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5 Faculté Polytechnique de Mons and CETIC, Mons, Belgium
Pierre.Manneback@fpms.ac.be

6 members of CoreGRID

Abstract. The Broker with the cost function model of the ISS/VIOLA
Meta-Scheduling System implementation is described in details. The
Broker includes all the algorithmic steps needed to determine a well
suited machine for an application component. This judicious choice is
based on a deterministic cost function model including a set of param-
eters that can be adapted to policies set up by computing centres or
application owners. All the quantities needed for the cost function can
be found in the DataWarehouse, or are available through the schedulers
of the different machines forming the Grid. An ISS-Simulator has been
designed to simulate the real-life scheduling of existent clusters and to
virtually include new parallel machines. It will be used to validate the
cost model and to tune the different free parameters.

1 Introduction

The Intelligent Grid Scheduling System (ISS) [3] has been proposed to submit
n components Ck (1 ≤ k ≤ n) of an application A to a computational Grid
composed of r resources Ri (1 ≤ i ≤ r) each being a parallel machine with pi

nodes and mi main memory [9]. A component is executed on pk ≤ pi processors.
It is planned to apply ISS first to the HPC applications in Switzerland that
are executed on the parallel machines that form the SwissGrid. These machines
are located at the Swiss National Supercomputing Centre (CSCS) in Manno, at
the EPFL in Lausanne, at the ETHZ in Zürich, and at other Universities and
research institutions in Switzerland. The aim of ISS is to submit the components
of the different applications to well suited machines according to a deterministic
cost function. This cost function is presented in this paper.
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The ISS cost function includes terms that represent the investment costs per
sustained Tflops/s rate, energy consumption due to power supply and cooling,
maintenance, licences, and management costs, the infrastructure (room and cool-
ing system) and expenses for personnel taking care of the resources. The sus-
tained Tflops/s rate strongly depends on the usage of the machines and on the
type of application components that are executed. Machines that are not used
all the time can be expensive. Ecological arguments are now more and more
considered when deciding on the purchase of a machine. These can be taken
care of by the energy price per kWh, and by the cooling installation costs. With
all those characteristics, the overall costs of a component can vary by up to an
order of magnitude on the different machines. ISS should optimize the usage of
the different machines and help to decide on the policy when purchasing future
machines.

In a previous paper [1], the integration of the ISS into the VIOLA Meta-
Scheduler environment has been described. Specifically, the roles of the Meta-
Scheduler and UNICORE clients have been detailed. The whole scheduling of a
component Ck on machine i has been decomposed in three major steps: Prologue
(starts at time t0k) and Decision (made just after t0k), Execution (starts at time
tsk,i), and Epilogue (starts at time tek,i and ends after data collection at tdk,i). In
the Prologue phase, data needed to construct the cost model are collected and
used to minimize the cost function. The resulting choice is then forwarded to the
UNICORE client for submission to the chosen machine. The information about
the execution phase is treated in the Epilogue phase to create a file that can be
reused in the next job submission.

Different modules help to decide. Besides the UNICORE [4] and the Meta-
Scheduling Services (MSS) [5] there are three new modules: The DataWarehouse
(DW), the System Information (SI), and the Broker. Before execution of a com-
ponent, all the cost model relevant data collected during previous executions on
different machines can be found in the DW. They are accessed through the SI
and transferred to the Broker. SI also collects the data after execution that is
prepared by the VAMOS system [6] and sent to the Broker. The VAMOS system
maps Ganglia and accounting data into application relevent ones. This Epilogue
data are interpreted according to the Γ model [2]. This model characterizes par-
allel machines and applications. These data on the behaviour of the component
during execution are then stored by the SI in the DW, prepared to be reused in
the Prologue phase for the next execution.

The Broker includes all the algorithmic steps for the evaluation of the cost
model and for the preparation of the Epilogue data. The needed data are re-
quested from the SI and the MSS. All features of the Broker are described in
detail in this paper.

The application components Ck are parametrized by the Γ model [2] in which
the needs in processor performance, main memory bandwidth, network commu-
nication bandwidth and latency are estimated. Together with similar parameters
describing the parallel machines, a Γ value is computed that measures the com-
putation over communication needs of Ck. Γ model relevant parameters such as
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the number of operations O, the number of transferred data S, or the effective
processor performance ra can be measured on a machine that includes PAPI [10].
For those machines that do not have PAPI, these parameters can be estimated
according to the input parameters of the next execution, or with the Γ model
using measurements on one machine and by transforming them to the other.

The cost function model includes free parameters that have to be tuned for
each Grid. For this purpose, a Simulator has been designed.

2 Application Component Characteristics

The major reason for the development of an Intelligent Grid Scheduling System
(ISS) is the different needs of the application components in point of view of
processing performance, main memory bandwidth, communication bandwidth
and network latency. These characteristics have been parametrized in the Γ
model [2]. Similarly, the computer architectures have also been parametrized
in the same paper. Some important parameters can be directly measured using
Ganglia data [11]. This enables predicting to which machine an application com-
ponent should be submitted. For the Swiss HPC community the following type
of applications consume the major part of the HPC resources:

2.1 Embarrassingly Parallel Application Components

These applications do not demand inter-node communications. As a consequence,
the Γ parameter is huge. A big number of cases have to be executed, the results
collected and handled by a server. Typical applications are the immense amount of
independent data in high energy physics that has to be interpreted, the sequencing
algorithms in proteomics, parameter studies in plasma physics to predict optimal
magnetic fusion configurations, or a huge number of data base accesses for statis-
tical reasons.

Embarrassingly parallel applications need master/slave computer architec-
tures with a sufficiently powerful connectivity between the frontend server and
the different slaves. There is no communication needed between the slaves. Thus,
a weekly connected workstation farm can offer a sufficient computing perfor-
mance. Such clusters can for instance be formed of individual machines con-
nected through a bus-based network or even through the internet to a master.
As a consequence, the costs of such application components can be small.

2.2 Application Components with Point-to-Point Communications

Point-to-point communications typically appear in finite element or finite volume
methods when a huge 3D domain is decomposed in subdomains [7] and an explicit
time stepping method or an iterative matrix solver is applied. If the number of
processors grows with the problem size, and the size of a subdomain is fixed,
γa (=number of operations O over amount of data S sent over the network)
is independent of the problem size, and, consequently, Γ does not change. The
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per processor performance is determined by the main memory bandwidth. The
number O of operations per step is directly related to the number of variables in
a subdomain times the number of operations per variable, whereas the amount
of data S transferred to the neighboring subdomains is directly related to the
number of variables on the subdomain surface. For huge point-to-point applica-
tions using many processing nodes, Γ << 1 for a bus (inadequate) 2 < Γ < 10
for the Pentium 4 cluster with a Fast Ethernet switch, 10 < Γ < 50 for the Xeon
cluster with a GbE switch, and the Opteron cluster with a Myrinet switch, and
Γ >> 100 for a Cray XT3. Application components with Γ > 1 can run well on
a cluster with a relatively slow and cost-effective communication network.

2.3 Application Components with Multicast Communication Needs

The parallel 3D FFT algorithm is a typical example with important multicast
communication needs. Here, γa decreases when the problem size is increased,
and the communication network has to become faster. Since ra = R∞, FFT
reaches close to peak performance. Thus, γM is big, and, as a consequence, the
communication parameter b must be big to satisfy Γ > 1. Such an application
has been discussed in [2]. It has been showed that with a Fast Ethernet based
switched network, the communication time is several times bigger than the com-
puting time, even when the problem size is small. Such an application needs a
faster switched network such as an efficient GbE, a Myrinet, a Quadrics, or an
Infiniband network.

2.4 Components Demanding Shared Memory

There are a few application components that demand a shared memory com-
puter architecture. A typical example are the direct simulation applications to
study turbulence phenomena applying a spectral method to the Navier-Stokes
equations. The main memory needs are small, the component can be run on sin-
gle processor machine. Very small phenomena have to be studied, needing very
small time steps. Typically, a million of time steps are needed for one simulation,
one step takes a few seconds on one processor. This leads to a few months of
CPU time per case. The user likes to distribute one case among a number of pro-
cessors. It can be seen that a distributed memory architecture is not well suited
for such a problem [8]. The reason comes from the fixed overall size of the appli-
cation. If the number of processors is increased, the per processor size reduces,
and the scalability is very poor. A real shared memory architecture is more ad-
equate. To reduce the turn-around times of these application components, the
Swiss computational Grid should include a few shared memory nodes.

3 Meta-scheduling Features

The Meta-Scheduling Service (MSS) delivers data on the availability of the dif-
ferent eligible machines in a Grid as a function of the number pk of processors
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reserved for a component. By means of these data it will be possible to estimate
tsk,i, i.e. the starting time of the application component Ck on machine i. The
time difference tsk,i − t0k is the time during which the component will sit in the
input queue. In fact, if pk is high the execution time tek,i − tsk,i is small, but the
waiting time tsk,i − t0k can become big.

4 The Broker

4.1 Action List

The Broker is active during the Prologue, the Decision, and the Epilogue phases.
It computes all data related to the cost model. The tasks of the Broker are:

1. Interprete job input data received from the UNICORE client
2. Collect application related data from DW through SI
3. Collect data on machine availabilities through MSS
4. Evaluate cost function and chooses a well suited machine
5. Send decision to MSS, after reservation to UNICORE client
6. Collect data on execution through SI
7. Prepare Γ model related data
8. Send epilogue data to DW through SI.

4.2 Decision: Grid Cost Model

The choice of a well suited machine depends on user requisites. Some users
would like to obtain the result of their application execution as soon as possible,
regardless of costs, some others would like to obtain results for a given maximum
cost, but in a reasonable time, and some others for a minimum cost, regardless
of time.

We will describe here in a few words the various elements that compose a cost
function z being able to satisfy users’ requests. This cost function depends on
costs due to machine usage, denoted by Ke, license fees, denoted by Kl, energy
consumption and cooling, denoted by Keco, waiting results time, denoted by Kw,
and amount of data transferred, denoted by Kd. Introducing two more quantities,
KMAX and TMAX , respectively maximum cost and maximum time, from
users point of view, we can formulate the following optimization problem:

min z = βKw(Ck, Ri, pk) +
n∑

k=1

FCk
(Ri, pk)

such that
n∑

k=1

(
Ke(Ck, Ri, pk) + Kl(Ck, Ri, pk)

+ Keco(Ck, Ri, pk) + Kd(Ck, Ri, pk)
)

≤ KMAX

max(tdk,i) − min(t0k) ≤ TMAX

(Ri, pk) ∈ R(Ck),
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∀ 1 ≤ k ≤ n, where

FCk
(Ri, pk) = αk

(
Ke(Ck, Ri, pk) + Kl(Ck, Ri, pk)

)

+ βk

(
Kw(Ck, Ri, pk)

)
+ γk

(
Keco(Ck, Ri, pk)

)

+ δk

(
Kd(Ck, Ri, pk)

)
[ECU] ,

αk, β, γk, δk ≥ 0,

αk + β + γk + δk > 0,

and R(Ck), k = 1, ..., n is the eligible set of machines for component Ck. We
express the money quantity as Electronic Cost Unit ([ECU]).

In our model, the parameters αk, β, γk, and δk are used to weight the different
terms. They can be fixed by the users and/or by a simulator. For instance, by
fixing αk = γk = δk = 0 and β �= 0, one can get the result as rapidly as possible,
independent of cost. By fixing β = 0 and αk, γk, δk �= 0, one can get the result
for minimum cost, independent of time. These four parameters have to be tuned
according to the policies of the computing centres and user’s demands. In the
case of the Swiss HPC Grid, the overall usage of the machines should be high. For
instance, increasing β will increase usage of underused machines. One recognizes
that a simulator is needed to estimate these parameters.

The quantities Ke and Kl have the same weight αk. The reason is that license
fees are either paid directly by the user, then Kl = 0, fully paid by the computing
centre, then, the license fee is part of Ke, and Kl = 0 again, or it is invoiced per
unit CPU time, then, Kl > 0.

The Kd quantity depends on the amount of data transferred. The other K
values are:

Costs Due to Machine Usage: Ke

Ke(Ck, Ri, pk) =
∫ te

k,i

ts
k,i

ke(Ck, Ri, pk, ϕ, t) dt [ECU].

Each computing center has its specific accounting, but generally they just bill
the execution time, depending on the number of CPU time used. Figure 1 shows
an example of ke(t) when day time, night time and weekends have different CPU
costs. The ϕ parameter introduces the priority notion.

Costs Due to License Fees: Kl

Kl(Ck, Ri, pk) =
∫ te

k,i

ts
k,i

kl(Ck, Ri, pk, t) dt [ECU].

As costs due to machine usage, costs due to licenses may simply depend on
execution time and the number of CPUs used, independent of day time.
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Fig. 1. Example of CPU costs as a function of daytime

Costs Due to Turn-Around Time: Kw

Kw(Ck, Ri, pk) =
∫ max(td

k,i)

min(t0k)
kw(t) dt [ECU].

This cost is machine and application component dependent since tek,i is machine
and component dependent. It could be engineer’s salary or a critical time-to-
market product waiting cost.

Figure 2 shows an example of kw concerning engineer’s salary. Here, it is
supposed that the engineer looses his time only during working hours. A more
sophisticated function could be yearly graphs also including unproductive peri-
ods like vacations.

Figure 2 shows an example of kw of a critical time-to-market product. This
parameter could be also be used to tune the overall usage of the whole machine
park of a user community. Increasing β will activate machines that are underused.
Putting β = 0 in the simulator offers the opportunity to recognize overused
machines that should in addition be installed.

Costs Due to Energy Consumption and Cooling: Keco

Keco(Ck, Ri, pk) =
∫ te

k,i

ts
k,i

keco(Ck, Ri, pk, t) dt [ECU].

This cost can become relatively important if low-cost PCs are used in clusters.
For components that are memory bandwidth bound, the frequency of the proces-
sor could be lowered. The energy consumption grows with the second power of the
frequency, a reduction by a factor of 2.5 of the processor frequency reduces its en-
ergy consumption by a factor of 6. This has been tested with a laptop computer.
When reducing frequency from 2 GHz to 800 MHz, the overall performance of the
memory bandwidth bound application only was reduced by 10%. We have to men-
tion here that for low-cost PCs energy costs are comparable to investment costs.
Thus, in future it is crucial to be able to underclock the processor, adapting
its frequency to the application component needs. This would reduce the
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Fig. 2. Left: Engineer’s salary cost function kw(t) due to waiting on the result. Right:
Time-to-market arguments can push up priority of the job.
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Fig. 3. Today: Excessive costs of energy consumption and cooling. Future: Energy
consumption reduction due to frequency adaptation to application component needs.
Computer manufacturers are invited to open for on-line frequency underclocking.

worldwide PC energy consumption by at least 75% and would free in the near
future 30 nuclear power plants. Computer manufacturers must be convinced to
be able to have energy consumption graphs as the one depicted in Figure 3.

4.3 Epilogue: Prepare Data for Next Execution

After execution, the SI collects the application component data from all the
databases build up by Ganglia on each node. The Γ model relevant information
is extracted and sent to the Broker which computes the Γ model [2] data used
for the next execution of the same application component. This data is then sent
to the DW through SI.

In addition to the execution data, information on the choice of the machine
is also stored on the DW such that in an ulterior step a statistical study can be
performed on the adequacy of the machines in the Grid for the set of application
components submitted during a certain period in time. This study can then be
used to get some insight on which machine should in future be purchased. After a
few years it will then be possible to tend towards a well adapted set of machines
that form the Grid for a given user community.
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5 Simulator to Tune Parameters

The cost model equations include the free variables α, β, γ and δ. It is not clear
how they have to be chosen. The ISS-Simulator has been designed to validate
the choices of these parameters. In fact, the ISS-Simulator aims to understand
the learning process of the Grid system with real machine parameters and real
monitored data (see [3]) coming from real applications. It can also be used to
predict an imaginary, well suited, set of machines adapted to the applications
of a real or a virtual user community. This prediction could also be used in the
future to help computer centers to buy new machines. This simulator will be
described in more details in another paper.

6 Conclusions

The Broker with the cost function model of the ISS/VIOLA Meta-Scheduling
System implementation has been described in detail. The Broker includes all the
algorithmic steps needed to determine a well suited machine for an application
component. This judicious choice is based on a deterministic cost function model
including a set of parameters that can be adapted to policies set up by computing
centres or application owners. All the quantities needed for the cost function
can be found in the DW, or are available through the schedulers of the different
machines in the Grid. An ISS-Simulator has been designed to simulate the real-
life scheduling of existent clusters and to virtually include new parallel machines.
It is used to validate the cost model and to tune the different free parameters.
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