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Dynamic vibration absorbers (DVAs) are widely accepted in vibration engineering as one of the most
suitable ways to suppress undesirable low-damped resonance. In railway design, it is often placed on
the track as a mitigation measure coupled to a floating slab. This paper presentsthe study of a tram
vehicle equipped with DVAs with the aim to suppress the specific mode that affects the vehicle/track
interaction and the surrounding ground wave generation. A complete vehicle/track/soil numerical
model is developed and used to evaluate the dynamics of the whole system. Modal decomposition
is applied to the vehicle/track model to obtain the optimal DVA parameter values forany location.
Different DVA masses are analysed and different DVA locations are proposed. From the results, the
vehicle bogie is revealed to be the best location and a compromise can be found for the DVA mass
for reducing the ground vibration level of around 20%.
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1. Introduction

The generation of railway ground-borne vibrations is a consequence of vehicles passing over tracks,
generating dynamic forces from the rotating wheels into thetrack. These forces depend on the moving
vehicle’s load (close to the static contribution, often called quasi-static effect) and on the surface irregu-
larities at the wheel and rail surfaces (representing the dynamic interaction between the vehicle and the
track/soil subdomains). They both contribute to the propagation of vibrations outwards from the track [1].
Three steps are usually retained in the analysis of railway-induced ground vibration:

• Predicting and measuring the ground vibration levels around specific railway networks.Sev-
eral studies were performed these last years, including thedevelopment of dedicated prediction
tools [2–6] or intensive measurement campaign [7,8]. Such studies allow collecting vibration data
to be analysed and to determine if they exceed allowable thresholds.
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• Understanding the causes of elevated ground vibration levels. This part is relevant and complex
since many subsystems interacts each others. In urban area,the origin mainly arises locasized
defects like joints, turnouts, switches [9,10]

• Proposing mitigation solutions to alleviate excessive vibration levels. Actions were often pro-
posed for the track [11,12].

In recent years, Dynamic Vibration Absorbers (DVAs) have been widely used in railway tracks with
the aim of attenuating low- and middle-frequency vibrationand noise. Grassie and Elkins [13] showed
that promising reduction in rail corrugation is obtained ifa DVA is used to detune and damp the relevant
mode of vibration. Thompson et al. [14] showed significant reductions of track component noise with a
designed mass-spring–damper DVA with multiple tuning frequencies. Zhu et al. [15] compensated the
amplification area associated to floating slab tracks using multiple DVAs judiciously tuned.

In [16], a first study was proposed to demonstrate that a DVA placed on a vehicle could prevent
feelable vibrations in neighbour track. It was based on the use frequency response functions (FRFs)
of a vehicle/track system. The studied case was the T2000 tram circulating in Brussels (Figure 1) for
which abnormal vibrations were observed when passing on localized defects model and at low speeds.
It was also observed that the tram bogie’s bounce mode significantly contributes to the generated ground
vibrations. The aim of this paper is to complete the results presented in [16] by analysis additional results
and the possible reduction in the ground vibration levels. To do this, a complete vehicle/track/soil analysis
will be performed, including the DVA dynamics in order to evaluate the potential of such mitigation
measures in the case of urban conditions prior to any physical test.

7800mm7800mm

850mm850mm 1130mm1130mm 570mm570mm

8300 kg8300 kg 3450 kg3450 kg 4250 kg4250 kg

Figure 1: Main dimensions and axle loads of the T2000 tram.

2. Basic concepts of the proposed prediction model

The proposed prediction model is based on two successive calculations [9]. Complexity required
the problem to be split. This approach allows the most well-suited modelling approach to be used for
each subsystem. First of all, the dynamics of the vehicle/track subsystem is simulated by considering a
multibody vehicle model (Fig. 2) moving at speedv0 on a flexible track (Figure 3) with a rail irregularity.
The wheel/rail forces are defined using non-linear Hertz’s theory and allows the coupling between the
vehicle model and the track. The latter is defined as a flexiblebeam (Young modulusEr, geometrical
moment of inertiaIr, sectionAr and densityρr) discretely supported by the sleepers (of massm and
with spacingL), including viscoelastic elements for the ballast (stiffnesskb and damping coefficientdb)
and the railpads (stiffnesskp and damping coefficientdp). To take into account the dynamic behaviour of
the foundation, which plays an important role at low frequencies, a coupled lumped mass (CLM) model
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is added to the track model, with interconnection elements for the foundation-to-foundation coupling.
The ballast reactions are then saved and used as input forcesfor the second step, which is devoted to the
calculation of ground wave propagation using a finite element analysis.

x

z
v0

central bogie modelling leading bogie modelling

Figure 2: T2000 tram multibody model (blue arrows representthe different degrees of freedom).
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Figure 3: Track/foundation coupling.

The design procedure of a DVA for a vehicle/track system is based on the modal decomposition
associated to the simple procedure for a single-degree-of-freedom system [17]. The DVA is identified by
its massma, springka and dashpotda, associated to the motion in the same direction as the undesired
motion of the primary system (Figure 4). Mathematically speaking, a one degree-of-freedom system
is added either to the vehicle (case 1: DVA on vehicle) or the track (case 2: DVA on track). Both
configurations can be analysed separately in order to confirmwhich solution is the most efficient.

3. Frequency response function analysis: optimizing DVA parameters

As the vehicle/track interaction primarily affects the ground vibration, it is proposed to focus on the
FRF of motorized wheels (in front of the leading car bogie; a similar observation can be drawn for the
central car bogie) with two different scenarios (a DVA placed on the bogie and a DVA placed on the
track). For the latter, two configurations will be retained:a DVA placed on the rail or a DVA placed on a
sleeper close to the localized defect.
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Figure 4: Schematic representation of a damped dynamic vibration absorber attached to the vehicle/track
system.

First scenario results are presented in Figure 5 which showsthe calculated FRFs by varying the
DVA massma into a realistic range (stiffnesska and damping ceofficientsda are tuned to their optimal
values for each case). It is observed that a reduction of peakamplitude at19.6Hz (corresponding to
the eigenfrequency of bogie bounce mode) is gradually observed; however, for greater DVA masses, a
negative impact to the next vehicle mode is observed, with a increasing of the peak amplitude of the bogie
pitch mode (around29Hz), cancelling the gain brought by the DVA on the first peak. An optimum value
of 200 kg of DVA massma is therefore deduced from this scenario.

Figure 6 presents a similar study regarding the second scenario. The studied range of DVA massma

is larger than previously, knowing that the track can support an important additional mass. It is shown
that the gain is smaller: the target resonance peak is less reduced for both configurations (a DVA placed
on the rail and a DVA placed on the sleeper). An amplification of the next resonance peaks (around29Hz
and45Hz) is also visible, but with maxima less pronounced. Finally,it is observed that for a DVA mass
ma of 2000 kg, the peak amplitude exceeds the original value without DVA.

The conclusion for this study is that a DVA placed on the vehicle is more efficient than a DVA placed
on the track. However, such analysis is based on the frequency domain and cannot take into account the
realistic forces during the passing of the tram in the localized defect.

4. Ground vibration time history: validating DVA location

Figure 7 presents the results at free-field, for the observation points located at6m and12m from the
track. A DVA on vehicle is only analysed, since, for the same mass, a DVA on track is less advantageous.
Two DVA masses are analysed:ma = 100 kg andma = 200 kg. The impact of leading bogie is studied in
order to easily observe the effect of the DVA (front and rear leading car induce the same ground vibration
and thus only the front leading car is analysed). From this, it is shown that the DVA has a positive effect
by modifying the ground vibration velocity shape and level.The amplitude reduction is around20% with
a DVA. However, there is a small difference between the two DVA mass cases, showing that increasing
the DVA mass does not always result in greater amplitude reduction. Corresponding one-third octave
band analysis (Figure 8) confirms this observation by showing an effective reduction of the vibration
magnitude around not only the target frequency, but also (toa lesser extent) at higher frequencies (as
observed in the FRF results). Also, no notable difference between the two DVA masses is observed.
Similar observations can be done for the central bogie and additional findings can be found in [18].

4 ICSV26, Montreal, 7-11 July 2019



ICSV26, Montreal, 7-11 July 2019

Frequency [Hz]
0 50 100

A
m
p
li
tu
d
e
[m

/N
]

×10−8

0

2

4

6
without DVA
with DVA

(a) ma = 10 kg

Frequency [Hz]
0 50 100

A
m
p
li
tu
d
e
[m

/N
]

×10−8

0

2

4

6
without DVA
with DVA

(b) ma = 20 kg
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(c) ma = 30 kg
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(d) ma = 40 kg
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(e) ma = 50 kg

Frequency [Hz]
0 50 100

A
m
p
li
tu
d
e
[m

/N
]

×10−8

0

2

4

6
without DVA
with DVA

(f) ma = 60 kg
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(g) ma = 70 kg
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(h) ma = 80 kg
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(i) ma = 90 kg
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(j) ma = 100 kg
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(k) ma = 200 kg
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Figure 5: Frequency response functions at the motorised wheel (driving point) with an excitation origi-
nated by the leading car for DVA placed on the vehicle

5. Conclusion

A design of DVAs was carried out in order to evaluate the potential of such mitigation measures in
the case of urban conditions. The ground vibrations inducedby a localized defect was retained in order
to calibrate such a device. The modal decomposition theory was applied to the vehicle/track model to
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(a) ma = 50 kg
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(b) ma = 100 kg
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(c) ma = 200 kg
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(d) ma = 300 kg
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(e) ma = 400 kg
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(f) ma = 500 kg
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(g) ma = 600 kg
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(h) ma = 700 kg
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(i) ma = 800 kg
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(j) ma = 900 kg
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(k) ma = 1000 kg
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Figure 6: Frequency response functions at the motorised wheel (driving point) with an excitation origi-
nated by the leading car for DVA placed on the track.

obtain the optimal DVA parameter values for any location. Various simulations were performed on FRFs
and it was observed out that a DVA placed on the vehicle, closeto the excitation contributor, is more
efficient than DVAs located on the track. Additional investigations, including a complete analysis of
the vehicle/track/soil model, confirm the last finding and provide a significant gain in terms of ground
vibration level reduction when the DVA is placed on the vehicle.
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Figure 7: Predicted vibration velocity at6m and12m from the track due to the T2000 tram passing over
a singular defect at a speed of30 km/h : time history of the vibration induced by the leading car.
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Figure 8: Predicted vibration velocity at6m and12m from the track due to the T2000 tram passing over
a singular defect at a speed of30 km/h : frequency analysis of Fig. 7.
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