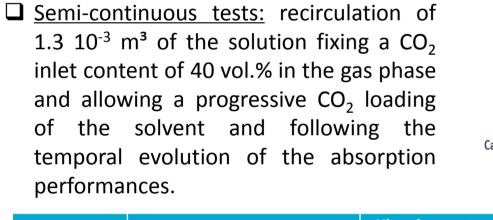
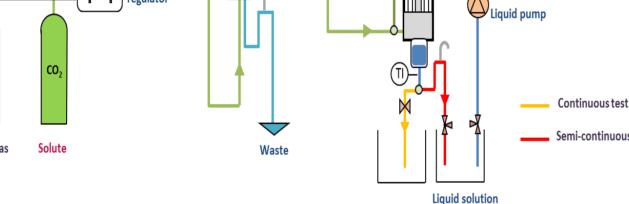
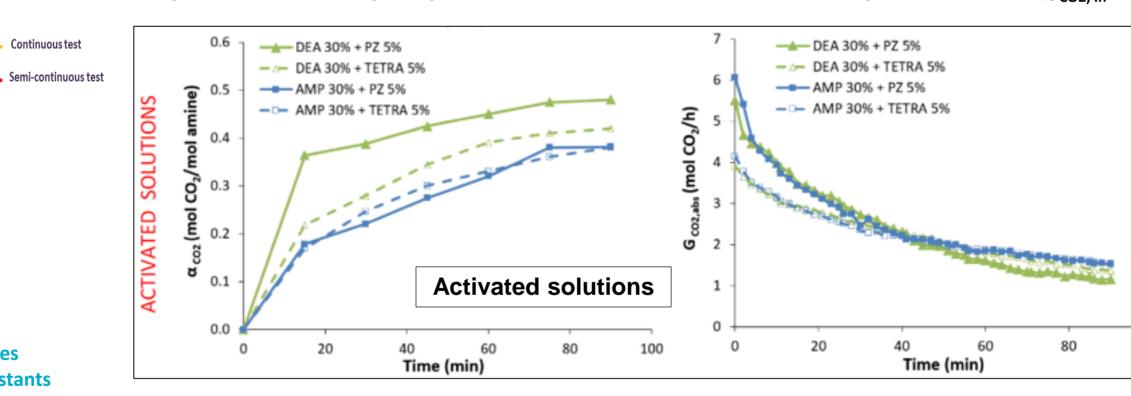

Experiments and simulation of the post-combustion CO₂ capture absorptionregeneration process applied to cement flue gases with high CO₂ contents Sinda LARIBI^a, Lionel DUBOIS^a, Guy DE WEIRELD^b and Diane THOMAS^a ^aChemical & Biochemical Process Engineering Unit, Faculty of Engineering, University of Mons, Belgium ^bThermodynamics & Mathematical Physics Unit, Faculty of Engineering, University of Mons, Belgium


Context of the study: CCU (Carbon Capture and re-Use)

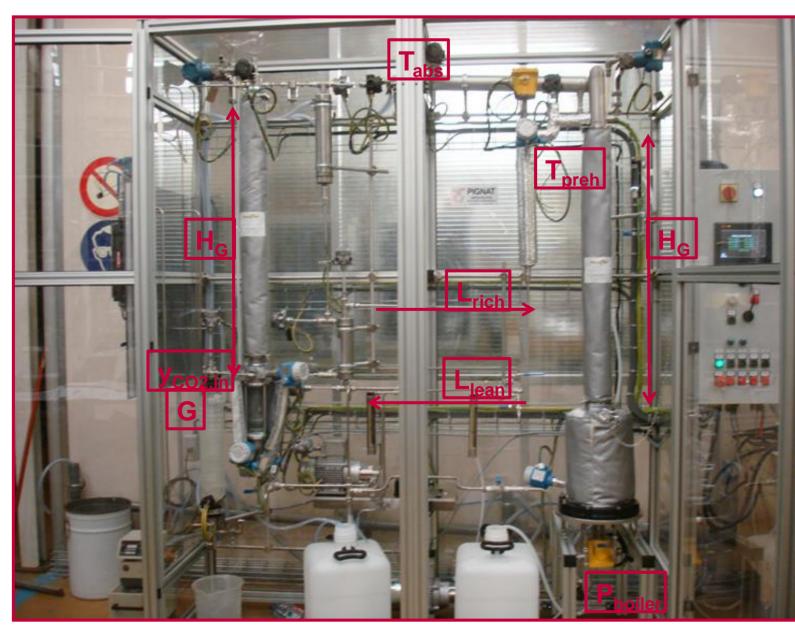

CO₂-concentrated flue gas in order to estimate the energy savings linked to the partial oxy-fuel conditions.

Experiments: Experimental devices, procedures & absorption results



Amine	Category	Kinetic constant at 25°C k₂ (m³/kmol.s)	Reference	
PZ	Cyclical diamine	76000	(Derks et al., 2006)	
MMEA	Secondary amine	7940	(Patil et al., 2012)	
MEA	Primary amine	5938	(Versteeg & Swaaij, 1988)	
DEA	Secondary amine	3240	(Versteeg et al., 1990)	
TERA	Non-cyclical tetramine	1252	(Amann and Bouallou, 2009)	
AMP	Sterically hindered amine	810	(Xu et al., 1998)	
AHPD	Sterically hindered amine	285	(Bougie and Iliuta, 2009)	Different types of amines
MDEA	Tertiary amine	12	(Versteeg et al., 1996)	CO ₂ -amines kinetic constants

Comparison of the absorption performances of the solvents at different experimental times ($y_{cO2, in} = 40\%$)


Interpretation of experimental results :

The continuous tests with simple solvents: best absorption performances for PZ 10% and MEA 30%, the absorption results with TETRA 30% being also clearly higher than with the other solvents (AMP, **DEA** and **AHPD 30%**) – results linked to k_2

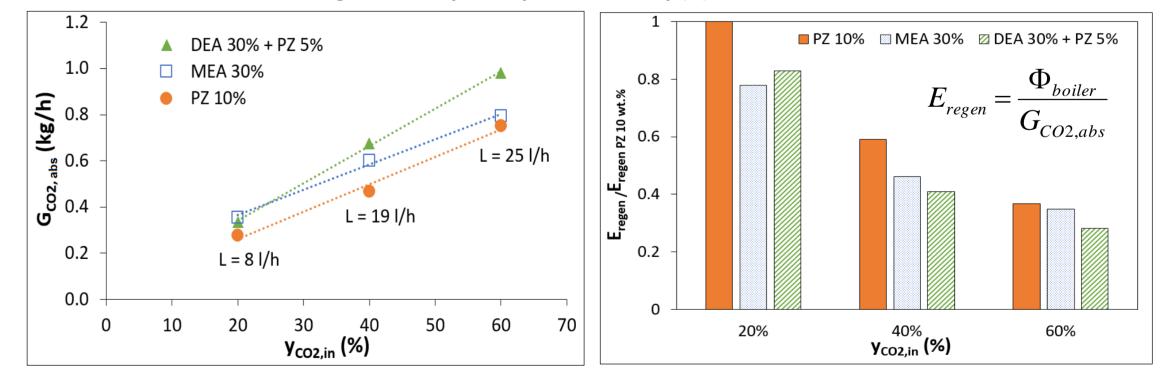
The continuous tests with activated solvents: for AMP 30% and DEA **30%,** the activation effect is much more significant with **PZ 5%** than with **TETRA 5%**.

The semi-continuous tests: PZ activated solutions, and especially AMP **30% + PZ 5%**, presents good absorption performances at the beginning of the test and also after 90 min with a significant CO_2 loading.

Micro-pilot scale: Absorption-regeneration micro-pilot unit (*Pignat*)

Micro-pilot unit experimental procedure

After humidification, the gaseous blend $(N_2 + CO_2)$ enters the absorption column where a counter-current contact between this gas mixture and the absorption solution is achieved.

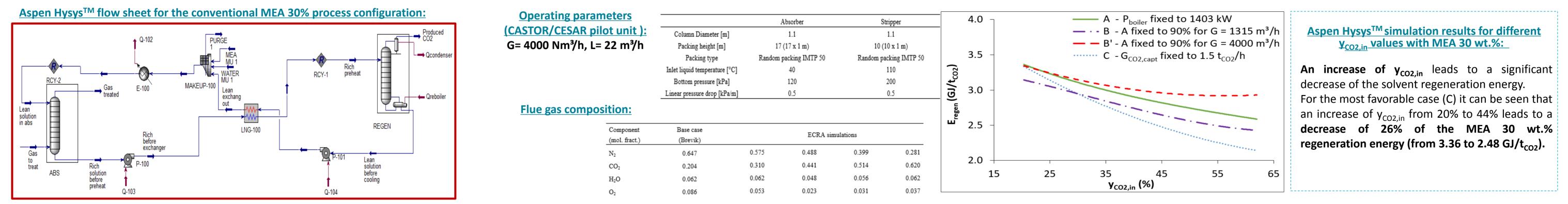

The CO₂ loaded solution at the outlet of the absorption column is then preheated ("internal heat exchanger" positioned between the two columns through which the rich and lean solutions flow counter-currently) to the regeneration column where, by heating the solution up to its boiling point (maximum heating power of 2 kW), the CO_2 is liberated from the solution, regenerating the solvent which is pumped back to the absorption column.

Operating conditions:

Pressure [kPa]	101.325
T _{ABS} [°C]	40
T _{preh} [°C]	95
$L_{\rm rich}$ and $L_{\rm lean}$ [1/h]	7 to 24
G [N1/h]	960
H _{P,ABS} [m]	1
H _{P,REG} [m]	0.5
P _{boiler} [kW]	2
C _{amine} (max) [wt.%]	35
CO_2 contents ($y_{CO2,in}$) [vol.%]	20 to 60

Results of the micro-pilot absorption tests:

For the three selected solvents, the liquid flow rate was fixed at the beginning of the test leading to a steady absorption efficiency (A) value of around 90%.



Interpretation of the absorption results for the micro-pilot tests:

The effect of increasing y_{co2,in} on the absorption-regeneration performances in terms of captured CO₂ amount (G_{co2,abs}): when y_{co2,in} is increased, the same conclusion can be observed for G_{CO2.abs}, even if the absorption performances of the three solvents are quite similar at y_{CO2,in} equal to 20%, G_{CO2,abs} of DEA 30% + PZ 5% at y_{CO2,in} of 60% is higher than the one measured with the other solvents at the same $y_{CO2,in}$ (better absorption performances).

The effect of increasing y_{CO2.in} on the absorption-regeneration performances in terms of regeneration energy (E_{regen}): relatively to PZ 10 wt.% (E_{regen}/E_{regen}, PZ 10 wt.% at yCO2, in = 20%</sub>) which is the solvent leading to the highest E_{regen} value at y_{CO2,in} equal to 20%, increasing y_{CO2,in} leads to a significant decrease of the solvent regeneration energy, especially for DEA 30% + PZ 5%.

Simulations: Aspen HysysTM simulations of the absorption-regeneration CO₂ capture process

Conclusions & prospects

Screening at lab scale of different amine solvents in highly CO₂-concentrated flue gases: comparison of absorption performances. Experiments in micro-pilot unit: increasing the CO₂ content in the gas to treat allows a significant decrease of the solvent regeneration energy. Simulations with MEA 30 wt.%: increasing y_{CO2.in} from 20% to 44% leads to a decrease of 26% of the regeneration energy (37% when y_{CO2.in} is increased up to 60%). Application of partial oxy-fuel combustion in a cement plant= good option that will be more deeply investigated (considering the oxygen production costs). Future works: screening of solvents (both separate and combined screening experiments) with other simple and blended solutions with the associated simulations of the micro-pilot unit.

Acknowledgements

European Cement Research Academy (ECRA) and HeidelbergCement are acknowledged for the technical and financial supports accorded to the ECRA Academic Chair.