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Basic idea

M.(e) 7→ σM(e)

Operators,... in the expression e are overloaded according to the
overloadings defined for the module name M.
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Basic use

Float.(1 + x * f 4)

Float.(4 * u**2 / sqrt(abs alpha))

Hashtbl.(h.(key) <- x)

+ Literals, functions, and “constant constructions” substitution.
+ Better readability.

Big int.(if x > 0 then 1 + x else 0)

+ Can use the usual comparison operators.

Int32.(4 + a.(Int.(1 + x)))

+ Nested overloadings.
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Static checks & simple optimizations

Num.("12345678" + x)

+ Compile time check.
If one writes Num.("a12"), when compiling, the following error is
issued

Parse error: The string "a12" does not represent a

valid Num.

Preprocessing error on file foo.ml

Float.((x+1)**2)

+ Simple optimization. The whole expression is substituted by
(binding introduced only if needed):

let tmp = x +. 1.0 in tmp *. tmp
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Complex numbers

Complex.(let z = 3 + 2 I in sin(z * z))

+ “I” notation.
+ Let binding are allowed.
+ Complex functions like sin, cos,... are inlined.
For example,

Complex.((2 + 3 I) * f x)

is turned into

let tmp = f x in

{ Complex.re = (tmp.Complex.re *. 2.0) -.

(tmp.Complex.im *. 3.0);

Complex.im = (tmp.Complex.re *. 3.0) +.

(tmp.Complex.im *. 2.0); }
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Summary

pa do.cmo provides overloadings for

Int Float Hashtbl

Int32 Complex String

Int64

Nativeint

pa do nums.cmo provides overloadings for

Num

Ratio

Big int

+ Requires nums.cmo to be loaded by camlp4 for static checks.
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Concrete syntax v.s. API

Concrete syntax API

In the source file In a separate file

Must be repeated in each file Can be bundled with a library

No possibility of overloading
general expressions

One can overload general ex-
pressions and perform some
optimizations

Demo
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“Set of overloadings”

Constructions that can be overloaded:
literals
‘x

a.(i)

a.(i) <- x

a.[i]

a.[i] <- x

a.{i}
a.{i} <- x

a := x

a <- x

a.p

functions & operators overloadings
general substitutions
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How to overload one’s own module (1/2)

module Foo :

sig

type t

val of int : int -> t

val compare : t -> t -> int

val add : t -> t -> t

val mul : t -> t -> t

end

Overloading with the concrete syntax:

int literals: OVERLOAD INT Foo (of int)

comparison: OVERLOAD COMPARISON Foo (compare)

functions:
OVERLOAD Foo ( ( + ) -> add; ( * ) -> mul )
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How to overload one’s own module (2/2)

Remarks

If Foo implements all standard functions add, sub, mul, div
and neg (unary negation):
+ OVERLOAD ARITHMETIC Foo.

If a new module is implemented:

module Special foo :

sig

include Foo

val sub : t -> t -> t

end

+ OVERLOAD Special foo inherit Foo

+ OVERLOAD Special foo ( ( - ) -> sub )
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Some more examples

Basin of attraction of Newton’s method for z3 = 1.

Complex.(

let z = ref z0 in

for i = Int.(1) to niter do

z := (2 * !z + 1 / !z**2) / 3

done;

if abs(!z - root0) <= r then Some color0

. . . )

Let D = 1.7. If p = [p0; . . . ; pn] represents the polynomial∑n
i=0 piz

i , its norm is (here) defined by ‖p‖ :=
∑n

i=0|pi |D i

let domain = Interval.(17 / 10)

let norm p = Interval.(List.fold right (fun c n ->

abs c + domain * n) p 0)
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Priority and associativity of operators

pa infix.cmo

Concrete syntax:

INFIX ( %+ ) RIGHTA HIGHER (+)

INFIX ( ^* ) LEVEL (+)

PREFIX ( /+/ )

POSTFIX ( /// ) LEVEL ( ! )

API: treat a = b |> c as a = (b |> c) and replace x |> f by
f x:

open Pa infix

module L = Level

let l = L.binary (L.Higher L.comparison) ∼assoc:L.LeftA in

let expr x y loc = <:expr< $y$ $x$ >> in

infix "|>" ∼expr l
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Collaboration with Delimited Overloading

DEFINE NEWTON(M,x) = M.( (2 * x + 1 / x**2) / 3 )

Use it as

NEWTON(Float, r)

NEWTON(Complex, z)

+ Poor man defunctorizer;
+ Contrarily to functors, requalifies constants.



Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Better error reporting

DEFINE A(x) =

let s = ref 0.0 in

for i = 1 to x do

s := !s + float i

done;

s

let () = print float(A(100))

With the standard macros:

File "...", line 8, characters 21-27:

This expression has type float but is here used with type

int



Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Better error reporting

DEFINE A(x) =

let s = ref 0.0 in

for i = 1 to x do

s := !s + float i

done;

s

let () = print float(A(100))

With Delimited Overloading macros:

File "...", line 8, characters 21-27:

Expanding of the macro "A" at the previous location yields

the error:

File "...", line 4, characters 11-13:

This expression has type float but is here used with type

int
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Optimization for complex operators

Complex.((2 + 3 I) * f x)

1 Classify subexpressions according to

type t =

| Zero

| Re of Ast.expr

| Im of Ast.expr

| Cplx of Ast.expr * Ast.expr

| Unknown of Ast.expr

2 Specialize complex functions, introducing bindings as needed.
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Nested overloading (1/3)

M.(e) 7→ σM(e)

where σM : expression→ expression

Problem encountered:

Int32.(a.(Int.(0)) <- 7 + x)yapply σInt; here σInt(0) = 0

Int32.(a.(0) <- 7 + x)yapply σInt32

a.(0l) <- Int32.add 7l x

Problem!

+ Protection of already overloaded expressions
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Nested overloading (2/3)

Requirements:

σInt(0) must be a valid expression;

it must not change the meaning of the program nor its
performance;

locations must not be affected (for correct error reporting).

Solution:

M.(e) 7→ p(σM(e))

where p is an undeclared function name!

+ p is removed by the surrounding overloading ⇒ global flag to know whether to insert π.

+ external p : α → α = "%identity" forbid some optimizations to take place!
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Nested overloading (3/3)

Int32.(a.(Int.(0)) <- 7 + x)yInt.(0) = p(σInt(0)) = p(0)

Int32.(a.(p(0)) <- 7 + x)yapply σInt32

p(a.(0) <- Int32.add 7l x)

OK!
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General substitution of expressions M.(e)

π

basic overloadings

Ast.map#expr

Substituted expression

Original expression e

f1
super

self

f2
super

self

fn

super

super

self

super
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Thank you for your attention...

and to Sylvain Le Gall, Alan Schmitt, and Serge Leblanc for
organizing this meeting.
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