
Physics of Elementary Particles and Atomic Nuclei. Theory

Interactions for partially-massless spin-2 fields
N.Boulanger a,1, S.Garcia-Saenz b,2, L. Traina a,3

a Physics of the Universe, Fields and Gravitation, Department of Physics, Science Faculty,
University of Mons – UMONS, Place du Parc 20, B-7000 Mons, Belgium

b Theoretical Physics, Blackett Laboratory, Imperial College, London, SW7 2AZ, U.K.

We review the theory for a multiplet of interacting partially massless spin-2 fields around
(anti-) de Sitter (A)dSD background and give new results concerning the couplings between a
massless spin-1 vector field and a partially massless spin-2 field.

PACS: 04.50.-h, 11.15.-q

Introduction

Partially massless (PM) fields of spin-2 have been subject to renewed attention in
recent years after the important advances made in the understanding of massive gravity
[1,2]. In four-dimensional de Sitter (dS4) spacetime with (positive) cosmological constant
Λ , a PM graviton has a mass given bym2

PM = 2Λ/3 and a corresponding gauge invariance
that removes the degree of freedom associated with the spin-zero mode of the particle.
A consistent theory of PM gravity would be very attractive given its relevance in the
context of cosmology and the fact that a PM spin-2 field is not subject to the same strict
experimental constraints as a generic massive graviton, e.g. the bounds on fifth-force
experiments or on dispersion of gravitational waves.

In spite of their potentially interesting phenomenology, complete and physically real-
istic models involving PM fields are currently lacking. A crucial hurdle one encounters
when attempting to construct such a PM theory beyond linear level is the requirement
of gauge invariance of the interactions. Indeed, this condition is restrictive enough to
rule out theories of a single self-interacting PM spin-2 particle, see e.g. [3–5]. Such no-go
results beg the question of whether a fundamental obstruction exists for the construction
of non-trivial PM models. A first step in order to address this question is to precisely
understand what are the assumptions that lead to the existing negative results.

In the recent work [6] we have shown that, by relaxing the requirement of classical
unitarity, one can in fact construct a complete theory for a multiplet of PM gravitons
around (A)dS4 space, as we review in the following. This is an interesting outcome as it
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demonstrates that gauge invariance itself is not a fundamental obstacle for the existence
of a nontrivial interacting PM spin-2 theory. In addition, motivated by the field content
of a putative supersymmetric theory of PM gravity (as identified in [7]), we present some
new results on the interactions between a massless spin-1 field and a PM spin-2 field.

1. Set-up

We will look for consistent deformations of the theory consisting of an arbitrary
number of PM spin-2 fields: haµν , a = 1, . . . , n . The action describing this theory is
given by

S0[haµν ] =

∫
dDx
√
−ḡ kab

(
− 1

4F
aλµνF bλµν + 1

2F
aλF bλ

)
, (1)

where ḡµν is the metric of the background which is chosen to be dSD or AdSD space,
F aλµν := 2∇[λh

a
µ]ν are the field strengths of the potentials haµν , Fλ := ḡµνF

λµν and kab
is a metric in the internal space of the PM spin-2 fields. For simplicity one can take
(kab) = diag(+ · · ·+) for a unitary theory, which is only possible in dSD space, and
(kab) = diag(+ · · · + − · · ·−) for a non-unitary one.1 The field strengths and thus the
action are invariant under the gauge transformations

δ(0)
ε haµν = ∇µ∇νεa − σ

L2 ḡµν ε
a , (2)

where L is the (A)dSD radius related to the cosmological constant via Λ = − (D−1)(D−2)
2σL2 .

The parameter σ is defined to be +1 when the background is AdSD and −1 when it is
dSD . In this way the commutator of Lorentz-covariant derivatives on (A)dSD acting on
a (co-)vector is given by

[∇µ,∇ν ]Vα = − 2σ
L2 ḡα[µVν] . (3)

In the BRST-BV formalism (see e.g. [9] for a review and details on the notation we
use), we introduce ghosts Ca associated with the gauge parameters εa as well as the
conjugate antifields and antighosts {Φ∗I} := {h∗µνa , C∗a} canonically paired to the fields
and ghosts {ΦI} := {haµν , Ca} via the antibracket defined on two local functionals A and
B:

(A,B) :=
δRA

δΦI
δLB

δΦ∗I
− δLA

δΦ∗I

δLB

δΦI
. (4)

The variance of the fields and antifields with respect to the color indices is by definition
as displayed above up to raising or lowering indices thanks to the internal metric kab .
The BV functional of this theory is written as

W0 = S0 +

∫
dDx
√
−ḡ
[
h∗µνa

(
∇µ∇νCa − σ

L2 ḡµν C
a
)]

. (5)

1We allow for the study of classically non-unitary theories. Actually, PM fields can be defined around
AdSD where they are non-unitary. This can be seen explicitly by writing the action, which is real for
both signs of the cosmological constant, in the Stueckelberg formulation [8].
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It satisfies the classical master equation

(W0,W0) = 0 . (6)

One can define the BRST differential via the BV functional, s • := (W0, •), which splits
into two differentials s = γ + δ . The action of these differentials on the fields, as
well as the Grassmann parity |.|, the ghost number gh, the pure ghost number pgh
and the antifield number afld of the fields and antifields are given in Table 1, along with
δh∗µν =

√
−ḡ(∇λF bλ(µν)−ḡµν ∇λF bλ+∇(µF ν)b)kab and δC∗a =

√
−ḡ∇µ∇νh∗µνa − σ

L2h
∗
a .

|.| gh pgh afld 1√
−ḡγ

haµν 0 0 0 0 ∇µ∇νCa − σ
L2 ḡµν C

a

Ca 1 1 1 0 0
h∗µνa 1 −1 0 1 0
C∗a 0 −2 0 2 0

Table 1. Assignement of various degrees for the fields and antifields

The cohomology of the differential γ, which will be helpful in the following, is given
by

H(γ) ∼= {f
(
[F aλµν ] , Ca , ∇µCa , [Φ∗I ]

)
} . (7)

2. Cubic deformations

Upon considering the perturbative expansion W = W0 + gW1 + . . . , the goal of this
section is the classification of the first order deformation W1 that is found by solving the
master equation (W,W ) = 0 to first order in g:

sW1 = 0 . (8)

Expanding the first order BV functional according to the antifield number

W1 =

∫
dDx
√
−ḡ(a0 + a1 + a2) , (9)

the master equation at first order is equivalent to the following descent equations1

δa1 + γa0 = t.d. , (10)
δa2 + γa1 = t.d. , (11)

γa2 = 0 . (12)

1Here t.d. = ∂µjµ for some vector jµ . Since one can always rewrite jµ =
√
−ḡ j̃µ this implies

∂µjµ =
√
−ḡ∇µj̃µ and t.d. represents up to a

√
−ḡ factor a total derivative using a Lorentz-covariant

derivative of the background. We will thus always write t.d. although this can mean ∂µjµ or ∇µjµ
depending on the context.
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2.1. Deformations of the gauge algebra.—We will start the classification of the
deformations by listing all the possible deformations of the gauge algebra a2 ∈ H(γ)
without any restriction on the number of derivatives. The complete list is given by

a
(1)
2 = C∗a C

b Ccma
bc , ma

bc = ma
[bc] , (13)

a
(2)
2 = C∗a ∇µCb∇µCcnabc , nabc = na[bc] , (14)

and the total deformation of the algebra that solves the last equation of the descent (12)
is a linear combination of these candidates, a2 = α(1) a

(1)
2 + α(2) a

(2)
2 .

We now have to solve the second equation of the descent (11) with the a2 just defined.
The calculation of δa2 gives

1√
−ḡ δa

(1)
2 = t.d.− 1√

−ḡγ
[
h∗µνa ma

bch
b
µνC

c
]

+ma
bc(2h

∗µν
a ∇µCb∇νCc + σ

L2 h
∗
aC

bCc) ,

(15)
1√
−ḡ δa

(2)
2 = t.d.− 1√

−ḡγ
[
2nabc h

∗µν
a

(
∇µhbνρ∇ρCc + hbµρ∇ν∇ρCc + σ

L2h
b
µνC

c
)]

(16)

+ σ
L2 n

a
bc

(
2h∗µνa ∇µCb∇νCc + σ

L2h
∗
aC

bCc
)
− σ

L2h
∗
an

a
bc∇µCb∇µCc .

The obstructions 2h∗µνa ma
bc∇µCb∇νCc + σ

L2 h
∗
am

a
bcC

bCc and 2h∗µνa nabc∇µCb∇νCc +
σ
L2h

∗
an

a
bcC

bCc can be cancelled by relating α(2) to α(1) and nabc to ma
bc . However,

because of the obstruction σ
L2h

∗
an

a
bc∇µCb∇µCc , there exists no linear combination such

that all the obstructions vanish. This implies that there is no solution to the inhomoge-
nous (with a2 6= 0) equation (11) and therefore we set α(1) = 0 = α(2) . In conclusion,
the cubic deformations of “colored” PM fields are necessarily abelian.

2.2.Abelian deformations of the gauge transformation.—We can still solve the
homogeneous (a2 = 0) equation (11) by classifying all the possible abelian deformations
of the gauge transformations ā1 ∈ H(γ) . In terms of coefficients f a

(i)bc , i = 1, . . . , 6 ,
there are six candidates containing up to two derivatives:

ā
(1)
1 = h∗µνa f a

(1)bc∇µF
b
ν C

c , ā
(2)
1 = h∗µνa f a

(2)bc F
b
µ∇νCc , (17)

ā
(3)
1 = h∗µνa f a

(3)bc∇
σF bσµν C

c , ā
(4)
1 = h∗µνa f a

(4)bc F
b
σµν ∇σCc , (18)

ā
(5)
1 = h∗a f

a
(5)bc∇σF

bσ Cc , ā
(6)
1 = h∗a f

a
(6)bc F

bσ∇σCc . (19)

An important aspect to remark is that not all combinations of these candidates are
non-trivial because some combinations are δ-exact. For example, the combination ā(1)

1 +

ā
(3)
1 − ā(5)

1 is δ-exact when fa(3)bc = fa(5)bc = fa(1)bc and kadf
a
(1)bc = ka[df

a
(1)b]c . Those

particular combinations have to be removed from the possible non-trivial deformations.
2.3. Cubic vertices.—We have to solve the first equation of the descent (10) with a1

being the linear combination of all the non-trivial candidates written above. In the cases
of, respectively, a single, two or three PM fields, there are 6, 48 or 162 candidates written
in (17)–(19) (minus the δ-exact combinations). The resolution of the equation (10) has
been done systematically by listing all the possible vertices entering in a0 containing no
more than two derivatives and then searching for a set of solutions to the equation.1

1Note that allowing for more derivatives we can trivially construct Born-Infeld type vertices; they
contain at least three derivatives and do not deform the gauge transformation laws of the free theory.
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We find that, provided D = 4 , the general solution is given by a vertex of the type
“gauge field times conserved current”:

D = 4 : a0 = haµνJ
µν
a , a = 1, . . . , n , (20)

where

Jµνa := (F b(µ|ρσF c|ν)
ρσ − 1

4 ḡ
µνF bρσλF cρσλ −F b(µ|F c|ν) +F b(µ|σ|ν)F cσ + 1

2 ḡ
µνF bλF

cλ)fbc,a .
(21)

This vertex solves the descent equation with

a1 = ā
(4)
1 = h∗µνa fab,c F

b
σµν ∇σCc . (22)

We write the coefficients fab,c in this way because they have to satisfy

fab,c = f(ab),c . (23)

The easiest way to see that is by noticing that the current Jµνa is on-shell equivalent to

J ′µνa = (F b(µ|ρσF c|ν)
ρσ − 1

4 ḡ
µνF bρσλF cρσλ)fbc,a ≈ Jµνa , (24)

from which we see that the constants fab,c are projected on f(ab),c . The conclusions on
the existence of vertices related to the current J ′µνa are unchanged if we use the current
Jµνa , but it is important to use the unprimed one in order to have a two-derivative gauge
transformation. We remark that this primed current was already known in the case of a
single PM field in the context of couplings to a massless spin-2 field [10]. The number
of deformation parameters of this solution is thus given by the number of parameters
encoded in fab,c , that is to say, n

2(n+1)
2 .

3. Quartic deformations

The goal of this section is to solve the master equation to second order in deformation:

sW2 = − 1
2 (W1,W1) . (25)

Expanding the second order BV functional according to the antifield number W2 =∫
dDx
√
−ḡ(b0 + b1) , the master equation at second order is equivalent to the following

descent equations:

δb1 + γb0 = −
√
−ḡ (a1, a0) + t.d. , (26)

γb1 = − 1
2

√
−ḡ (a1, a1) + t.d. . (27)

Let us start with the calculation of − 1
2 (a1, a1) in order to solve the equation (27). We

have

1
2 (a1, a1) = t.d.− 1√

−ḡγ
[
2h∗aµ[ν∇σ]CbF cρ(µν)h

d ρ
σ fae,bf

e
c,d

]
(28)

+ 2h∗aµ[ν∇σ]Cb∇σF cρ(µν)∇
ρCdfae,bf

e
c,d + 3σ

2L2 h
∗aµν∇σCbCdF cσµνfae,bfec,d .
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The only way to kill the obstruction h∗aµν∇σCbCdF cσµνfae,bfec,d ∈ H(γ) is by imposing
the constraints

fae,b f
e
c,d = 0 . (29)

Let us suppose that we have a solution to these constraints. Then it implies that there is
no second-order deformation of the gauge transformation (b1 = 0) and we can continue
to solve the equation (26). The calculation of the antibracket (a1, a0) gives

−(a1, a0) = (F bσµν∇σCcfab,c)

(
Jµνa +

δJρλd
δhaµν

hdρλ

)
= Jµνa F bσµν∇σCcfab,c , (30)

because the second term vanishes when the constraints (29) hold. The current Jµνa can
be expanded as (21) and then the identities

F νa = − σL2

D−2∇µ
δS0

δhaµν
, (31)

∇σFσµνa =
δS0

δhaµν
− σL2

D−2 ḡ
µν ∇λ∇σ

δS0

δhaλσ
+ σL2

D−2∇
ν∇σ

δS0

δhaµσ
, (32)

∇σFµνσa = 2σL2

D−2 ∇
[µ∇σ

δS0

δhaν]σ

, (33)

can help to rewrite terms containing a trace (F aµ ) or a divergence (∇µFµνσa or ∇σFµνσa )
of the field strength as δ-exact terms. Those δ-exact terms actually come from a solution
b̄1 of the homogeneous equation (27) γb̄1 = 0 . Using this trick one can write

−(a1, a0) = 1√
−ḡ δb̄1 + F aµρλF bνρλF

c
σµν∇σCd f

e
ab, fec,d (34)

for some b̄1 whose explicit form is not needed, except for the fact that it is proportional
to f e

ab, fec,d if one renames properly the summation indices. The last term is generically
a non-trivial element of the cohomology of γ modulo d and modulo other δ-exact terms,
and thus represents an obstruction unless we include quartic deformations of the gauge
symmetry and vertices, in which case a higher-order analysis is required. We will instead
get around this difficulty by imposing the second set of constraints

f e
ab, fec,d = 0 . (35)

If one is able to solve the two sets of constraints, (29) and (35), it implies that the
theory closes at cubic order and is fully consistent with respect to the gauge structure.
Unfortunately, no solution exists when the internal metric kab is Euclidean, implying
that some fields must carry negative energy and the theory is therefore non-unitary.
Nevertheless, it is shown in [6] that the constraints still admit non-trivial solutions for
non-positive-definite internal metrics, and can be classified according to the symmetries
of the resulting fab,c : totally symmetric solutions, which are available for all n ≥ 2 ; and
mixed symmetric solutions, of which an explicit example has been found for n = 3 .
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4. Interactions between PM spin-2 and massless spin-1 fields

An intriguing question is whether supersymmetry could help to overcome the obstacles
so far encountered when constructing interactions for PM fields. The simplest super-
multiplet that contains a PM spin-2 particle is a long N4 = 1 multiplet that also contains
a massive spin-3/2, a massless spin-3/2 and a massless spin-1 particles [7]. A tractable
first step in the study of interactions for such multiplet is to restrict oneself to the
bosonic sector, so that here we initiate the analysis of the problem by considering cubic
interactions for a single PM spin-2 field hµν and a single spin-1 gauge vector Aµ.

Although the supersymmetric multiplet is valid in four dimensions, it is instructive
to start the calculation in arbitrary D, so we consider the free theory

S0 = −1

4

∫
dDx
√
−ḡ
[
F ρµνFρµν − 2F ρFρ +GµνGµν

]
, (36)

where Gµν := ∇µAν − ∇νAµ is the abelian field strength of the vector. In addition to
the PM gauge symmetry given above (but here restricted to a single PM field), we have
the usual Maxwell gauge symmetry δ(0)

α Aµ = ∇µα, to which we associate a ghost B in
the BRST-BV procedure. The free BV functional is then given by

W0 = S0 +

∫
dDx
√
−ḡ
[
h∗µν∇µ∇νC + 1

L2 h
∗C +A∗µ∇µB

]
, (37)

which by construction is BRST-invariant, sW0 = 0, with s = γ + δ and

γAµ = ∇µB , δA∗µ = ∇νGνµ , δB∗ = −∇µA∗µ , (38)

plus the analogous relations for the PM sector already given in Table 1.
The first order deformation of the BV functional is decomposed by antifield number

as W0 =
∫
dDx
√
−ḡ(a0 + a1 + a2) . Without making any assumption on the number of

derivatives, the most general antifield-2 term is given by

a2 = λC∗CB + λ′B∗CB . (39)

When solving the descent equation, γa1 + δa2 + t.d. = 0, we find that the second term
leads to an obstruction and so we set λ′ = 0 at this stage. The “lifted” solution a1 then
reads

a
(lift)
1 = λ

[
h∗µνhµνB − 2h∗µνAµ∇νC − h∗µν∇µAνC

]
. (40)

To this we must add the solutions ā1 in the cohomology H(γ|d). Restricting to terms
with no more than two derivatives we have

ā1 = α(1)A
∗µFµC + α(2)A

∗µFµB + α(3)A
∗µ∇νGµνC + α(4)A

∗µ∇νGµνB
+ α(5)A

∗µGµν∇νC + α(6)h
∗∇ρFρB + α(7)h

∗µν∇ρFρµνB .
(41)

Note that this Ansatz omits γ-exact terms as well as terms of the pure PM type, as we
know that the latter are necessarily obstructed at quartic order.

Finally we inspect the descent γa0 + δa1 + t.d. = 0 , with a1 = a
(lift)
1 + ā1 . After a

calculation we find that the obstructions can be canceled if and only if all the coefficients
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in a1 are zero with the exception of α(5) =: α . Moreover, this non-trivial solution is only
available when D = 4 .

In conclusion, only a single solution to the first-order deformation of the master
equation exists, and again only in D = 4 dimensions:

a2 = 0 , a1 = αA∗µGµν∇νC , a0 = α
(
GρµG ν

ρ hµν − 1
4 G

µνGµνh
)
. (42)

The consistency of this deformation at quartic order will be examined in a forthcoming
work.
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