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Abstract

We study multiplayer turn-based games played on a finite directed graph
such that each player aims at satisfying an ω-regular Boolean objective.
Instead of the well-known notions of Nash equilibrium (NE) and subgame
perfect equilibrium (SPE), we focus on the recent notion of weak subgame
perfect equilibrium (weak SPE), a refinement of SPE. In this setting, players
who deviate can only use the subclass of strategies that differ from the orig-
inal one on a finite number of histories. We are interested in the constrained
existence problem for weak SPEs. We provide a complete characterization of
the computational complexity of this problem: it is P-complete for Explicit
Muller objectives, NP-complete for Co-Büchi, Parity, Muller, Rabin, and
Streett objectives, and PSPACE-complete for Reachability and Safety objec-
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tives (we only prove NP-membership for Büchi objectives). We also show
that the constrained existence problem is fixed parameter tractable and is
polynomial when the number of players is fixed. All these results are based
on a fine-grained analysis of a fixpoint algorithm that computes the set of
possible payoff profiles underlying weak SPEs.

Keywords:
Multiplayer non zero-sum graph game, weak subgame perfect equilibrium,
decidability of the constrained existence of an equilibrium, omega-regular
objectives

1. Introduction

Two-player zero-sum graph games with ω-regular objectives are the clas-
sical mathematical model to formalize the reactive synthesis problem [1, 2].
More recently, generalization from zero-sum to non zero-sum, and from two
players to n players have been considered in the literature, see e.g. [3, 4, 5, 6,
7, 8, 9, 10, 11] and the surveys [12, 13]. Those extensions are motivated by
two main limitations of the classical setting. First, zero-sum games assume
a fully antagonistic environment while this is often not the case in practice:
the environment usually has its own goal. While the fully antagonistic as-
sumption is simple and sound (a winning strategy against an antagonistic
environment is winning against any environment that pursues its own objec-
tive), it may fail to find a winning strategy even if solutions exist when the
objective of the environment is accounted. Second, modern reactive systems
are often composed of several modules, and each module has its own speci-
fication and should be considered as a player on its own right. This is why
we consider n-player graph games.

For n-player graph games, solution concepts like Nash equilibria (NEs) [14]
are natural to consider. A strategy profile is an NE if no player has an in-
centive to deviate unilaterally from his strategy, i.e. no player can strictly
improve on the outcome of the strategy profile by changing his strategy only.
In the context of sequential games (such as games played on graphs), NEs
allow for non-credible threats that rational players should not carry out.
To avoid non-credible threats, refinements such as subgame perfect equilibria
(SPEs) [15] have been advocated. A strategy profile is an SPE if it is an NE
in all the subgames of the original game. So players need to play rationally
in all subgames, and this ensures that non-credible threats cannot exist. For
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applications of this concept to n-player graph games, we refer the reader
to [16, 8, 11].

In [17], the notion of weak subgame perfect equilibrium (weak SPE) is
introduced, and it is shown how it can be used to study the existence of
SPEs (possibly with contraints) in quantitative reachability games. While
an SPE must be resistant to any unilateral deviation of one player, a weak
SPE must be resistant to deviations restricted to deviating strategies that
differ from the original one on a finite number of histories only. In [18] the
authors study general conditions on the structure of the game graph and
on the preference relations of the players that guarantee the existence of a
weak SPE for quantitative games. Weak SPEs retain most of the important
properties of SPEs and they coincide with them when the payoff function
of each player is continuous. Weak SPEs are also easier to characterize and
to manipulate algorithmically. We refer the interested reader to [17, 18] for
further justifications of their interest, as well as for related work on NEs and
SPEs. In particular, the understanding of weak SPEs was the key to obtain
the exact computational complexity of the constrained existence problem for
subgame perfect equilibria in quantitative reachability games (see [19]).

Main contributions. In this paper, we concentrate on graph games with ω-
regular Boolean objectives. While SPEs, and thus weak SPEs, are always
guaranteed to exist in such games, we here study the computational com-
plexity of the constrained existence problem for weak SPEs, i.e. equilibria
in which some designated players have to win and some other ones have to
loose. More precisely, our main results are as follows:

• We study the constrained existence problem for games with Reacha-
bility, Safety, Büchi, Co-Büchi, Parity, Explicit Muller, Muller, Rabin,
and Streett objectives. We provide a complete characterization of the
computational complexity of this problem for all the classes of objec-
tives with one exception: Büchi objectives. The problem is P-complete
for Explicit Muller objectives, it is NP-complete for Co-Büchi, Parity,
Muller, Rabin, and Streett objectives, and it is PSPACE-complete for
Reachability and Safety objectives. In case of Büchi objectives, we
show membership to NP but we fail to prove hardness. As a byproduct
we obtain that the complexity of the constrained existence problem for
Reachability and Safety objectives is also PSPACE-complete for SPEs.

• Our complexity results rely on the identification of a symbolic witness
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for the constrained existence of a weak SPE, the size of which allows
us to prove NP/PSPACE-membership. As the constrained existence
problem is PSPACE-complete for Reachability and Safety objectives,
symbolic witnesses as compact as those for the other objectives cannot
exist unless NP = PSPACE. The identification of symbolic witnesses
is obtained thanks to a fixpoint algorithm that computes the set of all
possible payoff profiles underlying weak SPEs.

• When the number of players is fixed, we show that the constrained
existence problem can be solved in polynomial time for all ω-regular
objectives. We also prove that it is fixed parameter tractable where
the parameter is the number of players, for Reachability, Safety, Büchi,
Co-Büchi, and Parity objectives. For Rabin, Streett, and Muller objec-
tives, we still establish fixed parameter tractability but we need to con-
sider some additional parameters depending on the objectives. These
tractability results are obtained by a fine-grained analysis of the com-
plexity of the fixpoint algorithm mentioned previously.

Related work and additional contributions. In [13, 11], a tree automata-based
algorithm is given to decide the constrained existence problem for SPEs on
graph games with ω-regular objectives defined by parity conditions. A com-
plexity gap is left open: this algorithm executes in EXPTIME and NP-
hardness of the decision problem is proved. In this paper, we focus on weak
SPEs for which we provide precise complexity results for the constrained
existence problem. We also observe that our results on Reachabilty and
Safety objectives transfer from weak SPEs to SPEs: the constrained exis-
tence problem for SPEs is PSPACE-complete for those objectives. Quanti-
tative Reachability objectives are investigated in [17] where it is proved that
the constrained existence problem for weak SPEs and SPEs is decidable, but
its exact complexity is left open.

In [17, 18, 20], the existence of (weak) SPEs in graph games is established
using a construction based on a fixpoint. Our fixpoint algorithm is mainly
inspired by the fixpoint technique of [18]. However, we provide complexity
results based on this fixpoint while transfinite induction is used in [18]. Fur-
thermore, we have modified the technique of [18] in a way to get a fixpoint
that contains exactly all the possible payoff profiles of weak SPEs. This is
necessary to get a decision algorithm for the constrained existence problem.

Profiles of strategies with finite-memory are more appealing from a prac-
tical point of view. It was shown in [11] that when there exists an SPE in a
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graph game with ω-regular objectives, then there exists one that uses finite-
memory strategies and has the same payoff profile. Thanks to the symbolic
witnesses, we have refined those results for weak SPEs.

Structure of the paper. In Section 2, we recall the notions of n-player graph
games and of (weak) SPE, and we state the studied constrained existence
problem. In Section 3, we provide a fixpoint algorithm that computes all
the possible payoff profiles for weak SPEs on a given graph game. From this
fixpoint, we derive symbolic witnesses of weak SPEs. In Section 4, we study
the complexity classes of the constrained existence problem for all objectives
except Explicit Muller objectives. In Section 5, we prove the fixed parameter
tractability of the constrained existence problem and we show that is in
polynomial time when the number of players is fixed. We also show that this
problem is P-complete for Explicit Muller objectives. In Section 6, we give
a conclusion and propose future work.

2. Preliminaries

In this section, we introduce multiplayer graph games in which each player
aims to achieve his Boolean objective. We focus on classical ω-regular ob-
jectives, like Reachability, Büchi, and so on. We recall two classical concepts
of equilibria: Nash equilibrium and subgame perfect equilibrium (see [13]).
We also recall weak variants of these equilibria as proposed in [17, 18]. We
conclude the section by the constrained existence problem that is studied in
this paper.

2.1. Multiplayer Boolean games

Definition 1 (Boolean game). A multiplayer Boolean game is a tuple G =
(Π, V, (Vi)i∈Π, E, (Gaini)i∈Π) where

• Π = {1, 2, . . . , n} is a finite set of n players ;

• G = (V,E) is a finite directed graph and for all v ∈ V there exists
v′ ∈ V such that (v, v′) ∈ E;

• (Vi)i∈Π is a partition of V between the players;

• Gain = (Gaini)i∈Π is a tuple of functions Gaini : V ω → {0, 1} that
assigns a Boolean value to each infinite path of G for player i.
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A play in G is an infinite sequence of vertices ρ = ρ0ρ1 . . . such that for
all k ∈ N, (ρk, ρk+1) ∈ E. A history is a finite sequence h = h0h1 . . . hn
(n ∈ N) defined similarly. We denote the set of plays by Plays and the set
of histories by Hist. Moreover, the set Histi is the set of histories such that
the last vertex v is a vertex of player i, i.e. v ∈ Vi. The length |h| of h is the
number n of its edges. A play ρ is called a lasso if it is of the form ρ = h`ω

with h` ∈ Hist. Notice that ` is not necessary a simple cycle. The length of a
lasso h`ω is the length of h`. For all h ∈ Hist, we denote by First(h) the first
vertex h0 of h. We use notation h < ρ when a history h is prefix of a play (or
a history) ρ. Given a play ρ = ρ0ρ1 . . ., the set Occ(ρ) = {v ∈ V | ∃k, ρk = v}
is the set of vertices visited by ρ, and Inf(ρ) = {v ∈ V | ∀k,∃j ≥ k, ρj = v}
is the set of vertices infinitely often visited by ρ. Given a vertex v ∈ V ,
Succ(v) = {v′ | (v, v′) ∈ E} is the set of successors of v, and Succ∗(v) is the
set of vertices reachable from v in G.

When an initial vertex v0 ∈ V is fixed, we call (G, v0) an initialized game.
A play (resp. a history) of (G, v0) is a play (resp. a history) of G starting
in v0. The set of such plays (resp. histories) is denoted by Plays(v0) (resp.
Hist(v0)). We also use notation Histi(v0) when these histories end in a vertex
v ∈ Vi.

The goal of each player i is to achieve his objective, i.e., to maximize his
gain.

Definition 2 (Objective). For each player i ∈ Π, let Obji ⊆ V ω be his
objective. In the setting of multiplayer Boolean game, the gain function
Gaini is defined such that Gaini(ρ) = 1 (resp. Gaini(ρ) = 0) if and only if
ρ ∈ Obji (resp. ρ 6∈ Obji).

An objective Obji (or the related gain function Gaini) is prefix-independent
if for all h ∈ V ∗ and ρ ∈ V ω, we have ρ ∈ Obji if and only if hρ ∈ Obji. In
this paper, we focus on classical ω-regular objectives: Reachability, Safety,
Büchi, Co-Büchi, Parity, Explicit Muller, Muller, Rabin, and Streett and we
suppose that each player has the same type of objective. For instance, we
say that G is a Boolean game with Büchi objectives to express that all players
have a Büchi objective.

Definition 3 (Classical ω-regular objectives). The set Obji is a Reachability,
Safety, Büchi, Co-Büchi, Parity, Explicit Muller, Muller, Rabin, or Streett
objective for player i if and only if Obji is composed of the plays ρ satisfying:

• Reachability : given F ⊆ V , Occ(ρ) ∩ F 6= ∅;
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• Safety : given F ⊆ V , Occ(ρ) ∩ F = ∅;

• Büchi : given F ⊆ V , Inf(ρ) ∩ F 6= ∅;

• Co-Büchi : given F ⊆ V , Inf(ρ) ∩ F = ∅;

• Parity : given a coloring function Ω : V → {1, . . . , d}, max(Inf(Ω(ρ)))3

is even;

• Explicit Muller : given F ⊆ 2V , Inf(ρ) ∈ F ;

• Muller : given a coloring function Ω : V → {1, . . . , d}, and F ⊆ 2Ω(V ),
Inf(Ω(ρ)) ∈ F ;

• Rabin: given (Gj, Rj)1≤j≤k a family of pair of sets Gj, Rj ⊆ V ,
there exists j ∈ 1, . . . , k such that Inf(ρ)∩Gj 6= ∅ and Inf(ρ)∩Rj = ∅;

• Streett : given (Gj, Rj)1≤j≤k a family of pair of sets Gj, Rj ⊆ V ,
for all j ∈ 1, . . . , k, Inf(ρ) ∩Gj = ∅ or Inf(ρ) ∩Rj 6= ∅.

All these objectives are prefix-independent except Reachability and Safety
objectives.

A strategy of a player i ∈ Π is a function σi : Histi → V . This function
assigns to each history hv with v ∈ Vi, a vertex v′ such that (v, v′) ∈ E. In
an initialized game (G, v0), σi needs only to be defined for histories starting
in v0. A play ρ = ρ0ρ1 . . . is consistent with σi if for all ρk ∈ Vi we have that
σi(ρ0 . . . ρk) = ρk+1. A strategy σi is positional if it only depends on the last
vertex of the history, i.e., σi(hv) = σi(v) for all hv ∈ Histi. It is finite-memory
if it can be encoded by a deterministic Moore machine M = (M,m0, αu, αn)
where M is a finite set of states (the memory of the strategy), m0 ∈ M
is the initial memory state, αu : M × V → M is the update function, and
αn : M ×Vi → V is the next-action function. The Moore machineM defines
a strategy σi such that σi(hv) = αn(α̂u(m0, h), v) for all histories hv ∈ Histi,
where α̂u extends αu to histories as expected. The size of the strategy σi is
the size |M | of its machine M. Note that σi is positional when |M | = 1.

A strategy profile is a tuple σ = (σi)i∈Π of strategies, one for each player.
It is called positional (resp. finite-memory) if for all i ∈ Π, σi is positional
(resp. finite-memory). Given an initialized game (G, v0) and a strategy

3Where Ω(ρ) = Ω(ρ0)Ω(ρ1) . . .Ω(ρn) . . ..
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profile σ, there exists an unique play from v0 consistent with each strategy
σi. We call this play the outcome of σ and it is denoted by 〈σ〉v0 . Let
p = (pi)i∈Π ∈ {0, 1}|Π|, we say that σ is a strategy profile with payoff p or
that 〈σ〉v0 has payoff p if pi = Gaini(〈σ〉v0) for all i ∈ Π.

2.2. Solution concepts

In the multiplayer game setting, the solution concepts usually studied
are equilibria (see [13]). We here recall the concepts of Nash equilibrium and
subgame perfect equilibrium, as well as some variants. We begin with the
notion of deviating strategy.

Let σ = (σi)i∈Π be a strategy profile in an initialized Boolean game (G, v0).
Given i ∈ Π, a strategy σ′i 6= σi is a deviating strategy of player i, and
(σ′i, σ−i) denotes the strategy profile σ where σ′i replaces σi. Such a strategy
is a profitable deviation for player i if Gaini(〈σ〉v0) < Gaini(〈σ′i, σ−i〉v0). We
say that σ′i is finitely deviating from σi if σ′i and σi only differ on a finite
number of histories, and that σ′i is one-shot deviating from σi if σ′i and σi
only differ on v0 [17, 18].

The notion of Nash equilibrium (NE) is classical: a strategy profile σ in
an initialized game (G, v0) is a Nash equilibrium if no player has an incentive
to deviate unilaterally from his strategy since he has no profitable deviation,
i.e., for each i ∈ Π and each deviating strategy σ′i of player i from σi, the
following inequality holds: Gaini(〈σ〉v0) ≥ Gaini(〈σ′i, σ−i〉v0). In this paper
we focus on two variants of NE: weak/very weak NE [17, 18].

Definition 4 (Weak/very weak Nash equilibrium). A strategy profile σ is a
weak NE (resp. very weak NE ) in (G, v0) if, for each player i ∈ Π, for each
finitely (resp. one-shot) deviating strategy σ′i of player i from σi, we have
Gaini(〈σ〉v0) ≥ Gaini(〈σ′i, σ−i〉v0).

Example 5. Figure 1 illustrates an initialized Boolean game (G, v0) with
Büchi objectives in which there exists a weak NE that is not an NE. In this
game, player 1 (resp. player 2) owns round (resp. square) vertices and wants
to visits v1 (resp. v3 or v5) infinitely often. The positional strategy profile
σ = (σ1, σ2) is depicted by dashed arrows, its outcome is equal to 〈σ〉v0 =
v0v1v2v

ω
3 , and σ has payoff (0, 1). Notice that player 1 has an incentive

to deviate from his strategy σ1 with a strategy σ′1 that goes to v1 for all
histories ending in v2. This is indeed a profitable deviation for him since
Gain(〈(σ′1, σ2)〉v0) = (1, 0). So, σ is not an NE. Nevertheless, it is a weak NE
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Figure 1: Example of a Boolean game with Büchi objectives. Player 1 (resp. player 2)
owns round (resp. square) vertices and wants to visits v1 (resp. v3 or v5) infinitely often.

because σ′1 is the only profitable deviation and it is not finitely deviating (it
differs from σ1 on all histories of the form v0(v1v2)k for k ∈ N\{0}).

As shown by this example, a weak Nash equilibrium has to be seen as a
contract where no one has an incentive to finitely deviate alone. In such a
contract a player may have a profitable deviation which needs infinitely many
changes. Notice that the profitable deviation σ′1 in Example 5 is a winning
strategy4 for player 1 from v1. Altought playing σ′1 is optimal for player 1
this cannot be achieved from σ1 by finitely deviating. As in the classical
setting of game theory, the study of equilibria concerns stability rather than
optimality. In this spirit, weak Nash equilibria can be used to model stability
under finitely deviating strategies.

When considering games played on graphs, a well-known refinement of
NE is the concept of subgame perfect equilibrium (SPE) which a strategy
profile being an NE in each subgame. Variants of weak/very weak SPE can
also be studied as done with NEs. Formally, given an initialized Boolean
game (G, v0) and a history hv ∈ Hist(v0), the initialized game (G�h, v) is
called a subgame5 of (G, v0) such that G�h = (Π, V, (Vi)i∈Π, E,Gain�h) and
Gaini�h(ρ) = Gaini(hρ) for all i ∈ Π and ρ ∈ V ω. Moreover if σi is a strategy
for player i in (G, v0), then σi�h denotes the strategy in (G�h, v) such that
for all histories h′ ∈ Histi(v), σi�h(h

′) = σi(hh
′). Similarly, from a strategy

profile σ in (G, v0), we derive the strategy profile σ�h in (G�h, v). The play

4A winning strategy for player 1 from a vertex v is a strategy such that whatever the
strategy of player 2, player 1 is sure that he will obtain a gain of 1 if he follows this strategy
from v.

5Notice that (G, v0) is subgame of itself.
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〈σ�h〉v is called a subgame outcome of σ.

Definition 6 (Subgame perfect equilibrium and weak/very weak subgame
perfect equilibrium). A strategy profile σ is a (resp. weak, very weak) sub-
game perfect equilibrium in (G, v0) if for all hv ∈ Hist(v0), σ�h is a (resp.
weak, very weak) NE in (G�h, v).

When one needs to show that a strategy profile is a weak SPE, the next
proposition is very useful because it states that it is enough to consider one-
shot deviating strategies.

Proposition 7 ([17]). A strategy profile σ is a weak SPE if and only if σ is
a very weak SPE.

Example 8. In Example 5 is given a weak NE σ in the game (G, v0) depicted
in Figure 1. This strategy profile is also a very weak SPE (and thus a weak
SPE by Proposition 7). For instance, in the subgame (G�h, v) with h = v0v1

and v = v2, the only one-shot deviating strategy σ′1 is such that σ′1 coincides
with σ1�h except that σ′1(v2) = v1. This is not a profitable deviation for
player 1 in (G�h, v). Notice that σ is not an SPE since it is not an NE as
explained in Example 5.

In general, the notions of SPE and weak SPE are not equivalent (see
Example 8). Nevertheless they coincide for the class of Boolean games with
Reachability objectives.

Proposition 9. Let σ be a strategy profile in an initialized Boolean game
(G, v0) with Reachability objectives. Then σ is an SPE if and only if σ is a
weak SPE.

Proof. Each player i has a Reachability objective, let Fi be the set of vertices
he aims to visit.

(⇒) This implication is a consequence of the definitions of SPE and weak
SPE.

(⇐) Let σ be a weak SPE in (G, v0). Assume that σ is not an SPE, i.e.,
there exists hv ∈ Hist(v0) such that σ�h is not an NE in (G�h, v). Then some
player i has a profitable deviation σ′i in the subgame (G�h, v). As Gaini takes
its values in {0, 1}, this means that

0 = Gaini(hρ) < Gaini(hρ
′) = 1
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with ρ = 〈σ�h〉v and ρ′ = 〈σ′i, σ−i�h〉v. We consider the first occurrence of a
vertex of Fi along hρ′ (which appears in ρ′ and not in h as Gaini(hρ) = 0):
let g′ of mininal length such that hg′ < hρ′ and g′ ends in some v′ ∈ Fi. Let
us define a strategy τi that is finitely deviating from σi�h and profitable for
player i in (G�h, v). This will be in contradiction with our hypothesis. For all
g ∈ Histi(v), let

τi(g) =

{
σ′i(g) if g ≤ g′

σi�h(g) otherwise
.

By definition of τi, we have that Gaini(h〈τi, σ−i�h〉v) = Gaini(hρ
′) = 1 and τi

is finitely deviating from σi�h since |g′| is finite.

2.3. Constraint problem

It is proved in [18] that there always exists a weak SPE in Boolean games.
In this paper, we are interested in solving the following constraint problem:

Definition 10 (Constraint problem). Given an initialized Boolean game
(G, v0) and thresholds x, y ∈ {0, 1}|Π|, decide whether there exists a weak
SPE in (G, v0) with payoff p such that x ≤ p ≤ y.6

In the next sections, we solve the constraint problem for the classical
ω-regular objectives. The complexity classes that we obtain are shown in
Table 1. They are detailed in Section 4 with the case of Explicit Muller ob-
jectives postponed to Section 5.3. The case of Büchi objectives remains open,
since we only propose a non-deterministic algorithm in polynomial time but
no matching lower bound. In Section 5, we prove that the constraint problem
for weak SPEs is fixed parameter tractable and becomes polynomial when the
number of players is fixed. All these results are based on a characterization
of the set of possible payoffs of a weak SPE, that is described in Section 3.

Table 1: Complexity classes of the constraint problem for ω-regular objectives

Expl. Muller Co-Büchi Parity Muller Rabin Streett Reach. Safety

P-complete ×
NP-complete × × × × ×
PSPACE-complete × ×

6The order ≤ is the componentwise order, that is, xi ≤ pi ≤ yi, for all i ∈ Π.
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3. Characterization

In this section our aim is twofold: first, we characterize the set of possible
payoffs of weak SPEs and second, we show how it is possible to build a weak
SPE given a set of lassoes with some “good properties”. Those characteri-
zations work for Boolean games with prefix-independent gain functions. We
make this hypothesis all along Section 3.

3.1. Remove-Adjust procedure

Let (G, v0) be an initialized Boolean game with prefix-independent gain
functions. The computation of the set of all the payoffs of weak SPEs in
(G, v0) is inspired by a fixpoint procedure explained in [18]. Each vertex v is
labeled by a set of payoffs p ∈ {0, 1}|Π|. Initially, these payoffs are those for
which there exists a play in Plays(v) with payoff p. Then step by step, some
payoffs are removed for the labeling of v as soon as we are sure they cannot
be the payoff of σ�h in a subgame (G�h, v) for some weak SPE σ.7 When a
fixpoint is reached, the labeling of the initial vertex v0 exactly contains all
the payoffs of weak SPEs in (G, v0). Hence, at each step of this procedure,
the payoffs labeling a vertex v are payoffs of potential subgame outcomes of
a weak SPE. Their number decreases until reaching a fixpoint.

We formally proceed as follows. For all v ∈ V , we define the initial
labeling of v as:

P0(v) = {p ∈ {0, 1}|Π| | there exists ρ ∈ Plays(v) such that Gain(ρ) = p}.

Then for each step k ∈ N \ {0}, we compute the set Pk(v) by alternating
between two operations: Remove and Adjust. To this end, we need to intro-
duce the notion of (p, k)-labeled play. Let p be a payoff and k be a step, a
play ρ = ρ0ρ1ρ2 . . . is (p, k)-labeled if for all j ∈ N we have p ∈ Pk(ρj), that
is, ρ visits only vertices that are labeled by p at step k. We first give some
intuition about the Remove-Adjust procedure and then give the definition.

We start with the Remove operation. Let p that labels vertex v. This
means that it is the payoff of a potential subgame outcome of a weak SPE
that starts in v. Suppose that v is a vertex of player i and v has a successor

7The value of h is not important since the gain functions are prefix independent. This
is why we only focus on v and not on hv.
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v′ such that pi < p′i for all p′ labeling v′. Then p cannot be the payoff of σ�h
in the subgame (G�h, v) for some weak SPE σ and some history h, otherwise
player i would have a profitable (one-shot) deviation by moving from v to v′

in this subgame.
Let us now explain the Adjust operation. It may happen that for another

vertex u having p in its labeling, all potential subgame outcomes of a weak
SPE from u with payoff p necessarily visit vertex v. As p has been removed
from the labeling of v, these potential plays do no longer survive and p is
also removed from the labeling of u by the Adjust operation.

Let us now formally define the Remove-Adjust procedure.

Definition 11 (Remove-Adjust procedure). Let k ∈ N \ {0}.

• If k is odd, process the Remove operation:

– If for some v ∈ Vi there exists p ∈ Pk−1(v) and v′ ∈ Succ(v) such
that pi < p′i for all p′ ∈ Pk−1(v′), then Pk(v) = Pk−1(v)\{p} and
for all u 6= v, Pk(u) = Pk−1(u).

– If such a vertex v does not exist, then Pk(u) = Pk−1(u) for all
u ∈ V .

• If k is even, process the Adjust operation:

– If some payoff p was removed from Pk−2(v) (that is, Pk−1(v) =
Pk−2(v) \ {p}), then

∗ For all u ∈ V such that p ∈ Pk−1(u), check whether there still
exists a (p, k−1)-labeled play with payoff p from u. If it is the
case, then Pk(u) = Pk−1(u), otherwise Pk(u) = Pk−1(u)\{p}.
∗ For all u ∈ V such that p /∈ Pk−1(u): Pk(u) = Pk−1(u).

– Otherwise Pk(u) = Pk−1(u) for all u ∈ V .

We can state the existence of a fixpoint of the sequences (Pk(v))k∈N,
v ∈ V , in the following meaning:

Proposition 12 (Existence of a fixpoint). There exists an even natural num-
ber k∗ ∈ N such that for all v ∈ V , Pk∗(v) = Pk∗+1(v) = Pk∗+2(v).
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Proof. For all v ∈ V , the sequence (Pk(v))k∈N is nonincreasing because the
Remove and Ajdust operations never add a new payoff. As each P0(v) is finite
(it contains at most 2|Π| payoffs), there exists a natural odd number k∗ + 1
such that for all v ∈ V , Pk∗(v) = Pk∗+1(v) during the Remove operation, and
thus for all v ∈ V , Pk∗+1(v) = Pk∗+2(v) during the Adjust operation.

Example 13. We illustrate the different steps of the Remove-Adjust proce-
dure on the example depicted in Figure 1, and we display the result of this
computation in Table 2. Initially, the sets P0(v), v ∈ V , contains all payoffs
p such that there exists a play ρ ∈ Plays(v) with Gain(ρ) = p. At step k = 1,
we apply a Remove operation to v = v4 (this is the only possible v): v is a
vertex of player i = 2 and v has a successor v′ = v5 such that (0, 1) ∈ P0(v5).
Therefore (0, 0) is removed from P0(v4) to get P1(v4). By definition of the
Remove operation, the other sets P0(u) are not modified and are thus equal
to P1(u). At step k = 2, we apply an Adjust operation. The only way to
obtain the payoff (0, 0) from v0 is by visiting v4 with the play v0v4v

ω
6 . As

there does not exist a ((0, 0), 1)-labeled play with payoff (0, 0) anymore, we
have to remove (0, 0) from P1(v0). The other sets P1(v) remain unchanged.
At step k = 3, the Remove operation removes payoff (1, 0) from P2(v0) due
to the unique payoff (0, 1) in P2(v4). At step k = 4, the Adjust operation
leaves all sets P3(v) unchanged. Finally at step k = 5, the Remove operation
also leaves all sets P4(v) unchanged, and the fixpoint is reached. Therefore,
we have k∗ = 4.

Table 2: Computation of the fixpoint on the example of Figure 1

v0 v1 v2 v3 v4 v5 v6

P0(v) {(0, 0), (1, 0), (0, 1)} {(1, 0), (0, 1)} {(1, 0), (0, 1)} {(0, 1)} {(0,0), (0, 1)} {(0, 1)} {(0, 0)}
P1(v) {(0,0), (1, 0), (0, 1)} {(1, 0), (0, 1)} {(1, 0), (0, 1)} {(0, 1)} {(0, 1)} {(0, 1)} {(0, 0)}
P2(v) {(1,0), (0, 1)} {(1, 0), (0, 1)} {(1, 0), (0, 1)} {(0, 1)} {(0, 1)} {(0, 1)} {(0, 0)}
P3(v) {(0, 1)} {(1, 0), (0, 1)} {(1, 0), (0, 1)} {(0, 1)} {(0, 1)} {(0, 1)} {(0, 0)}
P4(v) {(0, 1)} {(1, 0), (0, 1)} {(1, 0), (0, 1)} {(0, 1)} {(0, 1)} {(0, 1)} {(0, 0)}

3.2. Characterization and good symbolic witness

The fixpoint Pk∗(v), v ∈ V , provides a characterization of the payoffs of
all weak SPEs as described in the following theorem. This result is in the
spirit of the classical Folk Theorem which characterizes the payoffs of all NEs
in infinitely repeated games (see for instance [21, Chapter 8]).
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Theorem 14 (Characterization). Let (G, v0) be an initialized Boolean game
with prefix-independent gain functions. Then there exists a weak SPE σ with
payoff p0 in (G, v0) if and only if p0 ∈ Pk∗(v0).8

The rest of this section is devoted to the proof of Theorem 14. We begin
with a lemma that states that if a given payoff p survives at step k (where k
is even) in the labeling of v, this means that there exists a play with payoff
p from v that only visits vertices also labeled by p.

Lemma 15. For all even k and in particular for k = k∗, p belongs to Pk(v) if
and only if there exists a (p, k)-labeled play ρ ∈ Plays(v) such that Gain(ρ) =
p.

Proof. (⇐) Suppose that there exists a (p, k)-labeled play ρ = ρ0ρ1 . . . ∈
Plays(v) such that Gain(ρ) = p. By definition of a (p, k)-labeled play, we
have p ∈ Pk(ρj) for all j, and so in particular for j = 0.

(⇒) Let us prove that if p belongs to Pk(v), then there exists a (p, k)-
labeled play ρ ∈ Plays(v) such that Gain(ρ) = p. We proceed by induction
on k. For k = 0, the assertion is satisfied by definition of P0(v) and because
Gaini is prefix-independent for all i ∈ Π.

Suppose that the assertion is true for an even k and let us prove that it
remains true for k+ 2. Let p ∈ Pk+2(v). As Pk+2(v) ⊆ Pk+1(v) ⊆ Pk(v), we
have p ∈ Pk(v) and there exists a (p, k)-labeled play ρ ∈ Plays(v) such that
Gain(ρ) = p by induction hypothesis. In other words p ∈ Pk(ρj) for all j.

We suppose that there exists v′ such that Pk+2(v′) 6= Pk(v
′) (the fixpoint

is not reached), otherwise p ∈ Pk+2(ρj) for all j and ρ is also a (p, k + 2)-
labeled play. Therefore the Remove operation has removed some payoff p′

from one Pk(v
′) and the Adjust operation has possibly removed p′ from some

other Pk(u). If p′ 6= p, then clearly p still belongs to each Pk+2(ρj) and ρ is
again a (p, k + 2)-labeled play. If p′ = p, then v′ 6= v since p ∈ Pk+2(v) by
hypothesis. Moreover, by the Adjust operation, this means that there exists
a (p, k + 1)-labeled play π = π0π1 . . . with payoff p from v which never visits
v′. Let us show that π is also a (p, k + 2)-labeled play, that is, p ∈ Pk+2(πj)
for all j. Each suffix πjπj+1 . . . of π is a (p, k + 1)-labeled play with payoff p
thanks to prefix-independence of Gain. By the Adjust operation, it follows
that Pk+2(πj) = Pk+1(πj) for all j. This concludes the proof.

8We use notation p0 ∈ {0, 1}|Π| to highlight that this is the payoff of σ from vertex v0.
It should not be confused with any component pi, i ∈ Π, of a payoff p.
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The proof of Theorem 14 uses the concept of (good) symbolic witness
defined hereafter but we begin with some intuition about it.

A symbolic witness P is a compact representation of some finite-memory
strategy profile σ in (G, v0). It is a finite set of lassoes that represent some
subgame outcomes of σ: the lasso ρ0,v0 of P represents the outcome 〈σ〉v0 ,
and each other lasso ρi,v′ represents the subgame outcome 〈σ�h〉v′ for some
particular histories hv′ ∈ Hist(v0). The index i records that player i can
move from v (the last vertex of h) to v′ (with the convention that i = 0 for
the outcome 〈σ〉v0). When σ is a weak SPE, the related symbolic witness
P is good, that is, its lassoes avoid profitable one-shot deviations between
them.

Let us now define it properly.

Definition 16 (Symbolic witness). Let (G, v0) be an initialized Boolean game
with prefix-independent gain functions. Let I ⊆ (Π ∪ {0})× V be the set

I ={(0, v0)} ∪
{(i, v′) | there exists (v, v′) ∈ E such that v, v′ ∈ Succ∗(v0) and v ∈ Vi}.

A symbolic witness is a set P = {ρi,v | (i, v) ∈ I} such that each ρi,v ∈ P is
a lasso of G with First(ρi,v) = v and with length bounded by 2 · |V |2.

A symbolic witness has thus at most |V | · |Π|+ 1 lassoes (by definition of
I) with polynomial length.

Definition 17 (Good symbolic witness). A symbolic witness P is good if for
all ρj,u, ρi,v′ ∈ P , for all vertices v ∈ ρj,u such that v ∈ Vi and v′ ∈ Succ(v),
we have Gaini(ρj,u) ≥ Gaini(ρi,v′).

The condition of Definition 17 is depicted in Figure 2.

u . . . v

∈ Vi

v′ . . . . . . ρi,v′

. . . . . . ρj,u

Figure 2: The condition of Definition 17
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Example 18. We come back to our running example. The weak SPE of
Example 8 depicted in Figure 1 has payoff p = (0, 1). A symbolic witness P
of σ is given in Table 3 which is here composed of all the subgame outcomes
of σ. One can check that P is a good symbolic witness. For instance, consider
its lassoes ρ0,v0 = v0v1v2v

ω
3 and ρ1,v1 = v1v2v

ω
3 , the vertex v2 ∈ V1 of ρ0,v0

and the edge (v2, v1). We have Gain1(ρ0,v0) ≥ Gain1(ρ1,v1). Indeed in the
subgame (G�v0v1 , v2), player 1 has no profitable one-shot deviation by using
the edge (v2, v1).

Table 3: An example of good symbolic witness

(i, v) (0, v0) (2, v4) (1, v2) (1, v1) (1, v3) (2, v5) (2, v6) (1, v5) (1, v6)
lasso v0v1v2v

ω
3 v4v

ω
5 v2v

ω
3 v1v2v

ω
3 vω3 vω5 vω6 vω5 vω6

payoff (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 0) (0, 1) (0, 0)

In Proposition 19 below, we are going to prove that there exists a weak
SPE if and only if there exists a good symbolic witness representing a finite-
memory weak SPE with the same payoff, and that the existence of this
witness is equivalent to the non-emptiness of the fixpoint Pk∗(v), v ∈ V .
In this way, we will prove Theorem 14. We will see that the lassoes ρi,v of
a good symbolic witness can be constructed from (p, k∗)-labeled plays for
well-chosen payoffs p ∈ Pk∗(v).

Notice that in the second assertion of Proposition 19, we not only ask
that p0 ∈ Pk∗(v0) (as in Theorem 14) but also that Pk∗(v) 6= ∅ for all
v ∈ Succ∗(v0). We will come back to this observation when we will prove
Theorem 14 after Example 20.

Proposition 19. Let (G, v0) be an initialized Boolean game with prefix-in-
dependent gain functions. The following assertions are equivalent:

1. There exists a weak SPE with payoff p0 in (G, v0);

2. Pk∗(v) 6= ∅ for all v ∈ Succ∗(v0) and p0 ∈ Pk∗(v0);

3. There exists a good symbolic witness P that contains a lasso ρ0,v0 with
payoff p0;

4. There exists a finite-memory weak SPE σ with payoff p0 in (G, v0) such
that the size of each strategy σi is in O(|V |3 · |Π|).

Proof. We prove that 1⇒ 2⇒ 3⇒ 4⇒ 1.
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(1⇒ 2) Suppose that there exists a weak SPE σ with payoff p0 in (G, v0).
To show that Pk∗(v) 6= ∅ for all v ∈ Succ∗(v0), let us prove by induction on
k that

Gain(〈σ�h〉v) ∈ Pk(v) for all hv ∈ Hist(v0). (1)

For case k = 0, this is true by definition of P0(v). Suppose that this assertion
is satisfied for an even k. Let us prove that it remains true for k+2 by showing
that payoff p = Gain(〈σ�h〉v) ∈ Pk(v) can be removed neither from Pk(v) at
step k + 1, nor from Pk+1(v) at step k + 2.

• Payoff p cannot be removed from Pk(v) by the Remove operation at
step k+1. Otherwise, if v ∈ Vi, this means that there exists v′ ∈ Succ(v)
such that

∀p′ ∈ Pk(v
′), pi < p′i. (2)

By induction hypothesis,

Gain(〈σ�hv〉v′) ∈ Pk(v
′). (3)

To get a contradiction, we prove that in the subgame (G�h, v) there ex-
ists a one-shot deviating strategy σ′i from σi�h that is a profitable devi-
ation for player i. We define σ′i that only differs from σi�h on v: σ′i(v) =
v′. Therefore we get Gain(h〈σ′i, σ−i�h〉v) = Gain(hv〈σ�hv〉v′). It follows
by (2), (3), and prefix-independence of Gaini that Gaini(h〈σ�h〉v) =
pi < p′i = Gaini(hv〈σ�hv〉v′) = Gain(h〈σ′i, σ−i�h〉v). This is impossible
since σ is a weak SPE.

• Payoff p cannot be removed from Pk+1(v) by the Adjust operation
at step k + 2. Otherwise, this means that there exists u such that
Pk+1(u) = Pk(u) \ {p} (by the Remove operation at step k + 1) and
there is no (p, k + 1)-labeled play with payoff p from v. However by
Lemma 15, as p ∈ Pk(v), there exists a (p, k)-labeled play π with
payoff p from v. This means that π visit u. Let h′u ∈ Hist(v) such
that h′u < π. Then we get a contradiction with σ being a weak SPE if
we repeat the argument done before in the previous item for u and the
subgame (G�hh′ , u) (instead of v and (G�h, v)).
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Now that we know that Pk∗(v) 6= ∅ for all v ∈ Succ∗(v0), it remains to
prove that p0 ∈ Pk∗(v0). By (1), we have p0 = Gain(〈σ〉v0) ∈ Pk∗(v0).

(2 ⇒ 3) Let us show how to build a good symbolic witness P from the
non-empty fixpoint Pk∗(v), v ∈ V . First recall that if p ∈ Pk∗(v), then by
Lemma 15 there exists a (p, k∗)-labeled play with payoff p from v. Notice
that such a play can be supposed to be a lasso with length at most 2 · |V |2.
Indeed it is proved in [22, Proposition 3.1] that given a play ρ, one can
construct a lasso ρ′ of length bounded by 2·|V |2 such that First(ρ) = First(ρ′),
Occ(ρ) = Occ(ρ′), and Inf(ρ) = Inf(ρ′) (this construction eliminates some
cycles of ρ in a clever way). Therefore, if ρ is a (p, k∗)-labeled play with
payoff p from v, the lasso ρ′ is also a (p, k∗)-labeled play with payoff p from
v. The required set P will be composed of some of these lassoes.

We start with P = ∅. As p0 ∈ Pk∗(v0), then there exists a (p0, k
∗)-labeled

lasso ρ0,v0 with payoff p0 from v0 that we add to P . For all v, v′ ∈ Succ∗(v0)
such that v ∈ Vi and v′ ∈ Succ(v), let p′ be a payoff in Pk∗(v

′) such that

p′i = min{qi | q ∈ Pk∗(v
′)}. (4)

This payoff exists since Pk∗(v
′) 6= ∅ by hypothesis. Then there exists a

(p′, k∗)-labeled lasso ρi,v′ with payoff p′ from v′ that we add to P .
This set P is a symbolic witness by construction. It remains to prove

that it is good. Let v ∈ ρj,u such that v ∈ Vi and ρj,u ∈ P . As ρj,u is a
(p, k∗)-labeled lasso for some payoff p, we have p ∈ Pk∗(v). Furthermore, as
Pk∗(v) = Pk∗+1(v) (by the fixpoint), this means that p was not removed from
Pk∗(v) by the Remove operation at step k∗. In particular, by definition of the
payoff p′ of ρi,v′ (see (4)), we have pi ≥ p′i, that is Gaini(ρj,u) ≥ Gaini(ρi,v′).
This shows that P is a good symbolic witness.

(3 ⇒ 4) Let P = {ρi,v | (i, v) ∈ I} be a good symbolic witness that
contains a lasso ρ0,v0 with payoff p0. We define a strategy profile σ step by
step by induction on the subgames of (G, v0). We first partially build σ such
that 〈σ〉v0 = ρ0,v0 . Consider next hvv′ ∈ Hist(v0) with v ∈ Vi such that 〈σ�h〉v
is already built but not 〈σ�hv〉v′ . Then we extend the definition of σ such that

〈σ�hv〉v′ = ρi,v′ . (5)

Notice that 〈σ�h〉v being already built means that there exists h′ ≤ h and
(j, u) ∈ I such that

h′〈σ�h′〉u = h′ρj,u = h〈σ�h〉v. (6)
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Let us prove that σ is a very weak SPE (and so a weak SPE by Propo-
sition 7). Consider the subgame (G�h, v) and the one-shot deviating strategy
σ′i from σi�h such that σ′i(v) = v′. We have to prove that

Gaini(h〈σ�h〉v) ≥ Gaini(hv〈σ�hv〉v′). (7)

By (5), (6), and prefix independence of Gaini, we have

Gaini(hv〈σ�hv〉v′) = Gaini(ρi,v′),

Gaini(h〈σ�h〉v) = Gaini(ρj,u).

Inequality (7) follows from these equalities and the fact that P is a good
symbolic witness (see Figure 2).

Notice that σ has payoff p0 by construction (ρ0,v0 has payoff p0). It
remains to show that σ is finite-memory. Having (j, u) in memory (the last
deviating player j and the vertex u where he moved), the Moore machines
Mi, i ∈ Π, representing each strategy σi, have to produce together the lasso
ρj,u of length bounded by 2 · |V |2. As |P| = |I| ≤ |V | · |Π| + 1, the size of
each σi is in O(|Π| · |V |3).

(4⇒ 1) This implication is obvious.

Example 20. We consider again the running example. Thanks to Theo-
rem 14, payoff p0 = (0, 1) is the only possible payoff for a weak SPE in
(G, v0) since Pk∗(v0) = {(0, 1)} (see Example 13). Let us illustrate the con-
structions of the proof of Proposition 19. We build a good symbolic wit-
ness P as follows. First, we choose a (p0, k

∗)-labeled lasso ρ0,v0 with payoff
p0 from v0: ρ0,v0 = v0v1v2v

ω
3 (we could also have chosen v0v4v

ω
5 ). Then

let v = v1, v
′ = v2 ∈ Succ∗(v0) such that v ∈ V1 and v′ ∈ Succ(v). As

Pk∗(v2) = {(1, 0), (0, 1)}, by (4), we choose a (p′, k∗)-labeled lasso ρ1,v2 with
payoff p′ = (0, 1) from v2, for instance, ρ1,v2 = v2v

ω
3 . The whole set P is

depicted in Table 3. From P , we get the weak SPE of Example 8 depicted
in Figure 1.

We are now able to prove Theorem 19.

Proof of Theorem 14. If there exists a weak SPE with payoff p0 in (G, v0),
then p0 ∈ Pk∗(v0) by Proposition 19. It is proved in [18] that each initial-
ized game with prefix-independent gain fonctions always has a weak SPE.
Therefore Pk∗(v) 6= ∅ for each v ∈ Succ∗(v0) by Proposition 19. The latter
assertion together with the assertion that p0 ∈ Pk∗(v0) implies the existence
of a weak SPE with payoff p0 in (G, v0).
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Proposition 19 highlights a property that will be very useful in Section 4
(the equivalence between the existence of a weak SPE and the existence
of a good symbolic witness). It also shows that when the gain fonctions are
prefix-independent, if there exists a weak SPE with a given payoff, then there
always exists one with the same payoff but with strategies of polynomial size.
We prove in Section 4.2.3 that for Reachability and Safety objectives which
are not prefix-independent, we have the same result however with strategies
of exponential size.

Corollary 21. Let (G, v0) be an initialized Boolean game. There exists a
weak SPE in (G, v0) if and only if there exists a finite-memory weak SPE σ
with the same payoff. Moreover, the size of each strategy σi is

• in O(|V |3 · |Π|) for Büchi, Co-Büchi, Parity, Explicit Muller, Muller,
Rabin, and Streett objectives,

• in O(|V |3 · |Π| · 23·|Π|) for Reachability and Safety objectives.

4. Complexity classes of the constraint problem

In this section, we study the complexity classes of the constraint problem
for Boolean games with classical ω-regular objectives, except the case of
Explicit Muller objectives that is postponed to Section 5.3 (see Table 1).
The concept of good symbolic witness is essential in this study.

4.1. NP-completeness

We first prove that the constraint problem for co-Büchi, Parity, Muller,
Rabin, and Streett objectives is NP-complete, and that it is in NP for Büchi
objectives.

Theorem 22. The constraint problem for Boolean games with co-Büchi,
Parity, Muller, Rabin, and Streett objectives is NP-complete. It is in NP for
Büchi objectives.

Proof. We begin with the NP-easiness. The objectives considered in Theo-
rem 22 are prefix-independent. We can thus apply Proposition 19. Given
thresholds x, y ∈ {0, 1}|Π|, there exists a weak SPE in (G, v0) with payoff p
such that x ≤ p ≤ y if and only if there exists a good symbolic witness P that
contains a lasso ρ0,v0 with payoff p. Hence a nondeterministic polynomial al-
gorithm works as follows: guess a set P composed of at most |Π| · |V | + 1
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lassoes of length at most 2 · |V |2 and check that P is a good symbolic witness
that contains a lasso ρ0,v0 with payoff p such that x ≤ p ≤ y. Clearly check-
ing that P is a symbolic witness can be done in polynomial time. Checking
that it is good requires to compute the payoffs of its lassoes and to compare
them. This can also be done in polynomial time for Büchi, co-Büchi, Parity,
Muller, Rabin, and Streett objectives.

We now proceed to the NP-hardness. It is obtained thanks to a polyno-
mial reduction from SAT. In [23] is provided a polynomial reduction from
SAT to the constraint problem for NEs in Boolean games with co-Büchi ob-
jectives. Due to the structure of the game constructed in this approach, the
same reduction holds for the constraint problem for weak SPEs. As co-Büchi
objectives can be polynomially translated into Parity, Muller, Rabin, and
Streett objectives (see [24]), the constraint problem for Boolean games with
those objectives is also NP-hard.

4.2. PSPACE-completeness

In this section, we show that the constraint problem for Reachability and
Safety objectives is PSPACE-complete.

Theorem 23. The constraint problem for Boolean games with Reachability
and Safety objectives is PSPACE-complete.

Recall that weak SPEs and SPEs are equivalent notions for Reachability
objectives (Proposition 9). It follows from Theorem 23 that the constraint
problem for SPEs (instead of weak SPEs) for Boolean games with Reach-
ability objectives is PSPACE-complete. We will see later (in Section 4.2.3,
from the proof of Theorem 23) that the constraint problem for SPEs is also
PSPACE-complete for Safety objectives.

Corollary 24. The constraint problem for SPEs in Boolean games with
Reachability and Safety objectives is PSPACE-complete.

We detail the proof of Theorem 23 in the next two sections for Reach-
ability objectives, and we also show how to adapt it for Safety objectives.
To get the PSPACE-easiness, we transform the Boolean game (G, v0) with
Reachability objectives (which are not prefix-independent) into a Boolean
game (G ′, v′0) with Büchi objectives. In this way, it is possible to use the
concept of good symbolic witness as done before in Section 4.1. Even if the
size of the game (G ′, v′0) is exponential in the size of the initial game (G, v0),
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we manage to get a PSPACE-membership thanks to the classical complex-
ity result PSPACE = APTIME. The PSPACE-hardness is obtained with a
polynomial reduction from QBF. The reduction is more involved than the
one in Theorem 22. Indeed the reduction for NP-hardness already works for
NEs whereas the reduction for PSPACE-hardness really exploits the subgame
perfect aspects.

4.2.1. PSPACE-easiness

We here prove that the constraint problem is in PSPACE for Reachability
objectives, and we then explain how to adapt the proof for Safety objectives.

Proposition 25. The constraint problem for Boolean games with Reachabil-
ity objectives is in PSPACE.

Proof. First, we transform the Boolean game (G, v0) with Reachability objec-
tives into a Boolean game (G ′, v′0) with Büchi objectives. This construction is
classical, it stores inside the vertices the set of players who have already sat-
isfied their objective. Suppose that in (G, v0), each player i aims at reaching
a vertex of Fi, then we build G ′ = (Π, V ′, E ′, (V ′i )i∈Π, (Gain′i)i∈Π) such that

• V ′ = V × 2Π;

• ((v, I), (u, I ′)) ∈ E ′ if and only if (v, u) ∈ E and I ′ = I ∪ {i ∈ Π | u ∈
Fi};

• (v, I) ∈ V ′i if and only if v ∈ Vi;

• Gain′i corresponds to the Büchi objective F ′i = {(v, I) | v ∈ V, i ∈ I};
and

• v′0 = (v0, I0) is the initial vertex such that I0 = {i ∈ Π | v0 ∈ Fi}.

There is a one-to-one correspondence between plays ρ = v1v2 . . . vk . . . in
G from v1 and ρ′ = (v1, I1)(v2, I2) . . . (vk, Ik) . . . in G ′ from (v1, I1), with the
important property that

Ik ⊆ Ik+1 for all k ≥ 1. (8)

In particular, there exists a weak SPE with payoff p0 in (G, v0) if and only
if there is one in (G ′, v′0) if and only if there is a good symbolic witness P
containing a lasso ρ0,v′0

with payoff p0 in (G ′, v′0) (by Proposition 19).
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Second, let us study the lengths of the lassos ρi,v′ , with i ∈ Π ∪ {0}, v′ ∈
V ′, of P . There exists a better bound than the bound 2 · |V ′|2 = 2 · |V |2 ·22·|Π|

of Definition 16: each lasso ρi,v′ of P has a polynomial length bounded by

(|Π|+ 1) · |V |. (9)

Indeed recall that these lassoes are constructed from some (p, k∗)-labeled
plays ρ with payoff p from v′ (see the proof of implication (2⇒ 3) of Propo-
sition 19). We adapt this construction as follows. Consider such a play
ρ = (v1, I1)(v2, I2) . . . (vk, Ik) . . . from v′. By (8), there exists I ⊆ Π and
k ∈ N such that for all k′ ≥ k, Ik′ = I. Hence from ρ, we can construct a lasso
ρ′ of length bounded by (9) such that First(ρ′) = First(ρ), Occ(ρ′) ⊆ Occ(ρ),
and Gain(ρ′) = Gain(ρ),

• by eliminating all cycles in the history (v1, I1)(v2, I2) . . . (vk−1, Ik−1)
(leading to a history of length at most |Π| · |V |), and

• by detecting in the play (vk, I)(vk+1, I) . . . the first repeated vertex
(vk′ , I) = (vk′+`+1, I) and replacing this play by the lasso

(vk, I)(vk+1, I) . . . ((vk′ , I) . . . (vk′+`, I))ω

of length at most |V |.

In this way, if ρ is a (p, k∗)-labeled play with payoff p from v′, then the
constructed lasso ρ′ is also a (p, k∗)-labeled play with payoff p from v′.

Third we prove PSPACE-membership of the constraint problem by prov-
ing that it is in APTIME. Given the game (G ′, v′0) and two thresholds x, y ∈
{0, 1}|Π|, the alternating Turing machine works as follows. Existential and
universal states (respectively controlled by player ∨ and player ∧) alternate
along an execution of the machine. Player ∨ proposes a lasso ρj,u′ of length
bounded by (|Π| + 1) · |V | (in the initial state, he proposes a lasso ρ0,v′0

).
Then player ∧ chooses a vertex w′ ∈ V ′i of ρj,u′ and proposes to move to v′

such that (w′, v′) ∈ E ′. Player ∨ reacts by proposing a lasso ρi,v′ of length
bounded by (|Π|+ 1) · |V |, and so on. The execution stops after

2 · |Π|2 · |V |+ 1 turns. (10)

Such an execution is accepting if:

• for the payoff p0 of the initial lasso ρ0,v′0
, we have x ≤ p0 ≤ y;
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• for each lasso ρj,u′ proposed by player ∨, for the corresponding move
(w′, v′) ∈ E ′ with w′ ∈ V ′i made by player ∧, and the answer ρi,v′ of
player ∨, we have Gaini(ρj,u′) ≥ Gaini(ρi,v′).

The intuition is that if there exists in (G ′, v′0) a good symbolic witness P
containing a lasso ρ0,v′0

with payoff p0 such that x ≤ p0 ≤ y, then player ∨
will play with the lassoes of P according to Definition 17. Notice that along
an execution of the Turing machine, player ∧ has no interest to choose twice
the same pair (i, v′) since player ∨ will react with the same lasso ρi,v′ . Re-
membering property (8), the maximum number of times that player ∧ has
to play is

|Π|2 · |V |. (11)

Indeed for a fixed I ⊆ Π, player ∧ can choose at most |Π| · |V | different pairs
(i, v′) with v′ of the form (v, I), and the size of I can only increase. This
explains the number of turns of any execution of the machine (see (10)): an
initial lasso proposed by player ∨ followed by |Π|2 · |V | alternations between
moves of both players ∨ and ∧.

Checking whether an execution is accepting is done in polynomial time
since player ∨ proposes lassoes of polynomial size by (9), there is a polynomial
numbers of turns by (10), and computing and comparing payoffs of lassoes
is done in polynomial time. So the constraint problem is in APTIME =
PSPACE.

The constraint problem for Safety objectives is solved similarly by trans-
forming the given Boolean game into one with co-Büchi (instead of Büchi)
objectives.

Proposition 26. The constraint problem for Boolean games with Safety ob-
jectives is in PSPACE.

4.2.2. PSPACE-hardness

We now prove that the constraint problem is PSPACE-hard for Reachabil-
ity objectives, and we then show how to adapt the proof for Safety objectives.

Proposition 27. The constraint problem for Boolean games with Reachabil-
ity objectives is PSPACE-hard.
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To prove this proposition, we give a polynomial reduction from the QBF
problem that is PSPACE-complete. This problem is to decide whether a
fully quantified Boolean formula ψ is true. The formula ψ can be assumed
to be in prenex Conjunctive Normal Form (CNF) Q1x1Q2x2 . . . Qmxm φ(X)
such that the quantifiers are alternating existential and universal quantifiers
(Q1 = ∃, Q2 = ∀, Q3 = ∃, . . .), X = {x1, x2, . . . , xm} is the set of quantified
variables, and φ(X) = C1 ∧ . . .∧Cn is an unquantified Boolean formula over
X equal to the conjunction of the clauses C1, . . . , Cn.

Such a formula ψ is true if there exists a value of x1 such that for all
values of x2, there exists a value of x3 . . ., such that the resulting valu-
ation ν of all variables of X evaluates φ(X) to true. Formally, for each
odd (resp. even) k, 1 ≤ k ≤ m, let us denote by fk : {0, 1}k−1 → {0, 1}
(resp. gk : {0, 1}k−1 → {0, 1}) a valuation of variable xk given a valuation of
previous variables x1, . . . , xk−1

9. Given theses sequences f = f1, f3, . . . and
g = g2, g4, . . ., let us denote by ν = ν(f,g) the valuation of all variables of X
such that ν(x1) = f1, ν(x2) = g2(ν(x1)), ν(x3) = f3(ν(x1)ν(x2)), . . .. Then

ψ = Q1x1Q2x2 . . . Qmxm φ(X) is true
if and only if

there exist f = f1, f3, . . . such that for all g = g2, g4, . . ., the valuation νf,g
evaluates φ(X) to true.

Proof of Proposition 27. Let us detail a polynomial reduction from the QBF
problem to the constraint problem for Boolean games with Reachability ob-
jectives. Let ψ = Q1x1Q2x2 . . . Qmxm φ(X) with φ(X) = C1 ∧ . . . ∧ Cn
be a fully quantified Boolean formula in prenex Conjunctive Normal Form.
We build the following Boolean game Gψ = (Π, V, (Vi)i∈Π, E, (Gaini)i∈Π) (see
Figure 3):

• the set V of vertices:

– for each variable xk ∈ X under quantifier Qk, there exist vertices
xk, ¬xk and qk;

– for each clause Ck, there exist vertices ck and tk;

– there exists an additional vertex tn+1;

9Notice that f1 : ∅ → {0, 1}.
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• the set E of edges:

– from each vertex qk there exist an edge to xk and an edge to ¬xk;
– from each vertex xk and ¬xk, there exists an edge to qk+1, except

for k = m where this edge is to c1;

– from each vertex ck, there exist an edge to tk and an edge to ck+1,
except for k = n where there exist an edge to tn and an edge to
tn+1;

– there exists a loop on each tk;

• the set Π of n+ 2 players:

– each player i, 1 ≤ i ≤ n, owns vertex ci;

– player n + 1 (resp. n + 2) is the player who owns the vertices qi
for each existential (resp. universal) quantifier Qi;

– as all other vertices have only one outgoing edge, it does not mat-
ter which player owns them;

• each function Gaini is associated with the objective of visiting the set
Fi defined as follows:

– for all i, 1 ≤ i ≤ n, Fi = {` ∈ V | ` is a literal of clause Ci}∪{ti};
– Fn+1 = {tn+1};
– Fn+2 = {t1, . . . , tn}.

q1 q2 q3 . . . qm c1 . . . cn tn+1

x1

¬x1

x2

¬x2

xm

¬xm

t1 tn

Figure 3: Reduction from the formula ψ to the Boolean game Gψ
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Remark 28. (1) Notice that a sequence f of functions fk : {0, 1}k−1 → {0, 1},
with k odd, 1 ≤ k ≤ m, as presented above, can be translated into a strategy
σn+1 of player n+1 in the initialized game (Gψ, q1), and conversely. Similarly,
a sequence g of functions gk : {0, 1}k−1 → {0, 1}, with k even, 1 ≤ k ≤ m
is nothing else than a strategy σn+2 of player n + 2. (2) Notice also that if
ρ is a play in (Gψ, q1), then Gainn+1(ρ) = 1 if and only if Gainn+2(ρ) = 0.
Moreover, suppose that ρ visits tn+1, then for all i, 1 ≤ i ≤ n, Gaini(ρ) = 1
if and only if for all i, 1 ≤ i ≤ n, ρ visits a vertex that is a literal of Ci if and
only if there is a valuation of all variables of X that evaluates φ(X) to true.

The game Gψ can be constructed from ψ in polynomial time. Let us now
show that ψ is true if and only if there exists a weak SPE in (Gψ, q1) with a
payoff p ≥ (0, . . . , 0, 1, 0) (that is, such that pn+1 = 1).

(⇒) Suppose that ψ is true. Then there exists a sequence f of functions
fk : {0, 1}k−1 → {0, 1}, with k odd, 1 ≤ k ≤ m, such that for all sequences g
of functions gk : {0, 1}k−1 → {0, 1}, with k even, 1 ≤ k ≤ m, the valuation
νf,g evaluates φ(X) to true. We define a strategy profile σ as follows:

• for player n+ 1, his strategy σn+1 is the strategy corresponding to the
sequence f (by Remark 28);

• for player n + 2, his strategy is an arbitrary strategy σn+2; we denote
by g the corresponding sequence gk : {0, 1}k−1 → {0, 1}, with k even,
1 ≤ k ≤ m (by Remark 28);

• for each player i, 1 ≤ i ≤ n,

– if hv ∈ Histi(q1) with v = ci, is consistent with σn+1, then σi(hv) =
ci+1 if i 6= n and tn+1 otherwise

– else σi(hv) = ti.

Let us prove that σ is a weak SPE, that is, for each history hv ∈ Hist(q1),
there is no one-shot deviating strategy in the subgame (Gψ�h, v) that is prof-
itable to the player who owns vertex v (by Proposition 7). This is clearly
true for all v = ti, 1 ≤ i ≤ n + 1, since ti has only one outgoing edge. For
the other vertices v, we study two cases:

• hv is consistent with σn+1: First notice that Gain(ρ) = (1, 1, . . . , 1, 0)
with ρ = h〈σ�h〉v. Indeed by hypothesis, the valuation νf,g evaluates
φ(X) to true. Hence by Remark 28, the play ρ visits a vertex of Fi
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for all i, 1 ≤ i ≤ n, and by definition of σ, ρ eventually loops on
tn+1. Second, as σn+2 is arbitrary in the definition of σ, using another
strategy σ′n+2 in place of σn+2 will lead to a play ρ′ such that Gain(ρ′) =
Gain(ρ) = (1, 1, . . . , 1, 0).

Now if hv is consistent with σn+1, it is maybe not consistent with σn+2,
but with another arbitrary strategy σ′n+2, and thus Gain(h〈σ�h〉v) =
(1, 1, . . . , 1, 0) as explained previously. Thus only player n + 2 has an
incentive to deviate in the subgame (Gψ�h, v) to increase his gain. Nev-
ertheless, using another strategy σ′′n+2 will not change his gain (again
by the same argument).

• hv is not consistent with σn+1: Suppose that v = ck. Then by definition
of σ, the play h〈σ�h〉v eventually loops on tk leading to a gain of 1 for
player k. This player has thus no incentive to deviate with a one-shot
deviation in the subgame (Gψ�h, v).

Suppose that v = qk. Then by definition of σ, the play ρ = h〈σ�h〉v
eventually loops on t1. It follows that Gainn+1(ρ) = 0 and Gainn+2(ρ) =
1. As we only have to consider one-shot deviating strategies, if qk ∈
Vn+2, player n + 2 has no incentive to deviate, and if qk ∈ Vn+1,
player n + 1 could try to use a one-shot deviating strategy, however
the resulting play still eventually loops on t1.

This proves that σ is a weak SPE. Its payoff is equal to p = (1, 1, . . . , 1, 0)
as explained previously. Therefore it satisfies the constraint p ≥ (0, . . . , 0, 1, 0).

(⇐) Suppose that there exists a weak SPE σ in (Gψ, q1) with outcome ρ
and payoff Gain(ρ) ≥ (0, . . . , 0, 1, 0), that is, Gainn+1(ρ) = 1. By Remark 28,
it follows that Gainn+2(ρ) = 0. We have to prove that ψ is true. To this
end, consider the sequence f of functions fk : {0, 1}k−1 → {0, 1}, with k odd,
1 ≤ k ≤ m, that corresponds to strategy σn+1 of player n+ 1 by Remark 28.
Let us show that for all sequences g of functions gk : {0, 1}k−1 → {0, 1}, with
k even, 1 ≤ k ≤ m, the valuation νf,g evaluates φ(X) to true.

By contradiction assume that it is not the case for some sequence g′ and
consider the related strategy σ′n+2 of player n+ 2 by Remark 28. Notice that
σ′n+2 is a finitely deviating strategy. Let us consider the outcome ρ′ of the
strategy profile (σ′n+2, σ−(n+2)) from q1. As Gainn+2(ρ) = 0, we must have
Gainn+2(ρ′) = 0, otherwise σ′n+2 is a profitable deviation for player n + 2
whereas σ is a weak SPE. It follows that Gainn+1(ρ′) = 1 by Remark 28,
that is, ρ′ eventually loops on tn+1.
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Now recall that the valuation νf,g′ evaluates φ(X) to false, which means
that it evaluates some clause Ck of φ(X) to false. Consider the history
hck < ρ′. As strategy σ′n+2 only acts on the left part of the underlying graph
of Gψ, we have ρ′ = 〈σ′n+2, σ−(n+2)〉q1 = h〈σ�h〉ck . In the subgame (Gψ�h, ck),
the outcome of σ�h gives a gain of 0 to player k because ρ′ = h〈σ�h〉ck does
not visit tk and νf,g′ evaluates Ck to false. In this subgame, player k has thus
a profitable one-shot deviation: to move to tk. It follows that σ is not a weak
SPE which is impossible. Therefore ψ is true.

For Boolean games with Safety objectives, we can use the same reduction
and the same kind of arguments as for Reachability objectives.

Proposition 29. The constraint problem for Boolean games with Safety ob-
jectives is PSPACE-hard.

Proof. Given a fully quantified Boolean formula ψ, we construct the same
game as in the proof of Proposition 27 (see Figure 3), except that each
player i, 1 ≤ i ≤ n + 2, aims at avoiding the set F ′i (instead of visiting the
set Fi) defined as follows:

• for all i, 1 ≤ i ≤ n, F ′i = {` ∈ V | ` is a literal of clause Ci} ∪ {tn+1};

• F ′n+1 = {t1, t2, . . . tn};

• F ′n+2 = {tn+1}.

Recall how the sets Fi were defined: Fn+1 = {tn+1}, Fn+2 = {t1, t2, . . . tn},
and for all i, 1 ≤ i ≤ n, Fi = {` ∈ V | ` is a literal of clause Ci} ∪ {ti}.
Hence we have a clear duality for players n + 1 and n + 2: a play ρ visits
Fn+1 (resp. Fn+2) if and only if ρ avoids F ′n+1 (resp. F ′n+2). This is not the
case for the others players, but one can check that the proof works in the
same way as for Boolean games with Reachability objectives.

4.2.3. Proof of Corollaries 21 and 24

We conclude Section 4 with the proof of two previous corollaries. We be-
gin with Corollary 24 stating that the constraint problem for SPEs (instead
of weak SPEs) in Boolean games with Reachability and Safety objectives is
PSPACE-complete.
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Proof of Corollary 24. As weak SPEs and SPEs are equivalent notions for
Reachability objectives (Proposition 9), by Theorem 23, the constraint prob-
lem for SPEs for Boolean games with Reachability objectives is PSPACE-
complete.

We need to use other arguments for the case of Safety objectives. The
reduction from QBF proposed in the proof of Proposition 29 uses the game
Gψ of Figure 3. Due to the structure of the underlying graph, all weak
SPEs of Gψ are SPEs since any deviating strategy from a given strategy is
necessarily finitely deviating. This shows that the constraint problem for
SPEs is PSPACE-hard for Safety objectives. It is proved in [25] that this
problem is in PSPACE.

We now turn to Corollary 21 that states that if there exists a weak SPE in
a Boolean game, then there exists a finite-memory weak SPE with the same
payoff such that the strategy memory sizes are polynomial for all objectives,
except for Reachability and Safety objectives where the sizes are exponential.

Proof of Corollary 21. For the objectives that are prefix-independent, this
is an immediate consequence of Proposition 19 with strategy sizes in O(|V |3 ·
|Π|). For Reachability and Safety objectives, we need to transform the
Boolean game with Reachability (resp. Safety) objectives into a Boolean
game with Büchi (resp. Co-Büchi) objectives, as done in the proof of Propo-
sition 25 (resp. Proposition 26). Recall that the set of vertices of the latter
game is equal to V ′ = V × 2|Π|. We can thus again apply Proposition 19 and
obtain strategy sizes in O(|V ′|3 · |Π|) = O(|V |3 · |Π| · 23·|Π|).

5. Fixed parameter tractability

In this section, we show that the constraint problem is P -complete for
Explicit Muller objectives, that it is fixed parameter tractable for the other
classical ω-regular objectives, and that it becomes polynomial when the num-
ber of players is fixed.

These results do not rely on the concept of good symbolic witness (as in
Section 4) but rather on the following algorithm based on Theorem 14 to
solve the constraint problem. Given a Boolean game (G, v0) and thresholds
x, y ∈ {0, 1}|Π|,

• Compute the initial sets P0(v), v ∈ V , and repeat the Remove-Adjust
procedure (see Definition 11) until reaching the fixpoint Pk∗(v), v ∈ V ,
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• Then check whether Pk∗(v) 6= ∅ for all v ∈ Succ∗(v0) and whether there
exists a payoff p ∈ Pk∗(v0) such that x ≤ p ≤ y.

We call this algorithm the decision algorithm and its first part computing
the fixpoint the fixpoint algorithm.

5.1. Complexity of the decision algorithm

We here study the time complexity of the decision algorithm. We express
it in terms of three parameters:

• init: the complexity of computing P0(v) for some given vertex v,

• m = maxv∈V |P0(v)|: the maximum number of payoffs in the sets
P0(v), v ∈ V ,

• path: the complexity of determining whether there exists a play with
a given payoff p from a given vertex v. (This test is required in both
the computation of P0(v) and the Adjust operation.)

Lemma 30. The time complexity of the decision algorithm is in O(m3 · |V | ·
|Π| · init · path · (|V |+ |E|)).

Expressing the complexity in this way will be useful in Section 5.3 (ded-
icated to Boolean games with Explicit Muller objectives and to the fixed
parameter tractability of the constraint problem). We do not claim that the
given complexity is the tightest one but this is enough for our purpose.

The gain function Gaini takes its values in {0, 1} for all i, hence m is
bounded by 2|Π|. Moreover by definition of P0(v), init is in O(2|Π| ·path). For
Boolean games with Explicit Muller objectives, we will provide a polynomial
bound for both m and init (see Section 5.3). Next Section 5.2 is devoted to
the study of path.

Proof of Lemma 30. We suppose that the graph G is given as |V | lists of
successors and the sets Pk(v) are given as |V | lists of payoffs. The comparison
between two payoffs is in O(|Π|) time.

We first study the time complexity of the fixpoint algorithm.

• The first step of the algorithm is to compute the sets P0(v) for all v,
that takes O(|V | · init) time.
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• Then the algorithm repeats the Remove-Adjust procedure until reach-
ing a fixpoint. There are at most m · |V | repetitions of this procedure
since it removes at least one payoff from some Pk(v).

• The computation of one Remove operation is in O((|V |+ |E|) ·m2 · |Π|)
time. Indeed we potentially have to consider all the vertices v and their
successors v′ to check whether there exists p ∈ Pk(v) such that pi < p′i
for all p′ ∈ Pk(v

′) (with v ∈ Vi). This takes O((|V | + |E|) ·m2 · |Π|)
time. If the check is positive, we have to remove p from Pk(v) that
takes O(m · |Π|) time.

• The computation of one Adjust operation is in O((|V |+ |E|) ·m · |Π| ·
path) time. Indeed if p is the payoff removed by the Remove operation
just before, for all u such that p ∈ Pk(u), we have to check whether
there exists a (p, k)-labeled play with payoff p from u and remove p
from Pk(u) in case of non existence of such a play. This can be done
by computing a graph G′ from G by restricting V to the vertices u such
that p ∈ Pk(u) (in O((|V | ·m · |Π|+(|V |+ |E|)) time), and for each u by
checking in G′ whether there exists a play with payoff p from u and then
remove p from Pk(u) in case of non existence (in O(|V |·(path+m·|Π|))
time).

Therefore the total time complexity of the fixpoint algorithm is in O(|V | ·
init+m · |V | · [(|V |+ |E|) ·m2 · |Π|+ (|V |+ |E|) ·m · |Π| · path]) = O(|V | ·
init+m3 · |V | · |Π| · path · (|V |+ |E|)). This is bounded by O(m3 · |V | · |Π| ·
init · path · (|V |+ |E|)).

To get the time complexity of the decision algorithm, it remains to add
the time complexity to test if there exists a payoff p ∈ Pk∗(v0) such that
x ≤ p ≤ y. This is done in O(m · |Π|) time. The overall complexity of the
decision algorithm is thus in O(m3 · |V | · |Π| · init · path · (|V |+ |E|)) time as
announced.

5.2. Existence of a play with a given payoff

The purpose of this section is to prove the next lemma stating the com-
plexity path for all kinds of ω-regular objectives.

Lemma 31. Let G be a Boolean game. Let p ∈ {0, 1}|Π| and v ∈ V .

1. Determining whether there exists a play with payoff p from v is
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• in polynomial time for Büchi, co-Büchi, Explicit Muller, and Par-
ity objectives,

• in O(2|Π|(|V | + |E|)) time for Reachability and Safety objectives,
and

• in O(2L · M + (LL · |V |)5) time for Rabin, Streett, and Muller
objectives, where L = 2` and

– ` = Σ
|Π|
i=12 · ki and M = O(Σ

|Π|
i=12 · ki) such that for each

player i ∈ Π, ki is the number of his pairs (Gi
j, R

i
j)1≤j≤ki in

the case of Rabin and Streett objectives, and

– ` = Σ
|Π|
i=1di and M = O(Σ

|Π|
i=1|Fi| · di) such that for each

player i ∈ Π, di (resp. |Fi|), is the number of his colors (the
size of his family of subsets of colors) in the case of Muller
objectives.

2. When the number |Π| of players is fixed, for all these kinds of objectives,
the existence of a play with payoff p from v can be solved in polynomial
time.

The general approach to prove this lemma is the following one. A play
with payoff p from v in a Boolean game G is a play satisfying an objective Ω
equal to the conjunction of objectives Obji (when pi = 1) and of objectives
V ω \ Obji (when pi = 0). It is nothing else than an infinite path in the
underlying graph G = (V,E) satisfying some particular ω-regular objective
Ω. The existence of such paths is a well studied problem; we gather in the
next proposition the known results that we need for proving Lemma 31.
Recall that a Generalized Reachability (resp. Generalized Büchi) objective
Ω is a conjunction of Reachability (resp. Büchi) objectives. Moreover, an
objective Ω equal to a Boolean combination of Büchi objectives, called a BC
Büchi objective, is defined as follows. Let F1, . . . , F` be ` subsets of V , and φ
be a Boolean formula over variables f1, . . . , f`. We say that an infinite path
ρ in G satisfies (φ, F1, . . . , F`) if the truth assignment

fi = 1 if and only if Inf(ρ) ∩ Fi 6= ∅, and fi = 0 otherwise
satisfies φ. All operators ∨, ∧, ¬ are allowed in a BC Büchi objective.
However we denote by |φ| the size of φ equal to the number of disjunctions and
conjunctions inside φ, and we say that the BC Büchi objective (φ, F1, . . . , F`)
is of size |φ| and with ` variables.
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Proposition 32. Let G = (V,E) be a graph, v ∈ V be one of its vertices,
and Ω ⊆ V ω be an objective. Then deciding the existence of an infinite path
from v in G that satisfies Ω is

• in polynomial time for Ω equal to either a Streett objective, or an Ex-
plicit Muller objective, or the opposite of an Explicit Muller objective,
or a conjunction of a Generalized Büchi objective and a co-Büchi ob-
jective,

• in O(2`(|V |+ |E|)) time for Ω equal to a conjunction of a Generalized
Reachability objective and a Safety objective, where ` is the number of
reachability objectives,

• in O(2L·|φ|+(LL·|V |)5) time for a BC Büchi objective Ω = (φ, F1, . . . , F`),
where L = 2`.

Proof. Let Ω be an objective. If it is a Streett objective, then the result is
proved in [26].

For the other objectives, we use known results about two-player zero-
sum games, where player A aims at satisfying a certain objective Ω whereas
player B tries to prevent him to satisfy it. A classical problem is to decide
whether player A has a winning strategy that allows him to satisfy Ω against
any strategy of player B, see for instance [12, 24]. When player A is the
only one to play, the existence of a winning strategy for him is equivalent to
the existence of a path satisfying Ω (see [12, Section 3.1]). This is exactly
the problem that we want to solve. In the sequel of the proof, we mean by
(G,Ω) a two-player zero-sum game, where player A (resp. player B) aims at
satisfying Ω (resp. V ω \ Ω).

If Ω is an Explicit Muller objective, then deciding the existence of a win-
ning strategy for player A (resp. player B) (G,Ω) can be done in polynomial
time by [27]. Thus the case where Ω is the opposite of an Explicit Muller
objective is also proved (by exchanging players A and B).

Suppose that Ω is the conjunction of a Generalized Büchi objective and
a co-Büchi objective. By a classic reduction (see [28, Theorem 12]), the
game (G,Ω) can be polynomially transformed into a game (G′,Ω′) with an
objective Ω′ equal to the conjunction of a Büchi objective and a co-Büchi
objective. The existence of a winning strategy for player A in the latter
game can be tested in polynomial time [29].

Suppose that Ω is the conjunction of a Generalized Reachability objective
and a Safety objective, such that ` is the number of Reachability objectives
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and F is the set of vertices to be avoided in the Safety objective. We first
treat separately the Safety objective by removing from G all the vertices of
F . This can be done in O(|V | + |E|) time. In the resulting graph G′, we
then test the existence of a winning strategy for player A in the game (G′,Ω′)
with Ω′ being the Generalized Reachability objective. This can be done in
O(2`(|V |+ |E|)) time [30].

If Ω is a BC Büchi objective (φ, F1, . . . , F`), then deciding the existence
of a winning strategy for player A in the game (G,Ω) can be done in O(2L ·
|φ|+ (LL · |V |)5) time with L = 2` by [31].

Proof of Lemma 31. Let us prove Part 1 of the lemma. A play with payoff
p from v in G is a play satisfying an objective Ω equal to the conjunction of
objectives Obji (when pi = 1) and of objectives V ω \Obji (when pi = 0). For
each type of Boolean objectives Obji, we first explain what kind of objective
Ω we obtain and we then apply Proposition 32.

• Consider a Boolean game G with Parity objectives. In this case, as
Obji is a Parity objective for all i ∈ Π, each V ω \Obji is again a Parity
objective, and Ω is thus a conjunction of Parity objectives which is a
Streett objective [32]. Therefore the existence of a play with payoff p
in G can be tested in polynomial time by Proposition 32.

• Consider the case of Büchi objectives. Then, the intersection of Büchi
objectives Obji (when pi = 1) is a Generalized Büchi objective and the
intersection of co-Büchi objectives V ω \ Obji (when pi = 0) is again a
co-Büchi objective. Hence Ω is the conjunction of a Generalized Büchi
objective and a co-Büchi objective. The existence of a play with payoff
p in G can be tested in polynomial time by Proposition 32.

Notice that the case of Boolean games with co-Büchi objectives is solved
exactly in the same way. Indeed we have the same kind of objective Ω
since Obji is a co-Büchi objective if and only if V ω \ Obji is a Büchi
objective.

• Consider a Boolean game with Reachability objectives. The inter-
section of Reachability objectives Obji (when pi = 1) is a General-
ized Reachability objective and the intersection of Safety objectives
V ω \ Obji (when pi = 0) is again a Safety objective. The existence of
a play with payoff p in G can be tested in O(2|Π|(|V | + |E|)) time by
Proposition 32 as there are at most |Π| Reachability objectives.
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The case of Boolean games with Safety objectives is solved in the same
way.

• Consider a Boolean game with Rabin objectives (with the related fam-
ilies (Gi

j, R
i
j)1≤j≤ki , i ∈ Π). In this case, the objective Ω is the conjunc-

tion of Rabin objectives (when pi = 1) and of Streett objectives (when
pi = 0), that is, Ω is a BC Büchi objective (φ, (Gi

j, R
i
j)1≤j≤ki , i ∈ Π)

such that

φ =
∧
i|pi=1

ki∨
j=1

(gij ∧ ¬rij) ∧
∧
i|pi=0

ki∧
j=1

(¬gij ∨ rij) (12)

In this formula, the variable gij (resp. rij) is associated with the set Gi
j

(resp. Ri
j), and φ has size O(Σ

|Π|
i=12 ·ki) and has Σ

|Π|
i=12 ·ki variables. The

announced complexity for deciding the existence of a play with payoff
p follows from Proposition 32.

The case of Boolean games with Streett objectives is solved in the same
way.

• The case of Boolean games with Muller objectives (with the related
coloring functions Ωi : V → {1, . . . , di} and families Fi ⊆ 2Ωi(V ), i ∈ Π)
is treated as in the previous item. Indeed a play satisfies the Muller
objective Obji if there exists an element F of Fi such that all colors of
F are seen infinitely often along the play while no other color is seen
infinitely often. Therefore, as the objective Ω is a conjunction of Muller
objectives and of the opposite of Muller objectives, Ω is a BC Büchi
objective (φ, (F i

c)c∈{1,...,di},i∈Π) described by the following formula φ

φ =
∧
i|pi=1

∨
F∈Fi

(
∧
c∈F

f ic ∧
∧
c 6∈F

¬f ic) ∧
∧
i|pi=0

∧
F∈Fi

(
∨
c∈F

¬f ic ∨
∨
c 6∈F

f ic) (13)

In this formula, the variable f ic is associated with the subset F i
c = {v ∈

V | Ωi(v) = c} of vertices colored by color c ∈ {1, . . . , di}, i ∈ Π. This

formula has size O(Σ
|Π|
i=1|Fi| · di) and has Σ

|Π|
i=1di variables.

• It remains to treat the case of Boolean games with Explicit Muller
objectives (with the related families Fi ⊆ 2V , i ∈ Π). The approach is
a little different in a way to get a polynomial algorithm. By definition,
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there exists a play ρ with payoff p if and only if for all i, F = Inf(ρ) ∈ Fi
exactly when pi = 1.

If p 6= (0, . . . , 0), such potential sets F can be computed as follows.
Initially let Ω be an empty set. Then for each F ∈ ∪i∈ΠFi, we compute
q ∈ {0, 1}|Π| such that qi = 1 if and only if F ∈ Fi, and if p = q we add
F to Ω. Notice that Ω can be computed in polynomial time. Hence
to test the existence of a play with payoff p in G, we test the existence
of a path in G satisfying the Explicit Muller objective Ω. This can be
done in polynomial time by Proposition 32.

If p = (0, . . . , 0), there exists a play ρ with payoff p if and only if no
F ∈ Ω′ = ∪i∈ΠFi is equal to Inf(ρ), i.e., if and only if there exists a
path in G satisfying the opposite of the Explicit Muller objective Ω′.
This can be tested in polynomial time by Proposition 32.

We now turn to Part 2 of the lemma. Suppose that the number |Π| of
players is fixed. In case of Boolean games with Reachability, Safety, Büchi,
co-Büchi, Explicit Muller, and Parity objectives, by Part 1 of the lemma,
we get a polynomial time algorithm for deciding whether there exists a play
with payoff p. In case of Boolean games with Rabin, Streett, and Muller
objectives, we need another argument in view of the complexities of Part 1
of the lemma.

Let us begin with Rabin objectives (the argument is similar for Streett
objectives). Recall that we are faced with a BC Büchi objective described
by formula φ given in (12). This formula is a conjunction of disjunctions of
subformulas of the form either gij ∧ ¬rij, or ¬gij, or rij. It can be rewritten as
a disjunction of conjunctions of those subformulas:

∨
r

∧
s φrs. In the latter

formula,

• the number of subformulas
∧
s φrs is polynomial since it is equal to

Πi|pi=1ki · Πi|pi=02ki, and

• each subformula
∧
s φrs describes a polynomial conjunction of Büchi

and co-Büchi objectives, that is, an objective Ωr equal to the conjunc-
tion of a Generalized Büchi objective and a co-Büchi objective.

By Proposition 32, testing whether there exists a path satisfying Ωr can be
done in polynomial time. Therefore testing the existence of a path satisfy-
ing the objective described by φ reduces to a polynomial number of tests
(disjunction

∨
r) that can be done in polynomial time (objective Ωr).
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The argument for Muller objectives is similar. The formula φ given in (13)
is a conjunction of disjunctions of subformulas of the form either

∧
c∈F f

i
c ∧∧

c 6∈F ¬f ic , or ¬f ic , or f ic . Rewriting φ as a disjunction of conjunctions of
those subformulas, that is, as

∨
r

∧
s φrs, we get again a polynomial number

(= Πi|pi=1|Fi|·Πi|pi=0(|Fi|·di)) of subformulas
∧
s φrs, each of them describing

a polynomial conjunction of Büchi and co-Büchi objectives.

5.3. P-completeness for Explicit Muller objectives and FPT for the other
objectives

With the complexity of the decision algorithm given in Lemma 30 and
the study of path made in Lemma 31, we are now ready to show that the
constraint problem is P-complete for Explicit Muller objectives, and that for
the other objectives, it is fixed parameter tractable and becomes polynomial
when the number |Π| of players is fixed.

Theorem 33. The constraint problem for multiplayer Boolean games with
Explicit Muller objectives is P-complete.

Proof. We denote by Fi ⊆ 2V , the family of each player i ∈ Π for his Explicit
Muller objective. Let us prove the P-easiness. By Lemma 30, the decision
algorithm is in O(m3 · |V | · |Π| · init · path · (|V | + |E|)) time, where m =
maxv∈V |P0(v)|, init is the time complexity of computing P0(v) for some
given vertex v, and path is the time complexity of testing whether there
exists a play with a given payoff p from a given vertex v. Lemma 31 states
that path is polynomial for Boolean games with Explicit Muller objectives.
To establish the P-easiness, it remains to prove that m and init are also
polynomial. First, if there exists a play ρ with payoff p from v, then either
Inf(ρ) ∈ ∪i∈ΠFi or p = (0, . . . , 0). Thus

P0(v) ⊆ P = {q ∈ {0, 1}|Π| | ∃F ∈ ∪i∈ΠFi, qi = 1⇔ F ∈ Fi} ∪ {(0, . . . , 0)}.

(This kind of argument was already used in the proof of Lemma 31 for Ex-
plicit Muller objectives). Therefore, |P0(v)| ≤ |P | ≤ | ∪i∈Π Fi|+ 1, showing
that m is polynomial. Second, to compute P0(v), we check for each p ∈ P
whether there exists a play with payoff p from v. It follows that init is
polynomial by Lemma 31.

The P-hardness is obtained thanks to a reduction from the AND-OR
graph reachability problem that is P-complete [33]. Indeed, the P-hardness
of the constraint problem for SPEs (instead of weak SPEs) in Boolean games
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with Reachability objectives is proved in [25, Corollary 6.22] thanks to such
a reduction, and it is not difficult to see that the same reduction also holds
for weak SPEs and Explicit Muller objectives.

We recall that a parameterized language L is a subset of Σ∗×N, where Σ is
a finite alphabet, the second component being the parameter of the language.
It is called fixed parameter tractable if there is an algorithm that determines
whether (x, t) ∈ L in f(t) · |x|c time, where c is a constant independent of the
parameter t and f is a computable function depending on t only. We also say
that L belongs to the class FPT. Intuitively, a language is in FPT if there is
an algorithm running in polynomial time with respect to the input size times
some computable function on the parameter. We refer the interested reader
to [34] for more details on parameterized complexity.

Theorem 34. Let G be a Boolean game.

1. The constraint problem is in FPT for Reachability, Safety, Büchi, co-
Büchi, Parity, Muller, Rabin, and Streett objectives. The parameters
are

• the number |Π| of players for Reachability, Safety, Büchi, co-
Büchi, and Parity objectives,

• the number |Π| of players and the numbers ki, i ∈ Π, of pairs
(Gi

j, R
i
j)1≤j≤ki, for Rabin and Streett objectives, and

• the number |Π| of players, the numbers di, i ∈ Π, of colors and
the sizes |Fi|, i ∈ Π, of the families of subsets of colors for Muller
objectives.

2. When the number |Π| of players is fixed, for all these kinds of objectives,
the constraint problem can be solved in polynomial time.

Notice that in this theorem, to obtain fixed parameter tractability for Ra-
bin, Streett, and Muller objectives, in addition to the number of players, we
also have to consider the parameter equal to the size of the objective descrip-
tion. Nevertheless, when the number of players is fixed, we get polynomial
time complexity for all types of objectives.

Proof of Theorem 34. We again use Lemmas 30 and 31 as in the previous
proof. By Lemma 30, the complexity of the fixpoint algorithm is in O(m3 ·
|V | · |Π| · init ·path · (|V |+ |E|)) time. The complexity path is studied in Part
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1 (resp. in Part 2 when |Π| is fixed) of Lemma 31, and we have m ≤ 2|Π|

and init = O(2|Π| · path). Hence we get both parts of Theorem 34 as a
consequence of these results.

6. Conclusion and future work

In this paper, we have studied the computational complexity of the con-
straint problem for weak SPEs. We were able to obtain precise complexities
for all the classical classes of ω-regular objectives (see Table 1), with one
exception: we have proved NP-membership for Büchi objectives and failed
to prove NP-hardness. We have also shown that the constraint problem can
be solved in polynomial time when the number of players is fixed. Finally,
we have provided some fixed parameter tractable algorithms when the num-
ber of players is considered as a parameter of the problem, for Reachability,
Safety, Büchi, Co-Büchi, and Parity objectives. For the other Rabin, Streett,
and Muller objectives, we also had to consider the size of the objective de-
scription as a parameter to obtain fixed parameter tractability. In a future
work, we want to understand if the use of this second parameter is really
necessary.

By characterizing the exact complexity of the constraint problem for
Reachability and Safety objectives, we have obtained that this problem for
SPEs (as for weak SPEs) is PSPACE-complete for those objectives. In the
future, we intend to investigate the complexity of the other classes of ω-
regular objectives for SPEs. It would be also interesting to extend the study
to quantitative games. For instance the constraint problem for (weak) SPEs
in reachability quantitative games is decidable [17] but its complexity is un-
known.
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