = +∞ iff i ∈ {j1, . . . , jd} ⊆ {1, . . . , k}. Then, for all sufficiently large n,

trMM(ā, ā′, . . . , ā(n)) = d(n+ 1)+ b
where b is the sum of all ti’s with i ∈ I := {1, . . . , k} \ {j1, . . . , jd}.
Before we prove Theorem 2.10, we recall the following result from [4].

Lemma 2.11 ([4, Lemma 2.3]). Let M ⊂ N be a differential field extension and S ⊆ N. If a1, . . . al ∈ N are algebraically
dependent over M(S) then a′1, . . . a

′

l are algebraically dependent over M(S ∪ S
′
∪ {a1, . . . , al}).

Here is the proof of Theorem 2.10.
Proof. Let C be a δ-cell married with ā and let C L ⊆ Mkm+k be a source cell of C giving rise to the K -type of C . By
Definitions 2.8 and 2.9, the K -type of C is equal to (t1; . . . ; tk)with ti = +∞ iff i ∈ {j1, . . . , jd} ⊆ {1, . . . , k}.

(1) Let n > m and n̄ be the k-tuple (n, . . . , n). Since a∗ := (a1, . . . , a
(n)
1 ; . . . ; ak, . . . , a

(n)
k ) belongs to the ‘‘swelled’’ cell C

L
n

defined as in [1, Remark 2.5 (ii)], each component a(ti)i with i ∈ I = {1, . . . , k} \ {j1, . . . , jd} is algebraically dependent
over the field M̃ generated overM by the other components of a∗

(
since these components a(ti)i correspond to a digit 0

in the o-minimal type of C Ln
)
. Furthermore, Lemma 2.11 implies that the successive derivatives of these components

are also algebraically dependent over M̃ . Hence

trMM(ā, ā′, . . . , ā(n)) = trMM(a1, . . . , a
(n)
1 ; . . . ; ak, . . . , a

(n)
k )

≤ k(n+ 1)−
∑
i∈I

(n+ 1− ti)

≤ k(n+ 1)− (k− d)(n+ 1)+
∑
i∈I

ti

≤ d(n+ 1)+
∑
i∈I

ti.

(ii) On the other hand, since K -type(C) is minimal amongst the engaged δ-cells containing ā, any cell which gives rise to
an engaged δ-cell D containing ā has a type of algebraicity greater than or equal to the one of C . In particular, for any
n ∈ N, any source cell DL ⊆ Mn(k+1) of D has an o-minimal type (i10, . . . , i1n; . . . ; ik0, . . . , ikn)with:{

ij10 = · · · = ij1n = · · · = ijd0 = · · · = ijdn = 1
il0 = · · · = il,tl−1 = 1

for any l ∈ I . Since this is true for any engaged δ-cell D containing ā, the corresponding component of a∗ =
(a1, . . . , a

(n)
1 ; . . . ; ak, . . . , a

(n)
k ) is algebraically independent over the field generated by the other components of a

∗

overM . Hence

trM M(ā, ā′, . . . , ā(n)) ≥ d(n+ 1)+
∑
i∈I

ti. �
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3. δ-connectedness vs d-connectedness

3.1. Connectedness in o-minimal structures

Recall first that a subset A of a topological space X is disconnected if there exist two non-empty disjoint subsets U1, U2
of Awhich are open in A (w.r.t. the induced topology) and such that U1∪̇U2 = A. Furthermore, if X is a first-order topological
structure and A is a definable subset of Mk (k ∈ N), we say that A is definably disconnected if A can be written as the
disjoint union of two definable open sets in A. A definable set A is (definably) connected if it is not (definably) disconnected.
A definably connected component of A ⊆ Mk is a maximal definably connected subset of A.

Lemma 3.1. If M is an o-minimal structure then each cell C ⊆ Mk is definably connected (w.r.t. the order topology).

Proof. See [6, Chapter 2]. �

Lemma 3.1 and the Cell Decomposition Theorem (1.6) lead to an important theorem of decomposition for definable sets in
o-minimal structures.

Theorem 3.2. Let M be an o-minimal structure and A a non-empty definable subset of Mk. Then A has finitely many definably
connected components and furthermore, these definably connected components form a partition of A.

Proof. See [9, Proposition 2.18, Chapter 3]. �

3.2. δ-connectedness, a deception

It would certainly be interesting to get an analogue of Theorem 3.2 in the case where M is a closed ordered differential
field equipped with the δ-topology.4 Unfortunately, according to the following basic example, this hope quickly goes up in
smoke.
Example. Let C be the δ-cell defined by the formula X ′ = 1. Then we can split C into (C ∩ O1)∪̇(C ∩ O2) where
O1 = {x ∈ M | x > 0} and O2 = {x ∈ M | x < 0} are two δ-open subsets ofM . Hence even the analogue of Lemma 3.1 does
not hold anymore in this context. Furthermore C have infinitely many definably δ-connected components since C is dense
and co-dense in M and the only definably δ-connected subsets of C are its singletons. This produces a counter-example to
Theorem 3.2 in CODF .
In fact, since any open set is δ-open, there is no hope to find other definably δ-connected sets (i.e. sets which are definably

connected for the δ-topology) than those which are already definably connected for the order topology. In other words, any
definably δ-connected set is definably connected.
Consequently, in order to write down a generalization of Theorem 3.2, we have to slightly reconsider our approach and

study a weaker notion of connectedness, namely the d-connectedness.

3.3. d-connectedness, a theorem of decomposition

Definition 3.3. Let M be a closed ordered differential field and A an L′-definable subset of Mk. A is definably d-connected
if AL is δ-equivalent to a definably connected set.

Examples

(i) By Definition 1.5 and Lemma 3.1, any δ-cell is definably d-connected.
(ii) Any definably connected set is definably d-connected.

Lemma 3.4. The union of two definably d-connected sets having non-empty intersection is also definably d-connected.

Proof. Let A, B be definably d-connected and such that A∩ B 6= ∅. Without any loss of generality we can assume that AL and
BL are definably connected subsets of their respective ambient space. Furthermore, since Cartesian products of connected
sets are still connected [3, Theorem 1.6, Ch. 3] and M is definably connected, we can apply the ‘‘swelling procedure’’ [1,
Remark 4.4] and assume that AL and BL lie in the same ambient space MN . Since AL ∩ BL is δ-equivalent to (A ∩ B)L and
A ∩ B 6= ∅, AL ∩ BL is non-empty. Hence AL ∪ BL is a definably connected subset ofMN [3, Theorem 1.3, Ch. 3]. But AL ∪ BL is
δ-equivalent to (A ∪ B)L and hence A ∪ B is definably d-connected. �

As in the previous section, we define a definably d-connected component of an L′-definable set A ⊆ Mk to be a maximal
definably d-connected subset of A.
We are now able to state a generalization of Theorem 3.2.

4 Inwhat follows, ‘‘definably connected’’ means L-definably connected for the order topology and ‘‘definably δ-connected’’ means L′-definably connected
for the δ-topology.
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Theorem 3.5. Every non-empty L′-definable subset A of Mk has finitely many definably d-connected components which
furthermore form a partition of A.

The proof is just a slightly modified version of the proof of [9, Proposition 2.18, Chapter 3].

Proof. Let {C1, . . . , Cl} be a δ-decomposition of A and consider, for each subset I of {1, . . . , l}, the L′-definable set CI = ∪i∈ICi.
Consider now the non-empty sets C1, . . . , C s which are maximal amongst the CI w.r.t. the property of being definably d-
connected (s ≤ 2l − 1). Since {C1, . . . , Cl} is a δ-decomposition of A and each δ-cell is definably d-connected, ∪sj=1C

j
= A.

We show that this union forms the wanted partition of A into definably d-connected components. For this, let us fix a j
in {1, . . . , s}.
Claim. If B is a definably d-connected subset of A such that B ∩ C j 6= ∅ then B ⊆ C j.
Assume the claim is true. Then C j is maximal amongst the definably d-connected subsets of A and hence is a definably d-
connected component of A. Furthermore, for any C j

′

with j′ ∈ {1, . . . , s} \ {j}, C j ∩ C j
′

= ∅ so that the C j’s form a partition
of A. Finally, if D is any definably d-connected component of A, there exists j ∈ {1, . . . , l} such that D ∩ C j 6= ∅. Thus, by the
claim and the maximality of D, D = C j. Hence the C j’s are the only5 definably d-connected components of A, completing the
proof of Theorem 3.5.
Proof of the claim. Let

CB :=
l⋃
i=1

{Ci | Ci ∩ B 6= ∅}.

Since the Ci’s form a partition of A, B ⊆ CB. Hence there exists r ∈ {1, . . . , l} such that

CB = B ∪ (Ci1 ∪ · · · ∪ Cir )

with B ∩ Cij 6= ∅
(
j ∈ {1, . . . r}

)
. By Lemma 3.4, CB is definably d-connected and, since

C j ∩ CB ⊇ C j ∩ B 6= ∅,

C j ∪ CB is also definably d-connected. It follows from the maximality of C j that C j ∪ CB = C j i.e. CB ⊆ C j. Hence B ⊆ C j and
the proof of the claim is complete. �

In fact the decomposition into definably d-connected components of a given L′-definable set A is strongly related to the
decompositions into definably connected components of all possible sources of A. In order to make this more precise, we
first introduce the following definition.

Definition 3.6. The index of d-connectedness of A
(
denoted by Ic(A)

)
is the minimum, amongst all the L-definable sets BL

which are δ-equivalent to AL, of the number of definably connected components6 of BL.

Remark that A is definably d-connected iff Ic(A) = 1.

Theorem 3.7. If A is an L′-definable subset of Mk then the number of definably d-connected components of A is equal to Ic(A).

Proof. We denote the number of definably d-connected components of A by dc .
(i) Let BL be an L-definable set which is δ-equivalent to AL and assume BL =

⋃s
i=1(C

i)L is the decomposition of BL into
definably connected components. Then

A = C1∪̇ · · · ∪̇C s

where the C i’s are definably d-connected (but not necessarilymaximal w.r.t. this property). Since any definably d-connected
component of A which intersects one of the C i’s already contains it (see the proof of Theorem 3.5), dc ≤ s. In particular
dc ≤ Ic(A).
(ii) Assume now that C1∪̇ . . . ∪̇Cdc is the decomposition of A into definably d-connected components. Since each C i is a
disjoint union of δ-cells belonging to the same δ-decomposition of A (see the proof of Theorem 3.5), we can consider
each (C i)L as the disjoint union of usual o-minimal cells lying in the same ambient space. Note that the (C i)L are not
necessarily definably connected.7 However, by Definition 3.3, for each i in {1, . . . , dc} there exists an L-definable set which is
δ-equivalent to (C i)L and definably connected in its ambient space. By another abuse of notation, we also use (C i)L to denote
this definably connected set. Using the swelling procedure [1, Remark 2.5] if necessary, we can assume that all the (C i)L lie
in the same ambient space. Remark that the (C i)L are not necessarily pairwise disjoint anymore. However, since the C i’s are

5 This shows that the decomposition into definably d-connected components built in this proof is independent of the δ-decomposition {C1, . . . , Cl} of A
we consider.
6 For each BL this number is well-defined by Theorem 3.2.
7 For example, let C1 = {x ∈ M | x′ = 1 ∧ x < 0} and C2 = {x ∈ M | x′ = 1 ∧ x > 0} be a δ-decomposition of A = {x ∈ M | x′ = 1}, then C1 ∪ C2 is still
definably d-connected

(
since (C1 ∪C2)L is δ-equivalent to the connected line y = 1 in the planeM2

)
but the union (C1)L ∪ (C2)L is not definably connected.
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pairwise disjoint, there exists a point in the jet-space which belongs to (C i)L and does not belong to (C j)L for any i 6= j, so
that the (C i)L’s are all distinct. The L-definable set

BL :=
dc⋃
i=1

(C i)L

is δ-equivalent to AL and contains dc distinct definably connected subsets. Hence, since the o-minimal analogue of the claim
in the proof of Theorem 3.5 holds (see the proof of [9, Proposition 2.18, Chapter 3]), BL has at most dc definably connected
components. It follows that Ic(A) ≤ dc . �

4. Looking for a theorem of δ-decomposition for L′-definable functions

4.1. δ-continuity and continuity at order n

LetM |= CODF and A be an L′-definable subset ofMk. A function f : A→ M is L′-definable if its graph

Γ (f ) := {(x1; . . . ; xk; y) ∈ Mk+1 | (x1; . . . ; xk) ∈ A ∧ f (x1; . . . ; xk) = y}

is L′-definable.
In order to use the notation introduced in Definition 1.1 and develop the same kind of argument as in [1], we have to

make a restriction on the class of L′-definable functions we consider.

Definition 4.1. Let f : A→ M be an L′-definable function. Ifϕ is a quantifier free L′-formula definingΓ (f ) thenwe associate
to f the relation f̄ϕ : Aϕ L → Mr+1 whose graph is equal to the set (Γ (f ))ϕ L defined by the L-formula ϕL (cf. Definition 1.1).
More precisely,

Γ (f̄ϕ) = {(x10, . . . , x1n1; . . . ; xk0, . . . , xknk; y0, . . . , yr) ∈ Aϕ
L
×Mk |

M |= ϕL(x10, . . . , x1n1; . . . ; xk0, . . . , xknk; y0, . . . , yr)}.

Assumption (∗):We will always assume that there exists a quantifier free L′-formula ϕ defining f such that Γ (f̄ϕ) is really
a graph of a function; i.e. such that f̄ϕ is an L-definable function on Aϕ L. From now on, we fix one such ϕ and simply denote f̄ϕ
by f̄ (and similarly for Aϕ L).
Fact (F): This assumption implies that for any (x1; . . . ; xk) ∈ A and y ∈ M:

f (x1; . . . ; xk) = y iff (x1; . . . ; xk; y) ∈ Γ (f )
iff M |= ϕ(x1; . . . ; xk; y)

iff M |= ϕL(x1, . . . , x
(n1)
1 ; . . . ; xk, . . . , x

(nk)
k ; y, . . . , y

(r))

iff (x1, . . . , x
(n1)
1 ; . . . ; xk, . . . , x

(nk)
k ; y, . . . , y

(r)) ∈ Γ (f̄ )

iff f̄ (x1, . . . , x
(n1)
1 ; . . . ; xk, . . . , x

(nk)
k ) = (y, . . . , y(r)).

Remark 4.2. If the formula ϕ has order 0 in variable Y then Assumption (∗) becomes vacuous. In fact, one can consider the
L-definable set

BL := {(x10, . . . , x1n1; . . . ; xk0, . . . , xknk) ∈ A
L
| ∃!y ϕL(x10, . . . , x1n1; . . . ; xk0, . . . , xknk; y)}

which contains the elements of AL where ϕL defines a function. Note that A∗ ⊆ BL ⊆ AL and then BL is δ-equivalent to AL (this
is not necessarily true anymore if ϕ has≥ 1 in variable Y ). By quantifier elimination for real closed fields, BL is definable by
a quantifier free L-formula

ψ L(X10, . . . , X1n1; . . . ; Xk0, . . . , Xknk).

Hence the L′-formula

(ψ ∧ ϕ)(X1; . . . ; Xk; Y )

defines f and the L-formula

(ψ ∧ ϕ)L(X10, . . . , X1n1; . . . ; Xk0, . . . , Xknk; Y )

defines the function f̄ : BL → M and satisfies Assumption (∗).
Differential polynomial maps

p : Mk → M : (X1; . . . ; Xk) 7→ Y = p(X1; . . . ; Xk)

are natural examples of such L′-definable functions which satisfy both Assumption (∗) and FactF.
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Definition 4.3. Let f : A→ M be an L′-definable function. The derivative of f is the L′-definable function

f ′ : A→ M : (x1; . . . ; xk) 7→ (f (x1; . . . ; xk))′.

We define similarly all the higher derivatives f ′′, f (3), . . . of f .

Remark 4.4. By Definition 4.3, f (n) is the function whose graph equals

Γ (f (n)) := {(x1; . . . ; xk; y) ∈ Mk+1 | (x1; . . . ; xk) ∈ A ∧ y = (f (x1; . . . ; xk))(n)}.

If the graph of f is definable by the quantifier free L′-formula ϕ then

Γ (f (n)) = {(x1; . . . ; xk; y) ∈ Mk+1 | ∃z ϕ(x1; . . . ; xk; z) ∧ y = z(n)}.

Hence f (n) is an L′-definable function and, by quantifier elimination in CODF , there exists a quantifier free L′-formula ψ
defining Γ (f (n)).

We will make the same assumption on f ′, . . . f (n), . . . as on f .

Definition 4.5. An L′-definable function f is admissible if f and all its derivatives satisfy Assumption (∗). This means that
we can consider f̄ , f ′, . . . , f (n), . . . as L-definable functions on AL.

Remark 4.6. Using AL to denote the domain of the functions f ′, f ", . . . could be a bit misleading as seen in the following
example. If

f : M → M : X 7→ Y = X

then f = f̄ and

f ′ : M → M : X 7→ Y = X ′

so that f̄ ′ is the function sending a pair (X0, X1) to Y = X1. Hence the functions f̄ , f ′, . . . need not have the same domain.
However, using the usual swelling procedure, we will always assume that, for a fixed n ∈ N, the functions f̄ , f̄ ′, . . . , f (n)
have the same domain AL.
On the other hand, remark that

f ′(x1; . . . ; xk) = z iff z = y′ with f (x1; . . . ; xk) = y
iff (z, . . . , z(r)) = (y′, . . . , y(r+1))

with f̄ (x1, . . . , x
(n1)
1 ; . . . ; xk, . . . , x

(nk)
k ) = (y, . . . , y(r)). Hence we can also assume that the functions f̄ , f̄ ′, . . . have the same

rangeMr+1.

The assumption of admissibility allows us to define a partial notion of differential continuity.

Definition 4.7. Let f : A→ M be an admissible L′-definable function.We say that f is continuous at order n if f̄ , f ′, . . . , f (n)
are continuous w.r.t. the order topology.

The next lemma justifies the introduction of Definition 4.7.

Lemma 4.8. If a δ-open subset U of M is defined by a quantifier free L′-formula ϕ of order at most n, then its pre-image by an
admissible L′-definable function f : Mk → M which is continuous at order n is δ-open.

Proof. Without loss of generality we can assume that U is a basic δ-open subset ofM and that UL is an open box I0×· · ·× In
in Mn+1. Furthermore, using the swelling procedure if necessary, we assume that f̄ , f ′, . . . , f (n) are L-definable functions
fromMk(m+1) toMn+1 wherem is a sufficiently8 large integer. Let

f −1(U) := {(x1; . . . ; xk) | f (x1; . . . ; xk) ∈ U}
= {(x1; . . . ; xk) | (f (x1; . . . ; xk), . . . , f (n)(x1; . . . ; xk)) ∈ UL}.

For any j ∈ {1, . . . , k}, let xj∗ = (xj, . . . , x
(m)
j ) and xj = (xj0, . . . , xjm). Then

f −1(U) =
{
(x1; . . . ; xk) | (f̄ (x1∗; . . . ; xk∗), . . . , f (n)(x1∗; . . . ; xk∗)) ∈ (I0 ×Mn)× · · · × (In ×Mn)

}
=

{
(x1; . . . ; xk) |

n∧
i=0

f (i)(x∗1; . . . ; x
∗

k) ∈ Ii ×M
n

}
.

8 This means that we assume that all the orders of the variables in any formula appearing in the proof are less than or equal tom.
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Let

Ũ :=

{
(x1, . . . , xr) |

n∧
i=0

f (i)(x1; . . . ; xk) ∈ Ii ×Mn
}
.

Since f̄ , . . . , f (n) are continuous, the set

Ũ =
n⋂
i=0

f (i)
−1
(Ii ×Mn)

is open and hence

f −1(U) = π(10;...;k0)
(
Ũ ∩ J(n;...;n)(Mk)

)
is a δ-open subset ofMk (cf. Definition 1.4). �
Since each definable δ-open subset ofM is defined by a formula of finite order, Lemma 4.8 directly implies the following

result which gives a useful criterion to determine whether an L′-definable function is δ-continuous.

Corollary 4.9. An admissible L′-definable function f : A→ M is δ-continuous on A as soon as each f (i) (i ∈ N) is continuous on
AL w.r.t. the order topology.
Proof. By Lemma 4.8. �
The following corollary explains why we consider the δ-topology as the ‘‘natural’’ topology in CODF . In fact it shows that

an ordered differential field equipped with the δ-topology satisfies the properties of a topological system as defined in [8,
Definition 2.12]. Let us remark that in our case the δ-topology is definable by an infinite conjunction of L′-formulas.
Corollary 4.10. Any differential polynomial p ∈ M{X1, . . . , Xk}

(
considered as an L′-definable function from Mk to M

)
is

δ-continuous on Mk.
Proof. Let p(X1; . . . ; Xk) ∈ M{X1, . . . , Xk} be a differential polynomial in the variables X1, . . . , Xk. Remark first that
p′, p′′, . . . are still differential polynomials in X1, . . . , Xk. Furthermore, for any positive integer n, p(n) is the algebraic
polynomial obtained from p(n) by replacing each differential variable X (j)i by an ordinary variable Xij

(
i ∈ {1, . . . , k} and

j ∈ {0, . . . , ri}where ri is the order of p(n) in the differential variable Xi
)
. The result now directly follows from Corollary 4.9

and the continuity of ordinary w.r.t. the order topology. �
We can now state a partial theorem of δ-decomposition for L′-definable functions.

Theorem 4.11. For any admissible L′-definable function f : A→ M and any positive integer n, there exists a finite partition Cn
of A into δ-cells such that the restriction of f to any of these δ-cells is continuous at order n.
We first prove an easy intermediate result.

Lemma 4.12. Let f : A→ M (A ⊆ Mk) be an admissible L′-definable function. Then there exists a finite cell decomposition CL

of AL such that f̄ is continuous on each cell belonging to CL.
Proof. We can assume that f̄ is an L-definable function fromMkn+k toMr+1 and then write f̄ as the tuple (f̄0, . . . , f̄r)where,
for each i ∈ {0, . . . , r}, f̄i : Mkn+k → M . Recall that f̄ is continuous iff each f̄i is continuous (see for example [3, Theorem
8.5]). For each i in {0, . . . , r},

Γ (f̄i) = {(x10, . . . , x1n; . . . ; xk0, . . . , xkn; yi) ∈ AL ×M |
(∃y0, . . . , yi−1, yi+1, . . . , yr) ϕL(x10, . . . , x1n1; . . . ; xk0, . . . , xknk; y0, . . . , yr)}

where ϕL defines the graph of f̄ . Hence f̄i is L-definable and, by [9, 2.11 (IIm)], there exists a cell decomposition Ci
L of AL such

that the restriction of f̄i to any element of CiL is continuous. If CL is a cell decomposition refining all the cell decompositions
Ci
L then, for any i ∈ {0, . . . , r}, f̄i is continuous on each C L ∈ CL. �

Remark 4.13. This result can be interpreted as a multi-variable generalization of the o-minimal Cell Decomposition
Theorem for definable functions. It is equivalent to Theorem 4.11 in the special case where n = 0.
We now give the proof of Theorem 4.11.

Proof. Let n ∈ N. By Lemma 4.12, there exist cell decompositions Ci
L, . . . ,Cn

L of AL such that f (i) is continuous on each
element of CiL (i = 0, . . . , n).
We then conclude as in the preceding proof. Let CL be a cell decomposition refining all the Ci

L’s. Then the functions
f , f ′, . . . , f (n) are continuous on each C L ∈ CL. Hence f is continuous at order n on each δ-cell C belonging to C which is a
finite partition of A into δ-cells. �

Remark 4.14. Note that the continuity of f (n) and f (n+1) on a cell C L does not imply the continuity of f (n+2) on this cell.
Hence the δ-decomposition obtained in the proof above strongly depends on the integer n and there is no indication about
the asymptotic behavior of the sequence Cn when n tends to∞.
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4.2. A particular case

In this sectionwe show thatwith an (rather strong) additional hypothesis, it is possible to obtain a differential analogue of
the o-minimal Cell Decomposition Theorem for definable functions. For this we assume that f : Mk → M is an L′-definable
function commuting with the derivation. The function f ′ : Mk → M sends the tuple (x1; . . . ; xk) to

f ′(x1; . . . ; xk) := (f (x1; . . . ; xk))′ = f ((x1; . . . ; xk)′) = f (x′1; . . . ; x
′

k)

and similarly for each derivative f (n) defined as in 4.3. Hence the function f is admissible as soon as it satisfies Assumption
(∗). Furthermore, for any n ∈ N, the continuity at order n of f is equivalent to the continuity of the function f̄ . Hence, by
Lemma 4.9, f is δ-continuous as soon as it is continuous at order 0 (i.e. as soon as f̄ is continuous). This gives us the possibility
of writing down the following theorem of δ-decomposition.

Theorem 4.15. Let M be a closed ordered differential field. For any L′-definable function f : A → M satisfying Assumption (∗)
and commuting with the derivation, there exists a finite partition of A into δ-cells such that the restriction of f to any of these
δ-cells is δ-continuous.

Proof. This follows immediately from the remark above and Lemma 4.12. �
In the following simple example the function f : M → M does not commute with the derivation but is δ-continuous on

a given δ-decomposition ofM .
Example. Let

f : M → M : X 7→
{
0 if X ′ = 0
X if X ′ 6= 0.

The function f is L′-definable and does not commute with the derivation: if a ∈ M is such that a′ = 1 then f (a′) = 0
(
since

(a′)′ = 1′ = 0
)
and (f (a))′ = a′ = 1 6= 0.

The corresponding L-definable function is

f̄ : M2 → M : (X0, X1) 7→
{
0 if X1 = 0
X0 if X1 6= 0.

It is easy to see that f̄ is continuous on each of the following cells:

(i) C1L = {(x0, x1) ∈ M2 | x1 = 0};
(ii) C2L = {(x0, x1) ∈ M2 | x1 > 0};
(iii) C3L = {(x0, x1) ∈ M2 | x1 < 0}.

The δ-decomposition ofM built from this cell decomposition is:

(i) C1 = {x ∈ M | x′ = 0};
(ii) C2 = {x ∈ M | x′ > 0};
(iii) C3 = {x ∈ M | x′ < 0}.

We remark that f ≡ 0 on C1 and is the function Id : X 7→ X on C2 and C3. Hence the restriction of f to each of these δ-cells
is δ-continuous.
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