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We provide a unified treatment of electric–magnetic duality, at the action level and with manifest 
Lorentz invariance, for massive, massless as well as partially-massless gravitons propagating in maximally 
symmetric spacetimes of any dimension n > 3. For massive and massless fields, we complete previous 
analyses that use parent-action techniques by giving dual descriptions that enable direct counting of 
physical degrees of freedom in the flat and massless limit. The same treatment is extended to the 
partially-massless case, where the duality has been previously discussed in covariant form only at the 
level of the equations of motion. The nature of the dual graviton is therefore clarified for all values of the 
mass and of the cosmological constant.
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1. Introduction

In this note, we complete and extend previous analyses on dual 
formulations of massive and (partially) massless spin-2 theories 
in (A)dS backgrounds of arbitrary dimension n > 3. We resort to 
the parent-action technique employed in the papers [1–10] in or-
der to derive equivalent, dual actions in the sense of Fradkin and 
Tseytlin [11]. In brief, in this framework one obtains two equiva-
lent second-order actions — whose field equations are related by 
electric–magnetic duality — by eliminating different sets of fields 
from a common “parent” first-order action. In (A)dSn these tech-
niques have been employed for massless and massive gravitons, 
while the partially-massless case has been discussed recently only 
in n = 3 [12]. The same setup has also been used in the context of 
Hořava–Lifshitz gravity [13].

For all values of the mass and of the cosmological constant, we 
furnish dual formulations at the action level and in a manifestly 
Lorentz-invariant way. The dual actions that we built are such that 
the flat and massless limits are smooth, thereby making the iden-
tification of the physical degrees of freedom and of the helicities 
straightforward. In the partially-massless case [14], we obtain for 
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the first time a dual, manifestly covariant action principle featuring 
a mixed-symmetry gauge field.

At the level of the field equations, (self-)duality symmetry, of-
ten named pseudo (self-)duality, has been studied in flat spacetime 
for linearised gravity in [15,16]; see also [17]. In (A)dS4, pseudo-
duality symmetry for partially massless spin-2 fields was studied 
in [18,19]. These are first steps towards the establishment of an 
equivalence between theories, for which an off-shell duality rela-
tion is necessary. In flat spacetime, the duality between the mass-
less Fierz–Pauli action and the Curtright action [20,21] was proven 
in the series of works [2–4].

The action principles that we present feature both the original 
spin-2 field and its dual, in a manifestly Lorentz-invariant fash-
ion. On the other hand, the pair of dual fields does not enter the 
action in a duality-symmetric way. For such a democratic appear-
ance of electric and magnetic fields inside the action, the price to 
pay is the loss of manifest spacetime covariance, as explained for 
massless spin-2 and higher-spin theories around flat spacetime in 
the papers [22–24] and references therein. In the same, non mani-
festly Lorentz-covariant framework, a double-potential formulation 
of linearised gravity around (A)dSn spacetime was studied in [25,
26] for n = 4 and in [27] for n > 4. As for what concerns partially-
massless fields of maximal depth, the paper [28] provides an off-
shell formulation exhibiting a nearly manifest electric–magnetic 
duality symmetry. Interestingly enough, manifest duality-invariant 
formulations of linearised gravity, in the presence of sources, have 
been given in [29] and in an alternative way in [30]; in the 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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partially-massless case, see also [31]. Finally, the integrability prop-
erties of duality-symmetric systems were studied in [32].

In more details, the unified treatment of spin-2 duality pre-
sented in this note leads to the following results:

• In the case of a massless graviton in (A)dS, we complete 
the programme sketched in [10] by linking the dual action 
obtained therein to its Stueckelberg formulation admitting a 
smooth flat limit;

• For partially massless spin-2 field in (A)dS, we obtain a dual 
description at the action level, thereby elevating the duality 
from a pseudo to a genuine off-shell duality;

• In the massive case in (A)dS, we clarify the flat limit of the 
dual model presented in [6] in that we have Stueckelberg 
gauge fields representing the dual spin-2, spin-1 and scalar 
sectors. Therefore, our actions admit a smooth flat limit in both
electric and magnetic formulations.

In sections 2 and 3 we recall the main features of the first-order 
description of massive spin-two fields, that we use as a parent ac-
tion. Section 4 collects our original results on dual formulations for 
spin-2 fields in (A)dS.

2. The parent action

We consider as parent action the first-order Stueckelberg action 
describing, for generic values of the parameters, the propagation of 
a massive spin-2 field in a constant curvature background [33]. It 
is obtained by coupling the free actions for massless fields of spin 
two, one and zero. It thus comprises the kinetic terms for these 
fields,1

L(2) = −εabcp[n−3]
2(n − 3)!

(
ωab∇hc + 1

n − 2
ωa

qω
qbēc

)
H p[n−3] , (1)

L(1) = εabc[n−2]
2(n − 2)! F ab

(
∇ A − 1

4
Fkl ēkēl

)
Hc[n−2] , (2)

L(0) = εab[n−1]
(n − 1)! πa

(
∇ϕ − 1

2
πk ēk

)
Hb[n−1] , (3)

together with cross couplings and mass terms:

Lcross = εabc[n−2]
(n − 1)!

(
(n − 1)m ωab A + m F a

d hdēb + μπa A ēb

− (n − 2)μ2

4
hahb − m μϕ haēb − m2

n − 2
ϕ2 ēaēb

)
Hc[n−2] .

(4)

The full action is the integral of L = ∑2
s=0 L(s) + Lcross and it is 

invariant under the gauge symmetries

δha = ∇ξa − �abēb + 2m

n − 2
ε ēa , (5a)

δωab = ∇�ab + μ2

n − 1
ē[aξb] , (5b)

1 We denote the background vielbein by ēa , while ∇ is the Lorentz-covariant 
derivative on (A)dSn . In our conventions, it satisfies ∇2 V c = − σ λ2 ēc ∧ ēb V b , so 
that σ = 1 in AdSn and σ = −1 in dSn . We define the Levi-Civita symbol εa1 ···an

such that ε01···n−1 = −1 and we adopt the mostly-plus convention for the metric. In 
the following we omit wedge products and we substitute groups of antisymmetrised 
indices with a label denoting the total number of indices. For instance, we introduce 
the k-form Ha[k] ≡ Ha1 ···ak = ē a1 · · · ē ak . Indices enclosed between square brackets 
are antisymmetrised, and dividing by the number of terms involved is understood 
(strength-one convention). Finally, repeated indices also denote an antisymmetrisa-
tion, e.g., Aa Ba ≡ A[a1 Ba2] .
and

δA = ∇ε − m ξaēa , δF ab = 2m �ab , (6)

δϕ = −με , δπa = −m μξa . (7)

For later convenience, we introduced the constants m and μ, even 
if the action actually depends only on a single mass parameter 
(besides the (A)dS radius). Gauge invariance requires

μ2 = 2(n − 1)

n − 2

(
2m2 + σ(n − 2)λ2

)
. (8)

When m = 0 the fields of spin one and zero decouple from 
the spin-two sector and one recovers the usual first-order formu-
lation of linearised gravity in (A)dS. At μ = 0, the sole scalar sector 
decouples and one obtains a first-order description of a partially-
massless graviton, propagating helicities two and one in the flat 
limit. With the manifestly unitary conventions used in (1)–(3), one 
can set μ to zero by tuning the mass m ∈ R only in dS (σ = −1). 
In section 4.2 we shall show that partially-massless fields in AdS 
can be described in this formalism at the price of flipping the sign 
of the spin-one kinetic term, which makes their lack of unitarity 
manifest.

Eq. (1) can be expressed in terms of the field [2]

Y bc|a = ωa|bc + gabωd|cd − gacωd|bd , (9)

which is antisymmetric in its first two indices and transforms as

δY bc|
a = ∇a�

bc + 2 ēa
[b∇d�

c]d − (n − 2)μ2

n − 1
ēa

[bξ c] . (10)

The spin-2 kinetic term can then be cast in the form (from now 
on we will omit the integration measure dnx

√−g brought by 
ēa1 · · · ēan = det(ē)εa1···an dnx)

L(2) = ∇b hc|aY bc|
a − 1

2

(
Y bc|aYab|c + 1

n − 2
Y ab|

bYac|c
)

, (11)

while the cross couplings and mass terms read

Lcross = − 2m

n − 2
Y ab|

b Aa − m F abha|b − μπa Aa

− (n − 2)μ2

4(n − 1)

(
ha|bhb|a − h2

)
+ m μh ϕ + n m2

n − 2
ϕ2 ,

(12)

where h = ha|a denotes the trace of the linearised vielbein.
As recalled in section 3, eliminating the auxiliary fields Y bc|

a , 
F ab and πa from the parent action L one obtains a second-order 
description of a massive spin-2 field in terms of the linearised 
metric and the fields Aμ and ϕ , which reduces to the Fierz–Pauli 
action for m = 0. In section 4 we will instead show how eliminat-
ing the fields ha|b , Aa and ϕ leads to its dual description, involving 
mixed-symmetry fields for generic values of n.

3. Electric reduction

The equations of motion for Y bc|
a , F ab and πa arising from 

L[h, Y , A, F , ϕ, π ] allow to solve for them algebraically. E.g.

Yab|c = ∇ch[a|b] − ∇ah(b|c) + ∇bh(a|c)

+ 2gc[a
(
∇dhb]|d − ∇b]h + 2mAb]

)
.

(13)

By plugging this and the similar expressions for F ab and πa into 
the parent Lagrangian L, the latter reduces, modulo a total deriva-
tive, to the second-order Stueckelberg Lagrangian for a symmetric 
spin-2 field [34,35]:
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L[h, A,ϕ] = − 1
2 ∇ah(b|c)∇ah(b|c) + ∇ah(b|c)∇ch(b|a)

+ 1
2 ∇ah∇ah − ∇ah∇bh(a|b) − (n−1)σλ2

2

(
2h(a|b)h

(a|b) − h2
)

− ∇[a Ab]∇[a Ab] − (n − 1)σ λ2 Aa Aa − 1
2 ∇aϕ∇aϕ

− 2m Aa

(
∇ah − ∇bh(a|b)

)
+ μϕ∇a Aa

− m2
(

h(a|b)h
(a|b) − h2

)
+ n m2

n−2 ϕ2 + m μh ϕ .

(14)

The resulting action is invariant under the gauge transformations 
(5a) for h(a|b) , to be identified with the linearised metric, together 
with (6) and (7) for the Stueckelberg fields Aa and ϕ . The antisym-
metric part of the vielbein, h[a|b] , enters the reduced Lagrangian 
only through a total derivative, consistently with the shift symme-
try it enjoys under Lorentz transformations.

The first two lines of (14) gives the Fierz–Pauli Lagrangian for a 
massless spin-2 field in (A)dS. For μ = 0 one obtains a description 
of a partially-massless spin-2 field in dS in terms of the Stueckel-
berg coupling of the Fierz–Pauli and Proca Lagrangians. The field 
Aa can be gauged away using ξa , and the resulting action is in-
variant under

δh(a|b) = 1
λ

(
∇(a∇b)ε + λ2 gabε

)
. (15)

In this context, the partially-massless gauge symmetry thus follows 
because gauge transformations (5a) and (6) with ∇aε − m ξa = 0
preserve the gauge fixing Aa = 0.

4. Magnetic reduction

4.1. Massless case

When m = 0 the fields of spin one and zero decouple and one 
can consider the parent Lagrangian

L0[h, Y ] = L(2)[h, Y ] − (n−2)σλ2

2

(
ha|bhb|a − h2

)
, (16)

with L(2) given in (11). Its gauge symmetries are obtained by set-
ting m = 0 in (5a) and (10). Contrary to flat space [4] (where it 
enters the action linearly), in (A)dS the linearised vielbein is an 
auxiliary field thanks to the mass term in (16): it can thus be 
eliminated through its own equation of motion [5]. This leads to 
an action depending only on the traceless projection of Y bc|

a:

Ŷ bc|
a = Y bc|

a + 2
n−1 ēa

[bY c]d|
d . (17)

After the elimination of ha|b , the trace of Y bc|a indeed contributes 
to the action only via a boundary term, consistently with the shift 
symmetry generated by ξa in (10), which is still present for m = 0. 
One can cast the resulting Lagrangian in the form

L0[Y ] = σ
2(n−2)λ2

[
∇a Ŷ cd|

b ∇c Ŷ ab|
d + σλ2 Ŷbc|a Ŷ ba|c] , (18)

in agreement with the result obtained by eliminating the vielbein 
from the linearised McDowell–Mansouri action [10].

Introducing the Hodge dual Ta[n−2]|b = 1
2 εa[n−2]cd Ŷ cd|

b (which 
satisfies εa[n−2]bc Ta[n−2]|b = 0 on account of Ŷ ab|

b = 0), one obtains 
a dual description of a massless graviton in (A)dSn . The field T , 
however, has the same structure as a massive graviton in flat space 
[1]; when λ = 0, the dual of a massless spin-two field is instead a 
GL(n) Young-projected2 [n − 3, 1] field [2–4]. As discussed in [10], 

2 Two-column, GL(n)-irreducible fields are denoted by [p, q], where p and q
stand for the lengths of the first and second column of the corresponding Young 
tableau, respectively.
the different nature of the dual graviton in (A)dS and flat space 
can be explained as follows: massless mixed-symmetry fields dis-
play less gauge symmetries in (A)dS than in flat space. This is 
the Brink–Metsaev–Vasiliev (BMV) mechanism conjectured in [36], 
proved for AdSn in [37–39] and for dSn in [40]. It is also discussed 
in [41] from the point of view of reducibility conditions. As a re-
sult, in the flat limit, mixed-symmetry gauge fields decompose in 
multiplets of gauge fields. In this case, in the limit λ → 0 the field 
T decomposes into a “proper” [n −3, 1] dual graviton plus an addi-
tional field of type [n − 2, 1] that does not carry any local degrees 
of freedom.

This phenomenon can be described by introducing a suitable 
set of Stueckelberg fields. In the current example, following [42]
one can introduce a new field, antisymmetric in its first three in-
dices and traceless, implementing the shift

Ŷ bc|
a → Ŷ bc|

a + 1
λ

∇d W bcd|
a , W abc|

c ≡ 0 , (19)

either in the parent action (16) or in (17). This leads to the La-
grangian

L0[Y , W ] = 1
λ2

[
1
2 ∇c W abc|d∇e Wdbe|a + λ Ŷ ab|c∇e Wcbe|a

+ σ
2(n−2)

∇b Ŷ ab|c∇dŶcd|a + λ2

2 Ŷ ab|c Ŷac|b
]

,

(20)

that is invariant up to total derivatives under3

δŶ bc|
a = ∇dζ

bcd|
a+∇a�

bc + 2
n−1 ēa

[b∇d�
c]d+ (n−3)λ

σ χbc
a , (21)

δW bcd|
a = ∇eυ

bcde|
a+∇aχ

bcd− 3
n−2 ēa

[b∇eχ
cd]e −λζ bcd|

a . (22)

Note that the new field can be gauged away using the shift sym-
metry generated by the traceless ζ bcd|a , while it also brings its 
own differential symmetries generated by υbcde|a (which is trace-
less and antisymmetric in the first four indices) and by the fully 
antisymmetric χabc .

Introducing the Hodge dual Ca[n−3]|b = 1
3!εa[n−3]cde W cde|

b (that 
is a GL(n) Young-projected [n − 3, 1] field, since W cde|

b is trace-
less) and denoting C ′

a[n−4] = Ca[n−4]b|b together with T ′
a[n−3] =

Ta[n−3]b|b , one obtains the dual Lagrangian

L0[C, T ] = − 1
2λ2(n−3)!

[
L[C] + L̂cross + σ

(n−2)2 I[T ]
]

, (23)

where (denoting antisymmetrisations with repeated indices)

L[C] = ∇aCc[n−3]|b ∇aCc[n−3]|b − ∇aCb[n−3]|a ∇cCb[n−3]|
c

− (n − 3)
[
∇aC ′

b[n−4] ∇aC ′b[n−4] + ∇bCab[n−4]|c ∇aCb[n−3]|
c

− 2(−1)n∇aCb[n−3]|a ∇bC ′b[n−4]

− (n − 4)∇bC ′
cb[n−5] ∇cC ′b[n−4]]

, (24)

L̂cross = 2λ
[

Ta[n−3]b|c ∇bCa[n−3]|
c − T ′

a[n−3] ∇bCa[n−3]|
b

+ (−1)n(n − 3)T ′
a[n−3] ∇aC ′a[n−4]] , (25)

and

I[T ] = L[T ] + σ(n − 2)λ2 ×
×

[
T a[n−2]|b Ta[n−2]|b − (n − 2)T ′a[n−3]T ′

a[n−3]
]

. (26)

3 If one implements the Stueckelberg shift (19) already in the parent action (16), 
the vielbein acquires the new transformation δχha|b = n−3

(n−2)λ
∇cχ

abc .
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The expression for L[T ] is obtained from L[C] in (24) by replacing 
everywhere in the latter expression the symbols C and n by T and 
n + 1, respectively.

Lagrangian (23) is invariant, up to total derivatives, under

δTa[n−2]|b = (−1)n−1(n − 2)
[
∇aζ̃a[n−3]|b + (n − 3)σλ gbaχ̃a[n−3]

+ (−1)n−1

n−1

(
∇b�̃a[n−2] + (−1)n−1∇a�̃a[n−3]b

)]
, (27)

δCa[n−3]|b = (−1)n−1(n − 3)∇aυ̃a[n−4]|b − λ ζ̃a[n−3]|b
+ n−3

n−2

(∇bχ̃a[n−3] + (−1)n∇aχ̃a[n−4]b
)

, (28)

where the parameters ζ̃a[n−3]|b , �̃a[n−2] , υ̃a[n−4]|b and χ̃a[n−3]
are the Hodge duals of those entering the transformations (21)
and (22) (the dualisation always involves only the group of anti-
symmetrised indices). In the limit λ → 0 the field T decouples and 
does not propagate any degrees of freedom, while one retains the 
gauge field Ca[n−3]|b , the dual graviton in flat space [4].

In a spacetime of any dimension D > n, the action (23) — fea-
turing one of the two possible BMV couples of fields including 
Ta[n−2]|b — would give a non-unitary propagation in dS. This is 
manifested by the σ -dependent relative sign between the kinetic 
terms that we obtained. In this specific case, the relative sign is ir-
relevant because Y is a topological field in flat space and, indeed, 
the massless theory is unitary for any value of the cosmological 
constant.

4.2. Partially-massless case

Partially-massless spin-2 fields exist for any non-vanishing val-
ues of the cosmological constant, although they are unitary only in 
dS [43]. To exhibit these facts, in this subsection we slightly mod-
ify our conventions, multiplying L(1) by −σ . With this choice the 
factor σ in (8) is replaced by −1, so that one can reach the point 
μ = 0 in both dS and AdS. This leads to the parent Lagrangian

LPM[h, Y , A, F ] = ha|b Ca|b + σ
m̃ Aa∇b Cb|a

− 1
2

(
Y bc|aYab|c + 1

n−2 Y ab|
bYac|c

)
− σ

4 Fab F ab ,
(29)

where we defined

Ca|b = ∇c Y ac|b − m̃ F ab , m̃ = ±λ

√
n − 2

2
. (30)

In the conventions adopted in this subsection, the gauge symme-
tries of the action are

δha|b = ∇aξ
b + �a

b + 2m̃
n−2 ēa

b ε , (31)

δY bc|
a = ∇a�

bc + 2 ēa
[b∇d�

c]d , (32)

δAa = ∇aε + σ m̃ ξa , (33)

δF ab = −2σ m̃ �ab . (34)

In (29) we stressed that the fields ha|b and Aa are both La-
grange multipliers when μ = 0 (although the constraint imposed 
by the latter field is not independent). The analysis of the partially-
massless case therefore follows closely that of a massless gravi-
ton in flat space [4], rather than those presented in sections 4.1
and 4.3. The constraint Ca|b = 0 is solved by

Y bc|
a = 1 ∇d W bcd|

a − σ (
∇a F bc + 2 ēa

[b∇d F c]d) , (35)

λ 2m̃
where W bcd|
a has the same structure as the field introduced in 

the Stueckelberg shift (19). In particular, it is traceless. Substituting 
(35) in (29), one obtains

LPM[W ] = − 1

2λ2
∇d W bcd|a∇e Wabe|c

+ ∇a

(
F ab∇c Fbc − Fbc∇c F ab + 4σ m̃

λ
Fbc∇d W abd|c) .

(36)

This Lagrangian actually depends only on the field W bcd|a: F ab

contributes only via a total derivative consistently with the shift 
symmetry (34). It is still invariant under

δW bcd|
a = ∇eυ

bcde|
a , (37)

while the other differential symmetry that was present in the 
massless case (cf. (22)) is absent.

All gauge symmetries that the field W bcd|a and, consequently, 
its Hodge dual would display in flat space can be recovered by 
implementing the Stueckelberg shift

W bcd|
a → W bcd|

a + m̃−1

n − 3

(
∇aU bcd − 3

n−2 ēa
[b∇eU cd]e) . (38)

Substituting in (36) one obtains the Lagrangian

LPM[W , U ] = − 1
2λ2 ∇d W bcd|a∇e Wabe|c + σ

m̃ Uabc∇d W abd|c

− σ
2(n−2)m̃2 ∇cU abc∇dUabd − λ2

2m̃2 Uabc U abc ,
(39)

which is invariant up to total derivatives under

δW bcd|
a = ∇eυ

bcde|
a+∇aχ

bcd− 3
n−2 ēa

[b∇eχ
cd]e − σλ2

m̃ ρbcd
a , (40)

δU abc = ∇dρ
abcd − (n − 3)m̃ χabc . (41)

The contribution in ρ in (40) (that was absent in (22)) is necessary 
because, contrary to the massless case, the field U does not enter 
the action only via its divergence.

As in the massless case, the sign of one of the two kinetic terms 
depends on σ . This is consistent with the observation that, after 
Hodge dualisation, one obtains a BMV couple of fields which is 
unitary only in dS [40]. However, in this case both fields propa-
gate in the flat limit: the [n − 3, 1] dual of W carries the spin-2 
helicities, while the [n − 3] dual of U carries the spin-1 helicities. 
Consequently, the sign flip of a kinetic terms does matter: recov-
ering the BMV couple of fields that is not-unitary in AdS is just 
another way to see that partially-massless fields are not unitary in 
AdS.

Using the dual field Ca[n−3]|b defined as in the massless case 
and introducing the Hodge dual field Aa[n−3] = 1

3!εa[n−3]bcdU bcd , 
the Stueckelberg Lagrangian we obtain for the dual partially mass-
less spin-2 field in (A)dSn is

LPM[C, A] = −1
2(n−3)!λ2

[
L[C]− 2σλ2

(n−2)m̃2 L[A] + 4σλ2

m̃ L̃cross

]
, (42)

where L[C] is given in (24),

L[A] = ∇a Ab[n−3]∇a Ab[n−3] − (n − 3)∇a Ac[n−4]a ∇b Ac[n−4]b

+ 3σλ2 Aa[n−3] Aa[n−3] ,
(43)

and the cross terms are

L̃cross = Aa[n−3] (∇bCa[n−3]|b + (−1)n−1(n − 3)∇aC ′
a[n−2]

)
. (44)

The action is invariant under
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δCa[n−3]|b = (−1)n−1(n − 3)
(
∇aυ̃a[n−4]|b − σλ2

m̃ gba ρ̃a[n−4]
)

+ n−3
n−2

(∇bχ̃a[n−3] + (−1)n∇aχ̃a[n−4]b
)
, (45)

δAa[n−3] = (n − 3)
(
(−1)n−1∇aρ̃a[n−4] − m̃ χ̃a[n−3]

)
, (46)

where the parameters υ̃a[n−4]|b , χ̃a[n−3] and ρ̃a[n−4] are the Hodge 
duals of those entering the transformations (40) and (41).

4.3. Massive case

We now consider the full Stueckelberg action presented in sec-
tion 2. The elimination of the fields ha|b , Aa and ϕ has been con-
sidered in [6,9]. In the spirit of our discussion of the special points 
m = 0 and μ = 0, we complement these works by exhibiting a dual 
description with a smooth massless and flat limit. For generic val-
ues of m, ha|b is an auxiliary field and it can be eliminated through 
its equation of motion as in section 4.1. The field Aa is instead a 
Lagrange multiplier enforcing the constraint

∇b F ba − 2m
n−2 Y ab|

b − μπa = 0 , (47)

which can be solved by expressing πa in terms of the other fields. 
The equation of motion of ϕ does not bring any new information, 
since it is not independent on account of the Noether identity as-
sociated with the gauge symmetry generated by ε .

Substituting the on-shell values of ha|b and πa in the Stueckel-
berg Lagrangian leads to [6]

L[Ŷ , F ] = 1
μ2

[
n−1
n−2 ∇b Ŷ ab|c∇dŶcd|a + μ2

2 Ŷ ab|c Ŷac|b (48)

+ 1
2 ∇b F ab∇c Fac − 2(n−1)m

n−2 Fab∇c Ŷ bc|a +
(

μ2

4 − (n−1)m2

n−2

)
Fab F ab

]
,

where we recall that the parameters m and μ are related by (8). 
One can then consider the Hodge duals of the fields Ŷ and F
and obtain a dual theory for a massive graviton in terms of the 
Stueckelberg coupling of a massless spin-2 field (accounted by the 
[n − 2, 1] dual of Ŷ ) with a Proca field (accounted by the [n − 2]
dual of F ). Its gauge symmetries are those inherited from (6) and 
(10) after dualisation.

In order to obtain a smooth massless and flat limit, one should 
introduce two additional fields: the traceless W bcd|

a that we al-
ready encountered in section 4.1 and a 3-form U abc . This will allow 
to recover all Curtright gauge symmetries for the Hodge dual of 
Ŷ bc|

a and the usual gauge symmetry for the massless (n − 2)-form 
which is the Hodge dual of F ab . Due to the coupling F abha|b in 
(12), introducing the 3-form via a Stueckelberg shift of F ab would 
modify the equation of motion for ha|b and, as a result, it would 
introduce second-order kinetic terms mixing U abc with the fully 
antisymmetric projection of Y ab|c . On the other hand, the shifts

Y bc|a → Y bc|a + 1
μ ∇d W bcd|a − m

μ U abc , (49a)

F ab → F ab + 1
μ ∇cU abc (49b)

do not modify the equation of motion for ha|b and therefore they 
cannot introduce any mixed kinetic term. The elimination of the 
fields ha|b , Aa and ϕ then proceeds as above and one obtains the 
sum of the kinetic terms

K = 1
μ2

[
1
2 ∇c W abc|d∇e Wdbe|a + n−1

n−2 ∇b Ŷ ab|c∇dŶcd|a

+ 1
4 ∇cU abc∇dUabd + 1

2 ∇b F ab∇c Fac

]
,

(50)

with the cross couplings

L(
c

an

L(
c

−
Th
low

δW

δ

ad
lic
Ho
ze
Ho
ex
all
ch
ere
tri

Ac

at 
an
sev
Ma
sti
Un
tal
Ins
ve
pa
ha
Sw

Re

[1

[2

[3

[4

4

act
ha|b
δχ h
1)
ross = 1

μ

[
Ŷab|c∇d W acd|b + m

μ Uabc∇d W abd|c

− 2(n−1)m
(n−2)μ Fab∇c Ŷ bc|a + 1

2 Fab∇cU abc
] (51)

d mass-like terms

2)
ross = 1

2 Ŷ ab|c Ŷac|b + m
μ Ŷ ab|c Uabc

m2

2μ2 U abc Uabc +
(

1
4 − (n−1)m2

(n−2)μ2

)
F ab Fab .

(52)

is Lagrangian is invariant up to total derivatives under the fol-
ing gauge transformations4:

bcd|
a = ∇eυ

bcde|
a + ∇aχ

bcd − 3
n−2 ēa

[b∇eχ
cd]e

− μζ bcd|
a − m ρbcd

a , (53)

Ŷ bc|
a = ∇dζ

bcd|
a + ∇a�

bc + 2
n−1 ēa

[b∇d�
c]d

+ (n−3)μ
2(n−1)

χbc
a − m ψbc

a , (54)

δU abc = ∇dρ
abcd − μψabc + 2(n−3)m

n−2 χabc , (55)

δF ab = ∇cψ
abc + 2m �ab . (56)

The action involving the Hodge duals of the previous fields now 
mits a smooth flat and massless limit, in which different he-
ities decouple. The spin-two ones are carried by the [n − 3, 1]
dge dual of W (as discussed in section 4.1), while spin-one and 

ro helicities are carried, respectively, by the fully-antisymmetric 
dge duals of U and F . We refrain from displaying this action 

plicitly, as it can straightforwardly be obtained by expressing 
 fields in terms of their Hodge duals in (50)–(52). One can also 
eck that the appropriate Curtright gauge symmetries are recov-
d from (53)–(56) together with their gauge-for-gauge symme-

es.
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