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ABSTRACT
Development bots are often used to automate a wide variety of
repetitive tasks in collaborative software development. Such bots
are commonly among the most active project contributors in terms
of commit activity. As such, tools that analyse contributor activity
(e.g., for recognizing and giving credit to project members for their
contributions) need to take into account the bots and exclude their
activity. While there are a few techniques to detect bots in software
repositories, these techniques are not perfect and may miss some
bots or may wrongly identify some human accounts as bots. In this
paper, we present an exploratory study on the accuracy of bot de-
tection techniques on a set of 540 accounts from 27 GitHub projects.
We show that none of the bot detection techniques are accurate
enough to detect bots among the 20 most active contributors of
each project. We show that combining these techniques drastically
increases the accuracy and recall of bot detection. We also highlight
the importance of considering bots when attributing contributions
to humans, since bots are prevalent among the top contributors
and responsible for large proportions of commits.
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1 INTRODUCTION
The collaborative nature of open-source software development has
led to an increasing rate of creation and use of teamwork develop-
ment tools [1]. Developers use a number of tools to reduce their
workload and increase productivity such as versioning software like
Git, social coding platforms such as GitHub and GitLab, DevOps
tools, and services like continuous integration and deployment
(CI/CD) tools and development bots. Development bots (hereafter
referred to as bots) are “automated tools that attempt to free de-
velopers from particularly tedious tasks, or support their work in
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a more general sense” [2]. They perform a wide range of tasks
including refactoring, generating bug patches, dependency updat-
ing, license checking, and welcoming new contributors [3–5]. The
behavior of bots may differ depending on the environment they
operate in, on the properties of the bot itself and on the interactions
of the bot within its environment [2, 6]. While bots are primarily
used to increase productivity and improve software quality [7],
the presence of bots may have unintended negative consequences.
For example, bots may introduce additional communication over-
head and can be perceived as distracting and annoying to project
contributors [8].

The increasing presence and activity of bots in software reposi-
tories makes it challenging for software engineering researchers to
study socio-technical aspects of software development since their
findings may be biased by not explicitly considering the presence
of bots among the contributors [9]. Similarly, it may be important
for contributors that their contributions are properly recognized
and rewarded since collaborative software development activities
are often considered as a criterion for employers when hiring devel-
opers [10]. This is especially important when funding or donations
are awarded to contributors based on their contributions. While
there are tools such as SourceCred1 to support communities in au-
tomatically measuring and rewarding value creation, they do not
automatically identify bots and their activities so far.

This is where bot identification tools come to the rescue. Such
tools aim to distinguish bots from humans in GitHub accounts on
the basis of their behaviour. Dey et al. [11] proposed an automatic
method to identify bot accounts in git projects based on (i) the
presence of the string “bot” at the end of the author name, (ii) com-
mit messages, and (iii) features related to files changed in commits
and projects the commits are associated with. Golzadeh et al. [9]
proposed an approach and tool to detect bots in GitHub repositories
based on the repetitiveness of their comments in issues and pull
requests. The approach had been further extended to git commit
messages[12].

This paper presents an exploratory study on the accuracy of 5
bot detection techniques on a set of 540 accounts from 27 GitHub
projects. We show how prevalent bots and their activities are, and
that none of the bot detection techniques are accurate enough to
detect bots even among the most active contributors. We also show
that combining these techniques increases the accuracy and re-
call of bot detection but remains insufficient to capture all bots
and their activities. This highlights the importance of considering
them when conducting socio-technical studies or when attributing
contributions, and underlines the need for improved bot detection
techniques. In particular, we focus on the following research ques-
tions:
1https://sourcecred.io
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RQ1: How accurate are bot detection techniques?
RQ2: How prevalent are bots among the most active contributors?
RQ3: How active are bots in terms of commits?

2 METHODOLOGY
Dataset. To carry out our empirical investigation, we selected
projects from active software development repositories with a large
number of commits and contributors. We relied on the SEART
GitHub search tool [13] to filter a set of repositories. We queried
repositories that have at least 100 contributors and were not forked
and had been active in the last 2 months (i.e., in October and De-
cember 2021). From these, we randomly selected 27 large and active
projects. The selected projects have at least 1,200 commits and 200
contributors. In total, the 27 selected projects account for 175,499
commits from 9,426 contributors and cover a wide variety of pro-
gramming languages (e.g., Javascript, Python, Java, PHP, Ruby, Rust,
Go) and software domains such as software development packages,
plugins, and tools.

For each project, we queried the GitHub API to retrieve the
20 most active GitHub accounts in terms of commits, and their
respective number of commits. The resulting dataset consists of 540
accounts. Since one of our goals is to evaluate the accuracy of bot
detection techniques, we need to determine the correct type (i.e., bot
or human) of these accounts. We manually checked these accounts
to determine their type, looking for evidence in their profile, their
commit activity and their commenting activity. During this process,
we found 50 bots out of the 540 considered accounts.

Bot detection techniques. In this paper, we evaluate the accu-
racy of the following five bot detection techniques:

(1) GitHub account type. This technique relies on the GitHub
API to determine whether a given GitHub account is a bot or
not. The GitHub API offers an endpoint2 to retrieve various
metadata for a given GitHub username. Among other, these
metadata includes a “type” field that is either “Bot” or “User”
depending on whether the corresponding account had been
registered as a bot or as a human contributor.

(2) “bot” suffix. This technique relies on the presence of the
string “bot” at the end of the author’s name. It has been
proposed by Dey et al. [11] as part of an ensemble model,
and has notably been used by other researchers [7].

(3) BoDeGHa. Golzadeh et al. [9] proposed a classification model
to identify bots in GitHub pull request and issue activity.
Their method measures the similarity of comments and
groups them into patterns of similar comments. Bots are
then detected based on their lower number of comments
patterns. The model has been implemented as part of a tool
named BoDeGHa.3

(4) BoDeGiC. Golzadeh et al. [12] further extended the above
approach to support git commit messages, and implemented
the resulting model as part of a tool named BoDeGiC.4

(5) List of bots. This last technique relies on a predefined list of
bots. The list contains the names of 527 known GitHub bot

2https://docs.github.com/en/rest/reference/users
3https://github.com/mehdigolzadeh/BoDeGHa
4https://github.com/mehdigolzadeh/BoDeGiC

accounts that were manually identified by Golzadeh et al. [9]
among 5,000 GitHub accounts.5

3 FINDINGS
RQ1: How accurate are bot detection techniques?
We applied the five bot detection techniques on our dataset of 540
contributors. Fig. 1 shows the classifications provided by these
techniques. For readability, we only report on the 87 contributors
that either correspond to actual bots, or that were classified as bot
by at least one of the techniques. Actual bots are shown on the left
side of the vertical blue line while actual human contributors are
shown on its right. An orange cell indicates that the contributor was
identified as a bot by the corresponding technique, while a blue cell
indicates that it was identified as a human contributor. Grey cells
correspond to cases where there is not enough information for the
technique to determine the account type. In the case of BoDeGHa,
this corresponds to contributors with less than 10 comments in
pull requests or issues. In the case of BoDeGiC, this corresponds to
contributors having less than 10 commits made with a committer
name matching their GitHub account name.

From this figure, we observe that list of bots, “bot” suffix and
GitHub account type are safer techniques, in the sense they do not
wrongly classify human contributors as bots. At the same time, they
missed many actual bots: from 19 for list of bots to 32 for GitHub
account type. We also observe that BoDeGiC effectively captures
most bots, but at the same time, wrongly considers several human
contributors as bots. BoDeGHa exhibits a similar behaviour: it is
able to capture 25 out of 50 bots, but wrongly classifies much more
humans as bots than BoDeGiC (30 versus 9). We note that none of
the techniques is perfectly effective in detecting bots. Except for
a few cases, the five techniques do not even agree on whether a
given account is a bot or not. However, only 4 of the actual bots
are not detected as such by any of the techniques, suggesting that
a combination of the techniques could lead to an improved bot
detection model.

Table 1 reports on the precision, recall and F1-score of the afore-
mentioned techniques applied on the whole dataset of 540 contrib-
utors, distinguishing these scores between bot and human contrib-
utors. For completeness, we also report on the overall weighted
scores. Given there are far more human contributors than bot con-
tributors in the dataset, these high scores (between 0.898 and 0.966)
are mostly driven by the scores obtained for human contributors. To
ease the interpretation of these scores, we also provide the scores for
a ZeroR model classifying all contributors as human contributors
(i.e., the majority class).

The observations that can be made from this table match the
ones we made from Fig. 1. In particular, we observe that some
techniques (namely GitHub account type, “bot” suffix and list of bots)
have a perfect precision but are not able to capture as many bots
as BoDeGiC. This should not come as a surprise. For example, it is
expected that GitHub account type has no false positive since it is
unlikely that a human contributor would decide to flag his/her own
account as a bot. Similarly, list of bots relies on a predefined list of bot
names that were manually validated by a group of researchers. On

5https://doi.org/10.5281/zenodo.4000388
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Figure 1: Classifications (“bot”, “human” or “unknown”) obtained from the five bot detection techniques. Only actual bots and
humans wrongly classified as bot are displayed.

Table 1: Recall, precision and 𝐹1-score of bot detection techniques (in ascending order of bot recall).

bots humans overall (weighted scores)
bot detection technique recall precision 𝐹1-score recall precision 𝐹1-score recall precision 𝐹1-score

Baseline ZeroR 0.000 0.000 0.000 1.000 0.907 0.951 0.907 0.823 0.863

GitHub account type 0.360 1.000 0.529 1.000 0.939 0.968 0.941 0.944 0.928
BoDeGHa 0.500 0.455 0.476 0.939 0.948 0.944 0.898 0.903 0.900

“bot” suffix 0.520 1.000 0.684 1.000 0.953 0.976 0.956 0.958 0.949
List of bots 0.620 1.000 0.765 1.000 0.963 0.981 0.965 0.966 0.961
BoDeGiC 0.680 0.791 0.731 0.982 0.968 0.975 0.954 0.951 0.952

EnsBoD 0.900 0.865 0.882 0.986 0.990 0.988 0.978 0.978 0.978

the other hand, the precision reached by “bot” suffix is surprisingly
high since in previous work [9], we found that only around 4% of
the contributors having “bot” in their name actually correspond to
human contributors.

As observed from Fig. 1, only 4 of the actual bots are not detected
as such by any of the techniques. This suggests that an improved
bot detection model can be created by combining the five aforemen-
tioned techniques. We build such a model by training a decision
tree classifier taking as input the classifications made by each of
the five techniques and outputting whether the corresponding con-
tributor is a bot or a human contributor. Since our dataset has a
fairly imbalanced number of human and bot contributors, we attrib-
uted a class weight inversely proportional to the number of cases.
The resulting model is called EnsBoD. We trained and validated
it following a 10-fold cross-validation process. The mean scores
we obtained are reported on the last row of Table 1. Even if it was
trained and validated on a small dataset, the EnsBoD model already
outperforms any of the five other techniques, with an average recall
of 0.9 and an average precision of 0.865 for bots. In the remaining
of this paper, we will rely on EnsBoD to separate bots that are
correctly identified as bots by a bot detection technique and those
that were not, providing an overly optimistic view of the ability to
detect bots automatically.

RQ2: How prevalent are bots among the most
active contributors?
In Section 1 we underlined the importance of detecting bots in
software repositories, not only for researchers aiming at quantifying
and understanding their impact on the development process, but
also for properly recognizing and rewarding contributions made by
human contributors. This question aims to quantify the prevalence

of bots among the 20 most active contributors in the 27 considered
projects.

We applied EnsBoD on each of the 540 contributors of our dataset
to quantify how many of them can be captured by the bot detec-
tion technique. Fig. 2 shows the output of EnsBoD for each project
(x-axis) and each contributor (y-axis) sorted by the number of com-
mits they made in the project. In complement to the output of
EnsBoD (i.e., “bot” or “human”), we indicate whether the output is
correct (“human user” and “correctly classified bot”) or not (“human
classified as bot” and “missed bot”).

We observe that all the considered projects are making use of
bots, some of them even having 4 different bots among their 20 most
active contributors. Interestingly, many of these bots are responsible
for most of the activity in the projects. For instance, the most active
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Figure 2: Rank of top 20 most active contributors in 27 popu-
lar open-source software projects.
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Figure 3: Proportion of commits made by the 20 most active
contributors in each project

contributor of 6 projects is a bot, while 18 out of 27 projects have a
bot in the top 3 contributors.

We also observe that a non-negligible amount of bots are missed
even by our overly optimistic EnsBoD model. For instance, 5 bots
are missed and 3 of them are among the 5 most active contributors
of the projects. Similarly, a non-negligible amount of actual human
contributors are wrongly classified by EnsBoD: there are 7 human
contributors that are detected as bots, of which 1 is the most active
contributor in the corresponding project, and 5 others are within
the 10 most active contributors.

These findings show the importance of considering bots and
their activity in software repositories, not only for conducting
empirical research but also when acknowledging or rewarding
contributors. While bot detection techniques can help in doing so,
even an optimistic combination of them still misses some bots, and
still wrongly considers some human contributors as bots.
RQ3: How active are bots in terms of commits?
This question aims to quantify the number of commits made by
bots in their respective projects. This is especially important given
that tools such as SourceCred reward contributors based on their ac-
tivity, including their commit activity. For each project, we counted
the commits made by each of the 20 most active contributors, dis-
tinguishing between bot and human contributors. Fig. 3 reports
on the proportion of commits made in each commit. As for Fig. 2,
we distinguish between human contributors, human contributors
classified as bots, bot contributors and bot contributors missed by
EnsBoD.

The figure shows that the commits made by bots represent up to
69.7% of the commit activity. On average, approximately 16% of the
commits in these projects are made by bots (median is 12%), even
if bots only account for 9% of the top 20 contributors on average
(median is 10%)

While, as observed in previous research question, EnsBoD is
able to detect most of the bots, it still misses some of them, and the
missed ones are responsible for 8%, 7.3%, 4.2%, 2.5% and 1.7% of the
commits in their respective projects (i.e., 4.7% on average). On the
other hand, EnsBoD wrongly classified seven human contributors
as bots, and these contributors were responsible for 38.4%, 11.5%,
4.8%, 1.5% and 1.2% of the commits (i.e., 10.4% on average).

This again underlines the importance of considering bots when
analysing commit activity in software repositories, and highlights
the need for better bot detection techniques to do so.

4 CONCLUSION
The increasing presence and activity of bots in software reposito-
ries makes it challenging for software engineering researchers to
study socio-technical aspects of software development since their
findings may be biased by not explicitly considering the presence
of bots among the contributors. Similarly, it may be important for
human contributors that their contributions are properly identified,
especially when funding or donations are awarded based on these
contributions.

In this paper, we presented an exploratory study on the accuracy
of five bot detection techniques on a dataset of 540 contributors
corresponding to the top 20 most active contributors in 27 large
projects. We found that none of the techniques is perfectly effective
in detecting bots. Some of them are accurate, in the sense they
generate few (if any) false positives, but at the expense of many
bots that remain undetected. However, based on the observation
that only a very limited number of bots remain undetected by any
of the five techniques, we proposed EnsBoD, a new bot detection
model combining these techniques. We evaluated EnsBoD through
a 10-fold cross-validation process, and we found that EnsBoD ex-
hibits much better scores. Although this new model has not (yet)
been validated on a large dataset, it already shows that combining
several bot detection techniques drastically improves bot detection.
It correctly captures 45 out of the 50 bots we have in the dataset.
On the other hand, it still misclassified 7 human contributors as
bot, out of 490.

In a second step, we investigated the prevalence of bots among
the top contributors of the 27 considered projects. We found that
all the projects make use of a few bots. We also found that bots
are commonly found among the most active contributors and are
responsible for large proportions of commits in these projects, high-
lighting the need to consider themwhen conducting socio-technical
studies or when rewarding contributors.

As future work, we plan (1) to extend EnsBoD by integrating ad-
ditional bot detection techniques (e.g., BIMAN [11]); (2) to compare
different ensemble methods to combine them; and (3) to evalu-
ate and validate the approach on a much larger dataset, not only
focusing on the 20 most active contributors.
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