Results in Physics 3 (2013) 231-234

journal homepage: www.journals.elsevier.com/results-in-physics

Contents lists available at ScienceDirect

Results in Physics

PHYSICS

Approximate solutions for N-body Hamiltonians with identical particles

in D dimensions ™

Claude Semay *, Christophe Roland

CrossMark

m

Service de Physique Nucléaire et Subnucléaire, Université de Mons, UMONS Research Institute for Complex Systems, Place du Parc 20, 7000 Mons, Belgium

ARTICLE INFO ABSTRACT

Article history:

Received 22 July 2013

Accepted 17 October 2013
Available online 23 October 2013

Keywords:

Bound states
Many-body systems
Semiclassical theories

A method based on the envelope theory is presented to compute approximate solutions for N-body
Hamiltonians with identical particles in D dimensions (D > 2). In some favorable cases, the approximate
eigenvalues can be analytically determined and can be lower or upper bounds. The accuracy of the
method is tested with several examples, and an application to a N-body system with a minimal length
is studied. Finally, a semiclassical interpretation is given for the generic formula of the eigenvalues.

© 2013 The Authors. Published by Elsevier B.V. All rights reserved.

1. Introduction

The quantum-mechanical N-body problem is highly nontrivial
as soon as N> 2. Because it arises in all areas where quantum
mechanics is involved, from atomic to hadronic physics, the
amount of papers devoted to that topic is huge. Some useful results
can be found in several textbooks [1-5]. Among all the possible
techniques, the envelope theory, also known as the auxiliary field
method, is a powerful method to obtain approximate solutions,
eigenvalues and eigenstates, of eigenequations in quantum
mechanics [6]. The basic idea is to replace the Hamiltonian H under
study by an auxiliary Hamiltonian H which is solvable, the eigen-
values of H being optimized to be as close as possible to those of
H. This method has been used to tackle relativistic and semirelativ-
istic systems of identical particle in the three dimensional space
[7-9]. Recently the envelope theory has been extended to treat
one-body and two-body problems with arbitrary kinematics [10].

The purpose of this paper is to generalize the envelope theory to
solve approximatively the N-body problem for identical particles
with arbitrary kinetics in a D dimensional space (D > 2). This work
is motivated by the existence of non-standard kinetic energies in
some physical problems, for instance in atomic physics with non-
parabolic dispersion relation [11], in hadronic physics with particle
masses depending on the relative momentum [12], or in quantum
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mechanics with a minimal length [13-16]. Moreover, problems in
D dimensions can appear in various physical situations. In particu-
lar, D = 2 systems can be used as toy models for D = 3 systems [17]
or are the natural framework for the physics of anyons [18,19]. So,
the possible domains of interest for the method are numerous.

This paper is organized as follows. The one-body and two-body
cases deserve a special treatment. They are presented together in
Section 2. The N-body case is studied in Section 3 where some
properties of the solutions are presented. The accuracy of the
method is tested with several examples in Section 4, where an
application to a N-body system with a minimal length is studied.
Concluding remarks are given in Section 5. A semiclassical inter-
pretation of the generic formula obtained for the eigenvalues is
presented in the Appendix. Let us mention that the results ob-
tained here are quite direct generalizations of those given in Refs.
[9,10], where most of the details about the calculations can be
found. These results, which can be useful to a large community,
are not presented elsewhere.

2. One- and two-body cases

Let us assume that the Hamiltonian H can be written as (in the
following, we will work in natural units h=c=1)

H=T(p)+V(r), (M

with p = |p| and r = |r|,r and p being conjugate variables. For the one-
body case, r is the distance of the particle from the center of force.
For the two-body case, r is the distance between the particles. In
Ref. [10], the procedure to compute the approximate solutions is
based on a good parameterization for D = 3 of the eigenvalues Eq
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gf the Hamiltonian Hqy (which differs from the auxiliary Hamiltonian
H by a constant term) with the auxiliary potential P(r),

P’

Ho = 2'u+pP( ) with P(r) = sgn(i)r’ (2)
(u>0,p>0and 0% 1> — 2). We have
2/(3+2)
; : 2 s (@)
Eo=——(I2 |p)*/ 1 (#> ; 3)

where Q is a global quantum number. This expression is also rele-
vant for arbitrary values of D > 2. The value of Q is exactly known
only for the Coulomb interaction (1= -1, Q =n+1+2)and the
harmonic potential (1=2, Q=2n+1+2) [2021]. If 1=1,Q is
known only in the case of D=3 for I=0 states and is equal to
2(—at,/3)%%, where o, is the (n + 1)th zero of the Airy function Ai.
In all other cases, (3) can considered as a definition for Q.

Following the same procedure as the one described in Ref. [10],
the approximate eigenvalue E is given by the following set of
equations:

E=T(po) + V(ro), (4)
ToPo = Q, ()
PoT (po) = roV'(ro). (6)

The parameter 1 can be interpreted as the mean distance between
the particles and po as the mean momentum per particle [10]. Let
us note that (6) is the translation into the variables ry and po of the
generalized virial theorem [22]. From the symmetry of Egs. (4)-(6),
under the swap of py and rq variables, it is clear that a Hamiltonian
and its Fourier transform are characterized by the same solutions.
In some cases, the approximate solution E can be a lower or an
upper bound. Let us define two functions br and by such that

T(x)=br(x*) and V(x)=by(P(x)). (7)

If bf(x) and by,(x) are both concave (convex) functions, E is an upper
(lower) bound of the genuine eigenvalue [10]. If T(p)x p?
(W(r) o< P(r)), the variational character is solely ruled by the convex-
ity of by(x) (br(x)). In the other cases, the variational character of the
solution cannot be guaranteed. Since many techniques exist to com-
pute accurate numerical solutions of one- or two-body problems,
this method is only interesting if Eqs. (4)-(6) allow an analytical
solution.

3. N-Body case

Let us now consider the N-body Hamiltonian for identical parti-
cles, in a D dimensional space, interacting via the one-body U and
two-body V interactions

N N N

H=Y T(pi)+ > U(ri—R)+ > _V(ri—rl), 8)
i1 i1 ig=1

where ", p; = 0 and R = 1 " r; is the center of mass position. A

one-body potential such as U is sometimes used to simulate con-
finement in hadronic systems [23]. The possibility to compute an
approximate solution with the envelope theory relies on the exis-
tence of a completely soluble N-body auxiliary Hamiltonian. This
is the case for the N identical oscillator Hamiltonian

1 N 5 N
= S+ Vv ri —
2 R

The complete solution is given in Ref. [9] for D = 3, but the result is
easily generalizable to any values of D. Following the same proce-

ey (r-m) (9)

i<j=1

dure as the one given in Ref. [9], but introducing an auxiliary coun-
terpart for the kinetic part as in Ref. [10], the approximate
eigenvalue E is given by the following set of equations for a com-
pletely (anti)symmetrized state:

E = NT(p,) + NU(;\(;) + ch< (10)

)

Topo = Q, (11)

Np,T (Po)—roU’( )+\/Grov’( ) (12)

where Cy = N(N — 1)/2 is the number of particle pairs and where

2

-1

Q=S@m+h)+N-12

: 5 (13)

N
-

The approximate eigenstate is given in terms of harmonic oscillator
functions [24].

As E depends on Q, this method does not raise the strong degen-
eracy inherent to Hy (see also (5)). Following the nature of the par-
ticles, only some set of quantum numbers are allowed. For
instance, the ground state of N bosons is given by Q& = (N — 1)5.
For fermions, the calculation is more involved. For a large number
of particles, one can find

1/D
. ¢ D (DN
imQes =57\ —a ) - (14

where d is the degeneracy of the fermion.

Egs. (10)-(14) were obtained in Ref. [9,25], but only for D =3
and for T(p)  p? or /p?> + m2. Other calculations performed in
these last references are immediately generalizable to arbitrary D
and T(p). We give here the results for the existence of bounds,
the presence of perturbative interactions and the definition of crit-
ical coupling constants.

Let us now define three functions by by and by such that

T(x) = br(x?),U(x) = by(x?) and V(x) = by (x*). (15)

If by(x),bjj(x) and by (x) are all concave (convex) functions, E is an
upper (lower) bound of the genuine eigenvalue. If the second deriv-
ative is vanishing for one or two of these functions, the variational
character is solely ruled by the convexity of the other(s). In the
other cases, the variational character of the solution cannot be
guaranteed. If no analytical solution can be found for the system
(10)-(12), a numerical solution is easy to compute. Such approxi-
mation is interesting to obtain since an accurate numerical solution
is always hard to compute for N > 2 [26,27].

Let us assume that the approximate solution E is obtained for
T,U and V energy terms with the value rp, and that these terms
are respectively supplemented by perturbations
tt(p) < T(p).nu(x) < U(x) and ev(x) < V(x) (t,n and € are small
parameters) in the physical domain of interest. Then, one can show
that the approximate solution Ep,, at first order in 7,4 and € is given
by [25]

E, 7E+Nrt(p0)+N17u< )+CNey< (16)

JG)
This result could seem quite obvious, but it demonstrates that the
knowledge of ry is sufficient to obtain the contribution of the per-
turbations at the first order.

Some interactions, as the Yukawa or the exponential potentials,
admit only a finite number of bound states. They can be written
under the form W(x)=—xw(x), where x is a positive quantity
which has the dimension of an energy and w(x) a “globally posi-
tive” dimensionless function vanishing at infinity. The critical



C. Semay, C. Roland /Results in Physics 3 (2013) 231-234 233

coupling constant x({0}), where {0} stands for a set of quantum
numbers, is such that the potential admits a bound state with the
quantum numbers {0} if k > 1({0}) (see for instance Refs. [28,29]).

Let us consider a nonrelativistic N-body system with particles of
mass m, one-body potential U(x) = — k u(x) or two-body potential
V(x) = —g «(x), both interactions admitting only a finite number of
bound states. If the approximate eigenvalue of the energy is a low-
er (upper) bound, the approximate critical coupling constant is a
lower (upper) bound of the genuine critical coupling constant.
Assuming that only two-body forces are present, we obtain for
the critical constant g,

1 2 @
& CY3u(Yo) N(N—1)2 m’ a7
20(¥o) + Yo' (¥o) = 0. (18)

With only one-body forces, a similar result is found for the critical
constant k.

1 1 @
T Rubg N m 1
2u(yo) + Yol (¥o) = 0. (20)

The variable yq, determined by (18) or by (20), is independent of N,Q
(given by (13)) and m, and depends only on the form of the function

Uux) or u(x).

4. Applications

To have a lower or an upper bound is already a relevant infor-
mation about an eigenvalue. But, one can ask if the bound is close
or not to the genuine value. This information is generally not ob-
tained with the bound, and it is necessary to resort to comparisons
with known solutions to test the accuracy of the bound. For the
envelope theory developed here, it is convenient to examine sepa-
rately the one/two-body cases from the many-body case.

4.1. One- and two-body cases

In the most favorable situations, both lower and upper bounds
can be computed analytically for one/two-body Hamiltonians (see
Section 2). For instance, this is the case for the square root poten-
tial, the logarithmic potential and some power-law potentials with
nonrelativistic kinematics. Lower and an upper bounds are com-
puted for the dimensionless Hamiltonian p?/4 + /12 + 8 for D =3
in Ref. [30]. For the lowest eigenvalues, the relative error on the
upper bound is below 5%. We have checked that a similar accuracy
is obtained for 2 < D < 10.

For other Hamiltonians, only one kind of bound can be com-
puted. This is the case for the dimensionless Hamiltonian
exp(kp?) + r?, studied for D=3 in Ref. [10]. A very good lower
bound can be computed for the three lowest eigenstates in the case
D =3, for a range of the parameter k varying from 0.001 to 1. We
have checked that the accuracy is similar for 2 < D < 10.

In less favorable cases, no bound can be obtained, and only a di-
rect comparison with numerical results can bring information
about the accuracy of the method. Several Hamiltonians with non-
relativistic or semirelativistic kinematics are studied in Ref. [24] for
D = 3. Generally, a very good accuracy is obtained. Let us remark
that, though the method is based on Hamiltonians Hy with an
infinite number of bound states, it works also well for Hamiltonians
with a finite number of bound states.

4.2. N-Body case

To obtain accurate numerical solutions in the N-body case is a
challenging task. So, to test our results, we will also compare with
other approximate methods. Let us recall that For N> 2, only one
kind of bound can be computed with the envelope theory (see
Section 3).

The following Hamiltonian for three massless particles is rele-
vant for the study of light baryons,

3 3 3
1
H:;\/p—f+a;\ri7mszrirj'. 21)

i<j=1

Accurate numerical eigenvalues for D =3 have been computed in
Ref. [9] and compared with the upper bounds predicted by the
envelope theory. The relative error on the lowest eigenvalues is
around 10-20%. Several improvements of the mass formula based
on analytical procedures allow a reduction of this error to around
2%, but the price to pay is the loss of the variational character of
the formula.

Within the framework of the quantum chromodynamics with a
great number of colors, the mass spectrum of the light baryons can
be studied with a N-body generalization of (21),

N N b
_ 2 . | =
H= ;[ P +airi Rq + > [az|r1 ri| . _rjd, (22)

i<j=1

Using the envelope theory as in Ref. [23] but for D dimensions, an
upper bound E, of the ground state is given by

E2 :4CN(a1 +a2m) (be\/cTV). (23)

Using the method presented in Ref. [31], a (quasi exact) lower
bound E, can be computed [23]

E? = 2Cy(ay + @N)((D — 1) — b(N — 1)). (24)

It is difficult to estimate the accuracy of these bounds, but one can
remark that E; and E, have the same behavior for large values of N
and D. So, we can have some confidence on the relevance of the
upper bound computed with the envelope theory.

The Hamiltonian for a system of N gravitating particles with a
(nonrelativistic) Newton potential is given by

N N
H:;w/pf+m27'z mfr” (25)

i i<j=1

where o =G m?G being Newton’s constant. It has been used to
study boson stars [32]. Solving the system (10)-(12), we find an
upper bound M, for the mass of the system,

3
Mu:Nm,/l——N(NS*]) ("2‘—22. (26)

For the ground state of a boson system with N > 1 (¢ <« 1), it is easy
to determine that

D
M, <—.
‘S V2Gm

For D =3, we find M, < 2.121(G m)~". This is to be compared with
the result M, < 1.439(G m)~! found in Ref. [32]. This last bound is
better, but the envelope theory can yield information about the ex-
cited states as well as fermion systems, for arbitrary values of D.
These topics will be developed elsewhere.

Lastly, we give an application of the method to a problem in
quantum mechanics with a minimal length [13-16]. If the associ-
ated deformation parameter f is small enough to work at first

(27)
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order in g, one can use the following kinetic term for a particle with
mass m,

P B
T(p)=2—+L2 2
(P) =5+ ,P (28)
in a nonrelativistic problem [14]. Let us consider the N-body system
bound by two-body harmonic potentials V(x) = k x2. We can treat the
p-terms as a perturbation. The solution of the unperturbed Hamilto-
nian is trivial with the system (10)-(12), and the use of (16) gives

%NkQ + 2kpQ>. (29)

Note that formula (29) is exact when g=0. For N=2 and D = 3, the
value of the perturbation is 2kg(4n? + > + 4n [ + 6n + 31 + 9/4). This
compares well with the value 2kp(6n?+I? +6n 1+9n+4l+15/4)
found in Ref. [14] by the perturbation theory.

E, =

5. Concluding remarks

The envelope theory is a powerful method to treat eigenvalue
equations in quantum mechanics. In this paper, it is shown that it
can be applied to N-body systems with identical particles in D
dimensions. One-body and two-body potentials can be considered,
as well as arbitrary kinetic parts. The method is easy to implement
since it reduces to find the solution of a transcendental equation.
In the most favorable cases, the approximate eigenvalue is an analyt-
ical lower or upper bound. In the less favorable situations, a non-var-
iational numerical approximation can be computed, which is often
interesting for N-body problems which are always difficult to solve.

Several applications of the envelope theory to quantum
mechanical N-body systems are given here. It seems that quite reli-
able results can be obtained. The method has also been applied to
the study of spin contributions for baryons in the limit of a great
number of colors [33]. But, the applications seem potentially
numerous in various domains of physics. It could be interesting
to extend the method to other types of interaction, like many-body
forces, or to systems with two, or more, different types of particles.
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Appendix A. Semiclassical interpretation

Though, the envelope theory is a full quantum calculation, a
semiclassical interpretation of the main equations is possible. For
N=1 and 2, it is given in Ref. [10] for D = 3, but the precise value
of D does not matter.

We develop here the interpretation in the general case. Let us
assume that the N particles are in circular motion with the same
momentum pg at a distance d, from the center of mass, each par-
ticle being at an angular distance of 27/N from its neighbors. A
semiclassical quantification of the total orbital angular momentum
gives L+ DN/2 = N dopg = ropo With ry = N do. This is very similar to
(11), with the radial excitations absent from Q.

The total kinetic energy is N T(pg) and the total potential energy
for the one-body interaction is N U(dp) = N U(ro/N). The mean dis-
tance ey between two particles on the circle is

T

N (A1)

1 ¥ it 1o
eo =—— Y 2dpsin— = — cot
b= N_7 2 2bsiny =g
Since the relative difference between ey and ry/+/Cy is at worst 10%,
we find that the total potential energy for the two-body interaction is
around CyV(ro/+/Cn). We recover (10) by adding these three contri-
butions. It is worth mentioning a supplementary funny result. If we

assume that D > N — 1, the N particles can be put on a hypersphere
of radius dy at the vertices of a regular simplex. The distance e be-
tween two particles is a constant which is the length of the edge of
the simplex, with do=e\/(N—-1)/(2N) [34]. So, we have
e=r1o/v/Cy and the two-body potential energy is exactly
CnV(ro/+/Cy). The quantum mechanics with the symmetrization pro-
cedure predicts a mean distance between the particles which is not
possible to achieve in a (semi)classical way in our world when N > 3.

Since the motion is circular, each particle experiences a centrip-
etal force F.. With the definition of the effective mass proposed in
Ref. [11], this force is given by [10]

Po T(po)’ oy 1
= = NpoT'(po) — A2
T(po) o T (Do) T (A2)

This force is driven by the potentials. The one-body contribution is
centripetal and is simply given by Fy = U'(x)|,_4, = U'(ro/N). For the
two-body contribution, we must take into account that the forces
act in various directions. An approximate computation of the cen-
tripetal force due to the N — 1 other particles gives

Moin n
FyaV (x)}HD; sin; = V'(eo) cot . (A3)

So, F, is around +/CyV (ro/+/Cy). Writing F, = F; + F,, we recover (12).
In the situation D > N — 1 described above, each particle feels the
same potential V(ro/+/Cy) from all other particles and experiences
the same force. But, in the computation of the centripetal contribu-
tion, we must take into account that the direction of another parti-
cle makes an angle o with the radius. This angle is such that
coso = sing with sin¢ = ;& = | /ﬁ [34]. In this case F, is given by

! ’ To
F;=(N-1)cosaV (x)|x:e =V <ﬁ>7 (A4)
which is the exact contribution in (12).
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