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Abstract

We study multiplayer reachability games played on a finite directed graph
equipped with target sets, one for each player. In those reachability games,
it is known that there always exists a Nash equilibrium. But sometimes several
equilibria may coexist. For instance we can have two equilibria: a first one
where no player reaches his target set and an other one where all the players
reach their target set. It is thus very natural to identify “relevant” equilibria.
In this paper, we consider different notions of relevant Nash equilibria including
Pareto optimal equilibria and equilibria with high social welfare. We also study
relevant subgame perfect equilibria in reachability games. We provide complex-
ity results for various related decision problems for both Nash equilibria and
subgame perfect equilibria.

Keywords:
multiplayer non-zero-sum games played on graphs, reachability objectives,
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1. Introduction

Two-player zero-sum games played on graphs are commonly used to model
reactive systems where a system interacts with its environment [1]. In such
setting the system wants to achieve a goal - to respect a given property - and
the environment acts in an antagonistic way. The system can be described by
a game where the two players are the system and the environment, the vertices
of the graph are all possible configurations in which the system can be and an
infinite path in this graph depicts a possible sequence of interactions between the
system and its environment. In such a game, each player chooses a strategy: it
is the way he plays according to the previous interactions with the other player.
Following a strategy for each player results in a play in the game. Finding how
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the system can ensure that a given property is satisfied amounts to finding a
winning strategy for the system in this game. For some situations, this kind of
model is too restrictive and a setting with more than two agents such that each of
them has his own not necessarily antagonistic objective is more realistic. These
games are called multiplayer non zero-sum games. In this setting, the solution
concept of winning strategy is not suitable anymore and different notions of
equilibria can be studied.

In this paper, we focus on Nash equilibrium (NE) [2]: given a strategy for
each player, no player has an incentive to deviate unilaterally from his strategy.
We also consider the notion of subgame perfect equilibrium (SPE) [3]: an SPE
is a strategy profile that is an NE not only from a given initial configuration
but also after any finite number of arbitrary interactions between the players.
We study these two notions of equilibria on reachability games. In reachability
games, we equip each player with a subset of vertices of the graph game that
he wants to reach. We are interested in both the qualitative and quantitative
settings. In the qualitative setting, each player only aims at reaching his target
set, unlike the quantitative setting where each player wants to reach his target
set as soon as possible.

It is well known that both NEs and SPEs exist in both qualitative and
quantitative reachability games. But, equilibria such that no player reaches
his target set and equilibria such that some players reach it may coexist. This
observation has already been made in [4, 5]. In such a situation, one could prefer
the second situation to the first one. In this paper, we study different versions
of relevant equilibria.

Contributions. For quantitative reachability games, we focus on the following
three decision problems: Threshold problem (Problem 1), Social welfare problem
(Problem 2), and Pareto optimal problem (Problem 3). For the first problem,
we ask whether there exists an equilibrium such that the cost of each player,
i.e., the number of steps to reach his target set, is upper-bounded by a given
threshold. For the second problem, we ask whether there exists an equilibrium
such that the social welfare is lower-bounded by a given threshold, i.e., such
that a certain number of players reach their target set and for all the players
reaching their target set, their cost is not too big. For the last problem, we ask
whether there exists an equilibrium such that the tuple of the costs obtained by
players following this equilibrium is Pareto optimal in the set of all the possible
costs that players can obtain in the game. We also consider the qualitative
adaptations of the three problems.

Our main contributions are the following. (i) We study the complexity
of the three decision problems. Our results gathered with previous works are
summarized in Table 1. (i) In case of a positive answer to any of the three
decision problems, we prove that finite-memory strategies are sufficient. Our
results and others from previous works are given in Table 2. (ii7) We identify a
subclass of reachability games in which there always exists an SPE where each
player reaches his target set. (i) Given a play, we provide a characterization
which guarantees that this play is the outcome of an NE. This characteriza-
tion is based on the values in the associated two-player zero-sum games called
coalitional games.



Table 1: Complexity classes for Problems 1-3.

Complexity Qualitative Reach. Quantitative Reach.
NE \ SPE NE \ SPE
Problem 1 NP-c [6] | PSPACE-c [7] NP-c PSPACE-c [§]
Problem 2 NP-c PSPACE-c NP-c PSPACE-c
Problem 3 | NP-h/XF PSPACE-c NP-h/¥F PSPACE-c
Table 2: Memory results for Problems 1-3.
Memory Qualitative Reach. Quantitative Reach.
NE \ SPE NE \ SPE
Problem 1 || Polynomial [6] | Exponential [7] || Polynomial | Exponential
Problem 2 Polynomial Exponential Polynomial | Exponential
Problem 3 Polynomial Exponential Polynomial | Exponential

Related Work. There are many results on NEs and SPEs played on graphs for
different kinds of qualitative and quantitative objectives. We refer the reader
to [9] for a survey and an extended bibliography. Here we focus on the results di-
rectly related to our contributions for winning conditions including reachability
objectives.

Regarding Problem 1, for NEs, it is shown to be NP-complete in the quali-
tative setting in [6]; for SPEs it is shown to be PSPACE-complete in both the
qualitative and quantitative settings in [7, 8]. Notice that in [4], variants of
Problem 1 for games with Streett, parity or co-Biichi winning conditions are
shown NP-complete and decidable in polynomial time for Biichi conditions.

Regarding Problem 2, in the setting of games played on matrices, deciding
the existence of an NE such that the expected social welfare is at most k is
NP-hard [10]. Moreover, in [11] it is shown that deciding the existence of an
NE which maximizes the social welfare is undecidable in concurrent games in
which a cost profile is associated only with terminal nodes.

Regarding Problem 3, in the setting of zero-sum two-player multidimensional
mean-payoff games, the Pareto-curve (the set of maximal thresholds that a
player can force) is studied in [12] by giving some properties on the geometry
of this set. The authors provide a ¥£ algorithm to decide if this set intersects
a convex set defined by linear inequations.

Regarding the memory, it is shown in [13] that there always exists an NE with
polynomial memory in quantitative reachability games, without any constraint
on the cost of the NE. It is shown in [5] that, in multiplayer games with w-
regular objectives, there exists an SPE with a given payoff if and only if there
exists an SPE with the same payoff but with finite memory. Moreover, in [7] it
is claimed that it is sufficient to consider strategies with an exponential memory
to solve Problem 1 for SPE in qualitative reachability games.

Finally, we can find several kinds of outcome characterizations for Nash equi-
libria and variants, e.g., in multiplayer games equipped with prefix-linear cost
functions and such that the vertices in coalitional games have a value (sum-
marized in [9]), in multiplayer games with prefix-independent Borel objectives
[4], in multiplayer games with classical w-regular objectives (as reachability) by
checking if there exists a play which satisfies an LTL formula [6], in concurrent



games [14], etc. Such characterizations are less widespread for subgame perfect
equilibria, but one can recover one for quantitative reachability games thanks
to a value-iteration procedure [8].

Structure of the Paper. In Section 2, we introduce the needed background and
define the different studied problems. In Section 3, we identify families of reach-
ability games for which there always exists a relevant equilibrium, for different
notions of relevant equilibria. In Section 4, we state our complexity and memory
results in the quantitative setting (see Tables 1 and 2) and provide the material
necessary to prove them. In Section 5, we briefly discuss the qualitative setting.
The proofs for the qualitative reachability setting are not given because they
are in the same spirit as for the quantitative setting.

This article is an extended version of an article that appeared in the Pro-
ceedings of RP 2019 [15]. Technical details and proofs about the quantitative
setting are here added.

2. Preliminaries and Studied Problems

2.1. Arena, Game and Strategies

An arena is a tuple A = (ILV, E, (V})ien) such that: (4) II is a finite set of
players; (i1) V is a finite set of vertices; (#i) E C V x V is a set of edges such
that for all v € V there exists v’ € V such that (v,v’) € F and (iv) (V;);em is a
partition of V' between the players.

A play in A is an infinite sequence of vertices p = pgps ... such that for all
k€N, (pr, pr+1) € E. A history is a finite sequence h = hohy ... hy with kK € N
defined similarly. Its length, denoted by |h|, is equal to k which is the number of
its vertices minus 1. We denote the set of plays by Plays and the set of histories
by Hist. Moreover, the set Hist; is the set of histories such that their last vertex
v is a vertex of Player ¢, i.e., v € V.

Given a play p € Plays and k& € N, the prefiz pgp1...pxr of p is denoted
by p<i and its suffix prprt1... by p>k. A lasso is a play p = h€% such that
h{ € Hist. Its length is the length of hf. Notice that ¢ is not necessarily a simple
cycle.

A game G = (A, (Cost;);cmr) is an arena equipped with a cost function profile
(Cost;)ien such that for all ¢ € II, Cost, : Plays — NU {400} is a cost function
which assigns a cost to each play p for Player i. We also say that the play p has
cost profile (Cost;(p))ier. Given two cost profiles ¢, ¢’ € (NU {+oo})1!l, we say
that ¢ < ¢ if and only if for all ¢ € II, ¢; < ¢f.

An initial vertex vy € V is often fixed, and we call (G,vg) an initialized
game. A play (resp. a history) of (G,v) is then a play (resp. a history) of G
starting in vg. The set of such plays (resp. histories) is denoted by Plays(vg)
(resp. Hist(vp)). The notation Hist;(vg) is used when these histories end in a
vertex v € V;.

Given a game G, a strategy for Player i is a function o; : Hist; — V. It assigns
to each history hv, with v € V;, a vertex v’ such that (v,v") € E. We denote
by ¥; the set of strategies for Player i. A play p = pop1 ... is consistent with
o; if for all p € Vi, 04(po ... pr) = pr+1. A strategy o; is positional if it only
depends on the last vertex of the history, i.e., o;(hv) = 0;(v) for all hv € Hist,.
It is finite-memory if it can be encoded by a finite-state machine [16]. In an



initialized game (G, vp), a strategy o; for Player i needs only to be defined for
histories starting in vg.

A strategy profile is a tuple o = (0;);en of strategies, one for each player.
Given an initialized game (G, v9) and a strategy profile o, there exists a unique
play from vg consistent with each strategy o;. We call this play the outcome of
o and denote it by (0),,. We say that o has cost profile (Cost;({(0)y,))ier-

2.2. Quantitative Reachability Games

In this article, we are interested in reachability games: each player has a
target set of vertices that he wants to reach.

Definition 1. A quantitative reachability game G = (A, (Cost;);icm, (Fy)iem) is
a game enhanced with a target set F; C V for each player ¢ € II and for all
1 € II the cost function Cost; is defined as follows: for all p = pgp; ... € Plays:
Cost;(p) = k if k € N is the least index such that py € F; and Cost;(p) = +0o0
if such index does not exist.

In quantitative reachability games, players have to pay a cost equal to the
number of edges until visiting their own target set or +oo if it is not visited.
Thus each player aims at minimizing his cost.

2.3. Solution Concepts

In the multiplayer game setting, the solution concepts usually studied are
equilibria. We recall the concepts of Nash equilibrium and subgame perfect
equilibrium.

Let 0 = (0;)ien be a strategy profile in an initialized game (G, vg). When we
highlight the role of player ¢, we denote o by (¢;,0_;) where o_; is the profile
(05)jem\(i}- A strategy o; # o; is a deviating strategy of Player i, and it is a
profitable deviation for him if Cost;((0)y,) > Cost; ({0}, 0_i)u,)-

The notion of Nash equilibrium is classical: a strategy profile ¢ in an ini-
tialized game (G, vo) is a Nash equilibrium (NE) if no player has an incentive to
deviate unilaterally from his strategy, i.e., no player has a profitable deviation.

Definition 2 (Nash equilibrium). Let (G,vy) be an initialized quantitative
reachability game. The strategy profile o is an NE if for each ¢ € II and each
deviating strategy . of Player i, we have Cost;({0)4,) < Cost; ({0}, 0—;)v,)-

When considering games played on graphs, a useful refinement of NE is
the concept of subgame perfect equilibrium (SPE). Whereas an NE is a strategy
profile where no player has an incentive to deviate in the initialized game (G, vp),
an SPE is a strategy profile satisfying this property for the initial vertex vg
but also after each history hv € Hist(vg). We shortly say that an SPE is a
strategy profile that is an NE in each subgame. Formally, given a game G =
(A, (Cost;);em), an initial vertex vg, and a history hv € Hist(vp), the initialized
game (G, v) such that Gy, = (A, (Costsn)ien) where Cost;n(p) = Cost;(hp)
for all ¢ € I and p € V¥ is called a subgame of (G,vp). Notice that (G, vg)
is a subgame of itself. Moreover if o; is a strategy for player i in (G, vo), then
oin, denotes the strategy in (Gyp,v) such that for all histories h’ € Hist,;(v),
oitn(B') = o;(hh'). Similarly, from a strategy profile o in (G, vo), we derive the
strategy profile oy, in (Gip, v).



Definition 3 (Subgame perfect equilibrium). Let (G, vg) be an initialized game.
A strategy profile o is an SPE in (G, v) if for all hv € Hist(vg), o} is an NE in
(g[h’ U)'

Clearly, any SPE is an NE and it is stated in Theorem 2.1 in [17] that there
always exists an SPE (and thus an NE) in quantitative reachability games.

2.4. Studied Problems

We conclude this section with the problems studied in this article. Let us
first recall the concepts of social welfare and Pareto optimality. Let (G, vg) be
an initialized quantitative reachability game with G = (A, (Cost;)icm, (Fi)iem)-
Given p = pop1... € Plays(vg), we denote by Visit(p) the set of players
who visit their target set along p, i.e., Visit(p) = {i € II | there exists n €
Nst. p, € F;}.!' The social welfare of p, denoted by SW(p), is the pair
(I Visit(p)], > evisie(p) Costi(p)) if Visit(p) # 0 and the pair (0,+oc0) other-
wise. Note that it takes into account both the number of players who visit
their target set and their accumulated cost to reach those sets. Finally, let
P = {(Cost;(p))icm | p € Plays(vo)} € (NU {+oo})T. A cost profile p € P is
Pareto optimal in Plays(vg) if it is minimal in P with respect to the componen-
twise ordering < on P.?

Let us now state the studied decision problems. The first two problems
are classical: they ask whether there exists a solution (NE or SPE) o satisfy-
ing certain requirements that impose bounds on either (Cost;({0),,))ic or on
SW (o), )-

Problem 1 (Threshold decision problem). Given an initialized quantitative
reachability game (G, vy), given a threshold y € (NU {400})™, decide whether
there exists a solution ¢ such that (Cost;((0)y,))icn < y.

The most natural requirements are to impose upper bounds on the costs
that the players have to pay and no lower bounds. One might also be interested
in imposing an interval [z;, y;] in which the cost paid by Player ¢ must lie.

In [8], Problem 1 with upper and lower bounds is already solved for SPEs.

Theorem 4 ([8]). For SPEs, Problem 1 with upper (and lower) bounds is
PSPACE-complete.

In the second problem, constraints are imposed on the social welfare, with
the aim to maximize it. We use the lexicographic ordering on N x (NU {+o00})
such that (k,c) = (K,¢') if and only if (i) k > k' or (i) k =k and ¢ < .

Problem 2 (Social welfare decision problem). Given an initialized quantitative
reachability game (G,vg), given two thresholds k € {0,...,|II|} and ¢ € NU
{+o0}, decide whether there exists a solution o such that SW({c),,) = (k, c).

Notice that with the lexicographic ordering, we want to first maximize the
number of players who visit their target set, and then to minimize the accumu-
lated cost to reach those sets. Let us now state the last studied problem.

1We can easily adapt this definition to histories.
2For convenience, we prefer to say that p is Pareto optimal in Plays(vg) rather than in P.
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Figure 1: A two-player quantitative reachability game with F = {vs,va} and Fo = {v1,v4}.

Problem 3 (Pareto optimal decision problem). Given an initialized quantita-
tive reachability game (G, vo) decide whether there exists a solution o in (G, vg)
such that (Cost;((0)y,))icm is Pareto optimal in Plays(vg).

Remark 5. Problems 1 and 2 impose constraints with non-strict inequalities.
We could also impose strict inequalities or even a mix of strict and non-strict
inequalities. The results of this article can be easily adapted to those variants.

We conclude this section with an illustrative example.

Example 6. Consider the quantitative reachability game (G, vg) of Figure 1.
We have two players such that the vertices of Player 1 (resp. Player 2) are the
rounded (resp. rectangular) vertices. For the moment, the reader should not
consider the value indicated on the right of the vertices’ labeling. Moreover
Fy = {vs,v4} and Fy = {v1,v4}. In this figure, an edge (v,v’) labeled by z
should be understood as a path from v to v' with length z. Observe that Fj
and F5 are both reachable from the initial vertex vg. Moreover the two Pareto
optimal cost profiles are (3,3) and (2,6): take a play with prefix vovavy in the
first case, and a play with prefix vgvov3vgv; in the second case.

For this example, we claim that there is no NE (and thus no SPE) such that
its cost profile is Pareto optimal (see Problem 3). Assume the contrary and
suppose that there exists an NE o such that its outcome p has cost profile (3, 3),
meaning that p begins with vgvovs. Then Player 1 has a profitable deviation
such that after history vgvs he goes to vs instead of v4 in a way to pay a cost of
2 instead of 3, which is a contradiction. Similarly assume that there exists an
NE o such that its outcome p has cost profile (2, 6), meaning that p begins with
voV2v3vV0v1. Then Player 2 has a profitable deviation such that after history vg
he goes to vy instead of vy, again a contradiction. So there is no NE o in (G, vg)
such that (Cost;({0)y,))icm is Pareto optimal in Plays(vp).

The previous discussion shows that there is no NE ¢ such that (0,0) =
x < (Costi({(0)v))ien < y = (3,3) (see Problem 1). This is no longer true
with y = (6,3). Indeed, one can construct an NE 7 whose outcome has prefix
vov1vgv2v3 and cost profile (6, 3). This also shows that there exists an NE o (the
same 7 as before) that satisfies SW({(0),,) = (k,c) = (2,9) (with 7 both players
visit their target set and their accumulated cost to reach it equals 9). O

3. Existence Problems

In this section, we show that for particular families of reachability games and
requirements, there is no need to solve the related decision problems because
they always have a positive answer in this case.

We begin with the family constituted by all reachability games with a strongly
connected arena. The next theorem then states that there always exists a solu-
tion that visits all non-empty target sets.



Theorem 7. Let (G,vo) be an initialized quantitative reachability game such
that its arena A is strongly connected. There exists an SPE ¢ (and thus an NE)
such that its outcome (o)., visits all target sets F;, i € 11, that are non-empty.

Let us comment on this result. For this family of games, the answer to
Problem 1 is always positive for particular thresholds. In case of quantitative
reachability, take strict constraints < +oo if F; # () and non-strict constraints
< 400 otherwise. We will see later that the strict constraints < +oo can be
replaced by the non-strict constraints < |V| - |II] (see Theorem 12). We will
also see that, in this setting, the answer to Problem 2 is also always positive for
thresholds k = |{i | F; # 0}| and ¢ = |II|* - |V| (see Theorem 12). In order to
ease the reading, we relegate the proof of Theorem 7 to Section 3.1.

In the statement of Theorem 7, as the arena is strongly connected, F; is non-
empty if and only if F; is reachable from vy. Also notice that the hypothesis
that the arena is strongly connected is necessary. Indeed, it is easy to build an
example with two players (Player 1 and Player 2) such that from vy it is not
possible to reach both F; and F5. This is illustrated in Example 8.

Example 8. Consider the initialized quantitative reachability game (G, vg) of
Figure 2. There are two players, Player 1 who owns round vertices and Player 2
who owns square vertices, and Fy; = {v1}, F» = {v2}. Clearly there is a unique
NE o = (01,02) in (G, vg) such that o1(vg) = v and o2(v1) = v1, 02(v2) = va.
Its outcome only visits Fy (and not Fy).

(v )

Figure 2: A two-player quantitative reachability game with F; = {v1} and F» = {v2} where
one target set is not reached in equilibrium.

We now turn to the second result of this section. The next theorem states
that even with only two players there exists an initialized quantitative reach-
ability game that has no NE with a cost profile which is Pareto optimal. To
prove this result, we only have to come back to the quantitative reachability
game of Figure 1. We explained in Example 6 that there is no NE in this game
such that its cost profile is Pareto optimal.

Theorem 9. There exists an initialized quantitative reachability game with
|TT| = 2 that has no NE with a cost profile which is Pareto optimal in Plays(vg).

3.1. Technical details and proofs

To prove Theorem 7, we begin with a preliminary lemma and the proof of
Theorem 7 follows.

Lemma 10. Let G be a quantitative reachability game. Then for all vg € V
for which some target set I, j € 11, is reachable from vy, there exists an SPE
in (G,vy) whose outcome p wvisits at least one target set F;, i € II, that is,
| Visit(p)| > 1.



Proof. By Theorem 2.1 in [17], there exists an SPE in (G, vg) for each initial
vertex vg € V. Consider the set U C V of vertices u for which some F} is
reachable from u, and the set U’ C U of those vertices v for which there is an
SPE in (G, u) that visits at least one target set. We have to prove that U = U’.

Let us assume that vg € U \ U’. We claim that there exists an edge (u,u’)
such that v € U\ U’ and v’ € U’. Indeed as vy € U, there exists a history
h =wvovy ... v, with vy, € F} for some j. Hence v, € U’ since the outcome of all
SPEs in (G, v:) immediately visits F;. As along h we begin with vy € U \ U’
and we end with v, € U’, there must exist an edge (ve,ve41) = (u,v’) with
uweU\U and v’ € U'.

Let o (resp. o) be an SPE in (G, u) (resp. in (G,u)). As v/ € U’, we can
suppose that the outcome of o visits some target set I;. From o“ and a“/,
we are going to construct another SPE 7 in (G, u) whose outcome will now visit
this set F;. This will lead to a contradiction with u € U\ U’. We define such a
strategy profile 7 equal to c* except that it is replaced by o for all histories
with prefix uu’. More precisely,

e for the particular history w, if u € V;, then 7;(u) = o/,
e for each history uu'h € Hist;, i € I1, we define 7;(uu'h) = o' (u'h),

e for each history uv’'h € Hist;, ¢ € II, with v" # «/, we define 7;(uv'h) =
o (uv'h).

Clearly the outcome of 7 is equal to u(c* ), and thus visits F}. It remains to
show that 7 is an SPE, é.e., that 7 is an NE in the subgame (G, v) for all
hv € Hist;(u), i € II.

e For all histories hv that begin with wv’ with v" # «’/, clearly 7y, is an NE
in (Gyn,v) because 7, = o, and ¢ is an SPE.

e Take any history hv that begin with wu/, and let h = uh/. Let 7] be a
deviating strategy for Player ¢ in (G, v). By definition of 7 we have

’

<TFh>v = <0Fh’>v

<(Tz‘/v7—Fh,—i)>v = <(Tz/ Uqrih/—z‘»v

)

Moreover, as u belongs to no target set, we have Cost;(up) = 14 Cost;(p)
for all plays p € Plays(u'). It follows that if 7/ is a profitable deviation for
Player ¢ with respect to 7y, it is also a profitable deviation with respect to
a}‘,;,. The latter case never holds because o is an SPE (and in particular

/

oy, is an NE). Therefore 7y, is an NE in (Gn, v).

e It remains to consider the history u and to prove that 7 is an NE in (G, u).
From what has been gathered so far, only Player i such that u € V; might
have a profitable deviation by deviating at the initial vertex w with a
strategy 7/ such that 7/(u) = v' # v = 7;(u). Notice that since u € U\U’,
we have Cost;({c"),) = 400 and since o* is an SPE (and in particular an
NE), we have Cost;({7/,0%,).) = +00. Moreover as 7/(u) = v # u' and
by definition of 7, we have Cost;((7/,0",)) = Cost;({7],7_i)u) = +00. It
follows that 7/ is not a profitable deviation for Player ¢ with respect to T,
and then 7 is an NE in (G, u). O



Proof of Theorem 7. Let (G,vp), with G = (A, (Cost;)iem, (F;)iem), be an ini-
tialized quantitative reachability game such that its arena is strongly connected.
Assume by contradiction that there exists no SPE in (G, vg) whose outcome vis-
its all target sets Fj, i € II, that are non-empty. By Theorem 2.1 in [17], there
exists an SPE ¢ in (G, vg), and we take such an SPE o whose outcome p = (),
visits a maximum number of target sets, say Fj,, Fj,, ..., F;,. Thus by assump-
tion there exists at least one F; # () with j & {i1,...,i} that is not visited by
p. Thanks to Lemma 10, we are going to define from o another SPE 7 in (G, vg)
whose outcome visits all F; ,..., F;, as well as an additional target set. This
will lead to a contradiction.

Consider a prefix pop;...p¢ of p that visits all F;,,..., F;,. We denote
it by gu with u = py,. From G we define the quantitative reachability game
G' = (A, (Cost})icm, (F})icn) with the same arena A and such that F] = 0 if
i € {i1,...,ix} and F] = F; otherwise ((Cost});crr is defined with respect to
(F})ien as in Definition 1). Notice that F] = F; is not empty and it is reachable
from u since A is strongly connected. Therefore by Lemma 10, there exists an
SPE o' in (G', u) that visits at least one target set I},. From o and o', we define
a strategy profile 7 in (G, vg) as follows: let h € Hist;(vp),

o if h = guh’ for some P/, then 7;(h) = ol (uh'),
e otherwise 7;(h) = o;(h).

Thus, T acts as o, except that after a history beginning with gu, it acts as o”.
Clearly the outcome of 7 is equal to g(o’),, and thus visits F/, = F)j, in addition
to Fy,,..., F;, . It remains to show that 7 is an SPE. Consider hv € Hist;(vo),
i € II, and let us show that 7y, is an NE in (Gp, v).

e If neither hv is a prefix of gu nor gu is a prefix of hv, then 7y, = oy, by
definition of 7, and 7y, is an NE in (G}, v) because o is an SPE in (G, vy).

o If gu is a prefix of hv, let h’ such that gh’ = h. Suppose first that hv
visits Fj, then Player i has clearly no incentive to deviate in (Gp,v).
Suppose now that hv does not visit F;, then ¢ & {i1,...,ix} and F] = F;
by definition of G’. Hence for all plays 7 in (Gyp,, v) that start in v, h'7 is a
play in (G’, u) that starts in u, and we have Cost;(hr) = |gu|+ Cost;(h/r).
Hence by definition of 7, a profitable deviation for Player ¢ with respect
to 71n, (Gyn,v) would be a profitable deviation with respect to J’W in
(G’ 11/, v). The latter case cannot happen as ¢’ is an SPE in (G’, u) and it
follows that 75, is an NE in (Gp, v).

e Consider the last case where hv is a prefix of gu with hv # gu, and let
hh' = g. Consider 7/ a deviating strategy for Player ¢ with respect to 7}, in
the subgame (G, v), and let p' = ((7/, Tjn,—i))v. Without loss of general-
ity, we can suppose that h'u is not a prefix of p’ since this case was treated
at the previous item. Notice that if ¢ € {iy,..., i}, then Cost;((Tjn),) =
Cost;((o1n)v), otherwise Cost;((Tjn)y) < +00 = Cost;((ojn)»). In both
cases, as h'u is a prefix of both (7};,), and (o}1,),, but not a prefix of p/, if
7/ was a profitable deviation for Player ¢ with respect to 7, it would also
be a profitable deviation with respect to o}, which is impossible since o
is an SPE. O
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4. Solving Decision Problems

In this section, we present our main results concerning the three decision
problems studied in this paper. In Theorem 11 we provide our complexity
results and in Theorem 12 the memory requirements for the equilibria.

Theorem 11. Let (G,vg) be a quantitative reachability game.

e For NEs: Problem 1 and Problem 2 are NP-complete while Problem 3 is
NP-hard and belongs to $% .

e For SPEs: Problems 1, 2 and 8 are PSPACE-complete.
Theorem 12. Let (G,vg) be a quantitative reachability game.

e For NFEs: for each decision problem, if the answer is positive, then there
exists a strategy profile o with memory in O(|II| - |V'|) which satisfies the
conditions.

e For SPEs: for each decision problem, if the answer is positive, then there
exists a strategy profile o with memory in Q21 - |I| - [V|(IT+2)-(IVI+3)+1)
which satisfies the conditions.

Moreover, for both NEs and SPEs:

e for Problem 1 and Problem 3, o is such that: if i € Visit({0),,), then
Cost; ((0)v) < [ - [V];

e for Problem 2, if Visit((o)y,) # 0, then ZieVisit((cr)UO)COSti(<0>UO) <
T2 - [V].

Notice that no assumption is made on the arena of the game. Even if we
provide complexity lower bounds in Theorem 11, the main part is to give the
upper bounds. Roughly speaking the decision algorithms work as follows: they
guess a path and check that it is the outcome of an equilibrium satisfying the
relevant property (such as Pareto optimality). In order to verify that a path is
an equilibrium outcome, we rely on the outcome characterization of equilibria,
presented in Section 4.2. These characterizations rely themselves on the notion
of A-consistent play, introduced in Section 4.1. As the guessed path should
be finitely representable, we show that it is sufficient to consider A-consistent
lassoes, in Section 4.3. We then expose in Section 4.4 the philosophy of the
algorithms providing the upper bounds on the complexity of the three problems.
Finally, all the technical details and proofs are relegated to Section 4.5.

4.1. A-Consistent Play

Given a labeling function, A : V. — N U {400}, we define in this section the
notion of \-consistent play. Intuitively it is a play p such that for each vertex
v along p the value A(v) represents the maximal number of steps within which
the player who owns this vertex can use to reach his target set along p starting
from v.

Definition 13 (A-consistent play). Let (G,vg) be a quantitative reachability
game and A : V — NU {+o0} be a labeling function. Let p € Plays be a play,
we say that p = pop1 ... is A-consistent if for all ¢ € II and all k € N such that
i & Visit(po ... pr) and pp € Vi Cost(p>k) < AMpk)-

11



Example 14. Let us come back to Example 6 and assume that the values
indicated on the right of the vertices’ labeling represent the valuation of a
labeling function . Let us first consider the play p = (vovav4)¥ with cost
profile (3,3). We have that Costa(p) = 3 < A(vg) = 3 but Costi(p>1) =
Costy (vava(vov2vs)¥) = 2 > A(ve) = 1. This means that (vovav4)® is not
A-consistent. Secondly, one can easily see that the play vovy(vovavs)® is A-
consistent.

4.2. Characterizations
4.2.1. Outcome Characterization of Nash Equilibria

In this section we provide an outcome characterization of NEs for quantita-
tive reachability games, thanks to the previous notion of A-consistent play for
a well-chosen labeling function A. Notice that such a characterization is not
new: it is close to the standard folk theorem from repeated games with perfect
information (see for instance [18]). In the context of games played on graphs,
we also refer to the survey [9] where a similar characterization is recalled for
different kinds of qualitative and quantitative objectives, however not including
quantitative reachability.

To define this function A, we need to study the rational behavior of one player
playing against the coalition of the other players. Let us informally recall this
notions and the related useful concepts; formal definitions will be given later
(see Definitions 25-27).

With a quantitative reachability game G = (A, (Cost;)ier, (Fi)iem), we asso-
ciate |II| two-player zero-sum quantitative games G; such that G; the coalitional
game associated with Player ¢ [13]. In this game G, Player ¢ (which becomes
Player Min) wants to reach the target set F' = F; within a minimum number of
steps, and the coalition of all players except Player ¢ (which forms one player
called Player Maz, aka —i) aims to avoid it or, if it is not possible, maximize
the number of steps until reaching F'.

Given a coalitional game G; and a vertex v € V, the wvalue?® of G; from v,
depicted by Val;(v), allows us to know what is the lowest (resp. greatest) cost
(resp. gain) that Player Min (resp. Player Maz) can ensure to obtain from wv.
Moreover, as quantitative coalitional games are determined these values always
exist and can be computed in polynomial time [13, 19, 20].

An optimal strategy for Player Min (resp. Player Maz) in a coalitional game
G; is a strategy which ensures that, from all vertices v € V, Player Min (resp.
Player Maz) will pay at most (resp. obtain at least) Val;(v) by following this
strategy whatever the strategy of the other player. For each i € II, we know
that there always exist optimal strategies for both players in G;. Moreover, we
can always find optimal strategies which are positional [13].

The next theorem states that the outcomes of NEs are exactly the plays
that are Val-consistent, with the labeling function Val defined in this way: for
all v € V if v € V;, then Val(v) = Val;(v).

Theorem 15 (Characterization of NEs). Let (G,v) be a quantitative reachabil-
ity game and let p € Plays(vg) be a play, the following assertions are equivalent:

1. there exists an NE o such that (o), = p;

3also known as minmax value [3].
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2. the play p is Val-consistent.

The main idea is that if the second assertion is false, then there exists a player
1 who has an incentive to deviate along p. Indeed, if there exists & € N such
that Cost;(p>r) > Val;(pr) (px € Vi) it means that Player ¢ can ensure a better
cost for him even if the other players play in coalition and in an antagonistic
way. Thus, Player ¢ has a profitable deviation. For the second implication, the
Nash equilibrium o is defined as follows: all players follow the outcome p but
if one player, assume it is Player ¢, deviates from p the other players form a
coalition —i and punish the deviator by playing the optimal strategy of Player
—i in the coalitional game G;.

Example 16. Let us go back to Example 14, in this example the used labeling
function A is in fact the labeling function Val. We proved in Example 14 that
the play (vovav4)® is not Val-consistent and so not the outcome of an NE by
Theorem 15. On the contrary, we have seen that the play vovi (vovovs)® is Val-
consistent and it means that it is the outcome of an NE (again by Theorem 15).
Notice that we have already proved these two facts in Example 6.

Up to our knowledge, there is no formal proof of Theorem 15 in the literature.
For the sake of completeness we provide such a proof in Section 4.5.1.

4.2.2. Outcome Characterization of Subgame Perfect Equilibria

In the previous section, we proved that the set of plays which are Val-
consistent is equal to the set of outcomes of NEs. We now want to have the same
kind of characterization for SPEs. We may not use the notion of Val-consistent
plays because there exist plays which are Val-consistent but which are not the
outcome of an SPE. But, we can recover the characterization of SPEs thanks
to a different labeling function defined in [8] that we depict by A*.

Let us present this function A*; notice that A* is not defined on the vertices
of the game G but on the vertices of the extended game X associated with G.
The reader is referred to [8] for further details about A*.

The set of players in the extended game is the same as in the game G (i.e.,
IT) and its vertices (v,I) store a vertex v € V as well as a subset I C II of
players that have already visited their target sets. The extended game is also a
reachability game such that (v, I) is in the target set of Player ¢ as soon as i € T
(i.e., Player i has visited F;). Therefore all concepts and definitions introduced
in Section 2 hold.

Definition 17 (Extended game). Let G = (A, (Cost;)crr, (F;)ier) be a quanti-
tative reachability game with an arena A = (II, V, E, (V;);en). Let vp be an ini-
tial vertex. The extended game of G is equal to X = (AX, (Cost,)iem, (F7X)icm)-

Its arena A% = (IL VX, EX, (V;X),en) is such that VX =V x 2 with VX =
{(v,I) | v € V;}, and ((v,I),(v",I')) € EX if and only if (v,v') € E and
I'=Tu{iell|v € F;}. Each target set F;X is defined such that (v, I) € F/X
if and only if ¢ € I. The extended game X is a quantitative reachability such
that for each play p in A%, its cost Cost;(p) is equal (as in G) to the least index
k such that p, € FX, and to +oo0 if no such index exists.

The initialized extended game (X, x) associated with the initialized game

(G, v) is such that xzg = (vg, Iy) with Iy = {i € I | vg € F;}.
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There is a one-to-one correspondence between SPEs in (G, vg) and its asso-
ciated initialized extended game (X, z(). This is the reason why we solve the
different decision problems on the extended game instead of the initial game.
However, it is very important to notice that some of our results depend on |V/|
(resp. |II|) that are the number of vertices (resp. players) in G and not in X.

The labeling function A* is obtained thanks to a fixpoint algorithm [8]. We
start from an initial labeling function A° that imposes no constraints on the
plays in the extended game X. We then iterate an operator that reinforces
the constraints step after step, up to obtaining a fixpoint which leads to the
required function A\*. In other words, suppose that A* denotes the labeling
function computed at step k and each A*(v), with v € VX, denotes the related
set of A\F-consistent plays beginning in v. Initially we have A°(v) = Plays(v),
and step by step, the constraints imposed by A* become stronger and the sets
A¥(v) become smaller, until a fixpoint is reached.

The initial function A° is defined in a way that all plays in X are -
consistent. For each v € VX, let i be such that v € VX, then \°(v) = 0
for all v € FX and \°(v) = +o0 otherwise.

Suppose that \*, with k& > 0, has been computed. The labeling update to
obtain A\**! is defined as follows.* For each v € VX let i be such that v € V;X,
then

0 if ve FX,

14+ min _sup{Cost;(p) | p € A¥(v/)} otherwise.
(v,0')eEX

At (p) =

Intuitively, when it is updated, the value A\**!(v) represents what is the best
cost that Player ¢ can ensure for himself from v with a “one-shot” choice by
only taking into account plays of A*(v') with (v,v') € EX.

The next theorem is the counterpart of Theorem 15 for SPEs.

Theorem 18 ([8] Characterization of SPEs). Let (G, vo) be a quantitative reach-
ability game and (X, xg) be its extended game and let p = pop1 - .. € Plays(zo)
be a play in the extended game, the following assertions are equivalent:

1. there exists a subgame perfect equilibrium o such that (o)., = p;
2. the play p is A\*-consistent.

4.3. Sufficiency of Lassoes

In this section, we provide technical results which given a A-consistent play
produce an associated A-consistent lasso. In the rest of this document, we show
that working with these lassoes is sufficient for the algorithms.

The associated lassoes are built by eliminating some unnecessary cycles and
then identifying a prefix hA¢ such that ¢ can be repeated infinitely often. An
unnecessary cycle is a cycle inside of which no new player visits his target
set. More formally, let p = pop1...pk ... Pk+e-.. be a play in G, if px = prye

4To ease the reading, the definition presented here is simplified compared to the one given
in [8]. To be correct, the labeling update must be limited to some region, i.e, to some set of
vertices v € VX with the same second component I C II. Moreover, those regions must be
treated according to a certain ordering (see [8]).
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and Visit(pg ... pr) = Visit(pg ... pr+e) then the cycle pg ... pgye is called an
unnecessary cycle.
We call:

e (P1) the procedure which eliminates an unnecessary cycle, i.e., let p =
POPL - - - Pk - - - Pk+e - - - such that pg ... prye is an unnecessary cycle, p be-
comes p' = pg...PkPKIEL] - -

e (P2) the procedure which turns p into a lasso p’ = h{“ by copying p long
enough for all players to visit their target set and then to form a cycle
after the last player has visited his target set. If no player visits his target
set along p, then (P2) only copies p long enough to form a cycle.

Notice that, given p € Plays, applying (P1) or (P2) may involve a decreasing of
the costs but for (P1) and (P2) Visit(p) = Visit(p’). Additionally, after applying
(P2) we have that Visit(h) = Visit(p’). Moreover, applying (P1) until it is no
longer possible and then (P2) leads to a lasso with length at most (|II|+1) - |V/|
and cost less than or equal to |II| - |[V| for players who have visited their target
set.

Lemma 19. Let (G,vg) be a quantitative reachability game and p € Plays be a
play.
o Ifp is obtained by applying (P1) on p, then (Cost;(p'))icnn < (Costi(p))ien
o Ifp is obtained by applying (P2) on p, then (Cost;(p'))icrn = (Costi(p))iem-

o Applying (P1) until it is no longer possible and then (P2), leads to a lasso
o' with length at most (|II| + 1) - |V| and Cost;(p’) < |V|-|II| for each

i € Visit(p').
O

Remark 20 (about Lemma 19). Notice that, given a quantitative reachability
game (G,vp), as its extended game (X, xz() is also a quantitative reachability
game, all statements of Lemma 19 also hold for the latter game. Notice that
the third assertion applied to (X, zg) leads to upper bounds where |V | must be
replaced by |V which is exponential in |II| (see Definition 17).

In fact, even in the extended game (X, zo) we can obtain the same result:
applying (P1) until it is no longer possible and then (P2), leads to a lasso p/
with size at most (|TI| + 1) - |[V| and Cost;(p") < |V| - [II] for each ¢ € Visit(p').
This is because along a play p in the extended game, the second components of
the vertices of p form a non-decreasing sequence.

Additionally, applying (P1) or (P2) on A-consistent plays preserves this prop-
erty. This is stated in Lemma 21 which is in particular true for extended games.

Lemma 21. Let (G,vg) be a quantitative reachability game and p € Plays be a
X-consistent play for a given labeling function X. If p' is the play obtained by
applying (P1) or (P2) on p, then p' is A-consistent. O

Lemmas 19 and 21 allow us to claim that it is sufficient to deal with lassoes
with polynomial length to solve Problems 1, 2 and 3. Moreover, it yields some
bounds on the needed memory and the costs for each problem as stated in the
next two propositions.

The first proposition is used to solve Problems 1 and 2.
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Proposition 22. Let 0 be an NE (resp. SPE) in a quantitative reachability
game (G,vg) (resp. (X, xq) its extended game). Let wg = vy (resp. wo = Zo).
Then there exists T an NE (resp. SPE) in (G,vg) (resp. (X, x0)) such that:

o (Thw, @S a lasso he¥ such that |he| < (]II] +1) - |V|;
o for each i € Visit({T)w,), Cost;({T)w,) < |H| - |V];
e 7 has memory in O(|I] - |V|) (resp. O2M . || - |[V|(IT+2)-(VI+3)+1) ),

Moreover, given y € (NU {+oo})M k€ {0,..., ||} and c € NU {+o0}:

o If (Costi({o)w,))ient <y, then (Cost;({T)w,))ien < y;
o If SW((0)w,) = (k,c), then SW({T)w,) = (k, ).

The following proposition is used to solve Problem 3.

Proposition 23. Let o be an NE (resp. SPE) in a quantitative reachability
game (G, vg) (resp. (X,xq) its extended game). Let wy = vy (resp. wo = o). If
we have that (Cost;((0)w,))icn is Pareto optimal in Plays(wg), then:

o for alli € Visit({o)y,), Cost;((0)w,) < |V] - |I1|;

o there exists T an NE (resp. SPE) such that (7)., = h¢, |he] < (|[II]4-1)-|V]|
and (Costi((0)uw,))ierr = (Costi ((T)uw, ) )iert;

e 7 has memory in O(|T| - |V|) (resp. O2MI . |T1| - |V |(HIF+2)-(VI+3)+1),

For the sake of clarity we relegate the proofs of Propositions 22 and 23 to
Section 4.5.2.

4.4. Algorithms and memory requirements

In this section, we provide the main ideas behind the results stated in The-
orems 11 and 12.

4.4.1. Algorithm for NEs

We first focus on Theorem 11 for NEs, i.e., Problem 1 and Problem 2 are
NP-complete while Problem 3 is NP-hard and belongs to 4. We only provide
algorithms to solve these problems and their related complexity, since the proof
for the NP-hardness is very similar to the one given in [6]. Recall that %% is by
definition the class NPNY | it is also equal to NPNF. The algorithm for each
problem works as follows:

1. it guesses a lasso of polynomial length;

2. it verifies that the cost profile of this lasso satisfies the conditions® given
by the problem;

3. it verifies that the lasso is the outcome of an NE.

Let us comment on the different steps of these algorithms.

5Satisfying the conditions is either satisfying the constraints (Problem 1 and Problem 2)
or having a cost profile which is Pareto optimal (Problem 3).
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e Step 1: For Problem 1 and Problem 2 (resp. Problem 3), it is sufficient to
consider plays which are lassoes with polynomial length thanks to Propo-
sition 22 (resp. Proposition 23).

e Step 3: This property is verified thanks to Theorem 15. This is done in
polynomial time as the lasso has a polynomial length and the values of
the coalitional games are computed in polynomial time.

e Step 2: For Problem 1 and Problem 2, this verification can be obviously
done in polynomial time. For Problem 3, we need to have an oracle al-
lowing us to know if the cost profile of the lasso is Pareto optimal. As a
consequence, we study Problem 4 which lies in co-NP.

Problem 4. Given a quantitative reachability game (G, vg) (resp. its extended
game (X, zg)) and a lasso p € Plays(vg) (resp. p € Plays(xo)), we want to decide
if (Cost;(p))iem is Pareto optimal in Plays(vg) (resp. Plays(zg)).

Proposition 24. Problem 4 lies in co-NP.

Proof. Let (G,vp) be a quantitative reachability game (resp. (X, o) be its ex-
tended game) and let p € Plays(vg) (resp. p € Plays(xg)) be a lasso. If p is not
Pareto optimal, there exists a play p’ such that (Cost;(p))ienr > (Cost;(p’))ien
and (Cost;(p))iert # (Cost;(p'))ien. Moreover, thanks to Lemma 19, one may
assume that p’ is a lasso with size at most (|II| + 1) - |V|. So, we only have
to guess such a lasso p’ and to verify that (Cost;(p))ienm > (Cost;(p’))ien and
(Costi(p))ienr # (Costi(p'))icr- This can be done in polynomial time. O

4.4.2. Algorithm for SPFEs

We now focus on Theorem 11 for SPEs, i.e., Problems 1, 2 and 3 are
PSPACE-complete. The PSPACE-completeness of Problem 1 is already solved
(see Theorem 4). We thus provide algorithms to solve Problems 2 and 3 and
their related complexity. We do not provide the proof for the PSPACE-hardness
as it is very similar to the one given in [8].

The algorithm for Problem 2 and 3 works as follows:

1. it guesses a lasso of polynomial length;

2. it verifies that the cost profile ¢ of this lasso satisfies the conditions given
by the problem;

3. it checks, whether there exists an SPE with cost profile equal to c.

The explanations for the first and the second steps are the same as for
the algorithms for NEs. Finally, we know that the third step can be done in
PSPACE by Theorem 4.

4.4.3. Memory requirements

We now turn to Theorem 12 that provides memory requirements for the
equilibria in case of positive answer to the studied decision problems. Its proof
directly follows from Proposition 22 (resp. Proposition 23) for Problems 1 and 2
(resp. Problem 3).

4.5. Technical details and proofs

In order to better highlight the results and to ease the reading, we choose
to present the technical proofs in this section.
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4.5.1. Proof of Theorem 15 (Characterization of NEs)

We first provide the formal definitions of coalitional game, value and optimal
strategy.

Definition 25 (Coalitional game). Let A = (I, V, E, (V;);cn1) be an arena and
G = (A, (Cost;)iem, (Fi)iemm) be a quantitative reachability game with [TI| > 2.
With each player ¢ € II, we can associate a two-player zero-sum quantitative
reachability game depicted by G; = (A;, (Costyin, Gainpyax ), F') and defined as
follows: i) A; = ({1, —i},V, E,(V;, V\V;)) where Player i (resp. —i) can be called
Player Min (resp. Player Max); ) Costyin = Cost; and Gainyax = Costygin
and i) F = F;.

Definition 26 (Value). Let G; be a coalitional game and v € V be a vertex,
we define the value of G; from v as :

Val;(v) = inf sup  Costyin ({01, 02)0). (1)

01E€EX Min 02€EX Max

Remark that, as for each i € II the coalitional game G; is determined
([13]) and Costpin = Gainpax, the equality (1) could be defined as Val;(v) =
Supa‘zEEMam infﬂ'l E€EXMin Ga‘inMaX(<017 02>v)~

Definition 27 (Optimal strategy). Let G; be a coalitional game, we say that
o} € Ynrin 1s an optimal strategy for player Min if, for all v € V| we have that:
SUDg,ex,,.. COstumin((0F, 02)y) < Vali(v). Similarly, we say that 05 € Ypqp is
an optimal strategy for player Maz if, for all v € V| we have that:

infgleng GainMaX(<01, 0';)1,) > Vali (’U)

Let (G, vg) be a quantitative reachability game and p € Plays(vg) be a play.
Let us prove Theorem 15, i.e., there exists an NE ¢ such that (o),, = p if and
only if the play p is Val-consistent.

Proof of Theorem 15. Let us first recall that, for all i € TI, the coalitional game
G; is determined and there are optimal positional strategies for both players
(oF,0% ;). Moreover since Costyin = Gainpgax, for all v € V| we have:

inf  Costygin (04,07 ;)») = Val;(v) =  sup  Costmin({(0),0-i)v).

0i€EXMin 0_i€XMax

From the optimal strategy ¢*; in G; we can extract a strategy o5 of Player j

in G. Notice also that even if o} is a strategy in G;, we can use it as a strategy
of Player ¢ in G.
Let us prove the equivalence between the two assertions of Theorem 15.

1= 2: Let o be a Nash equilibrium in (G,wvg) such that (o),, = p. Let
us assume by contradiction that there exist ¢ € II and £ € N such that ¢ ¢
Visit(po ... pr) and pg € V; such that:

COSti(ka) > Vali(pk). (2)
Let h=pg...pr_1, we can write:

Costi(p>r) = Costi((o1n) p,)- (3)

18



Additionally, by definition of value in a coalitional game and thanks to the fact
that the optimal strategies are positional:

Val;(pr) = sup  Costwmin((0], T—i)p)

T_i€X Max
> Costain((07, 7—ith) pr,)
= Cost; ({0}, 0—itn) ) (4)

where o is the optimal strategy of Player ¢ in G; and o_; is an abuse
of notation to depict the strategy of the coalition —i = II\{i} which follows
strategies o for all j # 1.

By (2), (3) and (4), it follows that:

COSti(<0’:7 U—iTh>pk) < COSti(<UFh>Pk)'
As i ¢ Visit(h) by hypothesis, we can conclude that:

Costi(h{o],0_ith)pr) < Costi(h{or)p,) = Cost;(p).

This means that following o; along h and then o} once he reaches pj is a
profitable deviation for Player i. This concludes the proof.

2 = 1: Let 7 be a strategy profile such that (r),, = p. From 7 we aim
to construct a Nash equilibrium with the same outcome. The main idea is the
following one: first, all players play according to 7. But if a player, let us call
him Player i deviates from 7;, the other players form a coalition and each of
them plays their strategy obtained thanks to the strategy ¢*, in G,.

In order to define properly the Nash equilibrium that we are looking for, we
have to define a punishment function P : Hist(vg) — ITU {L} which allows us
to know who is the player who has deviated for the first time from 7. So for
all h € Hist(vg), P(h) =L if no player has yet deviated and P(h) = i for some
i € 11 if Player i is the first player who has deviated along h. We can define P
as follows: for the initial vertex P(vo) =L and then for all history hv € Hist(vg)
with v € V:

1 if P(h) =L and hv is a prefix of p,
P(hv) =141 if P(h) =L, hv is not a prefix of p and h € Hist;,
P(h) otherwise.

We now define o. For all ¢ € IT and for all h € Hist;(vp):

7:(h) if P(h) =L,
oi(h) = { o*(h) if P(h) =i,

o} pny(h)  otherwise.

It is clear that (o),, = p. It remains to prove that o is a Nash equilibrium
in (G,vp). Let us assume that o is not an NE. It means that there exists a
profitable deviation depicted by &; for some player ¢ € II. We choose i such
that Player ¢ is the first player who has a profitable deviation from o along p.
Let p = (G4, 0_4)y, the outcome such that Player ¢ plays his profitable deviation.
As G; is a profitable deviation we have:
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Cost;(p) < Cost;(p). (5)

Moreover as p and p both begin in vy, they have a common prefix. Let
hv € Hist; this longest common prefix. We have that: p = h{o,), and p =
h{(Gin,0—itn)w. Notice that ¢ € Visit(hv). But, by definition of o and as the
optimal strategies in G; are positional, we can rewrite these two equalities as
follows: p = h(Tn)y and p = M{(Gin, (075 ;) jem\ (i} )v- Additionally, thanks to the
definition of the value in the coalitional game G;:

Val;(v) = ueuzlsz Costgin (i %))

< Costmin ({(Fith, 02 ;)0)
= Cost; ((Ti s (U;,i)jeﬂ\{i}>”)' (6

~

By hypothesis, as hv is a prefix of p and i ¢ Visit(hv), we have that Val;(v) >
Cost;((Tjn)v). Thus by (6), it follows that:

Costi({Gin, (07)jem\{i})v) = Costi((Tia)v)-

And thanks to the definition of the cost function associated with quantitative
reachability games, we have that:

Costi(h(Gitn, (07 ;) jem iy )v) = Costi(A{T1n)w)-

Thus, we can conclude that Cost;(p) > Cost;(p) which leads to a contradic-
tion with (5). This concludes the proof. O

Theorem 15 and its previous proof can be easily adapted to lassoes as follows.

Corollary 28 (of Theorem 15). Let (G,vg) be a quantitative reachability game
and let p = he“ € Plays(vg) be a lasso, the following assertions are equivalent:

1. there exists an NE o with memory in O(|hl|+|I1|) and such that (o), = p.
2. the play p is Val-consistent.

Proof. Let us now assume that p = h¢“ is a lasso. The implication 1 = 2 is
the same as in the previous proof. Thus we only have to prove that, in the
implication 2 = 1, the previously built strategy o has memory in O(|h¢|+ |II|).
The intuition is the following. If p = h¢“, a player has to remember: (i) h{
to know both what he has to play and if someone has deviated and (ii) who
is the deviator. Once a deviation has occured, both players play memoryless
strategies. O

4.5.2. Proof of Propositions 22 and 23

In this section, we prove Propositions 22 and 23. To this end, we need to
discuss memory requirements for SPEs as done for NEs in Corollary 28. This
will done in Proposition 31 (item 4). Let us introduce some additional technical
notions and intermediate results.

By adapting the concept of (good) symbolic witness (a set of lassoes with
some good properties) used in [7], we can show that if there exists an SPE with
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a cost profile ¢ then, there exists one with the same cost profile but with a finite-
memory. This leads to Proposition 31 which allows us to prove Proposition 22
for SPEs.

Before the statement of the proposition, we have to introduce the notion of
very weak subgame perfect equilibrium (very weak SPE) and to formally intro-
duce what is a (good) symbolic witness. This latter notion was introduced in [7]
for games with prefix-independent gain functions. We adapt it for quantitative
reachability games for which the cost function is not prefix-independent.

Very weak SPE. We begin by recalling the concept of very weak SPE introduced
in [21, 22]. Let (G,vp) be an initialized game and o = (0;);enr be a strategy
profile. Given i € II, we say that a strategy o) is one-shot deviating from o;
if o/ and o; only differ on the initial vertex vy. A strategy profile o is a very
weak NE in (G,vo) if, for each player ¢ € II, for each strategy o, of Player 4
that is one-shot deviating from o;, we have Cost;((0)y,) < Cost; ({0}, 0_i)u,)-
A strategy profile o is a very weak SPE in (G, vo) if, for all hv € Hist(vg), o,
is a very weak NE in (G, v).

Every SPE is a very weak SPE. Additionally, for quantitative reachability
games these two concepts are equivalent.

Proposition 29 ([21, 22]). Let (G,vo) be an initialized quantitative reachability
game and o be a strategy profile in (G,vy). Then o is an SPE if and only if o
is a very weak SPE.

(Good) symbolic witness. A symbolic witness is a finite set of plays and a good
symbolic witness is a symbolic witness such that the plays respect some good
property. The intuition behind this property is the following: each time you
consider a play p in the good symbolic witness no player has an incentive to
deviate and to follow another play of the good symbolic witness. We will see
that a good symbolic witness is all we need to build a very weak SPE. Moreover,
if each play of the good symbolic witness is a lasso, the very weak SPE requires
finite memory and this good symbolic witness provides a finite representation
of this equilibrium.

Given an initialized quantitative reachability game (G,vo) and (X, (v, Ip))
its extended game (see Definition 17), we define the set Z, a subset of (IT U
{0}) x V x 21 such that:

T =1{(0,v0,1p)} U {(i,v",I') | there exists ((v,I), (v',I)) € EX
with (v, I), (v',I") € Succ*(vo, Ip) and v € V;}.

Notation (v,I) € Succ*(vg,Iy) means that vertex (v, ) is reachable from the
initial vertex (v, Io) in the extended game. The set Z is thus composed of some
such reachable vertices (with additional information depending on players).

Definition 30 ((Good) Symbolic witness). Let (G, vg) be an initialized quan-
titative reachability game and (X, (vg, Ip)) its extended game.

o A symbolic witness is a set P = {p; .1 | (i,v,I) € T} such that each p; ,
is a lasso in X' with first vertex equal to (v, I).
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e A symbolic witness P is good if for all pj .. 7, pi,or, ;v € P, for all suffixes
p € Plays(v,I) of pj., s such that ((v,I),(v',I')) € EX and (v,I) € VX,
if ¢ ¢ I, then we have:

Cost;(p) < 14 Cost;(psvr1)-

In Figure 3, we provide an illustration of the condition which should be sat-
isfied to be a good symbolic witness (see Definition 30).

\/

(u,J)

p

Figure 3: The condition of Definition 30.

From Theorem 18 we know that if p is the outcome of an SPE then p is A\*-
consistent. In fact, it is possible to build from the sets of A*-consistent plays a
good symbolic witness and then to construct a very weak SPE that is composed
of finite-memory strategies. The following proposition formalizes these results.
We use the notation A*(v,I) = {p € Plays(v,I) | p is A*-consistent}.

Proposition 31. Let (G, vg) be a quantitative reachability game and (X, (vo, Ip))
be its extended game, let p € Plays(vg, In) and ¢ € (NU {+oo})" such that
(Costi(p))ien = ¢. Let M = max;en{c; | ¢; < +oo} if this max exists, M = 0
otherwise. The following assertions are equivalent:

1. There exists an SPE with outcome p in (X, (vo, Ip));

2. A*(v,I) # 0 for all (v,I) € Succ*(vo, Io) and p € A*(vo, Ip);

3. There exists a good symbolic witness P that contains a lasso pg .1, With
cost profile ¢ and |po.vo,1,| < M + |V|. Moreover, for each p;n1 € P,
|pi0,1] < O(JV| (T2 (‘V'+3)) + - V;

4. There exists a finite-memory SPE o with cost profile ¢ in (X, (vo, Ip)) such
that its memory is in O(M + 20 |T1| - [V |(IH+2)-(VI+3)+1)

Remark 32. The details of Proposition 2.13 in [8] shows that if there exists a
very weak SPE in (X, (vg,Ip)) then for each (v,I) € VX, A*(v,I) # . Since
it is always true in the setting of quantitative reachability game [17, Theorem
2.1], the second item may be replaced by p € A*(vg, Ip) and we get back exactly
to Theorem 18.

The proofs of (2 = 3) and (3 = 4) are nearly identical to the one of the
one of Proposition 2.14 in [8]. Notice that in the proof given in [8] there is no
consideration about the memory of the built SPE. In order to do so, in the proof
below, we choose more adequatly the plays of the form p; ,/ ;- by picking lassoes
in the sets of A*-consistent plays beginning in (v’, I’). To obtain a bound on the
length of these lassoes, we use the following lemma.
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Lemma 33 ([8]). Let v be a vertex in the extended game, let MaxCost;(v) =
max{Cost;(p) | p € Plays(v) and p is \*-consistent}. If MaxCost;(v) < +o0,
then MaxCost;(v) < O(|V|(ITH+2)-(VI+3)),

Proof sketch of Proposition 31. 1 = 2: Proposition 2.13 in [8].

2 = 3: We build a symbolic witness P step by step and then we prove that
it is good. At the initialization, P = ().

Let p € A*(vo, Ip) such that (Costi(p))ierr = ¢. We apply (P2) on p to ob-
tain a lasso po .1, such that |pg v, 1,] < M + |V| and (Cost;(00,v,1,))icn = C.
Moreover, as p is A*-consistent, po ., 1, i also A*-consistent (by Lemma 21).
We add po,vy,1, to P.

For each (i,v,1) € Z, let p be such that p € argmax {Cost;(p’)}. We obtain
o' €A (v,1)

Piv,1 by copying p until Player ¢ has visited his target set, then by removing
the unnecessary cycles and apply (P2). If Player ¢ does not visit his target set
along p, we remove all the unnecessary cycles (by applying iteratively (P1)) and
then we apply (P2). By the same kind of arguments used in Lemma 19 and
Lemma 21, we obtain that: ) p; , 1 is A*-consistent, i) Cost;(p; 1) = Cost;(p)
and i) |p; 7| < O(|V|IHF2-(VI+3)) 1 T1| - |V] (by Lemma 33). We add p; ., 1
to P.

By construction P is a symbolic witness. If we look at the proof of Proposi-
tion 2.14 in [8], we can be convinced that P is a good symbolic witness due to
the same kind of arguments.

3 = 4: Given a good symbolic witness P with properties given in statement
3, an SPE with cost profile ¢ and finite memory is built from the lassoes in P in
the same way as in the proof of Proposition 2.14. in [8]. The inequality (2.10)
in this proof, which allows to conclude that the built strategy profile is a very
weak SPE, is similar to the condition to be a good symbolic witness. Thus with
the same kind of arguments, we are able to prove that the strategy profile is a
very weak SPE and so an SPE.

It remains to prove that o is finite-memory with memory in O(M + 2" |11} -
|V (THD-(HHVD+1Y - Having (j,u, J) in memory (the last deviating player j
and the vertex (u, J) where he moved), the machine M,, i € II, which represents
the strategy o, has to produce the lasso p; ., s of length bounded by M +|V| for
00.v0.1, and by O(|V|(IM+2)-(1VI+3) 1|11|.|V|) for the others (at most [IT|- V-2
such lassoes). It leads to a memory in O(M |V |+|TT|-[V|-2!T (| v |(TH+2)-(VI+3)
ITI| - V) = O(M + [T1] - 2T [y |(H+2)-(VIF3)+1) (e assume without loss of
generality that |II| < |V]).

4 = 1: Obvious.
O

We are now able to prove Propositions 22 and 23. We begin by the first one.
Recall that it states that if there exists an NE o (resp. SPE) in a reachability
game, then one can construct another one, 7, such that its outcome is a lasso
of polynomial length and 7 is composed of finite-memory strategies with poly-
nomial (resp. exponential) size. Moreover, if ¢ is a solution to Problem 1 (resp.
Problem 2), it is also the case for 7.
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Proof of Proposition 22. e For NEs: Let (G,vp) be a quantitative reacha-
bility game and o be an NE in (G, vg). Let p = (0),,. We apply procedure
(P1) on p until there is no longer any unnecessary cycle and then we apply
(P2). In this way, we obtain a lasso p’ = h¢“ € Plays(vp). By Lemma 19,
|he] < (|II] + 1) - |V| and Cost;(hé*) < min{Cost;({0),), |II| - |V} if
i € Visit({(0)y,) and Cost,;(h¢¥) = 400 otherwise.
By hypothesis and thanks to Theorem 15, we know that p is Val-consistent.
Thus, by Lemma 21, p’ is Val-consistent. Thanks to Corollary 28, there
exists an NE 7 such that (7),, = p’ = h¢¥ with memory O(|II| - |[V]) (we
can assume without loss of generally that |V, |[II| > 1).

Let y € (NU {+o0o})/M, let us assume that (Cost;((c)y,))icn < ¥, by
Lemma 19 we have that (Cost;((T)y,)) < .

Let k € {0,..., ||} and ¢ € NU {400}, let us assume that SW((c),,) >
(k,c). If SW((0)y,) = (k1,c1) and SW((7)y,) = (k2,c2), we have k1 = ko
and ¢z < ¢ < ¢ thanks to Lemma 19. Thus, we have that SW((7),,) =
(k,c).

e For SPEs:

Let (G, vp) be a quantitative reachability game and (X, zg) be its extended
game. Let o be an SPE in (X, x¢). Let p = (0)4,- We apply procedure
(P1) on p until there is no longer any unnecessary cycle and then we apply
(P2). In this way, we obtain a lasso p’ = h¢“ € Plays(zo). By Lemma 19,
|he] < (JO| + 1) - |[V| and Cost;(he*) < min{Cost;({(c)s,), |II| - |V} if
i € Visit((0)4,) and Cost;(h£*) = 400 otherwise.

By hypothesis and by Theorem 18, we know that p is A*-consistent. Thus,
by Lemma 21, p’ is A\*-consistent. Thanks to Proposition 31, there ex-

ists an SPE 7 such that (Cost;((T)z,))ierr = (Cost;(p'))icnr with memory
O(2|H| S| - |V|(|H|+2)~(|V\+3)+1).

Let y € (NU {4+00})l let us assume that (Cost;({c)s,))ienr < ¥, by
Lemma 19 we have that (Cost;((T)s,)) = (Cost;(p))ien < y.

Let k € {0,...,|II]|} and ¢ € NU {400}, let us assume that SW((c
(k,c). f SW({(0)s,) = (k1,c1) and SW((7),) = (k2,¢2), we have k
and ¢y < ¢; < ¢ thanks to Lemma 19. Thus, we have that SW((r),,)
(k,c).

)z)
1

Y &Y

O

Finally, we prove Proposition 23. Recall that this proposition states that if
there exists an NE o (resp. SPE) whose outcome is Pareto optimal, then one can
construct another one, 7, such that its outcome is a lasso of polynomial length,
has the same cost as o (thus is also Pareto optimal), and 7 uses finite-memory
strategies with polynomial (resp. exponential) size.

Proof of Proposition 23. The second and third items are a direct consequence
of the first one. Thus, let us prove the first item.

Let o be an NE such that its cost profile is Pareto optimal in Plays(vp).
To get a contradiction, assume that there exists ¢ € Visit({(c),,) such that
Cost;({0)y,) > |V| - |II]. Tt means that there exists an unnecessary cycle before
Player i reaches his target set. By removing this cycle (applying (P1)), we
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obtain a new play p’ such that Cost;(p") < Cost;({0).,) and for Player j (j # i),
Cost;(p') < Cost;({0)v,) (by Lemma 19). It leads to a contradiction with the
fact that (Cost;((0)v,))ien is Pareto optimal in Plays(vg).

The same proof holds for SPE. O

5. The qualitative setting

In the previous sections, we have considered quantitative reachability prob-
lems. In this section we consider the qualitative variant and investigate the
difference with the previously obtained results.

5.1. Qualitative reachability games

All along this section we focus on qualitative reachability games. Unlike
quantitative reachability games, the arena is equipped with a gain function
profile (Gain;);emr such that for all i € II, Gain; : Plays — {0,1} is a gain
function which assigns a gain 0 or 1 to each play p for Player i. We also
say that the play p has gain profile (Gain;(p));en and similarly if we consider
the outcome of the strategy profile o from vy, we say that ¢ has gain profile
(Gaing((0)u,)ie.

Definition 34. A qualitative reachability game G = (A, (Gain,);cm, (F;)ien) is
a game enhanced with a target set F; C V. For all ¢ € II, the gain function
Gain; is defined as follows: for all p = pgp; ... € Plays: Gain;(p) = 1 if there
exists k € N such that px € F; and Gain;(p) = 0 otherwise.

In this particular setting, players only aim at reaching their target set but
do not take into account the number of steps it takes. Player i receives a gain
of 1 if p visits his target set F;, and a gain of 0 otherwise. Thus each player i
wants to maximize his gain.

For qualitative reachability games, it is easy to adapt the definitions of NE
and SPE defined in Section 2.3 by reversing the inequality and replacing cost
functions by gain functions, as players want to maximize their gain instead of
minimizing their cost. This leads to the following Lemma.

Lemma 35. Let (G,vg) be an initialized quantitative reachability game and o
be a strategy profile. Consider the related qualitative reachability game G’ with
the same arena A and target sets (F;)iem, but the gain functions (Gain;)er.
Then if o is an NE (resp. SPE) in (G,vg), then o is also an NE (resp. SPE)
in (G',vp).

Thus, as it is proved that there always exists an SPE (and thus an NE)
in a quantitative reachability game, there always exists one in a qualitative
reachability game.

Theorem 36. In every initialized qualitative reachability game, there always
exists an SPE, and thus also an NE.
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5.2. Decision problems and complexity results

In case of qualitative reachability, as for quantitative reachability games, we
are interested in a solution that fulfills certain requirements. For example, we
would like to know whether there exists a solution such that a maximum number
of players visit their target sets.

Let (G, vp) be an initialized qualitative reachability game with G =
(A, (Gain,);err, (F;)ien). Given p € Plays(vg), we denote by Visit(p) the set of
players ¢ such that p visits Fj, that is, Visit(p) = {¢ € II | Gain;(p) = 1}. The
social welfare SW (p) of p is the size of Visit(p). Let P C {0,1}/M be the set
of all gain profiles p = (Gain;(p));cmr, with p € Plays(vg). A cost profile p € P
is called Pareto optimal in Plays(vg) if it is maximal in P with respect to the
componentwise ordering < on P. Notice that if there exists p with Visit(p) = II,
then its social welfare is the largest possible and there exists a unique Pareto
optimal gain profile equal to (1,1,...,1). Notice also that certain target sets F;
might be empty or not reachable from the initial vertex vg. Hence in this case,
the best that we can hope is a (unique) Pareto optimal gain profile p such that
p; = 1 if and only if F; is reachable® from vy.

Qualitative variant of Problem 1. Given an initialized qualitative reacha-
bility game (G, vo), given two thresholds z,y € {0,1}", decide whether there
exists a solution o such that = < (Gain;(p))ien < y.

Imposing a lower bound z; = 1 means that player ¢ has to visit his target
set whereas imposing an upper bound y; = 0 means that player ¢ cannot visit
his target set.

Unlike quantitative reachability, social welfare in qualitative reachability
games only aims to maximize the number of players who visit their target set.

Qualitative variant of Problem 2. Given an initialized qualitative reach-
ability game (G,vo), given a threshold k € {0,...,|II|}, decide whether there
exists a solution ¢ such that SW({(c),,) > k.

Let us now state the last studied problem for qualitative reachability games.

Qualitative variant of Problem 3. Given an initialized qualitative reacha-
bility game (G, vg) decide whether there exists a solution ¢ in (G, vg) such that
(Gain; ((0) v, ))ien is Pareto optimal in Plays(vg).

The latter problem has some connections with the two previous ones. For in-
stance in case of qualitative reachability, suppose there exists a play in Plays(vg)
that visits all target sets. As already explained, there is only one Pareto
optimal gain (1,...,1). Asking for the existence of a solution o such that
(Gain;((0)y,))ien is Pareto optimal is equivalent to asking for the existence
of a solution o such that Gain;({c)y,))icr > (1,...,1) (see Qualitative vari-
ant of Problem 1), or such that SW({(o),,) > |II| (see Qualitative variant of
Problem 2).

We can now state the qualitative variant of Theorem 11.

Theorem 37. Let (G,vg) be a qualitative reachability game.

6Notice that if F; is reachable from wvg, then it is necessarily not empty.
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e For NEs: the Qualitative variants of Problem 1 and Problem 2 are NP-
complete while the Qualitative variant of Problem 8 is NP-hard and belongs
to XL

e For SPFEs: the Qualitative variants of Problems 1, 2 and 8 are PSPACE-
complete.

5.8. FExistence problem
The following Theorem is a direct consequence of Theorem 7 and Lemma 35.

Theorem 38. Let (G,vg) be an initialized qualitative reachability game such
that its arena A is strongly connected. Then there exists an SPE o (and thus
an NE) such that its outcome (o)., visits all target sets F;, i € II, that are
non-empty.

Let us comment on this result. For this family of games, the answer to the
Qualitative variant of Problem 1 is always positive for particular thresholds.
Take thresholds z,y such that z; = 1 (and thus y; = 1) if and only if F; # 0.
The answer to the Qualitative variant of Problem 2 is also always positive for
threshold k = |{i | F; # 0}|. Finally, the answer to the Qualitative variant of
Problem 3 is also always positive since there exists an unique Pareto optimal
gain profile p such that p; = 1 if and only if F; # 0.

Recall that we explained before why it was enough to prove Theorem 7
for SPEs and for quantitative reachability games only. Notice that in case of
qualitative reachability games, there exists a simpler construction of the required
NE or SPE. Indeed, as the arena is strongly connected, there exists a play
p € Plays(vg) that visits all non-empty target sets. (i) Hence to get an NE,
construct a strategy profile o in (G, vo) such that (o),, = p. As the gain profile
of o is the best that each player can hope, no player has an incentive to deviate
and o is then an NE. (%) The construction is a little more complex to get an
SPE. We again construct a strategy profile o in (G, vg) such that ()., = p, and
inductively extend its construction to all subgames (G5, v) as follows. Assume
that oy, is not yet constructed, then extend the construction of o such that
on = gp for some guy starting in v and ending in vy (such a history gvy exists
because the arena is strongly connected). In this way, the outcome of o in
each subgame (G, v) has gain profile (1,...,1) and no player has an incentive to
deviate. It follows that o is an SPE.

The next theorem states that the Qualitative variant of Problem 3 has a
positive answer for all qualitative reachability games with a number of players
limited to two, and that this existence result cannot be extended to three players.

Theorem 39. Let (G,vg) be an initialized qualitative reachability game,

o Let (G,vg) be an initialized qualitative reachability game such that |I1| = 2,
there exists an SPE o (and thus an NE) with a gain profile that is Pareto
optimal in Plays(vg).

o There exists an initialized qualitative reachability games with |II| = 3 that
has no NE with a gain profile that is Pareto optimal in Plays(vg).

Let us focus on the proof of Theorem 39 which is based on the next lemma,
which is interesting in its own right.
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Figure 4: A qualitative reachability game that has no NE with a gain profile that is Pareto
optimal

)
1,1,0)

Lemma 40. Let (G,vg) be an initialized qualitative reachability game. Let p
be a gain profile equal to (0,0,...,0) or (1,1,...,1). If p is Pareto optimal’ in
Plays(vg), then there exists an SPE o with gain profile p.

Proof. The case p = (0,0,...,0) is easy to solve. By Pareto optimality, all
plays in Plays(vg) have gain profile p. Hence every strategy profile o is trivially
an SPE with gain profile p. Let us turn to case p = (1,1,...,1) and let p =
pop1 - - - € Plays(vg) with gain profile p. By Theorem 2.1 in [17]%, there exists
an SPE o in (G,vg). If (Gain;({0)y,))ienn = p, we are done. Otherwise let us
show how to modify ¢ into another SPE 7 with outcome p and thus with gain
profile p. Let h € Hist;(vo), @ € 11,

e if h is a prefix of p, then 7;(h) = pjp|41,
e otherwise, 7;(h) = o;(h).

Let us prove that 7 is an SPE. Clearly for each history hv that is not a prefix
of p, i = oy, is an NE in the subgame (Gyp,v). So let hv = pg...pg. As
(T1h)v has gain profile (1,1,...,1) in (G, v), player ¢ such that v € V; has no
incentive to deviate, and then 7y, is also an NE in (G, v). O

Proof of Theorem 39. We begin with the first item. There are three cases to
study: either the unique Pareto optimal gain profile of Plays(vg) is equal to
(0,0), or it is equal to (1, 1), or there are one or two Pareto optimal gain profiles
that belong to {(0,1),(1,0)}. In the first two cases, we get the required SPE by
Lemma 40. Hence it remains to treat the last case. From Lemma 10, we know
that there exists an SPE in (G, vg) whose outcome p visits a least one target set
F;, i € {1,2}. Therefore the gain profile of p is either equal to (0,1) or (1,0) as
required.

For the second item, consider the initialized qualitative reachability game
(G,v9) of Figure 4. We have three players such that player 3 owns diamond
vertices. Moreover, F| = {vy,v5}, Fo = {vs,v5}, and F3 = {vy,vg}. There are
four plays in Plays(vg) whose gain profile is indicated below each of them. The
set of Pareto optimal gain profiles in Plays(vg) is equal to {(1,0,1),(1,1,0)}.
Consider a strategy profile o with outcome voviv§ and gain profile (1,0,1).
Then it is not an NE because player 2 has a profitable deviation by going from
vy to v (instead of vy). Similarly the strategy profile ¢ with outcome vovavg
and gain profile (1,1,0) is not an NE. Therefore there is no NE in (G, vg) with
a gain profile that is Pareto optimal. O

7(1,1,...,1) is trivially Pareto optimal.
8Notice that we cannot apply Theorem 7 since the arena is not necessarily strongly con-
nected.
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6. Conclusion

In the present paper, we have considered multiplayer (both qualitative and
quantitative) reachability games, with a focus on two concepts of equilibrium:
NE and SPE. It is well-known that NEs and SPEs are guaranteed to exist in
reachability games in both qualitative and quantitative settings. Here we have
investigated three decision problems about the existence of what we have called
relevant equilibria. More precisely we have considered the Threshold problem
(Problem 1), the Social welfare problem (Problem 2), and the Pareto optimal
problem (Problem 3). For the three problems we provided their complexity class
(summarized in Table 1). Let us notice that our results for NEs heavily rely
on a characterization of plays which are NE outcomes. Such a characterization
is not new but was missing for quantitative reachability games. The results
concerning SPEs rely on a characterisation of SPE outcomes that has been
recently obtained in [8]. In the case where a relevant equilibrium exists (for the
three variants of relevant equilibrium), we have described the size of the finite-
memory strategies needed in the equilibrium (summarized in Table 2). In this
quest of finding relevant equilibria, we finally identified a subclass of reachability
games in which there always exists an SPE where each player reaches his target
set. Future work could include an extension of the present results to richer
objectives and to other concepts of equilibrium.
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