

Laboratoire des Matériaux Céramiques et Procédés Avancés

materials UMONS RESEARCH INSTITUTE FOR MATERIALS SCIENCE

AND ENGINEERING

Microwave sintering of cemented tungsten-cobalt carbides

<u>Alexandre Mégret^{1*}</u>, Victor Ioan Stanciu¹, Anthony Thuault², Véronique Vitry¹, Fabienne Delaunois¹

¹ Metallurgy Lab, University of Mons, 56 rue de l'Epargne, 7000 Mons, Belgium

² LMCPA, University of Valenciennes and Hainaut-Cambrésis, Bd. Charles de Gaulle, 59600 Maubeuge, France

Context

Processing of WC-Co by powder metallurgy route: conventional sintering = vacuum sintering (VS).

Grain growth due to high temperature, long holding times and low heating rates. 1400°C – 30 to 60 min – max. 5°C/min Entire thermal cycle: 12 to 24 hours

Solution

Use of unconventional sintering technologies such as SPS, microwave sintering, flash sintering. Goals: - Decreasing temperature and sintering time Increasing heating rates.

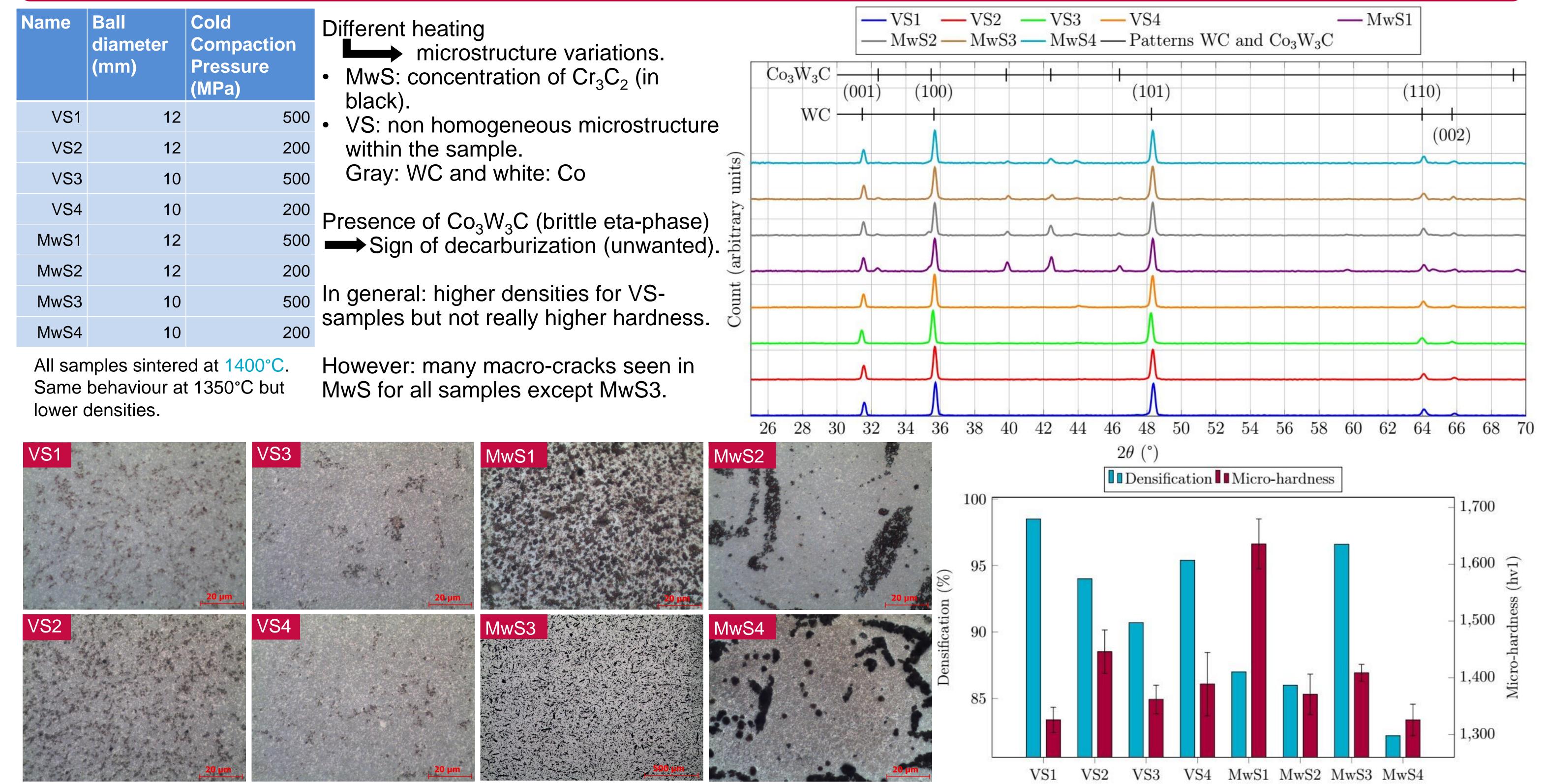
Material: Tungsten carbide with doped cobalt binder – 80% WC + 18% Co + 2% Cr_3C_2 (wt%)

Microwave sintering (MwS)

- Microwaves with 2.45 GHz.
- Single-mode cavity.
- Thermal and electrical contributions.
- Oscillations of free electrons in cobalt, of free carbon and ions in WC.
 - Different heating than VS.
- Time and energy saving!

Parameters

Pre-processing


- Balls diameters
- Compaction pressure

Sintering

- 1350°C and 1400°C
- 15 min sintering time
- 95% Ar 5% H₂
- Heating rate: 75°C/min

Results and discussion

- Cold Ball diameter Compaction (mm) Pressure (MPa)

•	500	12	VS1
	200	12	VS2
	500	10	VS3
F	200	10	VS4
	500	12	MwS1
	200	12	MwS2
Ir	500	10	MwS3
S	200	10	MwS4

Conclusion and perspectives

References

[2] Stanciu and al., Proceedings

Microwave sintering = promising technology to manufacture WC-Co (energy and time saving). [1] Fang and al., Int. J. Refract. Met. H., vol. 27, pp 288-299, Processing parameters must be improved and optimized. 2009.

- Balls with 10 mm diameter: enhancement of the interactions between the powder and the balls.
- Best parameters
 500 MPa cold compaction pressure: higher densities and less brittle samples. METAL, Brno, 2014. [3] Breval and al., Mater. Sci. Higher sintering temperature: higher densities. Eng., vol. A391, pp 285-295, 2005.

Further improvements: elimination of decarburization and increase of the densities.

Université de Mons

ISIEM | Ghent | 2018 June 17-21

*alexandre.megret@umons.ac.be