
Delimited overloading

Christophe Troestler

Institut de Mathématique
Université de Mons-Hainaut

Mons, Belgium

OCaml users meeting
February 4, 2009

Grenoble

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Acknowledgments

This project was started thanks to the support of

who sponsored

Dany Maslowski and

Julie De Pril

during their OCaml summer projet 2008.

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Outline

1 Standard Overloadings

2 Defining overloadings

3 Priority & associativity

4 Macros

5 Some technical details

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Outline

1 Standard Overloadings

2 Defining overloadings

3 Priority & associativity

4 Macros

5 Some technical details

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Basic idea

M.(e) 7→ σM(e)

Operators,... in the expression e are overloaded according to the
overloadings defined for the module name M.

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Basic use

Float.(1 + x * f 4)

Float.(4 * u**2 / sqrt(abs alpha))

Hashtbl.(h.(key) <- x)

+ Literals, functions, and “constant constructions” substitution.
+ Better readability.

Big int.(if x > 0 then 1 + x else 0)

+ Can use the usual comparison operators.

Int32.(4 + a.(Int.(1 + x)))

+ Nested overloadings.

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Basic use

Float.(1 + x * f 4)

Float.(4 * u**2 / sqrt(abs alpha))

Hashtbl.(h.(key) <- x)

+ Literals, functions, and “constant constructions” substitution.
+ Better readability.

Big int.(if x > 0 then 1 + x else 0)

+ Can use the usual comparison operators.

Int32.(4 + a.(Int.(1 + x)))

+ Nested overloadings.

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Basic use

Float.(1 + x * f 4)

Float.(4 * u**2 / sqrt(abs alpha))

Hashtbl.(h.(key) <- x)

+ Literals, functions, and “constant constructions” substitution.
+ Better readability.

Big int.(if x > 0 then 1 + x else 0)

+ Can use the usual comparison operators.

Int32.(4 + a.(Int.(1 + x)))

+ Nested overloadings.

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Static checks & simple optimizations

Num.("12345678" + x)

+ Compile time check.
If one writes Num.("a12"), when compiling, the following error is
issued

Parse error: The string "a12" does not represent a

valid Num.

Preprocessing error on file foo.ml

Float.((x+1)**2)

+ Simple optimization. The whole expression is substituted by
(binding introduced only if needed):

let tmp = x +. 1.0 in tmp *. tmp

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Static checks & simple optimizations

Num.("12345678" + x)

+ Compile time check.
If one writes Num.("a12"), when compiling, the following error is
issued

Parse error: The string "a12" does not represent a

valid Num.

Preprocessing error on file foo.ml

Float.((x+1)**2)

+ Simple optimization. The whole expression is substituted by
(binding introduced only if needed):

let tmp = x +. 1.0 in tmp *. tmp

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Complex numbers

Complex.(let z = 3 + 2 I in sin(z * z))

+ “I” notation.
+ Let binding are allowed.
+ Complex functions like sin, cos,... are inlined.
For example,

Complex.((2 + 3 I) * f x)

is turned into

let tmp = f x in

{ Complex.re = (tmp.Complex.re *. 2.0) -.

(tmp.Complex.im *. 3.0);

Complex.im = (tmp.Complex.re *. 3.0) +.

(tmp.Complex.im *. 2.0); }

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Complex numbers

Complex.(let z = 3 + 2 I in sin(z * z))

+ “I” notation.
+ Let binding are allowed.
+ Complex functions like sin, cos,... are inlined.
For example,

Complex.((2 + 3 I) * f x)

is turned into

let tmp = f x in

{ Complex.re = (tmp.Complex.re *. 2.0) -.

(tmp.Complex.im *. 3.0);

Complex.im = (tmp.Complex.re *. 3.0) +.

(tmp.Complex.im *. 2.0); }

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Summary

pa do.cmo provides overloadings for

Int Float Hashtbl

Int32 Complex String

Int64

Nativeint

pa do nums.cmo provides overloadings for

Num

Ratio

Big int

+ Requires nums.cmo to be loaded by camlp4 for static checks.

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Summary

pa do.cmo provides overloadings for

Int Float Hashtbl

Int32 Complex String

Int64

Nativeint

pa do nums.cmo provides overloadings for

Num

Ratio

Big int

+ Requires nums.cmo to be loaded by camlp4 for static checks.

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Outline

1 Standard Overloadings

2 Defining overloadings

3 Priority & associativity

4 Macros

5 Some technical details

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Concrete syntax v.s. API

Concrete syntax API

In the source file In a separate file

Must be repeated in each file Can be bundled with a library

No possibility of overloading
general expressions

One can overload general ex-
pressions and perform some
optimizations

Demo

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Concrete syntax v.s. API

Concrete syntax API

In the source file In a separate file

Must be repeated in each file Can be bundled with a library

No possibility of overloading
general expressions

One can overload general ex-
pressions and perform some
optimizations

Demo

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

“Set of overloadings”

Constructions that can be overloaded:
literals
‘x

a.(i)

a.(i) <- x

a.[i]

a.[i] <- x

a.{i}
a.{i} <- x

a := x

a <- x

a.p

functions & operators overloadings
general substitutions

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

How to overload one’s own module (1/2)

module Foo :

sig

type t

val of int : int -> t

val compare : t -> t -> int

val add : t -> t -> t

val mul : t -> t -> t

end

Overloading with the concrete syntax:

int literals: OVERLOAD INT Foo (of int)

comparison: OVERLOAD COMPARISON Foo (compare)

functions:
OVERLOAD Foo ((+) -> add; (*) -> mul)

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

How to overload one’s own module (1/2)

module Foo :

sig

type t

val of int : int -> t

val compare : t -> t -> int

val add : t -> t -> t

val mul : t -> t -> t

end

Overloading with the concrete syntax:

int literals: OVERLOAD INT Foo (of int)

comparison: OVERLOAD COMPARISON Foo (compare)

functions:
OVERLOAD Foo ((+) -> add; (*) -> mul)

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

How to overload one’s own module (1/2)

module Foo :

sig

type t

val of int : int -> t

val compare : t -> t -> int

val add : t -> t -> t

val mul : t -> t -> t

end

Overloading with the concrete syntax:

int literals: OVERLOAD INT Foo (of int)

comparison: OVERLOAD COMPARISON Foo (compare)

functions:
OVERLOAD Foo ((+) -> add; (*) -> mul)

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

How to overload one’s own module (1/2)

module Foo :

sig

type t

val of int : int -> t

val compare : t -> t -> int

val add : t -> t -> t

val mul : t -> t -> t

end

Overloading with the concrete syntax:

int literals: OVERLOAD INT Foo (of int)

comparison: OVERLOAD COMPARISON Foo (compare)

functions:
OVERLOAD Foo ((+) -> add; (*) -> mul)

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

How to overload one’s own module (2/2)

Remarks

If Foo implements all standard functions add, sub, mul, div
and neg (unary negation):
+ OVERLOAD ARITHMETIC Foo.

If a new module is implemented:

module Special foo :

sig

include Foo

val sub : t -> t -> t

end

+ OVERLOAD Special foo inherit Foo

+ OVERLOAD Special foo ((-) -> sub)

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

How to overload one’s own module (2/2)

Remarks

If Foo implements all standard functions add, sub, mul, div
and neg (unary negation):
+ OVERLOAD ARITHMETIC Foo.

If a new module is implemented:

module Special foo :

sig

include Foo

val sub : t -> t -> t

end

+ OVERLOAD Special foo inherit Foo

+ OVERLOAD Special foo ((-) -> sub)

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Some more examples

Basin of attraction of Newton’s method for z3 = 1.

Complex.(

let z = ref z0 in

for i = Int.(1) to niter do

z := (2 * !z + 1 / !z**2) / 3

done;

if abs(!z - root0) <= r then Some color0

. . .)

Let D = 1.7. If p = [p0; . . . ; pn] represents the polynomial∑n
i=0 piz

i , its norm is (here) defined by ‖p‖ :=
∑n

i=0|pi |D i

let domain = Interval.(17 / 10)

let norm p = Interval.(List.fold right (fun c n ->

abs c + domain * n) p 0)

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Some more examples

Basin of attraction of Newton’s method for z3 = 1.

Complex.(

let z = ref z0 in

for i = Int.(1) to niter do

z := (2 * !z + 1 / !z**2) / 3

done;

if abs(!z - root0) <= r then Some color0

. . .)

Let D = 1.7. If p = [p0; . . . ; pn] represents the polynomial∑n
i=0 piz

i , its norm is (here) defined by ‖p‖ :=
∑n

i=0|pi |D i

let domain = Interval.(17 / 10)

let norm p = Interval.(List.fold right (fun c n ->

abs c + domain * n) p 0)

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Outline

1 Standard Overloadings

2 Defining overloadings

3 Priority & associativity

4 Macros

5 Some technical details

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Priority and associativity of operators

pa infix.cmo

Concrete syntax:

INFIX (%+) RIGHTA HIGHER (+)

INFIX (^*) LEVEL (+)

PREFIX (/+/)

POSTFIX (///) LEVEL (!)

API: treat a = b |> c as a = (b |> c) and replace x |> f by
f x:

open Pa infix

module L = Level

let l = L.binary (L.Higher L.comparison) ∼assoc:L.LeftA in

let expr x y loc = <:expr< y x >> in

infix "|>" ∼expr l

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Outline

1 Standard Overloadings

2 Defining overloadings

3 Priority & associativity

4 Macros

5 Some technical details

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Collaboration with Delimited Overloading

DEFINE NEWTON(M,x) = M.((2 * x + 1 / x**2) / 3)

Use it as

NEWTON(Float, r)

NEWTON(Complex, z)

+ Poor man defunctorizer;
+ Contrarily to functors, requalifies constants.

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Better error reporting

DEFINE A(x) =

let s = ref 0.0 in

for i = 1 to x do

s := !s + float i

done;

s

let () = print float(A(100))

With the standard macros:

File "...", line 8, characters 21-27:

This expression has type float but is here used with type

int

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Better error reporting

DEFINE A(x) =

let s = ref 0.0 in

for i = 1 to x do

s := !s + float i

done;

s

let () = print float(A(100))

With Delimited Overloading macros:

File "...", line 8, characters 21-27:

Expanding of the macro "A" at the previous location yields

the error:

File "...", line 4, characters 11-13:

This expression has type float but is here used with type

int

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Outline

1 Standard Overloadings

2 Defining overloadings

3 Priority & associativity

4 Macros

5 Some technical details
Optimization for complex operators
Nested overloading
General substitution of expressions

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Optimization for complex operators

Complex.((2 + 3 I) * f x)

1 Classify subexpressions according to

type t =

| Zero

| Re of Ast.expr

| Im of Ast.expr

| Cplx of Ast.expr * Ast.expr

| Unknown of Ast.expr

2 Specialize complex functions, introducing bindings as needed.

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Nested overloading (1/3)

M.(e) 7→ σM(e)

where σM : expression→ expression

Problem encountered:

Int32.(a.(Int.(0)) <- 7 + x)yapply σInt; here σInt(0) = 0

Int32.(a.(0) <- 7 + x)yapply σInt32

a.(0l) <- Int32.add 7l x

Problem!

+ Protection of already overloaded expressions

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Nested overloading (1/3)

M.(e) 7→ σM(e)

where σM : expression→ expression

Problem encountered:

Int32.(a.(Int.(0)) <- 7 + x)yapply σInt; here σInt(0) = 0

Int32.(a.(0) <- 7 + x)yapply σInt32

a.(0l) <- Int32.add 7l x

Problem!

+ Protection of already overloaded expressions

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Nested overloading (1/3)

M.(e) 7→ σM(e)

where σM : expression→ expression

Problem encountered:

Int32.(a.(Int.(0)) <- 7 + x)yapply σInt; here σInt(0) = 0

Int32.(a.(0) <- 7 + x)yapply σInt32

a.(0l) <- Int32.add 7l x

Problem!

+ Protection of already overloaded expressions

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Nested overloading (1/3)

M.(e) 7→ σM(e)

where σM : expression→ expression

Problem encountered:

Int32.(a.(Int.(0)) <- 7 + x)yapply σInt; here σInt(0) = 0

Int32.(a.(0) <- 7 + x)yapply σInt32

a.(0l) <- Int32.add 7l x

Problem!

+ Protection of already overloaded expressions

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Nested overloading (1/3)

M.(e) 7→ σM(e)

where σM : expression→ expression

Problem encountered:

Int32.(a.(Int.(0)) <- 7 + x)yapply σInt; here σInt(0) = 0

Int32.(a.(0) <- 7 + x)yapply σInt32

a.(0l) <- Int32.add 7l x

Problem!

+ Protection of already overloaded expressions

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Nested overloading (1/3)

M.(e) 7→ σM(e)

where σM : expression→ expression

Problem encountered:

Int32.(a.(Int.(0)) <- 7 + x)yapply σInt; here σInt(0) = 0

Int32.(a.(0) <- 7 + x)yapply σInt32

a.(0l) <- Int32.add 7l x

Problem!

+ Protection of already overloaded expressions

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Nested overloading (1/3)

M.(e) 7→ σM(e)

where σM : expression→ expression

Problem encountered:

Int32.(a.(Int.(0)) <- 7 + x)yapply σInt; here σInt(0) = 0

Int32.(a.(0) <- 7 + x)yapply σInt32

a.(0l) <- Int32.add 7l x

Problem!

+ Protection of already overloaded expressions

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Nested overloading (1/3)

M.(e) 7→ σM(e)

where σM : expression→ expression

Problem encountered:

Int32.(a.(Int.(0)) <- 7 + x)yapply σInt; here σInt(0) = 0

Int32.(a.(0) <- 7 + x)yapply σInt32

a.(0l) <- Int32.add 7l x

Problem!

+ Protection of already overloaded expressions

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Nested overloading (1/3)

M.(e) 7→ σM(e)

where σM : expression→ expression

Problem encountered:

Int32.(a.(Int.(0)) <- 7 + x)yapply σInt; here σInt(0) = 0

Int32.(a.(0) <- 7 + x)yapply σInt32

a.(0l) <- Int32.add 7l x

Problem!

+ Protection of already overloaded expressions

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Nested overloading (2/3)

Requirements:

σInt(0) must be a valid expression;

it must not change the meaning of the program nor its
performance;

locations must not be affected (for correct error reporting).

Solution:

M.(e) 7→ p(σM(e))

where p is an undeclared function name!

+ p is removed by the surrounding overloading ⇒ global flag to know whether to insert π.

+ external p : α → α = "%identity" forbid some optimizations to take place!

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Nested overloading (2/3)

Requirements:

σInt(0) must be a valid expression;

it must not change the meaning of the program nor its
performance;

locations must not be affected (for correct error reporting).

Solution:

M.(e) 7→ p(σM(e))

where p is an undeclared function name!

+ p is removed by the surrounding overloading ⇒ global flag to know whether to insert π.

+ external p : α → α = "%identity" forbid some optimizations to take place!

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Nested overloading (2/3)

Requirements:

σInt(0) must be a valid expression;

it must not change the meaning of the program nor its
performance;

locations must not be affected (for correct error reporting).

Solution:

M.(e) 7→ p(σM(e))

where p is an undeclared function name!

+ p is removed by the surrounding overloading ⇒ global flag to know whether to insert π.

+ external p : α → α = "%identity" forbid some optimizations to take place!

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Nested overloading (2/3)

Requirements:

σInt(0) must be a valid expression;

it must not change the meaning of the program nor its
performance;

locations must not be affected (for correct error reporting).

Solution:

M.(e) 7→ p(σM(e))

where p is an undeclared function name!

+ p is removed by the surrounding overloading ⇒ global flag to know whether to insert π.

+ external p : α → α = "%identity" forbid some optimizations to take place!

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Nested overloading (3/3)

Int32.(a.(Int.(0)) <- 7 + x)yInt.(0) = p(σInt(0)) = p(0)

Int32.(a.(p(0)) <- 7 + x)yapply σInt32

p(a.(0) <- Int32.add 7l x)

OK!

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Nested overloading (3/3)

Int32.(a.(Int.(0)) <- 7 + x)yInt.(0) = p(σInt(0)) = p(0)

Int32.(a.(p(0)) <- 7 + x)yapply σInt32

p(a.(0) <- Int32.add 7l x)

OK!

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Nested overloading (3/3)

Int32.(a.(Int.(0)) <- 7 + x)yInt.(0) = p(σInt(0)) = p(0)

Int32.(a.(p(0)) <- 7 + x)yapply σInt32

p(a.(0) <- Int32.add 7l x)

OK!

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Nested overloading (3/3)

Int32.(a.(Int.(0)) <- 7 + x)yInt.(0) = p(σInt(0)) = p(0)

Int32.(a.(p(0)) <- 7 + x)yapply σInt32

p(a.(0) <- Int32.add 7l x)

OK!

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Nested overloading (3/3)

Int32.(a.(Int.(0)) <- 7 + x)yInt.(0) = p(σInt(0)) = p(0)

Int32.(a.(p(0)) <- 7 + x)yapply σInt32

p(a.(0) <- Int32.add 7l x)

OK!

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Nested overloading (3/3)

Int32.(a.(Int.(0)) <- 7 + x)yInt.(0) = p(σInt(0)) = p(0)

Int32.(a.(p(0)) <- 7 + x)yapply σInt32

p(a.(0) <- Int32.add 7l x)

OK!

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Nested overloading (3/3)

Int32.(a.(Int.(0)) <- 7 + x)yInt.(0) = p(σInt(0)) = p(0)

Int32.(a.(p(0)) <- 7 + x)yapply σInt32

p(a.(0) <- Int32.add 7l x)

OK!

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

General substitution of expressions M.(e)

π

basic overloadings

Ast.map#expr

Substituted expression

Original expression e

f1
super

self

f2
super

self

fn

super

super

self

super

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

General substitution of expressions M.(e)

π

basic overloadings

Ast.map#expr

Substituted expression

Original expression e

f1
super

self

f2
super

self

fn

super

super

self

super

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

General substitution of expressions M.(e)

π

basic overloadings

Ast.map#expr

Substituted expression

Original expression e

f1
super

self

f2
super

self

fn

super

super

self

super

self

self

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

General substitution of expressions M.(e)

π

basic overloadings

Ast.map#expr

Substituted expression

Original expression e

f1
super

self

f2
super

self

fn

super

super

self

super

self

self

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

General substitution of expressions M.(e)

π

basic overloadings

Ast.map#expr

Substituted expression

Original expression e

f1
super

self

f2
super

self

fn

super

super

self

super

self

self

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

General substitution of expressions M.(e)

π

basic overloadings

Ast.map#expr

Substituted expression

Original expression e

f1
super

self

f2
super

self

fn

super

super

self

super

self

self

Credits Outline Standard Overloadings Defining overloadings Priority & associativity Macros Some technical details

Thank you for your attention...

and to Sylvain Le Gall, Alan Schmitt, and Serge Leblanc for
organizing this meeting.

	Standard Overloadings
	Defining overloadings
	Priority & associativity
	Macros
	Some technical details
	Optimization for complex operators
	Nested overloading
	General substitution of expressions

