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A New FEM–BEM Coupling for the 2-D Laplace Problem
Jacques Lobry

Department of General Physics, Faculty of Engineering, University of Mons, 7000 Mons, Belgium

A new hybrid finite element method–boundary element method (FEM–BEM) scheme is proposed for the solution of the nonlinear
2-D Laplace problem. The novelty is an original approach of the BEM where the domain integrals are eliminated at the discrete
level by using the FEM approximation of the fundamental solution at every node of the related mesh in the linear regions. The
implementation of this FEM-Green approach requires less computational burden than the standard BEM. The coupling with FEM
is straightforward and appears to be more natural. The validity of the method is examined through numerical examples.

Index Terms— Boundary element method–finite element method (BEM–FEM) coupling, Green function, Laplace problem, nonlinear
material.

I. INTRODUCTION

VARIOUS coupling strategies of the finite element
method (FEM) and the boundary element method (BEM)

have been developed to exploit the complementary advantages
of both methods, i.e., the flexibility of the FEM for taking
into account nonhomogeneous and nonlinear materials, and the
natural ability of the BEM to consider unbounded domains,
see e.g., [1], [2]. While the FEM is based on the Galerkin
approximation of a weak or variation formulation, the standard
BEM is generally deduced from the use of the second Green’s
identity for reducing domain integrals into boundary ones [1].

In contrast to this classical approach, an alternative, FEM-
Green formulation, is proposed for the BEM part of the
coupling [3]. It is based on the FEM approximation of Green’s
functions [4], and on the concept of nodal “cap” flux [5].
More precisely, the domain integrals of the actual BEM region
are eliminated by combining the Galerkin formulation of the
boundary value problem under study and the one associated
with the fundamental solution for Dirac delta loading every
node of a finite element mesh of this region. Only the finite ele-
ments directly connected to the boundary are actually required
in order to well-define the nodal fluxes. The implementation of
this new scheme requires less costly mathematical operations
and the coupling with the standard FEM used in the FEM
part is more natural. The method is applied to 2-D (in plane
and axisymmetric) Laplace problems and is validated by some
practical examples with open boundary and nonlinear domains.

II. MATHEMATICAL MODEL DESCRIPTION

The novelty of our FEM–BEM coupling concerns the BEM
part that is used in the linear, possibly unbounded, domain we
denote �1. The classical BEM formulation is replaced by an
FEM-Green formulation consisting of a particular FEM treat-
ment using the fundamental solution of the boundary value
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Fig. 1. General configuration for the 2-D Laplace problem and the
FEM/FEM-Green treatment. Subdomains �1 and �2 are separated with the
interface �int .

problem. The domain integral is eliminated at the discrete level
instead of using the second Green’s identity. First, we briefly
recall the classical BEM. Then we will derive the FEM-Green
formulation. The coupling with FEM applied to a nonlinear
or nonhomogeneous region �2 will be straightforward. The
method is applied to the general configuration of the 2-D
Laplace problem as depicted in Fig. 1.

A. Classical BEM

Due to a reduced mesh task and a natural open problem
treatment capability, the BEM has been used for many years in
mechanical and electrical engineering. In potential problems,
the degrees of freedom are typically potential and normal
derivative values are interpolated over the boundary elements.
A system of linear equations is obtained for the unknowns at
the boundary points. Then values of interest at internal points
in the domain can be calculated separately.

Consider the Laplace equation defined on the domain �1

∇2u =0 in �1, with u=u1 on �u1 and
∂u

∂n
=0 on �n1. (1)

The classical BEM formulation is based on the fundamental
solution Gi = −1/2π ln ri of the governing equation, which is
defined as

∇2Gi = −δi in �1, with Gi = − 1

2π
ln ri on ∂�1 (2)

where δi is the Dirac delta function at any point i .
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Fig. 2. Typical finite element triangular mesh and barycentric “box” � j
(“cap” � j � ) for an internal (boundary) node j ( j �).

Using Green’s second identity applied to (1) and (2),
the domain integrals are eliminated yielding

ci ui =
∮

∂�1

(
u

∂Gi

∂n
− Gi

∂u

∂n

)
d�. (3)

The geometric factor ci is equal to the ratio θi/2π , where θi

is the internal angle at node i , i.e., 1 at internal points and,
e.g., 1/2 at boundary nodes in case of a smooth boundary. The
discretization ∂̂�1 of the boundary ∂�1 into n elements � j

and n associated nodes i leads to the well-known statement

ci ûi =
∑

j∈∂̂�1

∫
� j

∂Gi

∂n
ûd� −

∑
j∈∂̂�1

∫
� j

Gi q̂d� ∀i ∈ ∂̂�1 (4)

where q̂ denotes the approximate normal derivative. The
boundary potential û and flux q̂ are typically interpolated
linearly on every element � j . The various integrals can
be solved analytically or numerically. After prescribing the
boundary conditions, the procedure leads to a consistent (fully
populated) linear system of equations of which the solution
consists of the unknown nodal values ûi and q̂i .

B. FEM-Green Formulation

Consider now the Galerkin problem related to (1)∫
�̂1

∇û·∇N j d� = 0 ∀ j ∈ �̂1\�̂u1, û = u1 on �̂u1 (5)

where the N j ’s are the classical interpolation functions defined
on a finite element mesh �̂1 of the domain �1 (Fig. 2). The
approximate solution û is given by

û =
∑
k∈�̂1

Nk ûk . (6)

On combining (5) and (6), a sparse system of linear equations
is obtained, of which the matrix entries are found to be

s jk =
∫

�̂1

∇N j ·∇Nk d�. (7)

When using linear elements, it is shown in [5] that the term

	û,� j
=

∫
�̂1

∇û·∇N j d� =
∑
k∈�̂1

s jk ûk ∀ j ∈ �̂1 (8)

is equal to the inward flux of ∇û across the “box” � j

associated with node j in the dual mesh obtained from the
barycentric subdivision of the primal 2-D mesh as shown in
Fig. 2. Equation (5) means that those fluxes vanish for nodes
j ∈ �̂1\�̂u1 whereas they can be interpreted as the flux of ∇û

through “caps” associated with Dirichlet boundary nodes like
j � ∈ �̂u1. In the following, the parameters 	û,� j

are used in
place of the approximation of the normal derivative q̂ given
by the standard BEM.

As in the standard BEM, the 2-D fundamental solution Gi

of Laplace’s equation is employed in order to eliminate the
domain integral. Due to its singularity of the solution, Gi lies
outside Sobolev space H 1. However, an FEM solution does
exist [4] and is readily derived from the Galerkin problem
associated with the formulation (2)∫

�̂1

∇Ĝi ·∇N j d� =
∫

�̂1

δi N j d�

∀ j ∈ �̂1\∂̂�1,Ĝi = Gi on ∂̂�1. (9)

Again, the FEM solution Ĝi is expressed as

Ĝi =
∑
j∈�̂1

N j Ĝi, j . (10)

For any internal node i of the mesh �̂1, in the same way as
for û given by (8), we can write the nodal approximation

	Ĝi ,� j
=

∫
�̂1

∇Ĝi ·∇N j d� =
∑
k∈�̂1

s jkĜi,k ∀ j ∈ �̂1. (11)

Note that we have 	Ĝi ,�i
= 1.

Using successively (5)–(8) and (10), we get

∫
�̂1

∇û·∇Ĝi d� =
∑
j∈�̂1

⎛
⎝∑

k∈�̂1

s jk ûk

⎞
⎠Ĝi, j

=
∑

j∈�̂u1∪�̂int

	û,� j
Ĝi, j . (12)

Conversely, using (6), adapted to Ĝi , (11) instead of (8), and
the boundary conditions for u, we can write

∫
�̂1

∇Ĝi ·∇ûd� =
∑
j∈�̂1

⎛
⎝∑

k∈�̂1

s jkĜi,k

⎞
⎠û j

= ûi +
∑

j∈�̂n1∪�̂int

	Ĝi ,� j
û j +

∑
j∈�̂u1

	Ĝi ,� j
û1.

(13)

Equating (12) and (13) yields the following expression:
ûi +

∑
j∈�̂n1

∪�̂int

	Ĝi ,� j
û j +

∑
j∈�̂u1

	Ĝi ,� j
û1 =

∑
j∈�̂u1

∪�̂int

Ĝi, j 	û,� j
(14)

where the domain contribution is eliminated as expected.
In order to derive a consistent linear system of equations,

(14) must now be written for all the nodes i belonging to the
boundary ∂̂�1. Hence, the boundary condition of the problem
(2) must be changed by introducing a Neumann condition in
a neighborhood εi of i on ∂�1, such that |εi | → 0

Gi = − 1

2π
ln ri on ∂�1\{εi} and

∂Gi

∂n
= 0 on {εi}. (15)
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So that the Galerkin formulation (9) is replaced by∫
�̂1

∇Ĝi ·∇ N j d� = δi j ci ∀ j ∈ (
�̂1\∂̂�1

) ∪ {i},Ĝi

= Gi on ∂̂�1\{i} (16)

where δi j is the common Kronecker symbol and ci is the same
geometric factor as used in (3). From Gauss law at the discrete
level, it can be easily shown that, in our FEM-Green context

ci = 	Ĝi ,� i
and ci +

∑
j∈∂̂�1\{i}

	Ĝi ,� j
= 0. (17)

Finally, the boundary element scheme amounts to solve simul-
taneously the n equations

ci ûi +
∑

j∈�̂n1∪�̂int�=i

	Ĝi ,� j
û j +

∑
j∈�̂u1�=i

	Ĝi ,� j
û1

=
∑

j∈�̂u1∪�̂int

Ĝ i, j	û,� j
∀i ∈ ∂̂�1 (18)

yielding unknown potential values û j and flux values 	û,� j

depending on the boundary conditions.
At this point, the solution is the same as the one of (5)

since (18) was derived by choosing test functions as a lin-
ear combination of the hat functions N j in (12) and (13).
However, in doing so, it would require the computation of
the FEM approximations Ĝi that is nonsense and highly time-
consuming. Coefficients 	Ĝi ,� j

and Ĝi are then modified by
using the exact fundamental solutions Gi instead of Ĝi , i.e., the
interpolant

Gi,I =
∑
j∈�̂1

N jGi ( j) = −
∑
j∈�̂1

N j
1

2π
ln ri j (19)

where ri j is the distance between nodes i and j . The infinite
value Gi (i) is replaced by a value G∗

i,i
that is derived by solving

simultaneously the discrete Gauss laws (17), that is

ĉi =
∑
k �=i

sikGi (k) + siiG∗
i,i

(20a)

and

ĉi +
∑

j∈∂̂�1\{i}

⎛
⎝∑

k �=i

s jkGi (k) + s jiG∗
i,i

⎞
⎠ = 0. (20b)

In the same time, an estimate geometric factor ĉi is obtained.
Importantly, it is not necessary to mesh the whole domain

when the interpolant Gi,I is used since the internal nodes
are not involved in (18). A single layer of finite elements
along the boundary ∂�1 (in light gray in Fig. 1) is sufficient.
Any internal mesh of �1 is used for field calculation at a
postprocessing step.

The computational effort to build the linear system (18)
scales as O(\∈) as in classical BEM. As no integration using
a Gaussian quadrature is required to compute the modified
coefficients 	Gi,I ,� j

, ĉi , Gi ( j), and G∗
i,i

of (18), a significant
reduction in the computational burden is expected.

C. FEM/FEM-Green Coupling

In order to write the complete set of equations associ-
ated with the hybrid FEM/FEM-Green, the Galerkin problem
related to the finite element domain �2 must now be derived.
By referring to Fig. 1, the governing equation is

∇ · k∇u = 0 in �2, u = u2 on �u2,
∂u

∂n
= 0 on �n2 (21)

where k is the nonhomogeneous or nonlinear material property
of the region �2. The FEM problem is given by the equations∫

�̂2

k∇û·∇N j d� = 0 ∀ j ∈ �̂2\�̂u2\�̂int,û = u2 on �u2

(22a)∫
�̂2

k∇û·∇N j d� = −	û,� j
∀ j∈�̂int. (22b)

The latter, (22b), expresses the flux continuity of k∇û, across
the interface, assuming k =1 in the BEM region for simplicity.
Finally, the global system of algebraic equations of the whole
problem is obtained by combining (18) and (22). It may be
expressed as the partitioned matrix form

⎛
⎜⎜⎝

−G11 −G1i H11 H1i 0
−Gi1 −Gii Hi1 Hii 0

0 1i 0 Sii Si2

0 0 0 S2i S22

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

�1

�i

û1

ûi

û2

⎞
⎟⎟⎟⎟⎠= b (23)

where the unknown vectors �1,and �i refer to the nodal
flux values on �̂u1 and �̂int, respectively, and û1, ûi , and
û2 are related to the nodal potential values on �̂n1, �̂int,
and �̂2 ∪ �̂n2, respectively. Global blocks H and G(= GT)
represent the FEM-Green equations with the entries 	Gi,I ,� j

and Gi ( j) or G∗
i,i

, respectively. Global block S comes from the
FEM contribution. As for most FEM/BEM coupling methods,
this matrix has no special structure, i.e., neither symmetric nor
positive definite. The right hand side b relates to the Dirichlet
boundary conditions.

III. NUMERICAL RESULTS

Two examples are presented to verify the validity of the pro-
posed method and a comparison with classical techniques. All
the algorithms were implemented in the MATLAB environ-
ment on a standard desktop computer. The lower–upper (LU)
decomposition was used for the solution of the involved linear
systems.

A. Example 1–Circular Coaxial Configuration

The first example is a linear Dirichlet problem defined
on a circular coaxial configuration as depicted in Fig. 3.
The field computation of this academic case is performed by
using the FEM, the classical FEM/BEM coupling [1] and our
FEM/FEM-Green method, respectively. In order to be general,
a numerical integration (seven-point Gaussian quadrature) has
been applied for the computation of the BEM integrals.
Analytical integration could be applied [6], but it is not always
possible as, e.g., in the axisymmetric case (see Section III-B).
The global mesh size m has been considered as a parameter.

Authorized licensed use limited to: University of Exeter. Downloaded on June 02,2021 at 08:55:16 UTC from IEEE Xplore.  Restrictions apply. 



7401504 IEEE TRANSACTIONS ON MAGNETICS, VOL. 57, NO. 6, JUNE 2021

Fig. 3. Circular coaxial configuration and plot of û along the line AB
(dimensions in arbitrary units).

TABLE I

RELATIVE ERROR ON THE ENERGY

TABLE II

MEASURED COMPUTATIONAL TIME (s) FOR m = 18 918

Fig. 4. Description of the dc cable termination and FEM/FEM-Green mesh.

The potential plot along the line AB is displayed in Fig. 3
for m = 5122. It demonstrates a very good agreement between
all the methods. In a more quantitative way, Table I shows that
the relative error in energy norm square, with respect to the
analytical solution, is almost the same whatever the method.
It is verified that it converges to zero as O(�−∈).

Computational times shown in Table II clearly show a
better performance of our method. It is due to far less
mathematical operations involved in the computation of the
coefficients occurring in submatrices H and G, with respect to
the standard BEM, as can be seen by inspecting (18) and (11),
see also [3]. Our approach remains competitive in case of
analytical integrations by carefully comparing the number of
operations [6].

B. Example 2–Cable Termination

The second example is more applicative. It deals with
a dc cable termination with linear and nonlinear materials
(Fig. 4) [7]. The problem is axisymmetric and the open
boundary is taken into account in the implementation of our
method. To simplify the implementation, the nonlinearity in
the material property (conductivity σ) is treated here by simple
iteration with underrelaxation for stability. The FEM-Green
method is compared to FEM where a bounding box of radius R

Fig. 5. Plot of the electric potential û along the line AB.

with zero Dirichlet boundary condition is applied. The electric
potential û along the line AB is plotted in Fig. 5 for FEM with
various R values and for FEM/FEM-Green. Convergence is
observed as the box size increases in size, as expected. Again,
the relative error ε in the resistive heating Q calculated in
the solid insulating parts of the termination is very similar
whatever the method, FEM/FEM-Green or FEM (ε = 7.7 ×
10−3 for 1933 elements in the solid insulating parts, and the
reference value is derived from a simulation with a very fine
mesh). Comparing both methods, a reduction in CPU time is
obtained with the FEM-Green, roughly by a factor of 5.

The axisymmetric fundamental solution is expressed in
terms of complete elliptic integrals of the first kind [1].
An interest of our approach is that no complete elliptic
integrals of the second kind are to be treated since the normal
derivative of G is not involved, as it would be the case in
classical BEM (not implemented here).

IV. CONCLUSION

The FEM/FEM-Green method presented in this article can
take nonlinear material properties and open boundary prob-
lems into account, as other FEM/BEM coupling schemes
usually do. An accuracy very close to other standard methods
has been demonstrated. The advantages of the FEM-Green
approach of the BEM part are a substantially reduced compu-
tational burden and a natural coupling with FEM, thanks to the
cap flux concept. Our method can be extended to 3-D problems
and higher order elements. However, in the latter case, the
geometrical interpretation of the nodal flux is not so obvious
as with the linear elements, but it remains a representative vari-
able. Those aspects should be investigated in the future work.
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