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Abstract. The main result of this paper shows roughly that any
recursively enumerable set S in RN , N 6∞, where R is a real closed
field, is isomorphic to RdimS by a bijection ϕ which is decidable over
S. Moreover the map S 7→ ϕ is computable. Some related matters are
also considered like the computability of recursively enumerable maps,
characterisation of the real closed fields with a r.e. set of infinitesimals,
and the dimension of r.e. sets.

Introduction

In the classical theory of Turing machines — which are the same as BSS-machines
over the field F2, see [Po] — it is a basic result that recursively enumerable subsets
of F∞2 are either finite or isomorphic to F∞2 . Consequently there is no notion of
dimension for Turing recursively enumerable sets. In this paper, we investigate
the isomorphism problem for recursively enumerable sets over a real closed field
in the sense of BSS.

The paper is organized as follows. In section 1, we recall various definitions
and theorems and set the terminology that shall be used throughout the rest of
the paper. Section 2 shows that semialgebraic sets can be effectively split into
several parts, each of which being isomorphic to an open cube. These cubes are
the glued in section 3 to prove the isomorphism theorem for semialgebraic sets.
This theorem is extended from semialgebraic sets to recursively enumerable sets
in section 4. The rest of the paper is the dedicated to related questions. In
section 5, an minimal extension of BSS-machines is constructed which has the
same recursively enumerable sets but can compute any decidable map. Section 6
deals with the characterization of real closed field in which either the infinitesimals
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or Z is decidable. Finally, in section 7, we discuss the notion of dimension for
recursively enumerable sets.

1 Preliminaries

This section is simply a reminder of some facts about semialgebraic sets and BSS-
machines. Probably the reader will be familiar with most (if not all) of them, but
the intention is to make clear the terminology we shall use and to make this paper
easily accessible both to people working in algebraic geometry and computability.

1.1 Semialgebraic sets and real closed fields

Let (R,<) be an ordered ring, that is R is a commutative ring with identity and
‘<’ is an ordering on R which is compatible with addition and multiplication. We
will write (a, b) (resp. [a, b]) for the open (resp. closed) interval with endpoints a
and b. A number x ∈ R is infinitesimal if it satisfies 0 < |x| < 1/n for all n ∈ N×.
The equivalence relation ‘x ≈ y’ is defined by ‘x − y is infinitesimal or 0.’ An
element x ∈ R is said to be finite whenever |x| 6 n for some n ∈ N. Otherwise, it
is called infinite. Let us denote R� the set of elements of R which are finite but
not infinitesimal. When N < M , RN will be embedded in RM by setting the last
M −N components to zero. Let f1, . . . , fp+q be polynomials in R[x1, . . . , xN ]. A
basic semialgebraic set is a set of the form:{

x ∈ RN : f1(x) = 0, . . . , fp(x) = 0, fp+1(x) > 0, . . . , fp+q(x) > 0
}
.

Semialgebraic sets are all sets that can be build by finite union of basic semial-
gebraic sets. Note that finite union, finite intersection, and the complementary
of semialgebraic sets are semialgebraic sets. A function f : RN ◦→ RM is called a
semialgebraic function iff its graph, Graph(f) ⊆ RN×RM , is a semialgebraic set.
The notation f : A ◦→ B is used to emphasize that the domain of f , Dom f , may
not be the whole set A. Writing f : A→ B will mean f : A ◦→ B and Dom f = A.
Remark straight away that if (Si)

k
i=1 are disjoint semialgebraic sets of RN and

(fi : Si ◦→ RM)ki=1 are semialgebraic functions, the map
∑
fi :

⋃
Si ◦→ RM is

semialgebraic. A semialgebraic set S ⊆ RN is called a rectangle (resp. an integer
cube) iff S =

∏N
i=1 Si with Si = (ai, bi) (resp. Si = (ai, ai + 1)) or Si = {ai} for

some ai, bi ∈ R (resp. ai ∈ Z). A notion of dimension, dimS, can be defined for
any semialgebraic set S (cf. [BCR]). As usual, dim∅ = −1. It is invariant under
semialgebraic isomorphisms.

An atomic formula in the language of ordered rings is a formula of one of the
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following forms:
f(x) > 0 or f(x) = 0 or 0 > f(x)

where f is a polynomial in R[x1, . . . , xN ] for some N ∈ N. Open formulae in
the language of ordered rings are (well formed) expressions made of conjunctions
(∧), disjunctions (∨), and negations (¬) of atomic formulae. All the formulae we
will speak about are in the language of ordered rings, so, from now on, we drop
the precision. To stress that a formula P depends on the variable(s) x, we will
write P [x]. From the very definition of semialgebraic sets, it is easy to see that
semialgebraic sets in RN are precisely those that can be written as{

x ∈ RN : P [x]
}

for a open formula P . We will say that a formula P [x1, . . . , xN ] represents a
rectangle (resp. an integer cube) if P [x] =

∧N
i=1 Pi[xi] with each Pi[xi] being

either ai < xi < bi (resp. ai < xi < ai + 1) or xi = ai for some ai, bi ∈ R (resp.
ai ∈ Z).

First order formulae are those that can be constructed from atomic formulae
using the ‘∧’, ‘∨’, ‘¬’ connectors and the quantifiers ‘∃’ and ‘∀’. In general,
first order formulae have greater expressive power than open ones. It turns out
however that, in special fields, they are in fact equivalent. These fields are known
as the real closed fields. They are characterized by the following property: R is
real closed if and only if R can be endowed with a unique ordering whose positive
elements are the squares and such that every polynomial with odd degree has
a root in R. For the sequel, the essential result about real closed fields is the
following. It is known as ‘elimination of quantifiers’ or ‘Tarski-Seidenberg’.

Theorem 1. (Tarski-Seidenberg) In a real closed field, any first order
formula is equivalent to a open formula.

The proof of this theorem can be found in [Ta] or [vdD]. Actually Tarski-
Seidenberg’s theorem is another characterization of real closed fields because
ordered rings that admit quantifier elimination are necessarily real closed (see
e.g. [MMV]).

Tarski-Seidenberg’s theorem has important consequences on the class of semial-
gebraic sets and semialgebraic functions. Indeed, it implies that the closure and
the interior of semialgebraic sets are semialgebraic and that the set of semialge-
braic functions from RN to RM is a vector space. Moreover, the domain and the
range of semialgebraic functions are semialgebraic sets, and the composition of
two semialgebraic functions is again a semialgebraic function.
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1.2 Universal machines over rings

For the definition and basic properties of BSS machines over an ordered ring R,
the reader is referred to the original article by Blum, Shub and Smale [BSS].
Since throughout this paper R will be a field, the computation nodes may be
rational. Following [BSS], the set R∞ is made of all sequences (xn)n>1 with each
xn ∈ R and such that all but a finite number of xn’s are null. To any x ∈ R∞ is
associated length(x) := max{n : xn 6= 0} if x 6= 0 and length(x) := 0 if x = 0.
From now on, we shall identify RN with {x ∈ R∞ : length(x) 6 N}. We want
to stress that the machines are allowed to use the length of the state space—and
therefore the length of any variable x ∈ R∞—as the content of any ordinary
register.1

We will speak throughout this paper of machines inputting, outputting, and
acting on other machines. This will mean that the machines will input, output,
and act on a coding in R∞ representing the other machines. Description of such
a coding can be found in [BSS]. Associated with it is the universal machine
that simulates the machine described by the coding. As a byproduct, we get the
universal polynomial evaluator that takes the coding of a polynomial and a value
for each of its variables and outputs the evaluation of the polynomial.

We will also consider machines manipulating first order (e.g., open) formulae. As
above that means that the formulae are coded in some way in R∞ (see [BSS, Po]).
There exists a universal open formula evaluator that inputs (a coding of) an open
formula2 and a value for each of its variables and says whether or not the formula
is satisfied by the values. There is an analogous for first order formulae, at least
when R is a real closed field. Indeed, Tarski-Seidenberg is effective; that is, there
exists a machine that transforms any first order formula into an equivalent open
one (see [vdD]). As a result, the truth or falseness of any first order formula can
be calculated by a BSS-machine. These facts shall be repeatedly used without
necessarily explicit reference.

In what follows, we will write formulae with the language of symbolic logic and
will usually omit to say that we are in fact talking about the codings of such
formulae. Various operations will be performed on machines and formulae (com-
posing machines, extracting the polynomials of a formula, constructing induc-
tively formulae from other ones,. . . ). These operations will have to be carried
out by machines but we will leave to the (patient) reader the task of designing
the specific subroutines to achieve them on the corresponding codings.

1This is indeed possible because the length of a input x is stored in I(x)4 and, consequently,
the length of the data in the state space can be tracked along the computations (an upper
bound is readily obtained and then a simple procedure can compute its actual value).

2Note that the set of open formulae is decidable in the set of first order formulae, i.e., a
machine can decide whether a first order formula is actually an open one.
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2 Splitting semialgebraic sets is effective

The splitting theorem for semialgebraic sets says roughly that any semialgebraic
set is semialgebraically isomorphic to a disjoint union of cubes (0, 1)d with d ∈ N.
This section is driven by the slogan: there exists an universal splitting machine
for semialgebraic sets. Every worker in the field of real algebraic geometry shall
certainly be convinced that the previous statement holds. It should be noted that,
because we are not interested in the piecewise continuity of the isomorphism, we
shall not take into consideration the derivatives of the polynomials defining the
semialgebraic set.

Definition 2. A coding of a semialgebraic set S ⊆ RN is the coding of an open
formula P such that S = {x ∈ RN : P [x]}. A coding of a semialgebraic function
f : RN ◦→ RM is a coding of its graph Graph(f) ⊆ RN ×RM .

Notice that, in general, several formulae can describe a given semialgebraic set,
that is codings are not unique. Given a coding of a semialgebraic set S ⊆ RN ,
the universal formula evaluator can easily tell whether some x ∈ RN belongs or
not to S. In particular, the universal formula evaluator can take a semialgebraic
function f : RN ◦→ RM and a point (x, y) ∈ RN × RM as input and answer
the question ‘does y equal f(x)?’. Remark that this does not mean that f(x) is
computable. We will come back later to this question. Now let us state the main
theorem of this section.

Theorem 3. (Universal splitting machine) Let R be a real closed field
and N ∈ N. There exists a machine SRN with the following properties:

(i) input: a coding of a semialgebraic set S of RN ;

(ii) output: a coding of a semialgebraic set T of RN and a coding of a semial-
gebraic function ϕ : RN ◦→ RN ;

(iii) the formula coding T has the form
∨
α∈A Pα[x] where the Pα[x]’s are mutually

exclusive formulae representing integer cubes;

(iv) the function ϕ : S → T is a bijection.

Before proceeding to the proof, let us mention the following interesting corollary.

Corollary 4. Let R be a real closed field and N ∈ N. There exists a machine
D that inputs (a coding of) a semialgebraic set of RN and computes its dimension.
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Proof. First recall that, if S ⊆ RN is a semialgebraic set and ϕ : S → RN is
a semialgebraic injective map, ϕ(S) has the same dimension as S (see [BCR]).
Therefore, using the above theorem, we may assume that the semialgebraic set
S inputed to D is coded by a formula

∨
α Pα[x] satisfying point (iii) above. The

dimension of S is the maximum of the dimensions of the sets
{
x ∈ RN : Pα[x]

}
(see [BCR] proposition 2.8.5), each of which being read on the formula Pα. �

Theorem 3 will follow from a recursion argument on the following lemma.

Lemma 5. Let R be a real closed field and N ∈ N. There exists a machine,
denoted SN , which takes as input a semialgebraic set S of RN and outputs a
semialgebraic set T of RN and a semialgebraic map ϕN : RN ◦→ RN such that:

(i) T is coded by a formula of the form
∨
β∈B tβ[x] where the tβ[x]’s are mutually

exclusive formulae which are equal either to τβ[x1, . . . , xN−1] ∧ (aβ < xN <
aβ + 1) or τβ[x1, . . . , xN−1] ∧ (xN = aβ) for some satisfiable (in R) open
formula τβ and some aβ ∈ N;

(ii) the map ϕN is a bijection from S onto T .

Moreover, if the formula coding S has the form
∨
α∈A σ

1
α[x1, . . . , x`]∧σ2

α[x`+1, . . . ,
xN ] with the σ1

α’s representing integer cubes, then every τβ can be assumed to
have the form τ 1

β [x1, . . . , x`]∧τ 2
β [x`+1, . . . , xN−1] with the τ 1

β ’s representing integer
cubes.

Remark 6. The fact that the formula coding S has the special form of the
last statement of the preceding lemma cannot, in general, be detected by a BSS-
machine. In fact, this can be done iff Z is decidable in R. �

In the course of the proof we will need the following notations. If a ∈ R, we call
its sign the quantity defined by

sign(a) :=

{
1 if a > 0
0 if a = 0
−1 if a < 0

That function symbol is definable, hence it can be used without trouble in formu-
lae. Let f1, . . . , fs be a sequence of one-variable polynomials and r1 < · · · < rk
be all the roots of the non-identically null polynomials among f1, . . . , fs. Set
r0 := −∞ and rk+1 := +∞. Then, on each Ij := (rj, rj+1), the sign of any fi is
constant and will be denoted sign fi(Ij). Let us define SIGN(f1, . . . , fs) as being
the s× (2k + 1) array whose line i is given by

sign fi(I0), sign fi(r1), sign fi(I1), . . . , sign fi(rk), sign fi(Ik).
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Note that the entries of this array are valued in {−1, 0, 1}. If w is a {−1, 0, 1}-
valued array of size s × (2k + 1), the equality SIGN(f1, . . . , fs) = w can be
written as a first order formula, say Signw(f1, . . . , fs)[r1, . . . , rk], depending on
the variables r1, . . . , rk and the signs wi,j. Indeed, it is a conjunction of the
following formulae, for i = 1, . . . , s, that express equality on line i:

k∧
j=1

sign fi(rj) = wi,2j

∧
k∧
j=0

∀x rj < x < rj+1⇒ sign fi(x) = wi,2j+1

To check SIGN(f1, . . . , fs) = w, we have to express that r1, . . . , rk are roots of the
fi’s (but not necessarily all of them). For that reason we introduce the notation:

Root(f1, . . . , fs)[r1, . . . , rk] :=


r1 < · · · < rk
∧

k∧
j=1

s∨
i=1

(
fi(rj) = 0 ∧ fi 6= 0

)
where ‘fi 6= 0’ stands for ‘¬

(
∀x fi(x) = 0

)
’. Then SIGN(f1, . . . , fs) = w is

equivalent to

Signw(f1, . . . , fs) := ∃r1, . . . , rk
[

Root(f1, . . . , fs)[r1, . . . , rk] ∧
Signw(f1, . . . , fs)[r1, . . . , rk]

Note that, k, w being given, this formula can be constructed. Since, for different
k, w, these formulae are all mutually exclusive (the conjunction of Root(f1, . . . , fs)
[r1, . . . , rk] and Signw(f1, . . . , fs)[r1, . . . , rk] ensures that r1, . . . , rk match all the
roots of the non-identically null polynomials among f1, . . . , fs), at most one can
be true. Moreover, since the number of roots, k, is less or equal to sm with
m := max{deg fi : 1 6 i 6 s}, Signw(f1, . . . , fs) is true for at least one {−1, 0, 1}-
valued array w of size s × (2k + 1) with k 6 sm. Let us denote Ws,m all the
s× (2k + 1) arrays with entries in {−1, 0, 1} for 0 6 k 6 sm.

Proof of lemma 5. Let S be a semialgebraic subset of RN and f1, . . . , fs
the polynomials that appear in the open formula defining S. We split RN as
RN−1 × R and, for each x ∈ RN , we write x = (x, xN) with x ∈ RN−1 and
xN ∈ R. For all w ∈ Ws,m, let us define:

Tw :=
{
x ∈ RN−1 : Signw(fi(x, •) : 1 6 i 6 s)

}
.

Since, by Tarski-Seidenberg, Signw(fi(x, •) : 1 6 i 6 s) is equivalent to an open
formula, say τw[x], depending on x, the Tw’s are semialgebraic subsets of RN−1.

7



Let w ∈ Ws,m and r1(x) < · · · < rk(x) be the roots above Tw of the nonzero
polynomials among

(
fi(x, •) : 1 6 i 6 s

)
. For convenience, set r0(x) := −∞

and rk+1(x) := +∞. The slice of S above Tw, S ∩ (Tw × R), is determined by
a boolean condition on the signs of the fi’s. The columns of w that match that
condition give the parts that must be taken in account, i.e., S ∩ (Tw × R) is a
disjoint union of sets of the form

T 2j
w :=

{
(x, xN) ∈ RN : x ∈ Tw ∧ xN = rj(x)

}
for j = 1, . . . , k, or

T 2j+1
w :=

{
(x, xN) ∈ RN : x ∈ Tw ∧ rj(x) < xN < rj+1(x)

}
for j = 0, . . . , k. Let B be the set of all (w, j), with w ∈ Ws,m and j being an
integer between 1 and the number of columns of w, such that T jw ∩ S 6= ∅. It is
clear that S is the disjoint union of all T jw for (w, j) ∈ B.

The set B is easily computed by a BSS-machine. Indeed, given w ∈ Ws,m, the
conditions T 2j

w ∩ S 6= ∅ and T 2j+1
w ∩ S 6= ∅ are respectively equivalent to

∃(x, xN) ∈ S, τw[x] ∧
(
∃r1, . . . , rk roots, xN = rj

)
∃(x, xN) ∈ S, τw[x] ∧

(
∃r1, . . . , rk roots, rj < xN < rj+1

) (1)

where k is inferred from the number of columns of w and ‘∃r1, . . . , rk roots’ stands
for

∃r1, . . . , rk
[

Root(fi(x, •) : 1 6 i 6 s)[r1, . . . , rk] ∧
Signw(fi(x, •) : 1 6 i 6 s)[r1, . . . , rk]

For any (w, j) ∈ B, we define

t(w,j)[x] :=

{
τw[x] ∧ (xN = j′) if j = 2j′, j′ ∈ {1, . . . , k};
τw[x] ∧ (j′ < xN < j′ + 1) if j = 2j′ + 1, j′ ∈ {0, . . . , k}.

These formulae are clearly mutually exclusive (remember the τw’s are) and we
set

T :=
{
x ∈ RN :

∨
β∈B tβ[x]

}
.

To complete the first part of this proof, we still have to define the map ϕN and
to show that the open formula describing its graph can be written by a BSS-
machine. Let x = (x, xN) ∈ S. There exists a unique (w, j) ∈ B such that
x ∈ T jw. We define ϕN(x) by

ϕN(x) :=


(x, j′) if j = 2j′(
x,

xN−rj′
rj′+1−rj′

+ j′
)

if j = 2j′ + 1 with 0 < j′ < k(
x, 1

1+r1−xN

)
if j = 1(

x, 1
rk−1−xN

+ k + 1
)

if j = 2k + 1
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where r1 < · · · < rk are the roots of the nonzero polynomials among
(
fi(x, •) :

1 6 i 6 s
)
. Provided that the (w, j) ∈ B corresponding to x ∈ S is known, the

equality ϕN(x) = y can easily be checked because one can use ‘∃r1, . . . , rk roots’
like in (1) to bound the variables r1, . . . , rk. So the fact that (x, y) belongs to the
graph of ϕN is described by the formula:∨

(w,j)∈B

x ∈ T jw ∧ ϕN(x) = y.

This formula can be constructed by a BSS-machine because B is computable and
x ∈ T jw is equivalent to an expression similar to (1).

Now assume S is coded by
∨
α∈A σ

1
α[x1] ∧ σ2

α[x2, xN ] with σ1
α representing an

integer cube and x1 := (x1, . . . , x`), x
2 := (x`+1, . . . , xN−1). In this case, the

set of polynomials f1, . . . , fs can be separated into two groups, the first one,
say f1, . . . , fq, made up of affine polynomials depending on one component of
x1 and the second one, fq+1, . . . , fs, depending on (x2, xN). Let w ∈ Ws,m be a
s× (2k+ 1) matrix. Since f1, . . . , fq are constant with respect to xN , the formula
Signw

(
fi(x, •) : 1 6 i 6 s

)
[r1, . . . , rk] is equivalent to

q∧
i=1

sign fi(x
1) = wi,1 = · · · = wi,2k+1

∧
Signw2

(
fi(x

2, •) : q < i 6 s
)
[r1, . . . , rk]

where w2 := (wi,j : q < i 6 s, 1 6 j 6 2k + 1) is the matrix consisting of
the last s − q lines of w. Moreover fi(x, rj) = 0 ∧ fi(x, •) 6= 0 is always false
for i = 1, . . . , q. Thus Root

(
fi(x, •) : 1 6 i 6 s

)
[r1, . . . , rk] is equivalent to

Root
(
fi(x

2, •) : q < i 6 s
)
[r1, . . . , rk]. Putting together the above two facts, we

get that Signw
(
fi(x, •) : 1 6 i 6 s

)
is equivalent to

q∧
i=1

sign fi(x
1) = wi,1 = · · · = wi,2k+1

∧
Signw2

(
fi(x

2, •) : q < i 6 s
) (2)

Let τ 1
w1 [x1] be the open formula

∧q
i=1 sign fi(x

1) = wi,1 = · · · = wi,2k+1 and
τ 2
w2 [x2] be an open formula equivalent to Signw2

(
fi(x

2, •) : q < i 6 s
)
. The fact

that τw[x] is equivalent to τ 1
w1 [x1] ∧ τ 2

w2 [x2] means that Tw—and therefore the
T jw’s—are products of the set {x1 : τ 1

w1 [x1]} and a set in the remaining variables.
Consequently, for T jw to intersect S, it is necessary that {x1 : τ 1

w1 [x1]} intersects
one of the sets {x1 : σ1

α[x1]}. Since the polynomials in the inequations defining
{x1 : σ1

α[x1]} are part of the polynomials describing {x1 : τ 1
w1 [x1]} and since
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τ 1
w1 [x1] is a conjunction of expressions of the form xi − ai T 0 with ai being an

integer (i = 1, . . . , `), the only possibility for the two sets to intersect is actually
to cöıncide. As a result, for all (w, j) ∈ B, τ 1

w1 [x1] represents an integer cube.
This shows that the t(w,j)[x]’s have the required form. The rest of the proof
unfolds as above. �

Proof of theorem 3. Let Sn (1 6 n < N) be the machine that does
the same thing as SN but on the nth component instead of the Nth one. The
machine SRN is the composition of the Sn’s. More precisely

(TN , ϕN) := SN(S)

(Tn, ϕn) := Sn(Tn+1) (1 6 n < N)

SRN (S) := (T1, ϕ1 ◦ · · · ◦ ϕN)

The formula coding the set T1 has the required form. Indeed, if the formula
coding Tn+1 has the form

∨
α∈An+1

σ1
α,n+1[x1, . . . , xn] ∧ σ2

α,n+1[xn+1, . . . , xN ] with

the (σ2
α,n+1 : α ∈ An+1) representing integer cubes, then, by virtue of lemma 5

(because, of course, we can specify other variables than x1, . . . , x`), the set Tn is
coded by an analog formula for n. A recursion argument completes the proof. �

Remark 7. If we look at the above proofs, we see that Sn depends computably
on n and therefore SRN depends also computably on N . In other words, the map
N 7→ SRN is computable. �

3 Decidable isomorphisms

The aim of this section is to show how the disjoint cubes in which semialgebraic
sets are split can be glued together. The trouble in doing so is that, for example,
(0, 1) ∪ (1, 2) and (0, 1) are not semialgebraically isomorphic when R = R. We
will need the following more general kind of isomorphism.

Definition 8. A function ϕ : RN ◦→ RM is said to be decidable iff its graph is
decidable. Two sets A and B are said to be decidably isomorphic whenever there
exists a bijective map ϕ : A→ B which is decidable.

For that larger class of isomorphisms, any semialgebraic set is either a finite
number of points or isomorphic to some cube (0, 1)d for some d ∈ N. We start
with the following basic gluing result.
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Proposition 9. Let R be a real closed field and N ∈ N. There exists a machine
GN satisfying the following:

(i) input: a pair (S1, S2) of disjoint semialgebraic sets of RN which are coded
by formulae representing rectangles;

(ii) output: a semialgebraic set T of RN and a map ϕ : RN ◦→ RN ;

(iii) dimT = max{dimS1, dimS2} and, if dimT > 0, the formula coding T
represents a rectangle;

(iv) ϕ : S1 ∪ S2 → T is a bijection;

(v) if Z is decidable in R, ϕ : S1∪S2 → T and ϕ−1 : T → S1∪S2 are computable.

Moreover, if dimS1 < dimS2, one can assume ϕ�S1 = id. On the other hand, if
dimS1 > dimS2 and if L is a semialgebraic set coded by a formula representing a
rectangle such that dim(S1 ∩L) > max{1, dimS2}, then one may assume T = S1

and ϕ�(S1 \ L) = id, ϕ�(S1 ∩ L) ⊆ L.

Remark 10. As the proof will show, the map N 7→ GN is computable. �

Proof. Let di := dimSi (i = 1, 2). The dimension being computable, the
machine will be able to take the appropriate action in each case below. We ought
only to consider the case d1 > 0 or d2 > 0—otherwise nothing has to be done. It
is no lack of generality to suppose

S1 = (−1
2
, 1

2
)d1 × {0}N−d1 and S2 = (1

2
, 3

2
)d2 × {1}N−d2 .

If d1 < d2, let us write x ∈ RN as (x1, x′, x̃) with x1 ∈ Rd1 , x′ = xd1+1 ∈ R,
x̃ ∈ RN−d1−1, and define ϕ : S1 ∪ S2 → (−1

2
, 1

2
)d2 × {0}N−d2 by

ϕ(x) :=


x if x ∈ S1;

(x1 − e1,−1/2 + 1/2n+1, 0) if x ∈ S2, x′ = 1
2

+ 1
2n

(n > 1), x̃ = ẽ;

(x1 − e1, x′ − 1, x̃− ẽ) otherwise;

where e1 := (1, . . . , 1) ∈ Rd1 and ẽ := (1, . . . , 1) ∈ RN−d1−1. If Z is decidable
in R, so is {1/2 + 1/2n : n > 1} and therefore ϕ is computable (note that if
x′ = 1/2 + 1/2n, −1/2 + 1/2n+1 = (2x′ − 3)/4).

If d1 > d2 = 0, we set x = (x1, x̃) ∈ R×RN−1 and define ϕ : S1 ∪ S2 → S1 as

ϕ(x) :=


0 if x ∈ S2;

(−1/2 + 1/2n+1, 0) if x ∈ S1, x1 = −1
2

+ 1
2n

(n > 1), and x̃ = 0;

x otherwise.

If d1 > d2 > 1, let us write x ∈ RN as (x2, x′, x̃) with x2 ∈ Rd2−1, x′ = xd2 ∈ R,
x̃ ∈ RN−d2 . We first apply to S2 the computable isomorphism ϕ2 : S2 → S ′2
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defined by

ϕ2(x) :=


(x2 − e2, 1/2, 0) if x′ = 1;

(x2 − e2, 1/2 + 1/2n−1, 0) if x′ = 1/2 + 1/2n with n > 2;

(x2 − e2, x′, 0) otherwise;

where e2 := (1, . . . , 1) ∈ Rd2−1 and S ′2 := (−1
2
, 1

2
)d2−1 × [1

2
, 3

2
) × {0}N−d2 . Next

let us consider the piecewise polynomial isomorphism ϕ1 : S1 ∪ S ′2 → S1 whose
definition is

ϕ1(x) :=

{(
x2, (2x′ − 1)/4, 0

)
if x ∈ S1 and x̃ = 0, or x ∈ S ′2;

x otherwise.

The required map ϕ is ϕ1 ◦ ϕ2.

Let us now prove the “locality” property. Since dim(S1 ∩ L) > max{1, dimS2},
there exists a semialgebraic set L′ coded by a formula representing a rectangle
which has the at least the dimension max{1, dimS2} and is included in S1 ∩ L.
The rectangle L′ can obviously be computed by a BSS-machine for all there is
to do is to solve one-variable affine inequalities. Let ϕ′ : L′ ∪ S2 → L′ be the
computable isomorphism constructed in the appropriate case above—using L′ in
place of S1. Then ϕ : S1 ∪ S2 → S1 defined by

ϕ(x) :=

{
ϕ′(x) if x ∈ L′ ∪ S2;
x otherwise;

possesses the desired properties. �

Theorem 11. (Isomorphism theorem) Let R be a real closed field in which
Z is decidable, and N ∈ N. There exists a machine GRN that inputs a semialge-
braic set S of RN and outputs a semialgebraic set T of the same dimension as S
and a decidable isomorphism ϕ : S → T such that T is either a finite number of
points or is coded by a formula representing an integer cube. Moreover N 7→ GRN
is computable.

Proof. First use theorem 3 to split S as a disjoint union of integer cubes
coded by

∨
α∈A Pα[x]; and then apply proposition 9 card(A) − 1 times to glue

them together. Of course, (−1
2
, 1

2
)d × {0}N−d ∼= (0, 1)d × {0}N−d.

The fact that N 7→ GRN is computable results from the computability of N 7→
SRN and N 7→ GN . �

Remark 12. Note that the map ϕ = ϕglue ◦ϕsplit where ϕsplit is a semialgebraic
map (given by theorem 3) and ϕglue is a computable isomorphism (given by the
successive applications of proposition 9). �
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4 Recursively enumerable sets

We now turn our attention to recursively enumerable sets in RN with N ∈ N or
N = +∞. To input a recursively enumerable set S to a machine will mean to feed
it with a coding of a machine whose halting set is S. The link with semialgebraic
sets is the following:

Proposition 13. Let R be a ring, N ∈ N ∪ {∞}, and S be a recursively
enumerable set in RN . Then there exists a decidable subset Γ of N such that

S =
⋃
γ∈Γ Sγ

for some disjoint finite dimensional semialgebraic sets Sγ of RN .

Moreover, there exists a machine that, given any such S, can compute the corre-
sponding Γ and the function γ 7→ Sγ.

Proof. See [BSS], §4, proposition 2. Let Γ′ be the set of all computation paths
of a machine M whose halting set is S, and S ′γ′ the set of inputs that reach an
output node by following the path γ′. When N < ∞, let us consider Γ ⊆ N
computably isomorphic to Γ′ and Sγ := S ′γ. Therefore, it is clear that Γ and
γ 7→ Sγ are computable once the machine M is known. When N =∞, x ∈ S ′γ′ iff

a computable boolean condition on expressions of the form f
(
length(x), x

)
T 0

holds, where f : R∞ → R∞ are polynomials. We set Γ :∼= Γ′ × N and S(γ′,N) :=
{x ∈ S ′γ′ : length(x) = N} = S ′γ′ ∩ (RN \ RN−1) = S ′γ′ ∩ {x ∈ R∞ : length(x) 6
N ∧ xN 6= 0}. The sets S(γ′,N) are clearly disjoint and are finite dimensional
semialgebraic subsets of R∞ because they are subsets of RN which are defined
by the same inequations as S ′γ′ (where the length is now fixed) plus xN 6= 0. �

We are now in position to prove the main theorem of this paper.

Theorem 14. Let R be a real closed field and N ∈ N ∪ {∞}. There exists a
machine with the following properties:

(i) input: a recursively enumerable set S of RN for some N ∈ N ∪ {∞};
(ii) output: a recursively enumerable set T of RN and a function ϕ : RN ◦→ RN ;

(iii) T is either an at most countable set of points or Rd for some 0 < d 6 N ;

(iv) the map ϕ : S → T is a bijection;

(v) if x ≈ 0 is recursively enumerable in R, ϕ is decidable over S.

Remark 15. 1) Recall that ‘ϕ is decidable over S’ is equivalent to ‘Graphϕ
is decidable over S × RN ’ which means that there exists a machine that inputs
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(x, y) ∈ RN ×RN and, at least when (x, y) ∈ S ×RN , halts and says whether or
not (x, y) ∈ Graphϕ.

2) If x ≈ 0 is recursively enumerable, x ≈ 0 is decidable (because x 6≈ 0 means
∃k, |x| > 1/k and so is recursively enumerable) and then Z is decidable in R.
We shall show in section 6 that in fact the converse is true as well. �

Proof. Because of proposition 13, we may assume that we have at our disposal
Γ ⊆ N and γ 7→ Sγ such that S =

⋃
γ∈Γ Sγ. Without lack of generality, we may

also assume that Γ = N, and x ≈ 0 is recursively enumerable. We will argue by
induction over γ. The cases N <∞ and N =∞ are treated together.

We will construct by induction a sequence of computable semialgebraic subsets
Tγ of RN and maps ϕγ : RN ◦→ RN such that

(i) Tγ = (−1
2
, 1

2
)d(γ) provided d(γ) > 0, where d(γ) := max{dimSµ : µ 6 γ};

(ii) if γ = 0, ϕ0 : S0 → T0 is a decidable bijection and, if γ > 1, we may assume
Sγ is disjoint of Tγ−1 and ϕγ : Tγ−1 ∪ Sγ → Tγ is a decidable bijection;

(iii) when γ > 1, two things can happen: either dimSγ > dimTγ−1, and
ϕγ�Tγ−1 = id; or dimSγ 6 dimTγ−1, and then, provided dimTγ−1 > 0,
ϕγ�(Tγ−1 \ Lγ) = id and ϕγ(Tγ−1 ∩ Lγ) ⊆ Lγ with Lγ :=

(
1/(γ + 2),

1/(γ + 1)
)d(γ−1)

.

This sequence is easy to construct. First, if γ = 0, an application of theorem 11
gives the representation of an integer cube T0 — that up to translation and rota-
tion may be assumed to be (−1

2
, 1

2
)d(0) with d(0) = dimT0 — and an isomorphism

ϕ0 : S0 → T0. Now let us suppose (i)–(iii) hold for γ − 1 and let us show they
still hold for γ. By theorem 11 we may assume that, up to a isomorphism, Sγ
is coded by a formula representing an integer cube and, up to a translation, is
disjoint of Tγ−1. Then we apply proposition 9 to (Tγ−1, Sγ) with L := Lγ and
we get Tγ — which has the form (−1

2
, 1

2
)d(γ) × {0}N−d(γ) — and an isomorphism

ϕγ : Tγ−1 ∪ Sγ → Tγ. Clearly properties (i)–(iii) are satisfied.

Define ϕ : S → (−1
2
, 1

2
)d, where d := max{dimSγ : γ ∈ N}, by

ϕ(x) := · · · ◦ ϕγ+2 ◦ ϕγ+1 ◦ ϕγ(x) if x ∈ Sγ for some γ.

The map ϕ is well defined. Let x ∈ RN . If x ∈ S, we can compute the unique
γ such that x ∈ Sγ. Two cases can happen. First, one component of ϕγ(x) is
infinitesimal. Then, in view of (iii), none of the ϕµ, µ > γ, will modify ϕγ(x).
Thus ϕ(x) = ϕγ(x). Second, all components of ϕγ(x) are greater than, say, 1/k
for some computable k ∈ N×—which can be supposed to be greater than γ.
Then (iii) implies that ϕk ◦ · · · ◦ ϕγ(x) will be left invariant by all ϕµ, µ > k.
Indeed, either some Sµ, γ < µ 6 k, has a greater dimension than Tγ in which
case this is clear because Tγ = Tµ−1 ∩ Rd(γ) shall never be touched from ϕµ on
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(remark that no Lν , ν > µ, intersects Tγ), or all Sµ, γ 6 µ 6 k, have the same
dimension and then ϕγ(x) can only be moved provided that ϕγ(x) ∈ Lµ in which
case ϕµ(ϕγ(x)) ∈ Lµ and that precludes any further ϕν to act on it. Thus, we
have shown ϕ(x) = ϕk ◦ · · · ◦ ϕγ(x). The relation y = ϕ(x) is decidable because

it can be written as y = ϕglue
k ◦ · · · ◦ϕglue

γ ◦ϕsplit
γ (x) with ϕsplit

γ being semialgebraic
and all ϕglue

µ being computable isomorphisms (see remark 12). Consequently, if
we can decide whether or not some component of ϕγ(x) is ≈ 0, the map ϕ is
decidable over S. This concludes the proof—because (−1

2
, 1

2
)d ∼= Rd computably.

�

5 Computable versus decidable maps

Like in the discrete case, computable maps are decidable. However, and con-
trarily to Turing machines, the converse is not true for the original BSS-machine
(consider for example x 7→

√
x on R). On the other hand, Bertilsson & Blon-

del [BB] proposed a type of machine with an infinite number of nodes, each of
which being able to perform either a test or the computation of an arbitrary
semialgebraic function—instead of simply a polynomial. For these machines, the
set of computable maps coincides with the set of decidable maps—as will result
from the arguments below. However, due to the infinite number of nodes, the
class of decidable sets is larger than the BSS one. In this section we shall outline
an intermediate type of machine that will not alter the class of BSS-decidable
sets but will allow all decidable functions to be computed.

Our machines are exactly the same as the BSS ones except that we allow the
use of an additional computational node ρ (and shall therefore refer to them as
ρ-BSS machines) defined by:

ρ : R∞ → R∞ : (n, a0, a1, . . . , an, an+1, . . .) 7→ (k, r1, . . . , rk, an+1, . . .),

where r1 < · · · < rk are the roots of the polynomial a0 +a1X+ · · ·+anX
n. Since

the equality ρ(n, a0, a1, . . . , an, an+1, . . .) = (k, r1, . . . , rk, an+1, . . .) is equivalent
to the open formula

r1 < · · · < rk ∧
k∧
i=1

a0 + a1ri + · · ·+ anr
n
i = 0,

it is easily checked—using the elimination of quantifiers—that the ρ-BSS recur-
sively enumerable and decidable sets are the same than the BSS ones. The set of
computable functions though is much greater as, for example, all semialgebraic
functions are computable. More generally, we have the following.
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Theorem 16. Let R be a real closed field. Then the set of maps which are ρ-BSS
decidable over their domains and the set of ρ-BSS computable maps coincide.

Remark 17. To have this theorem, adding the node ρ is certainly necessary
for ρ is a decidable map. �

The proof relies on the following lemma which is also interesting for itself.

Lemma 18. There exists a ρ-BSS machine that computes the value of any re-
cursively enumerable singleton of given as input.

Proof. Let {x} be recursively enumerable singleton. According to proposi-
tion 13, {x} can be written as a disjoint union of finite dimensional semialgebraic
sets Sγ, γ ∈ Γ, and the map γ 7→ Sγ is computable. Therefore, on can iterately
scan for the first nonempty Sγ. So, we must compute the point x of a semialge-
braic singleton Sγ = {x} embedded in a finite dimensional space, say RN , whose
dimension is known (thanks to corollary 4).

We shall argue by recursion on N . If N = 0, this is trivial: x = 0 ∈ R0 = {0}.
Now, let us suppose that we can compute the value of any singleton in RN−1

and let us show this is still true in RN . According to the proof of lemma 5,
{x} =

⋃
(w,j)∈B T

j
w for some disjoint non-empty T jw’s. Thus there is only one

(w, j) in B, T jw = {x} and its projection on RN−1, namely Tw, is a singleton.
By the recurrence hypothese, we can assume that the value of Tw, that is x :=
(x1, . . . , xN−1), is known. Now xN = rj/2(x) (cf. the notations of the proof of
lemma 5) is also computable because ρ can compute all the roots r1(x) < · · · <
rk(x) of the nonzero polynomials among

(
fi(x, •) : 1 6 i 6 s

)
where f1, . . . , fs

are the polynomials defining the set Sγ. �

Proof of theorem 16. It is clear that a ρ-BSS computable map is ρ-BSS
decidable. As for the converse, let ϕ : RN ◦→ RM (N,M 6 ∞) be a decidable
map over its domain, that is a map whose graph is decidable over Domϕ×RM .
Let x ∈ Domϕ. We claim that ϕ(x) is computable. It suffices indeed to apply
lemma 18 to {ϕ(x)} to know its value. �

Corollary 19. If a ρ-BSS computable map is injective, it is actually a ρ-BSS
isomorphism (i.e., its inverse is computable).

Proof. Let ϕ : RN ◦→ RM (N,M 6 ∞) be an one-to-one ρ-BSS computable
map. For any y ∈ Imϕ = Domϕ−1, the set {x : ϕ(x) = y} is a recursively
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enumerable singleton. Lemma 18 asserts it is then computable (if y /∈ Imϕ the
machine will run forever). In other words, ϕ−1 is computable. �

Corollary 20. If ϕ is a one-to-one map which is decidable over its domain,
so is ϕ−1.

Proof. Combine corollary 19 and theorem 16. �

In the same way that BSS computable maps have “locally” to be polynomials,
ρ-BSS computable are locally semialgebraic functions.

Proposition 21. Let ϕ : RN ◦→ RM , N,M 6 ∞, be a ρ-BSS computable
function. Then one can write Domϕ =

⋃
γ∈Γ Sγ, where the Sγ’s enjoy the same

properties as in proposition 13 and such that each restriction ϕ�Sγ is a semialge-
braic map. Moreover γ 7→ ϕ�Sγ is computable.

Proof. The proof can be carried out as in [BSS] §4, proposition 2, but, this
time, the computation along each path consists of evaluating a finite number of
rational maps, executing a finite number of fifth nodes, and computing the roots
of a finite number of polynomials. �

Corollary 22. The class of output sets of ρ-BBS machines coincide with the
class of recursively enumerable sets.

Proof. Like for BSS machines, a halting set is easily turned into an output
set. So we shall only proof the converse. Let ϕ be a ρ-BSS computable map.
We must show that Imϕ is the halting set of some machine. Let (Sγ)γ∈Γ be the
sequence given by proposition 21. Then y ∈ Imϕ iff ∃x ∈ Sγ, ϕ(x) = y for some
γ ∈ Γ. So it suffices to examine the truth of the latter formula for each γ which
is possible because, as ϕ�Sγ is semialgebraic, Tarksi-Seidenberg can transform
∃x ∈ Sγ, ϕ(x) = y into an equivalent open formula. �

6 On real closed fields with a r.e. set of infinites-

imals

In view of proposition 9 and theorem 14, two natural questions raise themselves:
is it possible to give a characterisation of the real closed fields in which Z (resp.
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x ≈ 0) is decidable? It turns out that both questions are equivalent. They
are settled in theorem 31. As a consequence of this theorem, we show that
the properties that Z is or isn’t decidable are not “stable” through extensions—
see proposition 32. The various results leading to theorem 31 may already be
known. As we couldn’t find a suitable reference however, we gave our own proofs.
Theorem 31 is new. Throughout this section, we shall say ‘infinitely large’ for
‘positive and infinite’. To start with, note that the following statements are
equivalent (see also remark 15):

(i) the set of infinitesimals is recursively enumerable;

(ii) the set of infinitely large numbers is recursively enumerable;

(iii) the set of infinitesimals is decidable;

(iv) the set of infinitely large numbers is decidable.

For the shake of convenience, we shall here consider formulation (ii). We shall
also make an extensive use of the following notion.

Definition 23. For any x, y ∈ R with y infinitely large, the notation x � y
will stand for |x|k < y for all positive integer k.

Remark 24. Of course, if R is real closed, this is equivalent to |x| < y1/k which
may be more intuitive. �

Proposition 25. Let x, y, z, w > 0. The following properties hold.

(i) the relations � and 6� are reflexive and transitive;

(ii) w 6 x� y 6 z implies w � z.

If x and y are infinitely large,

(iii) x� y implies P (x)� y for any polynomial P whose coefficients are finite.

In particular, if x and z/y are infinitely large, then

(iv) x� z/y implies r xk y 6 z for any finite r ∈ R and k ∈ N.

Proof. These properties readily follow from the definition of ‘�’. �

Lemma 26. Let R be an ordered field, x = (x1, . . . , xm) ∈ Rm, Cα, Dα ∈ R for
all multi-indices α ∈ Nm satisfying 0 6 |α| 6 d. Let β be the largest multi-index
(for the lexicographic order) such that Dβ = max{Dα : 0 6 |α| 6 d}. Assume

x1, . . . , xm are infinitely large numbers of R such that x1 � · · · � xm;

Cβ 6≈ 0 and the other Cα’s are finite (α 6= β);
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Dα > 0 for all α;

x1 � Dβ/Dα (and the right hand side is infinitely large) whenever Dα < Dβ.

Then
∑

06|α|6dCαDα x
α 6≈ 0 (e.g., 6= 0).

Proof. Without lack of generality, we may assume Cβ > 0. The polynomial
splits in two parts: ∑

Dα=Dβ

CαDα x
α +

∑
Dα<Dβ

CαDα x
α.

When Dα = Dβ, necessarily α 6 β, and so, if α 6= β, xα−β ≈ 0. Indeed,
let k ∈ {1, . . . ,m} be the first value such that αk 6= βk. Then αk < βk and
xα−β = xαk−βkk

∏
i>k x

αi−βi
i 6 x−1

k x`k+1 where ` :=
∑

i>k max{αi−βi, 0}. If k = m,

` = 0 and we are done. If not, since xk+1 � xk, one deduces x`+1
k+1 6 xk and

therefore xα−β 6 x−1
k+1 ≈ 0 which is the claim.

Consequently, the left hand side can be written Dβx
β(Cβ + infinitesimals). This

is greater or equal to Dβx
β(Cβ − ε) =: CDβx

β for some small ε ∈ Q—so that
C := Cβ − ε 6≈ 0. On the other hand, since x1 � Dβ/Dα when Dα < Dβ,

proposition 25 (iv) implies that |CαDα x
α| 6 |Cα|Dα x

|α|
1 6 x−1

1 CDβ. Thus∑
CαDαx

α > CDβ x
β − (N/x1)CDβ = (xβ −N/x1)CDβ 6≈ 0

where N is the number of terms in the right hand side. The fact N/x1 ≈ 0
concludes the proof. �

Theorem 27. Let R1, R2 be two ordered fields with R1 ↪→ R2 (ordered field
morphism). If x1 � · · · � xm are infinitely large elements of R2 such that xm �
r for any infinitely large r ∈ R1, then x1, . . . , xm are algebraically independent
on R1.

The situation can be pictured as follows:

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→7
0
︸ ︷︷ ︸

finite positive elements
of R1 and R2

infinitely large elements of R2︷ ︸︸ ︷
7
x1 · · ·

7
xm

︸ ︷︷ ︸
infinitely large
elements of R1

Proof. Let us suppose on the contrary that x1, . . . , xm are algebraically de-
pendent on R1; that is there exists a polynomial P whose coefficients belong to
R1 such that

0 = P (xm, . . . , x1) =:
∑

06|α|6d

pα x
α (3)
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where x := (xm, . . . , x1) and pα ∈ R1. We can assume none of the pα’s is
infinitesimal—otherwise multiply (3) by p−1

α . Moreover, by virtue of lemma 26,
not all pα’s can be finite—consider Cα := pα, Dα := 1. So, if γ is a multi-index
such that |pγ| = max{|pα| : 0 6 |α| 6 d}, at least pγ is infinite and may be
assumed to be positive. For each α, let us set Cα := pα, Dα := 1 if pα is fi-
nite; Cα := sign(pα), Dα := |pα| if both pα and pγ/pα are infinite; Cα := pα/pγ,
Dα := pγ if pα is infinite but pγ/pα is finite. Noting that Dα ∈ R1 for all α, it
is easy to check that the assumptions of lemma 26 are satisfied—with β possi-
bly greater than γ but nonetheless verifying Dβ = pγ. Then, lemma 26 asserts
that (3) cannot hold and the proof is complete. �

Let us now draw some interesting corollaries.

Corollary 28. (Algebraic extensions) Let R be an ordered field and R̃
its real closure. For any infinitely large element b ∈ R̃, there exists an infinitely
large a ∈ R and k ∈ N such that bk > a.

Proof. If the claim does not hold, one has b� a for all infinitely large a ∈ R.
This is absurd in view of theorem 27 (take R1 := R ↪→ R2 := R̃, m := 1, and
x1 := b). �

Corollary 29. (Extensions of archimedian fields) Let R2 be an or-
dered extension of an archimedian field R1 (e.g., R1 = Q). Every sequence
x1 � · · · � xm of infinitely large elements of R2 is algebraically independent
on R1.

Proof. Obvious. �

Corollary 30. (Extensions with finite transcendence degree) Let
R be an ordered extension with finite transcendence degree of Q. Then either R
is archimedian or there exists an infinitely large element a ∈ R such that, for any
infinitely large b ∈ R, there is some k ∈ N such that bk > a.

Proof. If the conclusion of the corollary does not hold, R is not archime-
dian and one can find a sequence of infinitely large numbers (xi)i>1 such that
· · · � x3 � x2 � x1. According to corollary 29, x1, . . . , xm must be algebraically
independent no matter what m ∈ N is. This contradicts the fact that the tran-
scendence degree is finite. �

After these algebraic preliminaries, let us turn to the main theorem of this section.
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Theorem 31. Let R be a real closed field. The following three statements are
equivalent.

(i) The set of infinitely large numbers is recursively enumerable.

(ii) Z is decidable in R.

(iii) Either R is archimedian or there exists an infinitely large number a ∈ R
such that any infinitely large b is greater or equal to a1/k for some k ∈ N×.

Proof. We may of course assume R is non-archimedian.

(i) ⇒ (ii). It is clear that Z is recursively enumerable. The complement of Z
is also recursively enumerable because x ∈ R \ Z is equivalent to: either |x| is
infinitely large or 0 < |x| − n < 1 for some n ∈ N.

(iii) ⇒ (i) is easy. Indeed it suffices to run the machine that compares an input
x successively to a, a1/2, a1/3, . . . (i.e., that checks whether x−a > 0, x2−a > 0,
x3 − a > 0, . . . ). By hypothesis, this machine will stop iff x is infinitely large.

(ii) ⇒ (iii). Since R+ \ N is recursively enumerable, proposition 13 says that it
can be written as an at most countable disjoint union of semialgebraic sets of R+:

R+ \ N =
⋃

γ∈Γ
Sγ.

Let R<∞ (resp. R>∞) denote the set of finite (resp. infinitely large) numbers
of R and Γ′ the set of γ ∈ Γ such that Sγ ∩ R>∞ 6= ∅. Each Sγ is a finite
disjoint union of intervals of R+ (see [BCR]): Sγ =

⋃
i Sγi. Since Sγi ∩ N = ∅,

one necessarily has that either Sγi ⊆ R<∞ or Sγi ⊆ R>∞. Therefore Sγ ∩ R>∞
consists of finitely many intervals and so we can speak of the infinitely large
number bγ := inf(Sγ ∩R>∞) whenever γ ∈ Γ′. It is readily checked that

R>∞ =
⋃

γ∈Γ′
[bγ,→[. (4)

Let a1, . . . , an be the constants of the machine whose halting set is R+ \ N.
Each Sγ is described by an open formula with these parameters. Since bγ is the
lower endpoint of some interval Sγi, it must solve a polynomial equation with
parameters a1, . . . , an; that is bγ is algebraic on Q(a1, . . . , an). Let a be given by
corollary 30. This corollary implies there exists some k ∈ N such that bkγ > a—
because the real closure of Q(a1, . . . , an) has finite transcendence degree over Q.
But then (4) shows that, for any infinitely large number, such a k also exists.
This concludes the proof. �

Proposition 32. Let R be an ordered ring. There exist R1, R2 two real closed
fields such that R ↪→ R1 ↪→ R2 and R1 satisfies the equivalent properties of
theorem 31 whereas R2 does not.
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Proof. Let us order the field R(a) by imposing that a is infinitely large and
a � b for any infinitely large b ∈ R. This defines an ordered field by the
compactness theorem for languages because this extension is characterized by
adding to the theory of R the axioms ‘a > n’ for all n ∈ N and ‘ak < b’ for
all k ∈ N and all infinitely large b ∈ R. Let R1 be the real closure of R(a).
Corollary 28 shows that R1 will satisfy property (iii) of theorem 31 iff R(a) does.
We claim that is for any infinitely large b ∈ R(a), one can find some k ∈ N such
that bk > a. If not, there must be an infinitely large b ∈ R(a) with b � a.
Theorem 27 implies that a, b are independent on R. That contradicts the fact
that the transcendence degree of R(a) on R is less or equal to 1.

Now, let us order R1(ai : i ∈ N) by asking that all ai are infinitely large and · · · �
a2 � a1 � a0 � b for any infinitely large b ∈ R1. As before, these constraints
define an ordered field. Let R2 be the real closure of R1(ai : i ∈ N). Again, by
virtue of corollary 28, R2 will satisfy property (iii) of theorem 31 iff R1(ai : i ∈ N)
does. But, if the latter holds, one can find some a∗ ∈ R1(ai : i ∈ N) such that any
infinitely large b satisfies bk > a∗ for some k. Thus a∗ � am � · · · � a0 for all
m—because a∗ 6 akm+1 � am—and so theorem 27 implies that a∗, am, . . . , a0 are
algebraically independent on R1 for all m. On the other hand, a∗ is the quotient
of two polynomials depending only on finitely many ai’s; that is there is a m such
that a∗ ∈ R1(ai : 0 6 i 6 m). But then a∗, am, . . . , a0 cannot be independent
on R1. �

Remark 33. The above proposition shows that a field with the property
that the set of its infinitely large numbers is recursively enumerable can loose
it through an extension and that, conversely, a field that does not have that
property can gain it by passing to a suitable extension. �

7 Dimension of r.e. sets

In real closed fields, there is a well known notion of dimension for semialge-
braic sets. This notion is invariant under semialgebraic isomorphisms or, more
precisely, if S is a semialgebraic set and ϕ is a semialgebraic map which is one-to-
one on S, then dimϕ(S) = dimS. The aim of this section is to construct a notion
of dimension for recursively enumerable sets. The maps under which it should be
invariant are the one-to-one decidable maps over the recursively enumerable set
in question. Due to the fact that this class is larger than the one of semialgebraic
maps, this notion of dimension shall be nontrivial only on real closed fields with
an infinite transcendence degree over Q. For these fields, the notions of dimension
for recursively enumerable and semialgebraic sets will coincide. Let us start with
drawing some consequences of trQR <∞.
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Theorem 34. Let R be a real closed field. The following statements are equiv-
alent.

(i) The transcendence degree of R over Q, trQR, is finite.

(ii) There exists a computable one-to-one map ε : R → R whose range Im ε =
N×.

(iii) For any semialgebraic set S ⊆ RN , 1 6 dimS 6 N < ∞, one can find a
sequence (Si)i∈N of disjoint semialgebraic sets of dimension less than dimS
such that S =

⋃
i∈N Si and i 7→ Si is computable.

(iv) There exists some semialgebraic set S ⊆ RN , 1 6 dimS 6 N < ∞, which
can be covered by a countable sequence (Si)i∈N of semialgebraic sets of di-
mension less than dimS and such that i 7→ Si is computable.

Before going into the proof, let us introduce some notation. If P ∈ R[X], P is
a finite subset of R[X], and x ∈ R, we denote Z(P ;P) (resp. Z(P, x;P)) the
number of roots of P (resp. less or equal to x) which are not roots of any of the
polynomials in P . We claim that these two quantities are computable. Indeed,
since Z(P, x;P) 6 degP , we only have to check whether Z(P, x;P) = ` for a
finite number of `’s. But Z(P, x;P) = ` is equivalent to

∃r1 < · · · < r`



∧`

i=1
P (ri) = 0 ∧ r` 6 x

∧∧`

i=0
∀ξ, ri < ξ < ri+1 ⇒ P (ξ) 6= 0

∧∧`

i=1

∧
Q∈P

Q(ri) 6= 0

where we have set r0 := −∞ and r`+1 := +∞ for writing convenience. These
formulae are constructible and, thanks to Tarski-Seidenberg, a machine can de-
termine which one is true. A similar argument shows that Z(P ;P) is also com-
putable.

Proof of theorem 34. (i) ⇒ (ii). Since trQR < ∞ and R is real closed,
it is well known that R is equal to the real closure of Q(a1, . . . , an) for some
a1, . . . , an ∈ R. The number of polynomials on Q(a1, . . . , an) is countable. In fact,
using a diagonal procedure to enumerate Q ∪ {a1, . . . , an} and the polynomials,
one can suppose that Q(a1, . . . , an)[X] \ {0} = {P0, P1, . . .} with the map i 7→ Pi
being computable. For any x ∈ R, let us define ε(x) by

ε(x) :=
∑

06i<k
Z
(
Pi; {Pj : j < i}

)
+ Z

(
Pk, x; {Pj : j < k}

)
where k := min{i : Pi(x) = 0}. First note that there is always some Pi of which x
is a root and so k is easily computed by successively looking whether P0(x) = 0,
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P1(x) = 0, . . . It is no difficulty to check that the map ε is one-to-one and reaches
all positive integers.

(ii) ⇒ (iii). Let us first deal with the case S = RN . Since the map ε is
computable, it is well known (see [BSS] §4, proposition 2) that one can write
R =

⋃
γ∈Γ Tγ for some decidable subset Γ of N and some semialgebraic sets Tγ

such that γ 7→ Tγ is computable and ε�Tγ is a rational map. The fact that ε
is one-to-one and can only take integer values implies that none of the Tγ’s can
contain an open interval; that is, every Tγ is a finite set of points—remember
that semialgebraic subsets of R are finite unions of intervals. Let us consider a
computable bijection ν : N→ Γ. One has

RN =
⋃

i∈N
Si with Si := RN−1 × Tν(i).

Since Tν(i) contains finitely many points, it is clear that dimSi 6 N − 1.

Now, let us consider an arbitrary semialgebraic set S of RN . According to theo-
rem 3, one can write

S =
⋃

α∈A
ϕ−1(Tα) where Tα := {x ∈ S : Pα[x]}. (5)

The Tα’s are disjoint integer cubes and ϕ is a semialgebraic bijection on S. Recall
also that

dimS = max
α∈A

dimTα. (6)

Like RN above, each Tα can be written as Tα =
⋃
i∈N T

′
(α,i) for some semialgebraic

sets T ′(α,i) such that dimT ′(α,i) < dimTα and i 7→ T ′(α,i) is computable. Let ν :
N→ A× N be a computable map. Then

S =
⋃

i∈N
Si with Si := ϕ−1(T ′ν(i)).

As dimSi = dimT ′ν(i) < dimS and since x ∈ Si is equivalent to ∃y, (x, y) ∈
Graphϕ ∧ y ∈ T ′ν(i) and then to an open formula by Tarski-Seidenberg, the sets
Si have the desired properties.

(iii)⇒ (iv). Obvious.

(iv) ⇒ (i). As above, S can be written like in (5). The relation (6) implies
there must be some α ∈ A such that dimTα = dimS. The integer cube Tα
is equal to the union of ϕ

(
Si ∩ ϕ−1(Tα)

)
, i ∈ N, which are sets of dimension

6 dimSi < dimTα. But Tα ∼= RdimTα by a semialgebraic isomorphism. As a
result, we can suppose from now on that S = Rd for some 1 6 d 6 N .

Let us suppose for a moment that d = 1 and let a1, . . . , an be the constants
of a machine computing i 7→ Si. Since dimSi = 0, Si is a finite set of points.
Therefore every x ∈ Si is the root of some nontrivial polynomial defining Si and
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so Si ⊆ R′ where R′ denote the real closure of Q(a1, . . . , an). But that implies
R ⊆ R′ and consequently trQR 6 trQR

′ 6 n.

To conclude the proof, it is enough to show that, if (iv) is true for S = Rd, d > 1,
then is is also true for S = Rd−1. More precisely, we claim that trQR < ∞ or
else there is some x ∈ R such that Sx := Rd−1×{x} satisfies (iv). Let a1, . . . , an
be the constants of a machine that computes the covering i 7→ Si of Rd. Set
Sxi := Sx ∩ Si. Obviously Sx =

⋃
i∈N S

x
i and dimSxi 6 dimSi 6 dimSx. We

claim that, if dimSxi = dimSx, x must be a root of a polynomial appearing in
the formula defining Si. Indeed, either

(a) there exists some ξ ∈ Sxi such that, for every nontrivial polynomial f ap-
pearing in the formula defining Si, f(ξ, x) 6= 0;

or, otherwise, every ξ ∈ Sxi must be the root of some polynomial f appearing in
the formula defining Si, and so, taking into account that the cardinal of Sxi is
infinite (because dimSxi = dimSx > 1) and that there is only a finite number of
polynomials in the open formula defining Si, one infers

(b) there exists a polynomial f in the formula defining Si such that f(ξ, x) = 0
for infinitely many ξ ∈ Sxi .

Case (a) cannot occur because, if it does, the continuity of polynomials would
allow to find some cubic neighborhood C of (ξ, x) ∈ Rd such that C ⊆ Si and this
would contradict the fact that dimSi < d. So (b) is true. But then the polynomial
in (b) must be independent of ξ. In other words, f(x) = 0 for some polynomial
of the formula defining Si—as was claimed. So, to sum up, or dimSxi < dimSx

for all i i.e., Sx satisfies (iv), or else x ∈ R′ where R′ stands for the real closure
of Q(a1, . . . , an). Therefore, if trQR = ∞, one can find some x ∈ R such that
Sx ∼= Rd−1 can be covered by sets of smaller dimension. �

Now the time has come to state the definition of the dimension for recursively
enumerable sets. This definition is natural in view of proposition 2.8.5 of [BCR].

Definition 35. Let R be a real closed field such that trQR =∞ and S ⊆ RN ,
N 6∞, be a recursively enumerable set. We define dimr.e. S by

dimr.e. S := sup
i∈N

dimSi where S =
⋃

i∈N
Si

and Si are finite dimensional semialgebraic sets such that i 7→ Si is computable.

By proposition 13, we know that at least one covering of S by some Si’s enjoying
the above properties exists. We shall show that dimr.e. S is independent of the
chosen covering. So let S =

⋃
i∈N Si =

⋃
j∈N Tj where Si and Tj are two covering

of S having the required properties. Let ν : N → N2 be a BSS-computable
bijection. Then Uk := Sν1(k) ∩ Tν2(k) is another suitable covering of S. For the
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claim to be true, it suffices to show that

dimSi = max
j∈N

dim(Si ∩ Tj). (7)

But that’s exactly what the implication ¬(i)⇒¬(iv) of theorem 34 states—the
inequality ‘>’ being obvious. Equality (7) also proves that, if S is a semialgebraic
set, dimr.e. S = dimS. The following proposition establish the invariance of that
notion of dimension.

Proposition 36. Let S ⊆ RN be a recursively enumerable set and ϕ : RN →
RM a map decidable over its domain such that S ⊆ Domϕ. Then dimr.e. ϕ(S) 6
dimr.e. S.

Proof. According to definition 35 and theorem 16 together with proposition 21,
one can write S =

⋃
i∈N Si and Domϕ =

⋃
j∈N Tj such that (Si) and (Tj) are com-

putable sequences of finite dimensional semialgebraic sets, and ϕ�Tj is semialge-
braic. Let ν : N→ N2 be a computable map. The sequence Uk := Sν1(k) ∩ Tν2(k)

is a suitable covering of S and thus

dimr.e. S = sup
k∈N

dimUk.

On the other hand, because ϕ�Tj is semialgebraic, it is well known (see [BCR])
that ϕ(Uk) is semialgebraic and

dimϕ(Uk) 6 dimUk.

Since k 7→ Uk and j 7→ ϕ�Tj are computable, so is k 7→ ϕ(Uk). Therefore (ϕ(Uk))
is a suitable covering of ϕ(S) and we are done. �

Corollary 37. Let S ⊆ RN be a recursively enumerable set and ϕ : RN → RM

a map which is decidable and one-to-one over Domϕ ⊇ S. Then dimr.e. ϕ(S) =
dimr.e. S.

Proof. According to corollary 20, ϕ−1 is also decidable and one-to-one over its
domain. Therefore, proposition 36 implies dimr.e. ϕ(S) 6 dimr.e. S = dimr.e. ϕ

−1 ◦
ϕ(S) 6 dimr.e. ϕ(S). �

With this notion of dimension, some other equivalences with the statements of
theorem 34 can easily be proved. They are analoguous to well known results
in classical recursion theory (see e.g., [Sh]). Of course, when trQ = ∞, the
negation of the following satements hold. They in particular say that RN cannot
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be decidably isomorphic to RM unless N = M . This expresses the non-triviality
of the dimension. This is similar to what happens for the topological dimension.

Proposition 38. Let R be a real closed field. The following statements are
equivalent to those of theorem 34.

(i) For any integers N > M > 1, there is a one-to-one decidable map RN →
RM .

(ii) For any integers N > M > 1, there exists a surjective decidable map RM →
RN .

(iii) All RN , N > 1, are decidably isomorphic.

Proof. Left to the reader. �
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