

Effects of ionizing radiation in semiconductor devices: simulation with *Geant4*

Louise LEGER ^a, Alexandre QUENON ^b, Evelyne DAUBIE ^c and Fortunato DUALIBE ^d

^a Louise.LEGER@student.umons.ac.be; ^b Alexandre.QUENON@umons.ac.be; ^c Evelyne.DAUBIE@umons.ac.be; ^d Fortunato.DUALIBE@umons.ac.be

Goal of this work to analyze and simulate the effects of ionizing radiation on silicon-based integrated circuits.

When ionizing radiations collide with a semiconductor, they create electron-hole pairs:

- α and β particles progressively lose their kinetic energy when crossing the material
- γ rays pass through or are absorbed (photoelectric, Compton effect or e+e- pair production)
- → secondary charged particles if absorbed
- neutron particles interact with nuclei either elastically or inelastically \rightarrow Si atoms recoil or secondary particles

Depending on the nature and energy of the ionizing radiations, their stopping power in matter is different. From least to most penetrating: alpha, beta, gamma and neutron.

https://v2.mirion.com/introduction-to-radiation-safety/types-of-ionizing-radiation/

Simulations

Tool

Aim: determination of the charge (number of deposited electron-hole pairs) in a block of silicon by ionizing radiations.

software Geant4 (for Geometry and Tracking) developed by CERN

output = absorbed dose value & tracking visualization

platform for the simulation of the passage of radiations through matter, using Monte Carlo methods [1]

Our work: implementation of a block of silicon of variable width (2 x 2 x z cm³) inside an air envelope (2 x 2 x 3 cm³).

Studied parameters

- block's thickness
- incident radiations' properties including:
 - type (alpha...),
 - number of particles, and

- energy.

Visualisation of the silicon block on Geant4

For integrated circuits fabrication, the silicon is doped. Nevertheless, considering the low concentration of dopants (typically maximum 10¹⁸ atoms/cm³ of dopants for approximately 10²² atoms/cm³ in intrinsic crystalline silicon), simulating a block of pure silicon is a good approximation.

Results

Summary: dose (output of GEANT4) for different types of ionizing radiations as a function of silicon thickness or kinetic energy.

Comments:

- electrons lose their kinetic energy gradually with a longer range

Validation: The dose values obtained as well as their variation vs Si thickness are consistent with the way that the ionizing radiations are expected to interact in a solid silicon layer.

6 MeV radiation \longrightarrow path in Silicon [2][3] α range ≈ 30 μm, β range ≈ 1.5 cm, γ half-value-layer ≈ 15 cm

compared to $\alpha \longrightarrow$ the dose slowly increases with thickness

- fast MeV neutrons interact mainly by nuclear elastic scattering processes
 - ionizing energy deposition due to recoil Si atoms
- → few ionization events in Si layer
- γ flux decreases exponentially $N(x) = N_0 e^{-\mu x}$
 - \longrightarrow the number of γ stopped in Si increases with thickness.
- α radiations interact strongly with matter → loss an important part of their energy in a 3 cm thick air layer before reaching the silicon block → fully stopped by 3 cm of air + 100 µm Si.

References

[1] https://geant4.web.cern.ch/

[2]https://www.nist.gov/pml/stopping-power-range-tables-electrons-protons-and-helium-ions [3]https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients

Conclusion and future work

- neutron radiations: further studies are needed in order to understand the importance of Non-Ionizing Energy Loss events → possible damages in the Si lattice.
- β radiations lead to the highest dose in Si. Computation of the deposited charge (number of e-h pairs) from the passage of 100 000 ionizing β radiations of 6 MeV in a 500 µm thick silicon block:

 $D \approx 8 \ \mu Gy \longrightarrow \Delta Q \approx 0.6 \ nC$

• Further simulation studies: passage of ionizing radiations in doped Si, pn junctions, circuits to evaluate the intensities of transient currents created by charge deposition.

Acknowledgements: thanks to Joseph Hanton and William Van Hoeck for their help in software installation.

University of Mons

Faculty of Engineering — Electronics and Microelectronics Unit