Dynamic load balancing of the power method
on a Grid

Clovis Dongmo Jiogo and Pierre Manneback

Faculté Polytechnique de Mons, Mons, Belgium
ovis.DongmoJiogo, Pierre.Mannebac ms .ac.be
Clovis.DongmoJiog Pi M back jQfpi b

1 Introduction

The power method is a simple iterative method based on the matrix
vector product. This method is mostly used for calculating the eigenvector
corresponding to the largest eigenvalue for large matrices. For example,
it is used for calculating the page rank of web pages in the search engines.

An efficient execution of the power method on Grid environment re-
quires matrix partitioning and distribution to take into account of the
heterogeneity of resources. We propose in this paper a dynamic load bal-
ancing of the power method which performs, for each k iterations, an
adjustment of the data distribution according to a factor. This factor is
defined by the elapsed time required by the preceding iterations and aims
to balance the computation load over the processors.

2 Dynamic distribution model

Several methods have been proposed for dynamic load balancing of sparse
matrix vector product, which is the kernel computation of iterative meth-
ods such as the power method (e.g. [1,2]): some of them try to overlap
communication with computation; some others allow only the most over-
loaded processor to send rows to its neighbors. Another idea is to store
matrix rows on several nodes redundantly and create overlapping regions.

We propose in this work, a deterministic iterative method which is
based on a given predefined rules:

Let consider a set of heterogenous resources Rq,...,R;. Each resource
is composed of one or several processors. We denote p;, the total amount
of power available on the resource R;.

Let IT = {A;, Asg,...,Ar} be a k-way row partition of sparse matrix
A. For the initial load balancing, the matrix is partitioned according to
resource power p; representing the power factor. Each resource R; receives
the block A; and the adjacent blocks A;_1 and A;41. After k iteration, we



make an adjustment by rebalancing the load. This adjustment of the load
takes into account the preceding response time (computing time, commu-
nication time, latency) of processors and sets the new power factor in
aim to minimize the total execution time. The general algorithm of the
dynamic load balancing is stated as follows:

Algorithm :Iterative_Load_Balancing

s:=initialBalancing();
initialDistribution(s,A);
repeat{iterative improvement }
computelteration();
distribution(s);
r() := responseTime();
after k iteration
if unBalanced (r, €)
then s := adjustementBalancing(r);
until stopping_criteria

In this algorithm, the initial balancing splits the sparse matrix in block
rows according to the resource power. The vector and the nonzero ele-
ments of the sparse matrix are then distributed to each resource. After
k iterations of matrix vector product, if the load is unbalanced (e > the
standard deviation of elapsed time between processors), a adjustment is
performed by examining the three factors: computing time, communica-
tion time and latency. Since each resource owns the adjacent blocks, this
rebalancing do not involved a new redistribution of the sparse matrix.
Only the vector with the new computing ranges are sent to the resources
which continue the computations.

In the full paper, we will present some experimental results and pa-
rameter analysis for this dynamic load balancing strategy. Preliminary
results have shown its interest.

References

1. Peter Christen, A parallel iterative linear system solver with dynamic load balanc-
ing. In Proceedings of the International Conference on Supercomputing 1CS-98,
July 13-17 1998, Melbourne, pages 7-12. ACM Press, 1998.

2. J. R. McCombs, R. T. Mills, and A. Stathopoulos, Dynamic load balancing of an
iterative eigensolver on networks of heterogeneous clusters. In Proceedings of the
17th International Parallel and Distributed Processing Symposium, 2003.



