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Abstract
A decade ago, Abdulla, Ben Henda and Mayr introduced the elegant concept of decisiveness for
denumerable Markov chains [1]. Roughly speaking, decisiveness allows one to lift most good prop-
erties from finite Markov chains to denumerable ones, and therefore to adapt existing verification
algorithms to infinite-state models. Decisive Markov chains however do not encompass stochastic
real-time systems, and general stochastic transition systems (STSs for short) are needed. In this
article, we provide a framework to perform both the qualitative and the quantitative analysis
of STSs. First, we define various notions of decisiveness (inherited from [1]), notions of fairness
and of attractors for STSs, and make explicit the relationships between them. Then, we define a
notion of abstraction, together with natural concepts of soundness and completeness, and we give
general transfer properties, which will be central to several verification algorithms on STSs. We
further design a generic construction which will be useful for the analysis of ω-regular properties,
when a finite attractor exists, either in the system (if it is denumerable), or in a sound denumer-
able abstraction of the system. We next provide algorithms for qualitative model-checking, and
generic approximation procedures for quantitative model-checking. Finally, we instantiate our
framework with stochastic timed automata (STA), generalized semi-Markov processes (GSMPs)
and stochastic time Petri nets (STPNs), three models combining dense-time and probabilities.
This allows us to derive decidability and approximability results for the verification of these mod-
els. Some of these results were known from the literature, but our generic approach permits to
view them in a unified framework, and to obtain them with less effort. We also derive interesting
new approximability results for STA, GSMPs and STPNs.
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1 Introduction

Given its success for finite-state systems, the model checking approach to verification has
been extended to various models based on automata, and including features such as time,
probability and infinite data structures. These models allow one to represent software sys-
tems more faithfully, by representing timing constraints, randomization, and e.g. unbounded
call stacks. At the same time, they often offer the possibility to consider quantitative veri-
fication questions, such as whether the best execution time meets a requirement, or whether
the system is reliable with high probability. Quantitative verification is notably hard for
infinite-state systems, and often requires the development of techniques dedicated to each
class of models.

A decade ago, Abdulla, Ben Henda and Mayr introduced the concept of decisiveness for
denumerable Markov chains [1]. Formally, a Markov chain is decisive w.r.t. a set of states
F if runs almost-surely reach F or a state from which F can no longer be reached. The
concept of decisiveness thus forbids some weird behaviours in denumerable Markov chains,
and allows one to lift most good properties from finite Markov chains to denumerable ones,
and therefore to adapt existing verification algorithms to infinite-state models. In particular,
assuming decisiveness enables the quantitative model checking of (repeated) reachability
properties, by providing an approximation scheme, which is guaranteed to terminate for
any given precision for decisive Markov chains. Decisiveness also elegantly subsumes other
concepts such as the existence of finite attractors, or coarseness [1].

Decisive Markov chains however are not general enough to represent stochastic real-time
systems. Indeed, to faithfully model time in real-time systems, it is adequate to use dense
time [4], that is, timestamps of events are taken from a dense domain (like the set of rational
or of real numbers). This source of infinity for the state-space of the system is particularly
difficult to handle: the state-space is non-denumerable (even continuous), the branching in
the transition system is also non-denumerable, etc. For those reasons, stochastic real-time
systems do not fit in the framework of decisive Markov chains of [1].

Also, standard analysis techniques for non-stochastic real-time systems (when they exist)
cannot be easily adapted to stochastic real-time systems. Traditionally, these techniques rely
on the design of appropriate finite abstractions, which preserve good properties of the original
model. A prominent example of such an abstraction is that of the region automaton for timed
automata [6]. However, these abstractions do not preserve all quantitative properties and,
in the context of stochastic systems they may be too coarse already for the evaluation of
the probability of properties as simple as reachability properties.

A general framework to analyse a large class of stochastic real-time systems, or more
generally continuous stochastic systems, is thus lacking. In this article, we face this issue
and provide a framework to perform the stochastic transition systems (STSs for short).
To do so, we generalize the main concepts of [1] (such as decisiveness, attractors), and
standard notions for Markov chains (like fairness). STSs are purely stochastic (i.e. without
non-determinism) Markov processes [38, 39], that is, Markov chains with a continuous state-
space. Note that, while this journal version builds on the conference paper [15], we choose
here to phrase our results for time-homogeneous and Markovian models. As mentioned
in [38], the Markovian assumption is not a severe restriction since many apparently non
Markovian processes can be recast to Markovian models by changing the state space. In
our opinion, this choice furthermore enables the design of a richer and more elegant theory
(compared to [15]).

Our first contribution is to define various notions of decisiveness (inherited from [1]),
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notions of fairness and of attractors in the general context of STSs. To complete the se-
mantical picture, we make explicit the relationships between these notions, in the general
case of STSs, and also when restricting to denumerable Markov chains. Decisiveness or the
existence of attractors will be later exploited to analyze properties for STSs.

As mentioned earlier, the analysis of real-time systems often requires the development
of abstractions. As a second contribution, we define a notion of abstraction, which makes
sense for STSs. Concepts of soundness and completeness are naturally defined for those
abstractions, and general transfer properties are given, which will be central to several
verification algorithms on STSs. The special case of denumerable abstractions is discussed,
since it allows one to transfer more properties from the abstract system to the concrete one.

We then focus on denumerable Markov chains with a finite attractor, or more generally
STSs admitting a sound abstraction satisfying this property, and an ω-regular property
represented by a deterministic Muller automaton. Our third contribution consists in building
a graph for the attractor, which contains enough information to analyze the probability that
the STS satisfies the property. This is is completely new compared to the original results
of [1] and our conference paper [15]. It is inspired by a procedure of [2] for probabilistic
lossy channel systems, a special class of denumerable Markov chains with a finite attractor.

Our fourth contribution concerns the qualitative model checking problem for various
properties. In particular, we extend the results of [1] and show that, under some decisiveness
assumptions, the almost-sure model checking of (repeated) reachability properties reduces
to a simpler problem, namely to a reachability problem with probability 0. We advocate
that this reduction simplifies the problem: in countable models, the 0-reachability amounts
to the non existence of a path, in the underlying non-probabilistic system; beyond countable
models, checking that a reachability property is satisfied with probability 0 amounts to
exhibiting a somehow regular set of executions with positive measure. Beyond (repeated)
reachability properties, we apply our above-mentioned approach via the graph of an attractor
for the qualitative analysis of ω-regular properties.

Our fifth contribution is the design of generic approximation procedures for the quantit-
ative model-checking problem, inspired by the path enumeration algorithm of Purushotho-
man Iyer and Narashima [33]. Under some decisiveness assumptions, we prove that these
approximation schemes are guaranteed to terminate. Assuming the STSs can be repres-
ented finitely and enjoy some smooth effectiveness properties, one derives approximation
algorithms: one can approximate, up to a desired (arbitrary) precision, the probability of
(repeated) reachability properties. Note that without these effectiveness properties, one can-
not hope for algorithms, and this motivates our above formulation of “procedures”. Further,
once again via the use of the graph of an attractor, we design an approximation algorithm for
ω-regular properties; this algorithm reduces the quantitative analysis of an ω-regular prop-
erty to the quantitative verification of a reachability property in the concrete model. Up to
our knowledge, this approach is completely new, and provides an interesting framework for
quantitative verification of stochastic systems.

Our last contribution consists in instantiating our framework with high-level stochastic
models, stochastic timed automata (STA), generalized semi-Markov processes (GSMP) and
stochastic time Petri Nets (STPN), which are three classes of models combining dense-
time and probabilities. This allows us to derive decidability and approximability results
for their verification. Some of these results were known from the literature, e.g. the ones
from [17], but our generic approach permits to view them in a unified framework, and to
obtain them with less effort. We also derive interesting new approximability results for STA
and GSMPs. In particular, the approximability results implied by this paper for STA are far
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more general than those obtained using an ad-hoc approach in [16]. In the case of STPNs,
we also interestingly embed the framework of [32, 40] into our setting, which allows to show
that we can relax some assumptions while preserving approximability results.

The paper concludes with an overview of our main results, organized as a guided tour
of the STSs: it summarizes the relationships between all notions, and provides the reader
recipes to analyze STSs.

In the interest of readability, most technical proofs are postponed to the appendix, with
clear pointers. The emphasis is put on our new approach to the analysis of ω-regular
properties, which remains in the core of the paper (Section 5).

Other related works. Apart from direct related works that we have already mentioned
(like [1]), let us review related work from the literature. First, in [22], approximants are
given, which rely on refinements of a partitioning of the state-space of an STS (via conditional
expectations). However, there is no stopping criteria if we want to turn these approximants
to a proper approximation scheme. And the approach is also very different.

Then, for specific classes of stochastic systems, approximation algorithms exist, which do
however focus more on expressing mathematical properties of (integral) equations that one
should solve, not really on convergence of the schemes. Sometimes, strong conditions are
put on the system, so that convergence is obvious. This is for instance the case of [5, 13, 40].

The literature on stochastic hybrid systems is very rich, and since there is little hope
to have some decidability results, approximation methods are very much developed. We
give here some examples of works that have been done, but this is obviously not exhaust-
ive. In [26], an over-approximation method based on a discrete abstraction is proposed for
stochastic hybrid automata, but no converging approximation scheme is provided. In [44],
an approximation (with some guarantee on the error made) is provided, which can be used
for time-bounded verification of safety properties. Some other papers focus on discrete-time,
allowing the use of constraint-solving methods, see e.g. [27].

Continuous stochastic systems as mentioned above are hard to analyze: first, it is difficult
(and sometimes even impossible) to compute the exact value of the probability of some
property (as simple as a reachability property) in such a system; and, for such complex
systems, there is no generic proofs of convergence for approximation schemes. The key
contribution of the current paper is to identify conditions to have correct decision procedures
and approximation schemes, and to provide full proofs of convergence and correctness.

2 Preliminaries

In this section, we define the general model of stochastic transition systems, which are
Markov chains with a continuous state-space. This model corresponds to labelled Markov
processes of [38] with a single action (hence removing non-determinism). We then define
several probability measures, on infinite paths, but also on the state-space, which give dif-
ferent point of views over the behaviour of the systems. We continue by defining regular
measurable events, and end up with defining deterministic Muller automata, and technical
material for handling properties specified by these automata. In the interest of space, for
basics on probability and measure theory, we refer the reader to [38].

2.1 Stochastic transition systems
Given (S,Σ) a measurable space (Σ is a σ-algebra over S), we write Dist(S,Σ) for the set of
probability distributions over (S,Σ). In the sequel, when the context is clear, we will omit
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the σ-algebra and simply write this set as Dist(S).

I Definition 1. A stochastic transition system (STS) is a tuple T = (S,Σ, κ) consisting of
a measurable space (S,Σ), and κ : S ×Σ→ [0, 1] such that for every fixed s ∈ S, κ(s, ·) is a
probability measure and for each fixed A ∈ Σ, κ(·, A) is a measurable function. Function κ
is the Markov kernel of T .

Note that it is sufficient to define κ(s, ·) (for every s ∈ S) over a subset which generates the
σ-algebra Σ.

Observe that if S is a denumerable set and Σ = 2S , then T is a denumerable Markov chain
(DMC for short). If S is finite, the kernel κ then coincides with the standard probability
matrix of the Markov chain. We now give two examples of STSs.

I Example 2 (Denumerable Markov chain). The first example is the DMC depicted in Fig-
ure 1. We consider here TRW = (SRW,ΣRW, κRW) where

SRW = N,
ΣRW = 2SRW ,
for each i ≥ 1, κRW(i, {i+ 1}) = p and κRW(i, {i− 1}) = 1− p with p ∈ ]0, 1[, and
κRW(0, {1}) = 1.

This represents a random walk – hence the index RW – over the natural numbers.

0 1 2 · · ·

1

1− p

p

1− p

p

1− p

Figure 1 Random walk over N.

In the sequel, given a DMC T = (S,Σ, κ) and two states s, s′ ∈ S, we will often write
κ(s, s′) instead of κ(s, {s′}).

I Example 3 (Continuous-time Markov chain). We now give a continuous variant of the
previous random walk which models a simple queueing system. Precisely, we consider a
queueing system with a single queue, a parameter λ for arrivals and ν for serving times.
Each state i ∈ N is equipped with a non-negative real number that corresponds to the time
that has elapsed since the beginning. Formally, we consider TQS = (SQS,ΣQS, κQS) with
SQS = N × R+. We equip SQS with the σ-algebra generated by 2N × B(R+) where B(R+)
is the Borel σ-algebra on R+. Then intuitively, κQS describes how the length of the queue
evolves with time. Formally, for each t, d ∈ R+,

κQS((0, t), {1} × [0, t+ d]) = κQS((0, t), {1} × [t, t+ d]) =
∫ d

0
λe−λxdx

and for every i ≥ 1,

κQS((i, t), {i+ 1} × [0, t+ d]) = κQS((i, t), {i+ 1} × [t, t+ d]) =
∫ d

0
λ e−(λ+ν)xdx

κQS((i, t), {i− 1} × [0, t+ d]) = κQS((i, t), {i− 1} × [t, t+ d]) =
∫ d

0
ν e−(λ+ν)xdx

There will be more examples of STSs with a continuous set of states in Section 8.
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In the sequel, we fix an STS T = (S,Σ, κ). We will give two semantical views on
the behaviour of T : the first one is operational, in the sense that T generates executions,
with a measure over these executions; the second one observes how the state-space evolves
over time. The first point-of-view is the standard semantics of probabilistic systems and is
widely used in the model-checking community, where the temporal aspects are important.
From a state, a probabilistic transition is performed according to a fixed distribution, and
the system resumes from one of the successor states. Among others, e.g. [9], uses this
semantics for the standard model of continuous-time Markov chains. The second point-of-
view bloomed more recently. It proposes to view probabilistic systems as transformers of
probability distributions. Compared to the previous point-of-view, here one is interested
not in states the system can be in, but rather in how the probability mass evolves along
steps. This semantics was motivated by the ability to express different properties than the
previous one [12]. It has been considered for both discrete-time Markov chains [35, 3] and
continuous-time models, e.g. those induced by stochastic Petri nets [32]. These two point-
of-views are two sides of the same coin, and we will use both in the following, though we
are ultimately interested in properties related to the operational semantics.

2.2 A σ-algebra for measuring sets of infinite paths
The objective is now to interpret T in an operational manner, and to define a probability
measure over the set of infinite paths of T . We follow the lines of [24]. A finite (resp.
infinite) path of T is a finite (resp. infinite) sequence of states. We write Paths(T ) for the
set of infinite paths of T . In order to get a probability measure over Paths(T ), we need to
equip this set with a σ-algebra. We therefore define for each finite sequence of measurable
sets (Ai)0≤i≤n ∈ Σn+1 the following set of infinite paths:

Cyl(A0, A1, . . . , An) = {ρ = s0s1 . . . sn · · · ∈ Paths(T ) | ∀0 ≤ i ≤ n, si ∈ Ai} .

This set is called a cylinder. We then equip Paths(T ) with the σ-algebra generated by the
cylinders. We denote it by FT .

Let µ be a(n initial) probability measure over Σ, that is, µ ∈ Dist(S). We define a
probability measure ProbTµ as follows. First we inductively define a probability measure
over the cylinders. For every finite sequence of measurable subsets (Ai)0≤i≤n ∈ Σn+1, we
set:

ProbTµ (Cyl(A0, A1, . . . , An)) =
∫
s0∈A0

ProbTκ(s0,·)(Cyl(A1, . . . , An))dµ(s0) ,

and we initialize with ProbTµ (Cyl(A0)) = µ(A0). From now on, we will use the classical
notation µ(ds0) = dµ(s0). It should be noted that the value ProbTµ (Cyl(A0, A1, . . . , An)) is
the result of n successive integrals and can be expressed as follows:

ProbTµ (Cyl(A0, A1, . . . , An)) =∫
s0∈A0

∫
s1∈A1

· · ·
∫
sn−1∈An−1

κ(s0, ds1)·κ(s1, ds2) · · ·κ(sn−2,dsn−1)·κ(sn−1, An)·µ(ds0).

Finally, using the classical Caratheodory’s extension theorem, ProbTµ can be extended in a
unique way to the σ-algebra FT .

I Lemma 4. ProbTµ defines a probability measure over (Paths(T ),FT ).

The proof of Lemma 4 is classical and we omit it here. The interested reader may e.g.
refer to the proof of [17, Proposition 3.2], which can easily be adapted to our context.
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2.3 STSs as transformers of probability measures
One can also interpret the dynamics of T as a transformer of probability measures over
(S,Σ). For µ a probability measure over Σ, its transformation through T can be defined as
the measure ΩT (µ) defined for every A ∈ Σ by:

ΩT (µ)(A) =
∫
s0∈S

κ(s0, A) · µ(ds0) .

It can be shown that ΩT (µ) is also a probability measure over (S,Σ).
This interpretation offers a dual view on the STS T . Indeed, roughly speaking, ΩT (µ)(A)

is the probability of being in A after one step, when µ is the initial distribution on T . Given
a distribution µ ∈ Dist(S) and given A ∈ Σ such that µ(A) > 0, we write µA for the
conditional probability of µ given A, that is for each B ∈ Σ, µA(B) = µ(A∩B)

µ(A) . It should be
observed that µA ∈ Dist(S). There is a strong relation between the transformer ΩT (µ) and
the probability measure ProbTµ over paths defined previously, which we formalize below:

I Lemma 5. Let µ ∈ Dist(S) be an initial distribution and let (Ai)0≤i≤n be a sequence of
measurable sets. Write ν0 = µA0 , the conditional probability of µ given A0, and for every
1 ≤ j ≤ n− 1, write νj = (ΩT (νj−1))Aj . Then, for every 0 ≤ j ≤ n:

ProbTµ (Cyl(A0, A1, . . . , An)) =

µ(A0) ·
j∏
i=1

(ΩT (νi−1))(Ai) · ProbTΩT (νj)(Cyl(Aj+1, . . . , An)) .

The proof of this result is postponed to the technical appendix (page 56).
From this result, we can express the probability to reach A in n steps from the initial

distribution µ:

(Ω(n)
T (µ))(A) = ProbTµ (Cyl(

n times︷ ︸︸ ︷
S, . . . , S,A)) .

This alternative view of stochastic processes as transformers of probability measures is
heavily used by Paolieri et al. in their time-bounded analysis of stochastic Petri nets [40]:
the evolution of the probability distributions is tracked through stochastic state classes. We
advocate that the two views (behavioural and probability transformers) need to be used at
the same time. One of the first results we establish (see Lemma 19 later) is a witness of
their interplay. Also, the measure transformer view will prove quite useful when it comes to
abstraction in Section 4. Beyond that, it has been observed by Kwon et al. that the classes
of properties one can express in both views are incomparable [35, 34], and depending on the
application, one or the other can be more appropriate.

2.4 Basic properties of paths in STSs
To define properties on the STS T , we use LTL-like notations, that will be interpreted as
measurable subsets of Paths(T ). Let LS,Σ be the set of formulas defined by the following
grammar:

ϕ ::= B | ϕ1 U./k ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ¬ϕ ,

where B ∈ Σ, ./ ∈ {≥,≤,=} is a comparison operator and k ∈ N is a natural number.
Given ρ = (sn)n≥0 we write ρ≥i = (sn)n≥i ∈ Paths(T ) for each i ≥ 0. Then the satisfaction
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relation of paths formulas is given as follows:

ρ |= B ⇔ s0 ∈ B
ρ |= ϕ1 U./k ϕ2 ⇔ ∃i ≥ 0, i ./ k, s.t. ρ≥i |= ϕ2 and ∀0 ≤ j < i, ρ≥j |= ϕ1

ρ |= ϕ1 ∨ ϕ2 ⇔ ρ |= ϕ1 or ρ |= ϕ2

ρ |= ϕ1 ∧ ϕ2 ⇔ ρ |= ϕ1 and ρ |= ϕ2

ρ |= ¬ϕ ⇔ ρ 2 ϕ.

We write EvT (ϕ) for the set of infinite paths ρ in T such that ρ |= ϕ. It is standard to show
that the event EvT (ϕ) is a measurable subset of (Paths(T ),FT ) (see e.g. [45]). In particular,
for every initial probability measure µ, ProbTµ (EvT (ϕ)) is well-defined. In the sequel, for
simplicity, we often write ProbTµ (ϕ) instead of ProbTµ (EvT (ϕ)).

We will also use classical notations like > = S; ⊥ = ∅; ϕ1 Uϕ2 = ϕ1 U≥0 ϕ2; Fϕ =
>Uϕ; F./p ϕ = >U./p ϕ; Gϕ = ¬F (¬ϕ); G./p ϕ = ¬F./p (¬ϕ).

I Example 6. We illustrate some properties on STSs TRW and TQS of Examples 2 and 3.
Consider first TRW and B = {0}. The event EvTRW (FB) corresponds to the set of runs that
eventually reach state 0, i.e. EvTRW (FB) = {ρ = (sn)n≥0 ∈ Paths(TRW) | ∃n ≥ 0, sn = 0},
while the event EvTRW (GFB) corresponds to the set of runs that infinitely often visit 0,
i.e. EvTRW (GFB) = {ρ = (sn)n≥0 ∈ Paths(TRW) | ∀n ≥ 0, ∃k ≥ n, sk = 0}. Now in
TQS, we could consider the set of states B′ = {0} × [0, T ] with T > 0. Then the event
EvTQS(FB′) corresponds to the set of runs that eventually reach 0 within T time units, i.e.
EvTQS(FB′) = {ρ = ((sn, tn))n≥0 ∈ Paths(TQS) | ∃n ≥ 0, (sn = 0 ∧ tn ≤ T )}.

2.5 Labelled STSs and their properties
To ease the expression of rich properties over STSs, we extend the model with a labelling
with atomic propositions.

I Definition 7. A labelled STS (LSTS for short) is a tuple T = (S,Σ, κ,AP,L), where
(S,Σ, κ) is an STS, AP is a finite set of atomic propositions, and L : S → 2AP is a measurable
labelling function.

Measures and other notions are extended in a straightforward way from STSs to LSTSs. We
fix a finite set AP of atomic propositions and an LSTS T = (S,Σ, κ,AP,L).

A property over AP is a subset P of
(
2AP)ω. An infinite path ρ = s0s1 . . . of T satisfies

the property P whenever L(s0)L(s1)L(s2) . . . ∈ P , written ρ |= P . ω-regularity is a standard
notion in computer science to characterise simple sets of infinite behaviours, and typical ω-
regular properties are Büchi and Muller properties. In order to express such properties, we
introduce a new notation for the set of atomic propositions that are true infinitely often along
a sequence of labels: for $ = u0u1u2 . . . ∈

(
2AP)ω, we define Inf($) = {a ∈ AP | |{j ∈ N |

a ∈ uj}| =∞}. We extend this notation to paths in a natural way: if ρ = s0s1s2 . . . ∈ Sω,
writing $ = L(s0)L(s1)L(s2) . . ., we define (with a slight abuse of notation) Inf(ρ) = Inf($).
A Büchi property P over AP can be specified by a subset of atomic propositions F ⊆ AP as
P = {$ ∈

(
2AP)ω | Inf($) ∩ F 6= ∅}. A Muller property over AP is a property P such that

there exists F ⊆ 2AP with P = {$ ∈
(
2AP)ω | Inf($) ∈ F}.

I Remark 8. It should be noted that the set of infinite paths satisfying Büchi or Muller
properties can be expressed using events as in Section 2.4. Indeed, for F ⊆ AP we write
2AP
F = {u ∈ 2AP | u ∩ F 6= ∅} and given a ∈ AP, 2AP

a = {u ∈ 2AP | a ∈ u}. Then,
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the set of paths satisfying the Büchi property with acceptance condition F is

EvT
(
GF

( ∨
u∈2AP

F

L−1(u)
))

;

the set of paths satisfying the Muller property with acceptance condition F is

EvT
( ∨
F∈F

( ∧
a∈F

(
GF

∨
u∈2AP

a

L−1(u)
)
∧
∧
a/∈F

∧
u∈2AP

a

FG
(
L−1(u)

)c))
.

It is well known that automata equipped with Büchi or Muller acceptance conditions
capture all ω-regular properties, and this also holds for deterministic Muller automata.

IDefinition 9. A deterministic Muller automaton (DMA) over AP is a tupleM = (Q, q0, E,F)
where:

Q is a finite set of locations, and q0 ∈ Q is the initial location;
E ⊆ Q× 2AP ×Q is a finite set of edges;
F is a Muller condition over Q;

and such that
M is deterministic: for all pair of edges (q, u, q1) and (q, u, q2) in E, q1 = q2;
M is complete: for every q ∈ Q, for every u ∈ 2AP, there exists (q, u, q′) ∈ E.

A deterministic Muller automatonM naturally gives rise to a property PM defined by the
language (over 2AP) accepted byM. Its semantics over infinite paths of T is derived from
that of property PM: if ρ ∈ Paths(T ), we write ρ |= M whenever ρ |= PM. Expanding
Remark 8, one derives the standard fact that the set T [M] def= {ρ ∈ Paths(T ) | ρ |= M} is
measurable, and we write ProbTµ (M) for ProbTµ (T [M]).

I Remark 10. It is well known (see [46] and [30, Chapter 3]) that for any LTL formula
ϕ (the syntax given in the previous subsection, where we replace sets B by inverse images
by L of atomic propositions from AP), there is a deterministic Muller automatonMϕ that
characterises ϕ, that is: for every run ρ, ρ |= ϕ iff ρ |=Mϕ.

Product STS

To measure the probability of properties specified by a DMA M = (Q, q0, E,F), it is
standard to build a new STS consisting of the product of T with M [10]. To this aim,
we consider the discrete σ-algebra 2Q on the finite set of locations Q of M. The product
S×Q can then be equipped with the product σ-algebra Σp defined as the smallest σ-algebra
generated by the rectangles, where a rectangle is set of the form X × Q′ where X ∈ Σ
and Q′ ⊆ Q; i.e. X × Q′ = {(s, q) | s ∈ X, q ∈ Q′}. Given Y an element of Σp, for all
q ∈ Q, one can define the set πq(Y ) def= {s ∈ S | (s, q) ∈ Y }. We therefore write (abusively)
Y =

⋃
q∈Q πq(Y )×{q}. Then, one can show that Σp coincides with Σ′, the set of all subsets

of S × Q of the form
⋃
q∈Q Cq × {q}, where Cq ∈ Σ for every q ∈ Q (see the proof in the

appendix, page 57).
Note that in the sequel, we will sometimes write (Cq, q) instead of Cq × {q}.
We now define the product of T withM as follows.

I Definition 11. Given T = (S,Σ, κ,AP,L) an LSTS andM = (Q, q0, E,F) a DMA over
AP, we define the product of T withM as the LSTS T nM = (S′,Σ′, κ′,AP′,L′) such that:

S′ = S ×Q;
Σ′ is the product σ-algebra Σ× 2Q;
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κ′((s, q), (A, q′)) =
{
κ(s,A) if (q,L(s), q′) ∈ E, and
0 otherwise;1

AP′ = Q;
L′(s, q) = q.

I Example 12. We consider again TRW the random walk over N of Example 2. We assume
that it is equipped with the simple set of atomic propositions AP = {a} and we assume that
each state of the STS is labelled with a. LetM be the DMA depicted on the left-hand side of
Figure 2. The winning condition is given by F = {{q1, q2}}. The product TRW nM is then
depicted on the right-hand side of Figure 2. It should be noted that we there assume that the
system starts at (0, q0) however, there should be similar chains starting in (i, q0) for each
i ≥ 1. Note also that we did not specify the labels on the states: according to the definition
each state is labelled with its current position inM.

q0 q1 q2
{a}

{a}

{a}

(0, q0)

(0, q2)

(1, q1) (2, q2) (3, q1) · · ·

1

1− p

p

1

1− p

p

1− p

p

1− p

Figure 2 A Muller automatonM and the product TRW nM.

We define on T nM a Muller condition which is inherited from the one of M via the
new labelling function L′: a run ρ satisfies the Muller condition F ′ whenever L′(ρ) satisfies
the Muller condition F . We thus later simply use F instead of F ′.

We now explain how initial distributions for T are lifted to the product T nM. The
idea is simple: the T -component is inherited from T , and the M-component is a Dirac2
distribution over q0, the initial state of M. In other words, when an initial distribution
µ ∈ Dist(S) is fixed for T , the initial distribution of T nM will be µ× δq0 . We show that
this allows to properly express the probability of a property described by a DMA, with the
following correspondence (whose proof is given in the appendix, page 57).
I Proposition 13. Let µ ∈ Dist(S) be an initial distribution for T , and M = (Q, q0, E,F)
be a DMA. Then:

ProbTµ (T [M]) = ProbTnM
µ×δq0

({ρ ∈ Paths(T nM) | ρ |= F}) .

3 Nice properties of STSs

In [1], Abdulla et al. introduced the elegant concept of decisive Markov chain. Intuitively,
decisiveness allows one to lift the good properties of finite Markov chains to infinite (but de-
numerable) Markov chains. We explain here how to extend and refine this concept and some
related concepts to general STSs, and we establish relationships between these properties.

1 Note that the above definition of κ′ extends naturally to all elements of the σ-algebra Σ′: for each pair
(q, u) with q ∈ Q and u ∈ 2AP, there is a unique q′ ∈ Q such that (q, u, q′) ∈ E. Fix (s, q) ∈ S × Q,
write q′ for the unique location such that (q,L(s), q′) ∈ E. Then for each A =

⋃
q∈Q Cq × {q},

κ′((s, q), A) = κ′((s, q), (Cq′ , q′)) = κ(s, Cq′).
2 We recall that given a state s, the Dirac distribution over s is defined by δs(A) = 1 if s ∈ A and
δs(A) = 0 otherwise, for every A ∈ Σ.
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3.1 Several decisiveness notions
Decisiveness has been defined in [1] as a desirable property of denumerable Markov chains,
since it implies that they behave essentially like finite Markov chains.

For B ∈ Σ a measurable set, we define its avoid-set ‹B = {s ∈ S | ProbTδs(FB) = 0}.
It corresponds to the set of states from which the system will always avoid the set B with
probability 1 (or equivalently, reach B with probability 0). The set ‹B enjoys the following
properties, that obviously hold also in the context of denumerable Markov chains, but require
proofs in our general context of STSs (those proofs are postponed to the technical appendix,
page 58).

I Lemma 14. Given B ∈ Σ, it holds that:

1. ‹B belongs to the σ-algebra Σ;
2. for every µ ∈ Dist(‹B), ProbTµ (FB) = 0;
3. for every µ ∈ Dist(S), if µ((‹B)c) > 0, then ProbTµ (FB) > 0;
4. for every µ ∈ Dist(S), ProbTµ (F ‹B) = ProbTµ (FG ‹B) = ProbTµ (GF ‹B);
5. for every µ ∈ Dist(S), ProbTµ (FB ∨ F ‹B) = ProbTµ (FB ∨ (¬BU ‹B)).
Let us comment on the third and fourth properties stated in this lemma. The third item
indicates that if we start from outside ‹B, then we will always have a positive probability to
hit B. The fourth property says that ‹B is some kind of sink: once we hit ‹B, we cannot escape
it. The other properties are rather straightforward to understand (even though proving the
first property requires some technical developments).

We are now ready to define different decisiveness concepts. Two stem from [1] (though no
initial distribution was fixed) while the third one was identified in [15] as a useful alternative.

I Definition 15. Let µ be an initial probability distribution (µ ∈ Dist(S)). Then:
T is decisive w.r.t. B from µ whenever ProbTµ (FB ∨ F ‹B) = 1; we then write that T is
Dec(µ,B).
T is strongly decisive w.r.t. B from µ whenever ProbTµ (GFB ∨F ‹B) = 1; we then write
that T is StrDec(µ,B).
T is persistently decisive w.r.t. B from µ whenever for every p ≥ 0, ProbTµ (F≥pB ∨
F≥p ‹B) = 1; we then write that T is PersDec(µ,B).

Furthermore: T is (strongly, persistently) decisive w.r.t. B whenever it is (strongly, persist-
ently) decisive w.r.t. B from every initial distribution µ; we then write that T is Dec(B)
(resp. StrDec(B), PersDec(B)). Also, given B ⊆ Σ, T is (strongly, persistently) decisive
w.r.t. B from µ if it is Dec(µ,B) (StrDec(µ,B), PersDec(µ,B)) for each B ∈ B. We write
T is Dec(µ,B) (StrDec(µ,B), PersDec(µ,B)). Similarly T is (strongly, persistently) decisive
w.r.t. B if it is Dec(B) (StrDec(B), PersDec(B)) for each B ∈ B. We write T is Dec(B)
(StrDec(B), PersDec(B)).

Intuitively, the (simple) decisiveness property says that, almost-surely, either B will eventu-
ally be visited, or states from which B can no more be reached will eventually be visited. It
denotes a dichotomy between the behaviours of the STS T : there are those behaviours that
visit B, and those that do not visit B, but then visit ‹B; other behaviours have probability
0 to occur. Strong decisiveness imposes a similar dichotomy, but between behaviours that
visit B infinitely often and behaviours that visit ‹B. Persistent decisiveness refines simple
decisiveness, but by looking at an arbitrary horizon. It can also be seen as being decisive
from Ω(n)

T (µ) for every n ≥ 0.
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Note that if T is finite, then it is decisive, strongly decisive and persistently decisive. Let
us now illustrate the subtleties of the various decisiveness notions on examples.

I Example 16. Let us consider again the STS TRW of Example 2, representing a discrete-
time random walk, and assume p > 1/2. As a classical result, the random walk is then
diverging, see e.g. [20]. Since the chain is strongly connected, for each B ⊆ N, ‹B = ∅. Let
us first assume that the initial distribution is µ = δ0, the Dirac distribution over state 0.
Then it can be shown that for each set of states B, ProbTRW

µ (FB) = 1 and thus, TRW is
Dec(µ,B).

Assuming now that the initial distribution is µ′ = δ1, if B = {0}, then ProbTRW
µ′ (F {0}) <

1. But since ‹B = ∅, we derive that TRW is not Dec(µ′, B).
Consider now for each i ≥ 0, Bi = {i}. Since p > 1/2, classical results on random walks

imply that for each i, ProbTRW
µ (GFBi) = 0. And since ‹Bi = ∅, we obtain that TRW is not

StrDec(µ,Bi).
Consider now the STS TQS of Example 3. Assume that λ > ν and that µ = δ(0,0) and fix

some T > 0. We consider B1 = {1} × [0, T ]. Then one can compute ‹B = N× ]T,∞[. Note
that here, as time almost-surely always progresses, ProbTQS

µ (F ‹B) = 1. It thus follows that
TQS is Dec(µ,B) and StrDec(µ,B).

3.2 Attractors
The notion of finite attractor has been used in several contexts like probabilistic lossy channel
systems (see e.g. [2, 43]) and abstracted in [1] in the context of denumerable Markov chains.
A finite attractor is a finite set of states which is reached almost-surely from every state of the
system. We lift this definition to our context, obviously relaxing the finiteness assumption,
since it is very unlikely that systems with a continuous state-space will have finite attractors.
Since the whole set of states is a trivial attractor, this general definition will prove useful once
we are able to define attractors with some finiteness property, which will be done through
abstractions in Section 4.

I Definition 17. Let µ ∈ Dist(S) be an initial distribution. B ∈ Σ is a µ-attractor for T if
ProbTµ (FB) = 1 . Further, B is an attractor for T if it is a µ-attractor for every µ ∈ Dist(S).

I Example 18. Consider again the random walk TRW of Example 2 and assume again that
p > 1/2. For B = {5}, it can be shown that B is a µ-attractor for µ = δ0. However, for any
distribution µ′ ∈ Dist(N≥6) over natural numbers larger than or equal to 6, ProbT1

µ′ (FB) < 1
and thus B is not a µ′-attractor.

On the other hand, if we assume p ≤ 1/2, it is a well-known property of random walks
that {0} is reached almost-surely from every state, hence we can infer that any bounded
subset A of N is an attractor (for every initial distribution).

The existence of an attractor is a rather strong property for an STS. It will actually
imply that attractors are almost-surely visited infinitely often. While this result was already
known for DMCs (see [1, Lemmas 3.2 and 3.4]), the general case of STSs requires a specific
treatment. We choose to present the proof of this result in the core of the paper, since it
illustrates how to use at the same time the two views on STSs.

I Lemma 19. If B is an attractor for T then for every initial distribution µ ∈ Dist(S),

ProbTµ (GFB) = 1.
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Proof. LetB be an attractor for T , i.e. for each initial distribution µ ∈ Dist(S), ProbTµ (FB) =
1. Towards a contradiction, assume that there is µ ∈ Dist(S) such that ProbTµ (GFB) < 1.
Then, ProbTµ (FGBc) > 0. Now remember that from the definitions, we have that

EvT (FGBc) =
⋃
n≥0

⋂
m≥0

Cyl(
n times︷ ︸︸ ︷
S, . . . , S,

m times︷ ︸︸ ︷
Bc, . . . , Bc).

It follows that there is n ∈ N such that

lim
m→∞

ProbTµ (Cyl(
n times︷ ︸︸ ︷
S, . . . , S,

m times︷ ︸︸ ︷
Bc, . . . , Bc)) > 0.

From Lemma 5, if we write ν0 = µ and νj = ΩT (νj−1) for each 1 ≤ j ≤ n− 1, we get that
for each m ≥ 1,

ProbTµ (Cyl(
n times︷ ︸︸ ︷
S, . . . , S,

m times︷ ︸︸ ︷
Bc, . . . , Bc)) = ProbTΩT (νn−1)(Cyl(

m times︷ ︸︸ ︷
Bc, . . . , Bc))

since µ(S) = 1 and for each 0 ≤ j ≤ n − 2, (ΩT (νj))(S) = 1. It can be seen that in this
case, for each 0 ≤ j ≤ n− 1, νj = Ω(j+1)

T (µ). We write ν = ΩT (νn−1) = Ω(n)
T (µ) ∈ Dist(S).

We thus get that

lim
m→∞

ProbTν (Cyl(
m times︷ ︸︸ ︷

Bc, . . . , Bc)) = ProbTν (GBc) > 0,

which contradicts the fact that B is an attractor, hence a ν-attractor, for T . J

3.3 Fairness
Fairness is a standard notion in probabilistic systems [41, 42, 11], saying that something
which is allowed infinitely often should happen infinitely often almost-surely. This can for
instance be instantiated in denumerable Markov chains as follows: if a state s is visited
infinitely often, and the probability to move from s to s′ is positive, then, almost-surely,
infinitely often the state s′ is visited. Not all Markov chains are fair, but finitely-branching
Markov chains are. Note that other notions of fairness are discussed in [11].

The above notion of fairness cannot be lifted directly to continuous state-space STSs
(since for two states s and s′, the probability to move from s to s′ is likely to be 0). A more
careful definition of this notion must be provided for general STSs. For B ∈ Σ, we define

PreProbT (B) = {B′ ∈ Σ | ∀µ′ ∈ Dist(B′), ProbTµ′(Cyl(B′, B)) > 0} ,

as the set of measurable sets B′ “from which” B can be reached with positive probability.
Note that, ideally we would like to define the maximal set that allows one to reach B, but
the union of all such sets may not be measurable in our general context.

I Definition 20. Let µ ∈ Dist(S) be some initial distribution, and B ∈ Σ. The STS T is fair
w.r.t. B from µ, written T is fair(µ,B), if for every B′ ∈ PreProbT (B), ProbTµ (GFB′) > 0
implies

ProbTµ (GFB | GFB′) = 1.

As for decisiveness, we extend this definition to sets B ⊆ Σ, and use similar notations
when we relax the fixed initial measure µ. Finally, we say that T is strongly fair whenever
it is fair w.r.t. B from µ for every B ∈ Σ and every µ ∈ Dist(S).
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I Example 21. Consider again the random walk of Example 2. In TRW, there is a positive
lower bound on each single move in the chain: take ε = min(p, 1− p) > 0, and realize then
that for every B ⊆ S, for every B′ ∈ PreProbTRW (B) and for every s ∈ B′, κ1(s,B) ≥ ε.
Then using a proof similar to [11, Theo. 2], we deduce that TRW is fair w.r.t. B from any
initial distribution. Hence, TRW is strongly fair.

I Example 22 (Counter-example). Consider now the DMC Tunfair depicted in Figure 3. From
each state an (n ≥ 1), the probability to move to b is 1

3n whereas the probability to move to
an+1 is 1− 1

3n . From b, the probability to move to a1 is 1.
Consider B = {b}, µ = δb and B′ = {an | n ∈ N}. It is easy to see that, B′ ∈

PreProbTunfair(B) and that ProbTunfair
µ (GFB′) > 0. However, ProbTunfair

µ (GFB | GFB′) < 1
and thus Tunfair is not fair(µ,B).

a1 a2 a3 a4

b

2
3

8
9

26
27

1
3

1
9

1
27

1

Figure 3 A denumerable Markov chain T3 that is not strongly fair.

3.4 Relationships between the various properties
In this section, we compare all the notions, and give the precise links between all of them.
We first analyze the general case, and reinforce the results in the case of DMCs.

I Proposition 23. Let B ⊆ Σ and µ ∈ Dist(S). The following implications hold:

1. T is Dec(µ,B) ⇐= T is StrDec(µ,B) ⇐⇒ T is PersDec(µ,B) =⇒ T is fair(µ,B)
2. T is Dec(B) ⇐⇒ T is StrDec(B) ⇐⇒ T is PersDec(B) =⇒ T is fair(B)

The three missing implications in the above proposition do actually not hold, as proved
by the following example. We also illustrate the fact that Dec(µ,B) and fair(µ,B) are
incomparable.

I Example 24 (Counter-example). Consider again the random walk TRW of Example 2.
We have shown in Example 21 that TRW is strongly fair, whatever the choice of p. Now
let us assume that p > 1/2 and let us consider the initial distribution µ = δ0, the Dirac
distribution over 0. Then from Example 16, TRW is decisive from µ w.r.t. any set of states.
Again in this example, we have observed that it is not strongly decisive w.r.t. any set of the
form B = {i} with i ≥ 0. This shows that TRW is neither Dec(µ,B) ⇒ StrDec(µ,B), nor
fair(µ,B) ⇒ StrDec(µ,B), nor fair(B) ⇒ StrDec(B). And since TRW is not decisive from δ1
w.r.t. {0}, this also proves that fair(µ,B) does not imply Dec(µ,B).

In order to illustrate that Dec(µ,B) does not imply fair(µ,B) in general, we consider the
DMC chain Tunfair of Example 22. We consider B = {b} and µ = δb. It is easily observed
that Tunfair is Dec(µ,B) as we start in b with probability 1, but we have shown that Tunfair is
not fair(µ,B).
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If T is a DMC, i.e. if S is at most denumerable and Σ = 2S , we can complete the
picture using furthermore the result of [1, Lemma 3.4], which says that any DMC with a
finite attractor is decisive w.r.t. any set of states.
I Proposition 25. Assume T is a DMC. The following implications hold:

T has
a finite attractor

T is finite

T is StrDec(2S)T is Dec(2S) T is PersDec(2S)

T is strongly fair
=⇒

=⇒

⇐⇒ ⇐⇒

=⇒

4 Abstractions between STSs

While decisiveness is well-defined for general STSs, proving that a given STS T is decisive
might be technical in general. A standard approach in model-checking to avoid such dif-
ficulties is to abstract the system into a simpler one, that can be analyzed and provides
guarantees on the concrete system. We thus propose a notion of abstraction, which will
help proving properties of general STSs. Also, through abstractions, we will be able to
characterize meaningful attractors.

Abstractions only preserve the positivity of probabilities, which is rather weak. However,
by strengthening the notion, we will see that they will be very useful, not only for the
qualitative analysis of STSs, but also for their quantitative analysis.

4.1 Abstraction
Let T1 = (S1,Σ1, κ1) and T2 = (S2,Σ2, κ2) be two STSs. Let α : (S1,Σ1) → (S2,Σ2) be a
measurable function. A set B ∈ Σ1 is said α-closed whenever B = α−1(α(B)): for every
s, s′ ∈ S1, if s ∈ B and α(s) = α(s′), then s′ ∈ B. Following [28], we define the pushforward
of α as α# : Dist(S1) → Dist(S2) by α#(µ)(M2) = µ(α−1(M2)) for every µ ∈ Dist(S1) and
for everyM2 ∈ Σ2. The role of the pushforward α# is to transfer the measures from (S1,Σ1)
to (S2,Σ2). In the following we will say that two probability distributions µ and ν over some
probability space (S,Σ) are qualitatively equivalent if for each A ∈ Σ, µ(A) = 0⇔ ν(A) = 0.

I Definition 26. T2 is an α-abstraction of T1 if

∀µ ∈ Dist(S1), α#(ΩT1(µ)) is equivalent to ΩT2(α#(µ)) .

Later, one may speak of abstraction instead of α-abstraction if α is clear in the context.
From the definitions of ΩT , α# and equivalent measures, the notion of α-abstraction

equivalently requires that for every µ ∈ Dist(S1) and every A ∈ Σ2,

ProbT1
µ (Cyl(S1, α

−1(A))) > 0⇐⇒ ProbT2
α#(µ)(Cyl(S2, A)) > 0 .

Intuitively, the two STSs have the same “qualitative” single steps.
Let us now provide two examples of α-abstraction.
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I Example 27. Consider the two STSs TRW = (SRW,ΣRW, κRW) –the discrete random walk
on N from Example 2– and TQS = (SQS,ΣQS, κQS) –its continuous variant from Example 3.
Recall that SRW = N and SQS = N× R+. Letting α : SQS → SRW be the function defined by
α((n, t)) = n, one can easily be convinced that TRW is an α-abstraction of TQS.

I Example 28. Consider the random walk on N from Example 2 TRW = (SRW,ΣRW, κRW),
and the finite Markov chain Tf = (Sf ,Σf , κf ) depicted on Fig. 4. We define a function
α : SRW → Sf by α(n) = sn if n ∈ {0, 1}, and α(n) = 2 otherwise. Clearly enough Tf is an
α-abstraction of TRW.

s0 s1 s2

1

1− q

q

1− q

q

Figure 4 A finite Markov chain.

The notion of α-abstraction naturally extends to labelled STSs. A labelled STS T2 =
(S2,Σ2, κ2,AP2,L2) is an α-abstraction of T1 = (S1,Σ1, κ1,AP1,L1) whenever:

(S2,Σ2, κ2) is an α-abstraction of (S1,Σ1, κ1);
AP1 = AP2;
for every s1, s′1 ∈ S1, α(s1) = α(s′1)⇒ L1(s1) = L1(s′1);
for every s ∈ S1, L1(s) = a⇒ L2(α(s)) = a.

The two last conditions imply that for each a ∈ 2AP, L−1
1 ({a}) is α-closed. Moreover, for

each a ∈ 2AP, α−1(L−1
2 ({a})) = L−1

1 ({a}).

By definition, abstractions preserve the positivity of the probability of single-step moves.
More generally, one easily shows (see the appendix page 62 for details) that the positivity
of reachability properties or more generally of properties with bounded witnesses is also
preserved through α-abstractions: assuming T2 is an α-abstraction of T1, for every µ ∈
Dist(S1), for every A,B ∈ Σ2:

ProbT1
µ (EvT1(α−1(A)Uα−1(B))) > 0⇐⇒ ProbT2

α#(µ)(EvT2(AUB)) > 0 (1)

However this does not apply to liveness properties, such as EvT (GFA) with A ∈ Σ2, or to
other qualitative questions like almost-sure reachability (reach B with probability 1). To
ensure that these more involved properties are preserved via abstraction, we will strengthen
the assumptions on the abstraction and on the STSs.

Soundness and completeness of abstractions

We now define soundness and completeness of abstractions, that allow one to lift properties
of an abstraction T2 to the concrete STS T1. For the rest of this section, we fix an STS T1
and let T2 be an α-abstraction of T1.

I Definition 29. Let µ ∈ Dist(S1). The α-abstraction T2 is µ-sound whenever for every
B ∈ Σ2:

ProbT2
α#(µ)(FB) = 1 =⇒ ProbT1

µ (Fα−1(B)) = 1 .

T2 is a sound α-abstraction of T1 if it is µ-sound for every µ ∈ Dist(S1).
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Assuming soundness, it will thus be sufficient to prove that a reachability property holds
almost surely in the abstraction to derive that the corresponding reachability property also
holds almost surely in the concrete STS.

I Definition 30. Let µ ∈ Dist(S1). The α-abstraction T2 is µ-complete whenever for every
B ∈ Σ2,

ProbT1
µ (Fα−1(B)) = 1 =⇒ ProbT2

α#(µ)(FB) = 1

T2 is a complete α-abstraction of T1 if it is µ-complete for every µ ∈ Dist(S1).

Assuming completeness, if a reachability property holds with probability smaller than 1 in
the abstraction, then the corresponding property will also have probability smaller than 1
in the concrete model.

Altogether, sound and complete abstractions will guarantee that, up to α, the same
reachability properties are satisfied almost-surely in T1 and in T2.

I Example 31. We continue here Example 27 with TRW (with parameter 0 < p < 1) and
TQS (with parameters λ > 0 and ν > 0). One can show that TRW is a sound and complete
abstraction of TQS whenever p > 1/2⇐⇒ λ > ν.

I Example 32. We continue here Example 28 with TRW (with parameter 0 < p < 1) and Tf
(with parameter 0 < q < 1). One can show that Tf is always a complete abstraction of TRW;
Moreover, Tf is also sound if and only if p ≤ 1/2.

4.2 Transfer of properties through abstractions
In this section, we explain how and under which conditions one can transfer interesting
decisiveness, attractor and fairness properties of STSs through abstractions.

4.2.1 The case of sound abstractions
I Proposition 33. If T2 is a µ-sound α-abstraction of T1, then for every B ∈ Σ2:

T2 is Dec(α#(µ), B) =⇒ T1 is Dec(µ, α−1(B)) .

Using equivalences between the various properties stated in Proposition 23, we can extend
the above result to other decisiveness properties: assuming T2 is a sound α-abstraction of T1,
for every B ∈ Σ2, if T2 is Dec(B) (or equiv. StrDec(B), PersDec(B)) then T1 is Dec(α−1(B))
(or equiv. StrDec(α−1(B)), PersDec(α−1(B))).

The definitions of attractor and of sound α-abstraction yield a similar result:

I Proposition 34. If T2 is a sound α-abstraction of T1 and if A ∈ Σ2 is an attractor for T2,
then α−1(A) is an attractor for T1.

Denumerable (and in particular finite) abstractions play an important role, hence we
summarize all interesting and useful implications and equivalences for DMCs, which are
direct consequences of Propositions 25 and 33.

I Proposition 35. Assume T2 is a DMC, which is an α-abstraction of T1. Let B = {α−1(B) |
B ∈ Σ2} be the set of α-closed sets of Σ1. The following implications and equivalences hold
true:
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T2 has a finite attractor
and is a sound abstraction

T1 is StrDec(B)T1 is Dec(B)

T2 is a finite and
sound abstraction

T1 is PersDec(B)

T1 is fair(B)

=⇒
=⇒

⇐⇒ ⇐⇒

=⇒
4.2.2 Trickier transfers of properties
We established that decisiveness properties could be transferred through sound abstractions.
However, proving soundness of an abstraction is not easy in general, and one way to do it
is by proving some decisiveness properties. It is therefore relevant to explore alternatives to
prove decisiveness properties. We provide here two such alternatives.

First, we assume a denumerable abstraction, and lower bounds on probabilities of reach-
ability properties.
I Proposition 36. Let T2 be a DMC such that T2 is an α-abstraction of T1.

1. Assume that there is a finite set A2 = {s1, . . . , sn} ⊆ S2 such that A2 is an attractor for
T2 and A1 =

⋃n
i=1 α

−1(si) = α−1(A2) is an attractor for T1.
2. Assume moreover that for every 1 ≤ i ≤ n, for every α-closed set B in Σ1, there exist

p > 0 and k ∈ N such that:
for every µ ∈ Dist(α−1(si)), ProbT1

µ (F≤k B) ≥ p, or
for every µ ∈ Dist(α−1(si)), ProbT1

µ (FB) = 0.
Then T1 is decisive w.r.t. every α-closed set.

While the first condition on transfer of attractors is easily readable, let us discuss the
second one. It intuitively says that, whenever some (α-closed) set B can be reached with
positive probability from some distribution µ with support α−1(si), where si is an element
of the finite attractor of T2, then it should be reachable with a probability lower-bounded
by some p, p being independent of the choice of µ; furthermore an upper bound k on the
number of steps for reaching B is technically required in the proof, but we do not know
whether it is needed for the result to hold.

We write (†) for the hypotheses over T1 in this proposition. The idea behind this result
is that, with probability 1, the attractor of T1 will be visited infinitely often, and, if at each
visit of the attractor, there is a positive probability to reach some (α-closed) set B, since that
probability is by assumption bounded from below, then B will indeed be visited infinitely
often with probability 1. This will allow to show the dichotomy between reachability of B
and reachability of ‹B, which is required for proving the decisiveness property. The full proof
is given in the appendix, page 65, but we give here a sketch. Note that this kind of proofs
appears quite often in the literature (see e.g. [1, Lemma 3.4], but we have to do it carefully
here, since the framework is rather general).

Sketch of proof. Fix B ⊆ S2 and µ ∈ Dist(S1). Towards a contradiction, assume that T1 is
not µ-decisive w.r.t. B: this means that ProbT1

µ (Gα−1(Bc) ∧Gα−1((‹B)c)) > 0.
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Since A1 is an attractor, we deduce from Lemma 19 that

ProbT1
µ (Gα−1(Bc) ∧Gα−1((‹B)c) ∧GFA1) > 0 .

We write A′2 ⊆ A2 for the non-empty3 set of states s of A2 such that

ProbT1
µ (Gα−1(Bc) ∧Gα−1((‹B)c) ∧GFα−1(s)) > 0

Then obviously A′2 ⊆ Bc ∩ (‹B)c.
Since A′2 ⊆ (‹B)c, from Lemma 14 (third item), the hypothesis (†) and the finiteness of A′2,

we get that there is p > 0 and k ∈ N such that for every s ∈ A′2 and every µ ∈ Dist(α−1(s)),

ProbT1
µ (F≤k B) ≥ p .

Writing A′1 for α−1(A′2), we can show that

0 < ProbT1
µ (Gα−1(Bc) ∧Gα−1((‹B)c) ∧GFA′1)

≤ ProbT1
µ (Gα−1(Bc) ∧GFA′1)

≤ lim
n→∞

(1− p)n = 0

which is the required contradiction. J

Second, we strengthen the hypothesis on the abstraction, assuming it is finite, but we
relax the condition on T1, requiring only a fairness property.

I Proposition 37. Let T2 be a finite Markov chain such that T2 is an α-abstraction of T1. Fix
µ ∈ Dist(S1), and assume that T1 is µ-fair w.r.t. every α-closed set. Then T1 is µ-decisive
w.r.t. every α-closed set.

Sketch of proof. We give here the main steps of the proof, the details are postponed to the
appendix (page 69).

A key element of the proof relies on the fact that, since T2 is a finite MC, it can be viewed
as a graph and we can talk of the bottom strongly connected components (BSCC) of T2. The
first step of the proof aims at showing that, roughly speaking, the union of all BSCCs of T2
is a µ-attractor for T1. More precisely, if C = {s ∈ S2 | ∃C ∈ BSCC(T2), s ∈ C}, we prove
that ProbT1

µ (α−1(C)) = 1. This is shown thanks to the following arguments:
for each s ∈ S2, ProbT1

µ (GFα−1(s)) > 0 implies that s ∈ C – this uses the µ-fairness
assumption of T1 w.r.t. α-closed sets, and the core property of BSCCs (we cannot escape
from them);
using Bayes formula, one can decompose the set of paths according to the states which
are visited infinitely often (which corresponds to a decomposition according to the BSCC
the path ultimately visit).

Once we have shown that α−1(C) is a µ-attractor for T1, it suffices to observe that for each
B ⊆ S2 and each BSCC C of T2, either B∩C 6= ∅, or C ⊆ ‹B. Transferring those observations
to T1 and using Bayes formula to decompose ProbT1

µ (Fα−1(B) ∨ Fα−1(‹B)) according to
which BSCC is reached, it is easy to check that ProbT1

µ (Fα−1(B) ∨ Fα−1(‹B)) = 1. J

3 Since A1 =
⋃
s∈A2

α−1(s).
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4.3 Conditions for completeness and soundness
In our applications (Section 8), completeness will be for free. Indeed, a simple condition
(finiteness) implies completeness as stated in the next lemma.

I Lemma 38. If T2 is a finite Markov chain and an α-abstraction of T1, then T2 is complete.

Proof. Pick s0 ∈ S2, and µ ∈ Dist(α−1({s0})) (in particular, α#(µ) = δs0 , the Dirac
measure over {s0}). Assume that ProbT1

µ (Fα−1(B)) = 1 but ProbT2
α#(µ)(FB) < 1.

Since T2 is a finite Markov chain, there are s1, . . . , sn ∈ S2 such that

ProbT2
δs0

(Cyl(s0, s1, . . . , sn)) > 0

and for each ρ = (si)i≥0 ∈ Cyl(s0, . . . , sn) and for each i ≥ 0, si /∈ B.
For each 0 ≤ i ≤ n, we write Ai = α−1({si}). Then, following Equation (1) (page 18), we

get that ProbT1
µ (Cyl(A0, A1, . . . , An)) > 0. However, Cyl(A0, A1, . . . , An)∩EvT (Fα−1(B)) =

∅, yielding a contradiction. J

Note that the above lemma does not hold for denumerable abstractions. To illustrate this,
any two random walks over N are abstractions of each other, and it is well-known that
almost-sure reachability depends on the probability values.

In general, completeness can be guaranteed by some decisiveness condition on the ab-
stract system. Note that, since finite Markov chains are always decisive, the next lemma
actually subsumes the latter one, that we however found interesting to have as such.

I Lemma 39. Let µ ∈ Dist(S1). Assume that T2 is an α-abstraction of T1 and that T2 is
Dec(α#(µ)). Then, T2 is a µ-complete α-abstraction.

Proof. Fix B ∈ B and assume that ProbT1
µ (Fα−1(B)) = 1 but ProbT2

α#(µ)(FB) < 1.
Since T2 is Dec(α#(µ)), we infer from Lemma 14 (fifth item) that ProbT2

α#(µ)((¬B)U ‹B) >
0, and applying Equation (1) (page 18), we get that ProbT1

µ (α−1(¬B)Uα−1(‹B)) > 0. This
contradicts the hypothesis that ProbT1

µ (Fα−1(B)) = 1. J

Proving soundness is more delicate. We nevertheless show that a decisiveness condition
on the concrete system will ensure soundness.

I Proposition 40. Let T2 be an α-abstraction of T1. Assume T1 is decisive w.r.t. every
α-closed set. Then T2 is a sound α-abstraction of T1.

Proof. Towards a contradiction assume that B ∈ Σ2 is such that ProbT1
µ (Fα−1(B)) < 1.

Since T1 is decisive w.r.t. α−1(B) from µ, it holds from Lemma 14 (fifth item) that
ProbT1

µ (¬α−1(B)U·�α−1(B)) > 0. Applying Equation (1) again (page 18), we get that
ProbT2

α#(µ)((¬BU ‹B)) > 0, which contradicts the assumption that ProbT2
α#(µ)(FB) = 1. J

For T2 an α-abstraction of T1, notice that completeness is ensured by a decisiveness
assumption on T2, whereas soundness requires T1 being decisive w.r.t. every α-closed set.
While these conditions look very similar, the condition for soundness is actually harder to
check since the abstract STS T2 is expected to be simpler than the original concrete STS
T1.
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5 Using attractors for analyzing STSs

In this section we emphasize a generic approach to the analysis of STSs w.r.t. properties
given by a DMA, when the STS satisfies some attractor-based property. This approach is
inspired by the works of [2, 14] on lossy channel systems, but is new (as far as we know) in
the general context of DMCs, and a fortiori of STSs.

As we will see in the next sections, this will yield procedures (which can be turned
to effective algorithms for some classes of systems) for the qualitative as well as for the
approximate quantitative analysis of STSs. Many of the proofs are inlined here, since they
convey interesting ideas.

5.1 The case of DMCs with a finite attractor
We fix a finite set of atomic propositions AP, and we let T = (S,Σ, κ,AP,L) be a labelled
DMC. We also letM = (Q, q0, E,F) be a DMA. The product T nM has been defined in
Section 2.5. First, attractors transfer from T to the product T nM, as stated below, and
proven in the technical appendix (page 71).

I Lemma 41. Assume that A is an attractor for T . Then A×Q is an attractor for T nM.
Furthermore, if A is finite, then so is A×Q.

For the rest of this subsection, we assume that T has a finite attractor. Applying
Lemma 41, the product T nM admits a finite attractor that we denote B. We write
GraphTnM(B) (or simply Graph(B) when T and M are clear from the context) for the
finite graph whose vertices are states of B, and in which there is an edge from (s1, q1) to
(s2, q2) if there is a path from (s1, q1) to (s2, q2) in T nM. The bottom strongly connected
components (BSCCs)4 of the graph GraphTnM(B) play a central role in the model checking
of ω-regular properties of T . Let us first discuss the relationships between the BSCCs and
attractors for T nM.

I Lemma 42. The following properties are satisfied:
The set {(s, q) ∈ C | C BSCC of GraphTnM(B)} is an attractor of T nM.
If C and C ′ are two distinct BSCCs of GraphTnM(B), for every µ ∈ Dist(S × Q),
ProbTnM

µ (FC ∧ FC ′) = 0.
If C is a BSCC of GraphTnM(B), for every µ ∈ Dist(C), ProbTnM

µ (GFC) = 1.

Proof. The first property is obvious. The second property is a consequence of the fact
that there is no path between two states of two different BSCCs. This second prop-
erty implies that for each BSCC C ′ 6= C of GraphTnM(B) and for each µ ∈ Dist(C),
ProbTnM

µ (FC ′) = 0. From the first property and Lemma 19, we know that for each
µ ∈ Dist(S ×Q), ProbTnM

µ (GF
∨
C′∈BSCC(GraphTnM(B)) C

′) = 1. This holds true in particu-
lar for each µ ∈ Dist(C) and thus, from the previous observation for such initial distributions,
we get that ProbTnM

µ (GFC) = 1 for each µ ∈ Dist(C). J

From Lemma 42, the BSCCs of GraphTnM(B) form an attractor, and once the system
enters a BSCC C, only that BSCC will be visited again, and this will happen infinitely
often with probability 1. In particular, the satisfaction of the Muller condition in T nM,
inherited from F , can be characterized by the BSCCs satisfying the Muller condition F (in
a sense that we will make precise).

4 Those are strongly connected components which cannot be left.
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I Definition 43 (Good BSCC). A BSCC C of GraphTnM(B) is good for F , written C ∈
GoodBTnM(F), if there exists F ∈ F such that

(a) for every state (s, q) ∈ S × Q, if there exists (r, p) ∈ C with a path from (r, p) to (s, q)
in T nM, then q ∈ F ; and

(b) for every q ∈ F there exists s ∈ S, there exists a state (r, p) ∈ C with a path from (r, p)
to (s, q) in T nM.

Let C be an arbitrary BSCC of GraphTnM(B). We define the set FC = {q ∈ Q | ∃s ∈
S, ∃(r, p) ∈ C s.t. there is a path from (r, p) to (s, q)} as the set of states of the Muller
automaton that can be reached from C. Within a BSCC, all reachable states will actually
be visited infinitely often almost-surely. More precisely, we state the following result:

I Lemma 44. For every (s, q) ∈ C, ProbTnM
δ(s,q)

(Inf = FC) = 1.5

Proof. Let (s, q) ∈ C, and ρ = (s, q)(s1, q1)(s2, q2) . . . a path in T nM starting at (s, q).
By definition of FC , all qi’s are in FC , hence ProbTnM

δ(s,q)
(Inf ⊆ FC) = 1.

We now argue why all elements of FC are actually almost-surely visited infinitely often.
Fix p ∈ FC and (r, p) that is reachable from C. All two states of C are reachable one from
each other; thus, from every state of C, (r, p) is reachable through a finite path. Hence there
is some ι > 0 and k ∈ N such that for every state (s′, q′) ∈ C,

ProbTnM
δ(s′,q′)

(F≤k (r, p)) ≥ ι .

Applying a reasoning similar to the proof of Proposition 36, we get that ProbTnM
δ(s,q)

(GF (r, p) |
GFC) = 1. Indeed, ProbTnM

δ(s,q)
(FG¬(r, p) ∧GFC) ≤ limn→∞(1− ι)n = 0. Thanks to the

third item of Lemma 42, we obtain that

ProbTnM
δ(s,q)

(GF (r, p)) = 1 .

We conclude that ProbTnM
δ(s,q)

(Inf ⊇ FC) = 1, which completes the proof. J

As a consequence:

I Corollary 45. For every initial distribution µ ∈ Dist(S) for T and for every q ∈ Q,
ProbTnM

µ×δq0
(FC) > 0 implies ProbTnM

µ×δq0
(Inf = FC | FC) = 1.

We can now completely characterize the probability of satisfying an ω-regular property.

I Theorem 46. Let T be a labelled DMC with a finite attractor, andM = (Q, q0, E,F) be
a DMA. Then, for every initial distribution µ ∈ Dist(S) for T :

ProbTnM
µ×δq0

(Inf ∈ F) =
∑

C∈GoodBTnM(F)

ProbTnM
µ×δq0

(FC)

where B is an attractor for T nM.

5 We recall that Inf = FC characterizes the set of runs ρ′ in T nM such that Inf(L′(ρ′)) = FC (L′ is the
labelling function of T nM such that L′(s, q) = q).
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Proof. Fix µ ∈ Dist(S) and q ∈ Q. As stated in Lemma 42, the BSCCs of Graph(B) form
an attractor for T nM, and two BSCCs are probabilistically disjoint. Using Bayes formula
with a disjunction over the BSCCs, we can write:

ProbTnM
µ×δq0

(Inf ∈ F) =
∑

C BSCC of Graph(B)
C µ×δq0 -reachable

ProbTnM
µ×δq0

(FC) · ProbTnM
µ×δq0

(Inf ∈ F | FC)

where we say that C is µ × δq0 -reachable whenever ProbTnM
µ×δq0

(FC) > 0. Hence we deduce
that:

ProbTnM
µ×δq0

(Inf ∈ F) =
∑

C BSCC of Graph(B)

ProbTnM
µ×δq0

(FC) · 1F (FC)

thanks to Corollary 45, where 1F is the characteristic function of F (that is, 1F (F ) = 1 if
F ∈ F , and 1F (F ) = 0 otherwise). This concludes the proof of the theorem. J

5.2 General STSs via an abstraction
While the previous approach is adapted to DMCs, it does not apply directly to general
STSs: indeed, it is unlikely that general STSs have finite attractors, and finiteness of the
attractor is fundamental for the correctness of the approach. The idea will then be to rely
on an abstraction that admits a finite attractor, and to transfer properties through that
abstraction.

Let T1 = (S1,Σ1, κ1,AP,L1) and T2 = (S2,Σ2, κ2,AP,L2) be two LSTSs such that T2 is a
DMC, which is an α-abstraction of T1. Under certain conditions, we show how to express the
probability of satisfying an ω-regular property represented by a DMAM = (Q, q0, E,F) in
T1 using the abstraction T2. We consider both the product T1nM and the product T2nM.

First we justify why, within a slight abuse of terminology, T2 nM can be viewed as an
α-abstraction of T1 nM. We also exhibit a sufficient condition under which it is sound.

I Lemma 47. Let αM : S1×Q→ S2×Q be the lifting of α such that αM(s, q) = (α(s), q).
If T2 is an α-abstraction of T1, then T2 nM is an αM-abstraction of T1 nM. Furthermore,
if T1nM is Dec(B) where B = {α−1

M (B) | B ∈ Σ′2}, then T2nM is a sound αM-abstraction
of T1 nM.

While the proof of the first part of the lemma is technical hence postponed to the
appendix (page 72), the second part of the lemma is a consequence of Proposition 40.

I Remark 48. In the sequel, our applications will be smooth enough to meet the hypothesis:
T1 nM is decisive w.r.t. αM-closed sets. However we still have several open questions. The
first one is the following: does soundness between T2 and T1 imply soundness between T2nM
and T1 nM? While this seems quite natural, it is surprisingly tricky. Although we did not
manage to find a counter-example for this general question, we found one for a fixed initial
distribution. It is described in Example 101 in the appendix (page 72) and highlights some
difficulties we encounter when aiming at transferring analysis from the abstraction to the
concrete model.

This justifies the fact that we assumed decisiveness. As we already know, if T2 is a sound
α-abstraction of T1 and T2 is decisive w.r.t. any set of states, then T1 is decisive w.r.t. any
α-closed sets. Then the second natural question is the following: does decisiveness w.r.t.
α-closed sets for T1 imply decisiveness w.r.t. αM-closed sets for T1 nM? Again, we do
not have a general counter-example, but we have one for a fixed initial distribution. This is
described in Example 101 in the appendix (page 72).
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From now on, whenever T1 nM is decisive w.r.t. αM-closed sets and thus the previous
result is applicable, we will abusively write α for αM.

We focus now on the case where T2 has a finite attractor.6 Applying Lemma 41, T2 n
M has also a finite attractor, which we denote B2. We reuse notations of the previous
subsection, in particular the graph of the attractor GraphT2nM(B2), and the set FC of
recurring states when C is a BSCC of that graph.

The following lemma is a counterpart to Lemma 42 for T1. Under the hypothesis that
T1 nM is decisive w.r.t. α-closed sets, even though T1 nM does not have a finite attractor,
it has an attractor with an interesting structure inherited from T2 nM. In the sequel, we
write B = {α−1(B) | B ∈ Σ′2}.

I Lemma 49. Assume T2 has a finite attractor, and assume that T2 nM is a sound α-
abstraction of T1 nM. Write B2 for an attractor of T2 nM. The following properties are
satisfied:

The set α−1({(s, q) ∈ C | C BSCC of GraphT2nM(B2)}) is an attractor of T1 nM.
If C and C ′ are two distinct BSCCs of GraphT2nM(B2), for every µ ∈ Dist(S1 × Q),
ProbT1nM

µ (Fα−1(C) ∧ Fα−1(C ′)) = 0.
If C is a BSCC of GraphT2nM(B2), for every µ ∈ Dist(α−1(C)), ProbT1nM

µ (GFα−1(C)) =
1.

Proof. Since T2 nM is a sound α-abstraction of T1 nM, the first property is derived from
Proposition 34 and Lemma 42. The second property is a consequence of Lemma 42, and of
the fact that T2 nM is an α-abstraction of T1 nM. Finally, the third property is, as in the
proof of Lemma 42, a consequence of the second point and of Lemma 19. J

We then prove a counterpart to Lemma 44 for T1, which shows that a BSCC is charac-
terized by the set FC of states that are visited infinitely often from C.

I Lemma 50. Assume T2 has a finite attractor, and assume that T2 nM is a sound α-
abstraction of T1 nM. Let C be a BSCC of GraphT2nM(B2), and µ ∈ Dist(α−1(C)). Then:

ProbT1nM
µ (Inf = FC) = 1.

Proof. As already argued in the proof of Lemma 44, for every p ∈ FC , for every state
s2 ∈ C, ProbT2nM

δs2
(F p) = 1 (we abusively write p for the measurable set S2 × {p}). Since

T2 nM is a sound α-abstraction of T1 nM, we derive for every ν ∈ Dist(α−1(C)) that
ProbT1nM

ν (F p) = 1 (as before we abusively write p for S1 × {p} = α−1(S2 × {p})). We can
then show that for each ν ∈ Dist(α−1(C)) and for each p ∈ FC ,

ProbT1nM
ν (GF p) = 1.

Indeed, towards a contradiction, assume that there is a distribution ν ∈ Dist(α−1(C)) such
that ProbT1nM

ν (GF p) < 1, i.e. ProbT1nM
ν (FG¬p) > 0. From the third point of Lemma 49,

we get that ProbT1nM
ν (GFα−1(C) ∧ FG¬p) > 0. Now, observe that

EvT1nM(GFα−1(C) ∧ FG¬p) ⊆ EvT1nM(
⋃
n∈N

(
F=n α

−1(C) ∧G≥n ¬p
)
).

6 As T2 has a finite attractor, it is decisive and thus T2 is a complete α-abstraction of T1 by Lemma 39.
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It follows that there is n ∈ N such that ProbT1nM
ν (F=n α

−1(C) ∧ G≥n ¬p) > 0. From
Lemma 5, we get that there is ν′ ∈ Dist(S′1) (with S′1 = S1 ×Q) such that

ProbT1nM
ν (F=n α

−1(C) ∧G≥n ¬p)

= lim
m→∞

ProbT1nM
ν (Cyl(

n times︷ ︸︸ ︷
S′1, . . . , S

′
1, α
−1(C) ∧ ¬p,

m times︷ ︸︸ ︷
¬p, . . . ,¬p))

≤ limm→∞ ProbT1nM
ν′ (Cyl(α−1(C) ∧ ¬p,

m times︷ ︸︸ ︷
¬p, . . . ,¬p)) from Lemma 5

= limm→∞ ν′(α−1(C)) · ProbT1nM
ν′
α−1(C)

(Cyl(¬p,
m times︷ ︸︸ ︷
¬p, . . . ,¬p))

= ν′(α−1(C)) · ProbT1nM
ν′
α−1(C)

(G¬p).

From the assumption, we thus get that ProbT1nM
ν′
α−1(C)

(G¬p) > 0 where ν′α−1(C) ∈ Dist(α−1(C))

which is the required contradiction. Hence, for each ν ∈ Dist(α−1(C)) and for each p ∈ FC ,
ProbT1nM

ν (GF p) = 1.
It now suffices to show that, from any ν ∈ Dist(α−1(C)), no other state is visited

almost-surely infinitely often. Fix p′ /∈ FC . Then, by definition of FC , we have that
ProbT2nM

α#(ν) (F p′) = 0. Since T2 nM is an α-abstraction of T1 nM, we deduce that
ProbT1nM

ν (F p′) = 0.
We conclude that ProbT1nM

ν (Inf = FC) = 1, which is the claim of the lemma. J

We are now in a position to decompose the probability to satisfy the Muller condition
F in T1 nM into the reachability probability of good BSCCs in GraphT2nM(B2).

I Theorem 51. Let T1 and T2 be two LSTSs such that T2 is a DMC with a finite attractor,
and T2 is an α-abstraction of T1. Let M = (Q, q0, E,F) be a DMA. Assume moreover that
T2 nM is an α-sound abstraction of T1 nM, and that B2 is a finite attractor of T nM.
Then, for every initial distribution µ for T1:

ProbT1nM
µ×δq0

(Inf ∈ F) =
∑

C∈GoodB2
T2nM(F)

ProbT1nM
µ×δq0

(Fα−1(C)) .

Proof. Applying Lemma 50, for every µ ∈ Dist(S1), assuming ProbT1nM
µ×δq0

(Fα−1(C)) > 0,
then ProbT1nM

µ×δq0
(Inf = FC | Fα−1(C)) = 1. By the two first properties of Lemma 49, we can

write the following Bayes formula, with a disjunction over the BSCCs of GraphT2nM(B2):

ProbT1nM
µ×δq0

(Inf ∈ F) =
∑

C BSCC of GraphT2nM(B2)
C µ×δq-reachable

ProbT1nM
µ×δq0

(Fα−1(C)) · ProbT1nM
µ×δq0

(Inf ∈ F | Fα−1(C))

=
∑

C BSCC of GraphT2nM(B2)

ProbT1nM
µ×δq0

(Fα−1(C)) · 1F (FC)

=
∑

C∈GoodB2
T2nM(F)

ProbT1nM
µ×δq0

(Fα−1(C))

This concludes the proof of the theorem. J
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6 Qualitative analysis

In this section, we rely on the notions previously introduced and studied to design generic
procedures for the qualitative analysis of properties of STSs, under some assumptions that
will be made precise. We emphasize that these are procedures rather than algorithms, since
algorithms would require some effectiveness conditions on the STSs (numerical conditions, or
decidability of some graph properties in the underlying non-stochastic model). Next, we will
make explicit necessary conditions to obtain algorithms from the generic procedures. For
most natural STSs (and in particular for our applications – see Section 8), these conditions
will be satisfied.

For the next two subsections, we fix an STS T = (S,Σ, κ).

6.1 Basic properties under decisiveness hypotheses
Our objective here is to describe generic procedures that capture the qualitative (almost-sure
and positive) satisfaction of reachability and repeated reachability properties.

Given B ∈ Σ a measurable set, recall that ‹B = {s ∈ S | ProbTδs(FB) = 0} denotes its
avoid-set. Some properties of this set, while not crucial for the understanding but required
for the proofs, are given in Appendix E.1 (page 73).

Extending the approach of [1], we establish characterizations of the qualitative satisfac-
tion of (repeated) reachability properties in terms of the positive satisfaction of reachability-
like properties. We advocate that these are simpler to check on STSs: positive reachability
amounts to guessing a “symbolic” path (or cylinder) leading to the target, and to showing
that this path has a positive measure. The next proposition is stated in greater details as
Proposition 104 in the technical Appendix E (page 74).
I Proposition 52. Let µ ∈ Dist(S). Then we have the following implications, yielding various
characterizations for the qualitative analysis of STSs (under specified assumptions):
Almost-sure reachability If T is Dec(µ,B), then:

ProbTµ (FB) = 1 ⇐⇒ ProbTµ (¬BU ‹B) = 0 .

Almost-sure repeated reachability If T is StrDec(µ,B), then:

ProbTµ (GFB) = 1 ⇐⇒ ProbTµ (F ‹B) = 0 .

Positive repeated reachability If T is Dec(µ, ‹B) and PersDec(µ,B), then:

ProbTµ (GFB) > 0 ⇐⇒ ProbTµ (F ‹‹B) > 0 .

While the two first characterizations are quite intuitive under the corresponding decisive-
ness assumptions, let us comment on the characterization of positive repeated reachability:
the set ‹‹B is the set from which one cannot reach ‹B (or with probability 0), hence from
which we will be able to revisit B again and again. With this interpretation in mind, the
characterization is somewhat natural.

This reduces all these problems to checking the (non-)positivity of some reachability, or a
slight generalization thereof, property in the STS. Those are the simplest properties one can
hope to be decidable in a class of models. Effectiveness hence relies here on the computation
of avoid-sets, avoid-sets of avoid-sets, and on the decidability of the positive reachability (or
Until) problem.
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6.2 Basic properties through abstractions
Via abstractions, one can reduce the qualitative analysis of basic properties (reachability
and repeated reachability) from the concrete model to the abstract model. Indeed, one can
use the previous results (Propositions 23 and 33 together with Proposition 52), and show:
I Proposition 53. Assume T2 is an α-abstraction of T1, and fix B ∈ Σ2.

Let µ ∈ Dist(S1) be an initial distribution for T1. Assume that T2 is µ-sound and µ-
complete. Then:

ProbT1
µ (Fα−1(B)) = 1 iff ProbT2

α#(µ)(FB) = 1 .

Assume that T2 is sound and complete, and that T2 is StrDec(B). Then for every µ ∈
Dist(S1):

ProbT1
µ (GFα−1(B)) = 1 iff ProbT2

α#(µ)(GFB) = 1 .

Assume that T2 is sound and complete, and that T2 is PersDec(B) and Dec(‹B). Then
for every µ ∈ Dist(S1):

ProbT1
µ (GFα−1(B)) = 1 iff ProbT2

α#(µ)(GFB) = 1 .

This allows one to perform the qualitative analysis of (repeated) reachability properties in
T1 on its abstraction T2, which is quite useful since T2 will usually be simpler than T1.

6.3 ω-regular properties in DMCs with a finite attractor
Following Section 5.1, under the assumption that the STS has a finite attractor, we have
completely characterized the probability of satisfying the property defined by a DMA using
the probability of reaching BSCCs of a finite graph (Theorem 46). Using that result, we get
the following characterization of the almost-sure satisfaction relation.

I Corollary 54 (Almost-sure ω-regular property). Let T be a labelled DMC with a finite
attractor, and M = (Q, q0, E,F) be a DMA. Let B be a finite attractor for T nM. For
every initial distribution µ ∈ Dist(S) for T :

ProbTnM
µ×δq0

(Inf ∈ F) = 1 if and only if

every BSCC C of GraphTnM(B) such that ProbTnM
µ×δq0

(FC) > 0 is good for F .

In order to turn this characterization into a decision procedure, we need to be able to
compute the attractor B for T nM, and to build the graph GraphTnM(B); also one needs
to be able to compute for every BSCC C the set FC .

6.4 ω-regular properties of general STSs via abstraction and finite
attractor

Following Section 5.2, under several assumptions over an abstraction, we have completely
characterized the probability for a concrete system to satisfy a property given as a DMA
using a decomposition of a graph defined for the abstract system (Theorem 51). From that
result, we deduce the following characterization of the almost-sure satisfaction relation via
an abstraction. It turns out that the value resulting from the decomposition is equal to 1 if,
and only if, the property is almost-surely satisfied by the abstract system.
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I Corollary 55. Let T1 and T2 be two LSTSs such that T2 is a DMC with a finite attractor,
and T2 is an α-abstraction of T1. Let M = (Q, q0, E,F) be a DMA. Assume moreover that
T2 nM is an α-sound abstraction of T1 nM. Then, for every initial distribution µ for T1:

ProbT1nM
µ×δq0

(Inf ∈ F) = 1 if and only if ProbT2nM
α#(µ×δq0 )(Inf ∈ F) = 1 .

Hence, this reduces the almost-sure model-checking of a property given by M in T1 to
the almost-sure model-checking of a reachability property (applying Corollary 54). For the
approach to be effective, it is sufficient that the analysis at the level of T2 nM is effective.

As already quickly mentioned, under the hypotheses of Corollary 55, the abstraction
T2 nM is complete (since it has a finite attractor). Though it is not explicitely used, we
could not have such an equivalence without some completeness of the abstraction.

I Remark 56 (Discussion on the approach of [17]). While the notion of abstraction was
not precisely defined in [17] for stochastic timed automata, it was implicitly already there.
Also, decidability of the almost-sure satisfaction was ensured thanks to a fairness condition.
Using the terminology of the current paper, the framework was the following: T1 and T2 are
two STSs such that T2 is a finite Markov chain which is an α-abstraction of T1. Then the
condition for the abstraction to yield interesting results was that T1 should be fair w.r.t.
every α-closed sets (the latter condition implying the fairness of T1 nM, for M a DMA).
Thanks to Proposition 37, this implies that T1 nM is actually decisive w.r.t. α-closed sets.
Applying Proposition 40, we get that T2nM is sound abstraction of T1nM. Given that T2
is finite, it trivially has a finite attractor. Hence, the conditions of Theorem 51 are satisfied,
and the approach of [17] was then a particular case of that theorem, when applied to specific
subclasses of stochastic timed automata (further details are provided in Subsection 8.1).

7 Approximate quantitative analysis

Beyond qualitative analysis, we are interested in quantitative analysis of stochastic systems,
that is, in computing the probability that an STS satisfies a given property. No generic
decidability results can be stated in the very general context of STSs,7. We thus focus
here on approximate analysis and develop generic approximation procedures which, under
reasonable assumptions, allow one to compute within arbitrary precision, the probability of
a given property. As for properties, we consider first reachability, then repeated reachability,
later ω-regular properties, and finally some timed properties.

For the next two subsections, we fix an STS T = (S,Σ, κ), and a distribution µ ∈ Dist(S).

7.1 Quantitative reachability under decisiveness hypotheses
In order to approximate the reachability probability of a set B ∈ Σ in T , we define the
two following sequences, similar to the ones given for decisive Markov chains [1]. For every
n ∈ N:®

pYes
n = ProbTµ (F≤nB);
pNo
n = ProbTµ (¬BU≤n ‹B).

7 Note already that there is no uniform effective way to represent STSs, so that we can hardly expect
generic (and effective) procedures or algorithms.
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Since the sequences of events (F≤nB)n∈N and (¬BU≤n ‹B)n∈N are non-decreasing and
converge respectively to FB and ¬BU ‹B, the sequences (pYes

n )n and (pNo
n )n are non-decreasing

and converge respectively to ProbTµ (FB) and ProbTµ (¬BU ‹B). Assuming now that T is de-
cisive w.r.t. B, the two limits are related, as stated below. The proof of this proposition
can be found in Appendix, page 75.
I Proposition 57 (Approximation scheme for reachability properties). If T is Dec(µ,B), then
the two sequences (pYes

n )n and (1− pNo
n )n are adjacent8 and converge to ProbTµ (FB).

To obtain an ε-approximation for ProbTµ (FB), it suffices to evaluate pYes
n and pNo

n for
larger and larger values of n, until 1 − pNo

n − pYes
n < ε, and to return pYes

n . This scheme is
effective as soon as one can compute ‹B, and the probability (from µ) of cylinders of the
forms Cyl(S, . . . , S︸ ︷︷ ︸

n times

, B) and Cyl(¬B, . . . ,¬B︸ ︷︷ ︸
n times

, ‹B). In case pYes
n and pNo

n cannot be computed

exactly, but can only be approximated up to any desired error bound, this scheme can be
refined to obtain a 2ε-approximation for ProbTµ (FB).
I Remark. The above approximation scheme can be adapted to Until properties of the form
B′UB (for B,B′ ∈ Σ) in a straightforward way as follows: for every n ∈ N,®

p̂Yes
n = ProbTµ (B′U≤nB);
p̂No
n = ProbTµ (¬BU≤n (‹B ∨ ¬B′)).

Convergence of that scheme here also relies on a decisiveness property w.r.t. B.

7.2 Quantitative repeated reachability under decisiveness hypotheses
We now define two sequences that will yield an approximation scheme for a repeated reach-
ability probability, under stronger assumptions on the model. For every n ∈ N:{

qYes
n = ProbTµ (F≤n

‹‹B);
qNo
n = ProbTµ (F≤n ‹B).

Here again, with no assumption on T , clearly enough, the sequences (qYes
n )n and (qNo

n )n
are non-decreasing and converge respectively to ProbTµ (F ‹‹B) and ProbTµ (F ‹B). Assuming
now that T is persistently decisive w.r.t to B and decisive w.r.t. ‹B, the two sequences are
closely related, as stated below. The proof of this result can be found page 76.
I Proposition 58 (Approximation scheme for repeated reachability). If T is PersDec(µ,B) and
Dec(µ, ‹B), then the two sequences (qYes

n )n and (1 − qNo
n )n are adjacent and converge to

ProbTµ (GFB).

Effectiveness of the scheme relies on the computability of the avoid sets ‹B and ‹‹B, and on
the effective computation of the probability of cylinders of the forms Cyl(¬‹B, . . . ,¬‹B︸ ︷︷ ︸

n times

,
‹‹B) and

Cyl(¬‹‹B, . . . ,¬‹‹B︸ ︷︷ ︸
n times

, ‹B). Similarly as before, in case qYes
n and qNo

n cannot be computed exactly,

but can only be approximated up to any desired error bound, this scheme can be refined to
obtain a 2ε-approximation for ProbTµ (GFB).

8 Recall that two sequences (an)n∈N and (bn)n∈N are said adjacent if w.l.o.g. (an) is non-decreasing,
(bn) is non-increasing and the sequence (an − bn)n∈N converges to 0.
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7.3 ω-regular properties in DMC with a finite attractor
To go beyond reachability and repeated reachability, we now consider an ω-regular property
given by a DMA M = (Q, q0, E,F). We assume that T = (S,Σ, κ,AP,L) is a labelled
DMC.

In order to approximate the probability that the model satisfies this external specifica-
tion, we assume that T has a finite attractor. Following Section 6.3, we consider the finite
attractor B of T nM, and we apply Theorem 46: for each µ ∈ Dist(S),

ProbTnM
µ×δq0

(Inf ∈ F) =
∑

C∈GoodBTnM(F)

ProbTnM
µ×δq0

(FC) .

Thus, the computation of the probability that a given model satisfies a given external
specification is reduced to the computation of a reachability probability. Now, given that T
and hence T nM has a finite attractor, T nM is Dec(µ× δq0 , B) for any measurable set B,
so that we can apply the approximation scheme from Section 7.1 to obtain an approximation
of the desired value.

The effectiveness of the approach relies on the effectiveness of the scheme for reachability,
but also on the computability of an attractor for T , and of the set of good BSCCs of the
graph of the attractor.

7.4 ω-regular properties of general STSs via abstraction and finite
attractor

We assume the same framework as in Section 6.4, that is T1 = (S1,Σ1, κ1,AP,L1) and
T2 = (S2,Σ2, κ2,AP,L2) are two LSTSs such that:
T2 is a sound α-abstraction of T1

T2 is a DMC with a finite attractor B2.
We consider again a DMAM = (Q, q0, E,F), as well as the products T1 nM and T2 nM.
Writing B = {α−1

M (B) | B ∈ Σ′2}, we assume that T1 nM is Dec(B). Remember that this
implies, from Lemma 47, that T2 nM is a sound αM-abstraction of T1 nM.

Fix an initial distribution µ for T1. Thanks to Theorem 51:

ProbT1nM
µ×δq0

(Inf ∈ F) =
∑

C∈GoodB2
T2nM(F)

ProbT1nM
µ×δq0

(Fα−1(C)) .

Thus, as previously, the computation of the probability that a given model satisfies a
given external specification is reduced to the computation of a reachability probability. Since
we assumed T1 nM to be Dec(B), we can use the approximation scheme from Section 7.1
to approximate the searched value.

Effectiveness of the approach requires effective numerical computations for the distribu-
tions, as well as good constructivity properties for various sets, like the BSCCs of the graph
of the attractor, and avoid-sets of these, etc.

7.5 Time-bounded verification of stochastic real-time systems
The initial motivation to consider general STSs stems from real-time stochastic systems, that
is, systems with both timing constraints and probabilistic choices. While everything which
precedes holds for any kind of STSs, we highlight now some specific features of real-time
stochastic systems.
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I Definition 59. A real-time stochastic transition system (RT-STS) is an STS T = (Ŝ, Σ̂, κ)
such that (i) there is a measurable space (S,Σ) with Ŝ = S ×R≥0, and Σ̂ is the product σ-
algebra of Σ and the Borel sets of R≥0; and (ii) for every (s, t) ∈ S×R≥0, κ((s, t), {(s′, t′) ∈
S × R≥0 | t′ > t}) = 1.

The first condition makes explicit the time component of the system (given by R≥0; S then
contains the spatial information), while the second condition imposes the time to increase
almost-surely. By explicitly integrating absolute time into DMCs (where it is increased by
one at each new event) or CTMCs (where it is increased by the time elapsed in each state –
hence it represents absolute time since the start of the system), they can be interpreted as
RT-STSs. All other examples that we will consider in Section 8 can also be seen as RT-STSs,
after explicit integration of absolute time in the state-space.

Let T = (Ŝ, Σ̂, κ) be an RT-STS. A desirable property of a real-time system is that it
should be (almost-surely) non-Zeno: a path ρ = (s0, t0)(s1, t1) . . . ∈ Paths(T ) is non-Zeno
whenever limn→+∞ tn = +∞. Under such an hypothesis, we first identify natural attractors
of an RT-STS.

I Lemma 60. Assume that T is almost-surely non-Zeno. Then, for every ∆ ∈ Q≥0, the set
A∆ = {(s, t) ∈ S × R≥0 | t > ∆} is an attractor of T .

As a consequence, as soon as it is almost-surely non-Zeno, an RT-STS is (strongly)
decisive w.r.t. every bounded measurable subset and every initial distribution. Fix µ an
initial distribution assigning 0 to the initial timestamp t0. Assume one wants to compute
the probability of property B′UI B from µ, where I is some bounded interval of R≥0 with
rational bounds, and B,B′ ∈ Σ; this is the probability of the following set of paths:

{ρ = (s0, t0)(s1, t1) . . . ∈ Paths(T ) | ∃n ∈ N s.t. tn ∈ I, sn ∈ B and ∀j < n, sj ∈ B′} .

Then, for any ∆ ∈ Q≥0 with ∆ > sup I, A∆ is included in the avoid-set of B × I, and T is
therefore decisive w.r.t. B × I. In particular, the approximation scheme of Subsection 7.1
applies.

Hence, assuming the RT-STS T is almost-surely non-Zeno (which needs to be proven
“by hand”, or structurally obvious), and under some effectiveness assumption on T , the
quantitative analysis of time-bounded until or reachability properties is doable.

8 Applications

The general approach to the qualitative and quantitative analysis of stochastic systems over
a possibly continuous state-space can be instantiated in multiple frameworks. To demon-
strate its versatility, we present three types of models to which it applies: stochastic timed
automata, generalized semi-Markov processes and stochastic time Petri nets. These models
are taken from the literature without further motivations. This section is technical (since
the models themselves are complex), and can be skipped by the reader not necessarily in-
terested in these models. However, it is interesting to observe that several results from the
literature can be recovered (and extended) via our generic approach.

8.1 Stochastic timed automata
Stochastic timed automata (STA) [17] are stochastic real-time processes derived from timed
automata [6] by randomizing both the delays and the edge choices. The semantics of a STA
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is naturally given via a STS as defined in this paper, although this had not been formulated
this way originally.

Several decidability results have been proven for subclasses of STA, requiring the devel-
opment of ad-hoc methods [7, 8, 16, 18], and in [17], we proposed the first unifying method
capturing all known decidability results for the qualitative model-checking problem: the so-
called thick graph is a finite graph based on the standard region automaton construction for
timed automata [6], which allows one to infer good transfer properties from this finite graph
to the original STA when some fairness property is satisfied. The current work improves our
understanding of [15] and allows us both to unify all decidability and approximability results
that were known, and to get new approximability results for the quantitative model-checking
problem (of ω-regular properties).

8.1.1 Definition
To define the model properly, we first give some notations. Let X be a finite set of clocks.
We write G(X) for the set of guards defined as finite conjunctions of constraints of the form
x ./ c, where x ∈ X, ./ ∈ {<,≤,=,≥, >} and c ∈ N. Guards are interpreted over clock
valuations ν : X → R≥0 in a natural way – we then write ν |= g. Also, for ν a valuation we
define [Y ← 0](ν) the valuation assigning 0 to every x ∈ Y and ν(x) to each other clock,
and if d ∈ R≥0, we write ν + d for the valuation assigning ν(x) + d to every clock x ∈ X.

I Definition 61. A stochastic timed automaton (STA) is a tuple

A = (L, `0, X,E, (µγ)γ∈L×RX≥0
, (we)e∈E)

where:
L is a finite set of states (or locations);
`0 ∈ L is the initial state;
X is a finite set of clocks;
E ⊆ L×G(X)× 2X × L is a finite set of edges; and
for every configuration γ ∈ L × RX≥0, µγ is a(n a priori) continuous distribution over
possible delays from γ = (`, ν), that is, the support of distribution µγ is precisely I(γ) def=
{d ∈ R≥0 | ∃e = (`, g, Y, `′) ∈ E s.t. ν + d |= g};
and for every e ∈ E, we ∈ N≥0 is a positive weight.

Originally, the semantics of an STA A = (L, `0, X,E, (µγ)γ∈L×RX≥0
, (we)e∈E) was defined

as a probability measure on the set of possible runs of the underlying timed automaton
(L, `0, X,E): a run in such a timed automaton is an alternating sequence of delay transitions
and of discrete transitions. A delay transition is of the form (`, ν) d−→ (`, ν + d), where
γ

def= (`, ν) ∈ L × RX≥0 is a configuration and d ∈ R≥0,9 and a discrete transition is of the
form (`, ν) e−→ (`′, ν′) where e = (`, g, Y, `′) ∈ E is such that ν |= g, and [Y ← 0](ν) = ν′.
When ν |= g, we say that e is enabled at γ.

The probability measure was obtained by sampling delay transitions from a configuration
γ following distribution µγ , and by sampling discrete transitions using the weights: the
probability to take edge e from configuration γ is given by pγ(e) def= we∑

{we′ |e′ enabled at γ} if

e is enabled at γ, and by pγ(e) def= 0 otherwise.

9 Later we will also write γ + d for the configuration (`, ν + d).
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To have properly-defined measures we need some sanity assumptions on distributions
(µγ)γ∈L×RX≥0

: If we write λ for the Lebesgue measure over R+, it must be the case that
for each γ ∈ L × RX+ , if λ(I(γ)) > 0 then µγ is equivalent to the restriction of λ on I(γ);
Otherwise, it is the uniform distribution over the points of I(γ).

We now give the semantics of an STA A = (L, `0, X,E, (µγ)γ∈L×RX≥0
, (we)e∈E) as an

STS TA = (SA,ΣA, κA) as follows. The set SA is the set of configurations L× RX≥0, ΣA is
the σ-algebra product between 2L and the Borel σ-algebra on R|X|≥0 , and the kernel κA is
defined by:

κA(γ,B) =
∑

e=(`,g,Y,`′)∈E

∫
d∈R≥0

1B(`′, [Y ← 0](ν + d)) · pγ+d(e) dµγ(d)

where 1B is the characteristic function of B. It gives the probability to hit set B ⊆ SA from
configuration γ in one step (composed of a delay transition followed by a discrete transition).

The probability measure on paths derived from TA in Section 2.2 coincides with the
original definition of [17].

We fix for the rest of this section an STA A = (L, `0, X,E, (µγ)γ∈L×RX≥0
, (we)e∈E), and

TA = (SA,ΣA, κA) its corresponding STS.

I Example 62 (A stochastic timed automaton with an “unfair” convergence behaviour). Con-
sider the STA A of Figure 5, with: L = {`0, . . . , `4}, X = {x, y} and the set of edges E as
described on the figure. We assume that each edge has a weight of 1 and that each location is
either equipped with a uniform distribution over possible delays (in `0, `2 and `4) or a Dirac
distribution over the unique possible delay (in `1 and `3).10 As said previously, it can be
considered as an STS TA where the set of states is given by L× R2

+ and the Markov kernel
is computed according to the distributions over the edges and the delays.

`0

x=0
0<y<1

`1 `2`3`4
y < 1 y = 1

y := 0

x > 1 ∧ y < 1
x := 0

1 < y < 2y = 2
y := 0

x > 2 ∧ y < 1
x := 0

Figure 5 A two-clock STA A with an unfair convergence behaviour

We would like to stress that A suffers from a time-convergence phenomenon. This con-
vergence phenomenon (that we make precise in the following lines), is due to the timing con-
straints, and is in fact inherent to the underlying timed automaton (without the stochastic
aspects). We will see later (Example 64) how it impacts the stochastic behaviour of the
STA A. Let us now discuss the (non stochastic) time-convergence phenomenon. In order
to do so, for the rest of the paragraph, we see A as a timed automaton and forget about
the stochastic aspects. Let us imagine that we enter location `0 with the value of clock x
(resp. y) being 0 (resp. 0 < ν < 1), we are thus in configuration (`0, (0, ν)). Let us consider
the case where we take the right loop. We thus first enter location `1 and then `2, that we
reached with configuration (`2, 1 − ν, 0), after a total delay of 1 − ν time units spent since

10When we reach `1, the value vy of clock y is smaller than 1; since the constraint on the edge between
`1 and `2 is constrained by y = 1, there is a single possible delay for taking this edge: wait d such that
vy + d = 1.
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the last arrival in `0. In order to return to `0, we have to wait a delay ν′ such that ν′ < 1
(because of the guard y < 1) and ν < ν′ (because of the guard x > 1). We thus return
to `0 with configuration (`0, (0, ν′)), where ν < ν′. One can check that a similar situation
occurs when taking the left loop. Thus when considering an infinite path of A, if we denote
by (`0, (0, νn)) its configuration at the n-th passage in `0, we can infer that the sequence
(νn)n∈N is increasing (and bounded by 1), and thus converging.

8.1.2 The thick graph abstraction
The thick graph of [17] is an abstraction in our context. To see this, we recall the concept
of regions, that have been designed for standard timed automata [6]. We write MA for the
maximal integer appearing in a guard of A. Let ν, ν′ ∈ RX≥0 be two valuations over X. We
say that ν and ν′ are region-equivalent for A whenever the following conditions hold:

1. for every x ∈ X, either both ν(x) and ν′(x) are stricly larger than MA, or the integral
parts of ν(x) and ν′(x) coincide;

2. for every x, y ∈ X such that ν(x), ν(y) ≤MA, writing {·} for the fractional part, {ν(x)} ≤
{ν(y)} if and only if {ν′(x)} ≤ {ν′(y)}.

This region-equivalence has finite-index, and partitions the set of valuations RX≥0 into classes
which are called regions, and we write RA for the set of regions. If ν ∈ RX≥0, we write [ν]A
for the region to which ν belongs.

We define the abstraction α : L×RX≥0 → L×RA as the projection which associates (`, ν)
onto (`, [ν]A). We then define the finite Markov chain T tg

A as follows:
its set of states is L×RA;
there is an edge from (`, r) to (`′, r′) whenever there exists some ν ∈ r such that
κA((`, ν), {`′} × r′)) > 0;11
from each state (`, r) ∈ L × RA, we associate the uniform distribution over {(`′, r′) ∈
L×RA | there is an edge from (`, r) to (`′, r′)}.

By construction, we get:

I Lemma 63. T tg
A is a finite α-abstraction of TA.

Let us notice that finiteness of the abstraction implies completeness (Lemma 38).
As witnessed in [17, Appendix D.2], this abstraction may not give much information in

general about the probability of linear-time properties in the original STA (see Example 64).
However we will see that, in several cases, it helps to obtain decidability and approximability
results (among which some are new).

I Example 64 (A stochastic timed automaton with an “unfair” convergence behaviour (con-
tinued)). We know that the thick graph viewed as a finite Markov chain, is an α-abstraction
of the original STA, but it can be shown that in general it is not sound. Let us denote TA
the STS naturally associated with the STA of Example 62 (see Fig. 5). One can show that
T tg
A , the thick graph associated with TA, is the one provided on Fig. 6, starting from a Dirac

distribution δ(`0,(0,ν)) with 0 < ν < 1. The regions are the following ones: r0 = {(x, y) |
x = 0 ∧ 0 < y < 1}, r1 = {(x, y) | 0 < x < y < 1}, r2 = {(x, y) | y = 0 ∧ 0 < x < 1},
r3 = {(x, y) | 1 < x < y < 2}, r4 = {(x, y) | y = 0 ∧ 1 < x < 2}. We clearly have that T tg

A is
an α-abstraction of TA.

11Note that it is a local condition which is easy to check.
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However, it can be shown that T tg
A is not a sound abstraction of TA. The time-convergence

phenomenon of A (described in Example 62) implies that each time we return to location
`0, the probability to take the right loop decreases while the probability to take the left loop
increases. More precisely, it has been shown that in the original STA A, the probability to
reach `2 from `0 is stricly lower than 1. This has been done formally via a tedious and
technical calculation of Taylor series in [17, Section 6.2.2]. This implies that T tg

A is not
a sound abstraction of TA (since the probability to reach (`2, r2) from (`0, r0) is 1 in T tg

A ).
In fact, a sound abstraction of TA would rather behave as the non-homogeneous12 finite
Markov chain of Fig. 7, where n represents the n-th passage in (`0, r0). This shows in
particular that general STA are not fair (and thus not decisive). This is why we focus on
two subclasses of STA in the rest of this section.

(`0,r0) (`1,r1) (`2,r2)(`3,r3)(`4,r4)
1
2

1
2

Figure 6 T tg
A , the thick graph (viewed as a finite Markov chain) associated with the two-clock

STA with an “unfair” convergence behaviour (Fig. 5).

(`0,r0) (`1,r1) (`2,r2)(`3,r3)(`4,r4)
1

2n1− 1
2n

Figure 7 A non-homogeneous finite Markov chain which is in some sense equivalent to the STA
with an “unfair” convergence behaviour

8.1.3 Reactive STA
Following [18], the STA A is reactive whenever for every configuration γ = (`, ν) ∈ SA,
I(γ) = R≥0, and for every `, there exists a distribution µ` with support R≥0 such that for
every ν ∈ RX≥0, µ(`,ν) = µ`. Note that we do not make any Markovian hypothesis on time
elapsing, and µ` does not need to be exponential.

We take the notations used in the previous subsection for defining the thick-graph ab-
straction. A region r is memoryless whenever for every clock x ∈ X, either ν(x) = 0 for
every ν ∈ r, or ν(x) > MA for every ν ∈ r. We write Rmem

A for the set of memoryless regions.
From [17, Lemma 13], which states that the set of memoryless regions is visited infinitely

often almost-surely from every configuration γ ∈ SA,13 we get:
I Proposition 65. The set α−1(L×Rmem

A ) is an attractor for TA.

12Although we only consider homogeneous systems, the non-homogeneous ones can fit our general model
of STS by unfolding it. For instance Example 22 can be seen as the unfolding of a finite non-
homogeneous Markov chain with two states.

13To give all arguments, it is easy to see that, in one step, one can ensure reaching a memoryless region
by delaying at least MA + 1 time units; since there is one single distribution which is applied at every
configuration of a given location, the probability to do so is uniformly bounded from below from every
configuration.
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Using Propositions 36 and 40, we also get that:
I Proposition 66. T tg

A is a sound α-abstraction of TA.

Proof. It can easily be shown that L×Rmem
A is a finite attractor of T tg

A . Thanks to Propos-
ition 65, α−1(L×Rmem

A ) is an attractor for T tg
A . It remains to show the last condition of the

hypotheses of Proposition 36. We therefore need to prove that for each (`m, rm) ∈ L×Rmem
A ,

there are p > 0 and k ∈ N such that for each region (`, r) ∈ L×RA:
for each µ ∈ Dist(α−1(`m, rm)), ProbTAµ (F≤k α−1(`, r)) ≥ p, or
for each µ ∈ Dist(α−1(`m, rm)), ProbTAµ (Fα−1(`, r)) = 0.

This is a consequence of [17, Lemma F.4] which says that from a memoryless region,
the future (and its probability) is independent of the precise current configuration. This
in particular implies that for two configurations γ, γ′ ∈ α−1(`m, rm), for every α-closed set
B, for every integer k, ProbTAδγ (F=k B) = ProbTAδγ′ (F=k B). By extension, for every µ ∈
Dist(α−1(`m, rm)), ProbTAµ (F=k B) = ProbTAδγ (F=k B). This implies the expected bounds, by
taking B = α−1(`, r). J

Similarly to labelled STS, we consider labelled STA, where each location is labelled by
atomic propositions. As consequences of Sections 6 and 7, we get the following decidability
and approximability results for reactive STA:

I Corollary 67. Let A be a reactive labelled STA, andM a DMA. Then:

1. we can decide whether A satisfies almost-surelyM;
2. for every initial distribution µ which is numerically amenable w.r.t. A14, we can compute

arbitrary approximations of ProbTAµ (M).

Proof. This is an application of Theorem 51, Corollary 55 and of Sections 7.1 and 7.4. It
should be noted that all the hypotheses are met:
T tg
A nM has a finite attractor: since T tg

A is a finite MC then so is T tg
A nM and we get

a trivial finite attractor;
TA nM is decisive w.r.t. any αM-closed sets.

This second point is a little more tricky. First one should realise that since TA is reactive,
then TAnM is also reactive, since the condition to be reactive concerns only the distributions
over the delays on each location of the STA and those distributions are not modified from
the product with M. It should be noted that T tg

A nM corresponds to the thick region
graph abstraction of TA nM sinceM does not influence the behaviour of TA. Then from
Proposition 66, we know that T tg

A nM is a sound αM-abstraction of TAnM. Since T tg
A nM

is a finite MC, we get that it is decisive w.r.t. any set of states. We can thus conclude from
Proposition 33. J

I Remark 68. We believe that the proposed approach through abstractions and finite at-
tractors simplifies drastically the proof of decidability of almost-sure model-checking, and in
particular avoids the ad-hoc but long and technical proof of [17, Lemma 7.14]. Furthermore,
we obtain interesting approximability results, some of them being consequences of [15], but
the general case of ω-regular properties (in particular LTL properties) being new to this
paper.

14We say that a distribution µ is numerically amenable w.r.t. A if, given k ∈ N, given ε > 0 and
given a sequence of locations and regions (`0, r0), (`1, r1), . . . , (`k, rk), one can compute a numerical
approximation ProbAµ (Cyl((`0, r0), (`1, r1), . . . , (`k, rk))) up to ε.
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I Remark 69. Corollary 67 can be extended to properties expressed as deterministic and
complete Muller timed automata (DCMTA), which are standard deterministic and com-
plete15 timed automata [6] with a Muller accepting condition. Indeed, the product of a
reactive STA with such a DCMTA is reactive. Hence, the whole theory that we have de-
veloped applies: the STS of the product admits a sound finite abstraction. DCMTA allows
one to express rich properties with timing constraints and one can evaluate their likelihood
in the STA. It should be noticed that the convergence proof of the approximation scheme
of [21] can be recovered as a byproduct, since CTMCs are particular cases of reactive STA.
Another way to obtain this result would have been to apply the approach of Subsection 7.5
on time-bounded verification.

8.1.4 Single-clock STA
We will apply a similar reasoning to single-clock STA. We therefore assume that A is now
a single-clock STA. As in [17, Section 7.1], we assume the following conditions:

(i) for all ` ∈ L, for all [a, b] ⊆ R+, the function ν 7→ µ(`,ν)([a, b]) is continuous;
(ii) if γ′ = γ + t for some t ≥ 0, and if 0 /∈ I(γ + t′, e) for each 0 ≤ t′ ≤ t, then

µγ(I(γ, e)) ≤ µγ′(I(γ′, e));
(iii) there is 0 < λ0 < 1 such that for every state γ with I(γ) unbounded, µγ([0, 1

2 ]) ≤ λ0,
where for each γ = (`, ν) ∈ L × RX+ and for each e = (`, g, Y, `′) ∈ E, I(γ, e) = {d ∈
R+ | ν + d |= g}. These requirements are technical, but they are rather natural and easily
satisfiable. For instance, a timed automaton equipped with uniform (resp. exponential)
distributions on bounded (resp. unbounded) intervals satisfy these conditions. If we assume
exponential distributions on unbounded intervals, the very last requirement corresponds
to the bounded transition rate condition in [24], required to have reasonable and realistic
behaviours.

In [17, Section 7.1], there is no clear attractor property. From the details of the proofs
we can nevertheless define Amax

A = {(`, r0) | ` ∈ L} ∪ {(`, r) ∈ L × RA | ∀(`′, r′) ∈ L ×
RA, (`, r) →∗ (`′, r′) in T tg

A implies r′ = r} where r0 is the region composed of the single
null valuation.
I Proposition 70. The set α−1(Amax

A ) is an attractor for TA.

Proof. Let C = {0} ∪ {c | c constant appearing in a guard of A} def= {c0 < c1 < · · · < ch}.
The set of regions for A can be chosen as {{ci} | 0 ≤ i ≤ h}∪{]ci−1; ci[| 1 ≤ i ≤ h} (see [36]).

Following the proof of [17, Theorem 7.2], the set of infinite paths in A can be divided
into (a) the set of paths that take resetting edges infinitely often, and (b) the set of paths
that take resetting edges only finitely often.

We assume that the probability that (a) happens is positive, and we reason now in the
σ-algebra which is conditioned by (a). Then under condition (a), α−1({(`, r0) | ` ∈ L}) is
reached almost-surely.

We assume that the probability that (b) happens is positive, and we reason now in the
σ-algebra which is conditioned by (b). Under condition (b), almost-surely the value of the
clock is non-decreasing along the path, and almost-surely a final region r is reached (that
is, ultimately the value of the clock along the path belongs to r forever). We fix such a

15 In this context, complete means that from every configuration, for every subset of AP, and every
t ∈ R≥0, there is an edge labelled by that subset which is enabled after t time units. So this is complete
w.r.t time and actions.
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region r, and we condition again with regard to that “final region” r. We write Er for the
event (b) intersected with “the path ends up in r”. Let r′ be a strict successor region of r,
with dimension at least as big as that of r (if r is an open interval, then r′ has to be an
open interval). There exists α > 0 such that for every ν ∈ r, for every ` ∈ L, for every
e = (`, g, Y, `′) with r′ ⊆ g, ProbTAδ(`,ν)

((`, ν) e−→) ≥ α. Hence, using standard technics, we
show that with probability 1, if infinitely often such edges are enabled, infinitely often they
will be taken; this contradicts hypothesis Er. Hence, under condition Er, with probability
1, one cannot visit infinitely often configurations enabling edges guarded by some strict
time-successor r′ of r. Once this is assumed, we can then show that almost-surely, only
finitely many resetting edges can be enabled. This means that, under condition Er, almost-
surely, ultimately only states of α−1({(`, r) ∈ L × RA | ∀(`′, r′) ∈ L × RA, (`, r) →∗
(`′, r′) in T tg

A implies r′ = r}) are visited. Hence, that set is an attractor, under condition
(b).

Using some Bayes formula w.r.t. conditions (a) and (b), we conclude that α−1(Amax
A ) is

an attractor; this ends the proof. J

As before, we get:
I Proposition 71. T tg

A is a sound α-abstraction of TA.

Proof. We easily get that Amax
A is a finite attractor for T tg

A , whereas α−1(Amax
A ) is an

attractor for TA (Proposition 70).
As for reactive STA, it remains to show the last property appearing in the hypotheses

of Proposition 36. The required bounds obviously exist for the region r0 (since only a
single valuation belongs to r0). Furthermore, as argued in the proof of Proposition 70,
when condition (b) is assumed, ultimately, the paths almost surely end up in α−1({(`, r) ∈
L× RA | ∀(`, r)→∗ (`′, r′) in T tg

A implies r′ = r}), hence, ultimately, the STA behaves like
a finite Markov chain. The required bounds can be inferred.

This allows to conclude that T tg
A is a sound α-abstraction of TA (using Propositions 36

and 40). J

As a consequence, we get the following decidability and approximability results for one-
clock STA:

I Corollary 72. Let A be a one-clock labelled STA, andM a DMA. Then:

1. we can decide whether A satisfies almost-surelyM;
2. for every initial distribution µ which is numerically amenable w.r.t. A, we can compute

arbitrary approximations of ProbTAµ (M).

Proof. Similarly to the proof of Corollary 67, this is an application of Theorem 51, Corol-
lary 55 and of Sections 7.1 and 7.4. The facts that:
T tg
A nM has a finite attractor, and
TA nM is decisive w.r.t. any α-closed sets.

can be deduced by similar arguments. We only observe that if TA is a single-clock STA,
then so is TA nM and that hypotheses (i), (ii) and (iii) are preserved through the product
with M as those only concern distributions over the STA which are not altered from the
product withM. J

I Remark 73. The proof of the existence of an attractor is very similar to the one we
used for proving the fairness property in [17, Section 7.1]. However, for free, we get all
the approximation results (as previously only few results could be inferred from [15])! It is
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worth noting that these results encompass the results of [16], where a strong assumption on
cycles of the STA was made (but a closed-form for the probability could be computed). We
remark here that the graph used in [16] is actually the graph of the attractor, as done in
Section 6.3.

I Remark 74 (Time-bounded analysis). Let us finish by discussing how and when the ap-
proach of Subsection 7.5 for timed properties can be applied to STA. Similarly to CTMCs [9]
that they extend, reactive STA are almost-surely non-Zeno. Hence one can apply the ap-
proximation scheme of Subsection 7.1 to (time-)bounded until formulas or time-bounded
reachability properties.

One can decide whether a single-clock STA is almost-surely non-Zeno [8]. In the positive
case, the approximation scheme of Subsection 7.1 can therefore be applied as well.

8.2 Generalized semi-Markov processes
A generalized semi-Markov process [19, 29] is a stochastic process with a finite control, built
on a set of events. Each event is equipped with a random variable representing its duration:
an event can either be a variable-delay event, whose duration is given by a probability
distribution defined by a density function, or be a fixed-delay event, modelled by a Dirac
distribution. A transition is characterized by a set of events which expire, and schedules a
set of new events. This model is known to generalize CTMCs. In this section, we show how
to exploit our techniques to recover and generalize results from the literature on quantitative
verification of generalized semi-Markov processes.

8.2.1 Definition
IDefinition 75. A generalized semi-Markov process (GSMP) is a tuple G = (Q, E , `, u, f,E,Succ)
where

Q is a finite set of states;
E = {e1, . . . , ep} is a finite set of events;
` : E → N≥0 and u : E → N>0 ∪ {∞} are bounds such that for every e ∈ E , `(e) ≤ u(e);
f : E → Dist([`(e);u(e)]) assigns distributions to every event e ∈ E ;
E : Q→ 2E assigns to each state q a set of events enabled (or active) in q;
Succ : Q× 2E → Dist(Q) is the successor function defined for (q, E) whenever E ⊆ E(q);

Each event e ∈ E has an upper (resp. lower) bound ue
def= u(e) (resp. `e

def= `(e)) on
its delay: the duration of event e is randomly chosen in the interval [`e, ue] according to
density fe

def= f(e). In contrast to fixed-delay events, e is called a variable-delay event, if
`e < ue. Events can alternatively be seen as random variables: with a variable-delay event
is associated a density function and with a fixed-delay event is associated the corresponding
Dirac distribution.

The semantics of a GSMP G is given as an STS TG = (SG ,ΣG , κG). There are two
points-of-view to define the semantics of G, one is through a residual-time semantics using
races between events [19] (clocks behave like in timed automata), and the other is to sample
the delay of an event once, when it is scheduled [23] (clocks are “countdown”). Though the
results of [19] are stated using the first convention, we prefer the second option, since it is
easier to understand the semantics. Note that the duality between the two allows obviously
to interpret the results of [19] in our setting.

Let q ∈ Q be a state; a valuation ν ∈ (R⊥≥0)E , where R⊥≥0 = R≥0 ∪ {⊥}, is compatible
with q whenever ν(e) =⊥ if e /∈ E(q), and ν(e) ∈ R≥0 otherwise; in the latter case, ν(e) is
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the remaining time for e before expiring. Configurations of G are then given by:

SG = {(q, ν) ∈ Q× (R⊥≥0)E | ν is compatible with q}.

Let γ = (q, ν) ∈ SG be a configuration, and define E0(γ) = {e ∈ E(q) | ∀e′ ∈ E(q), ν(e) ≤
ν(e′)} and d(γ) = ν(e) for e ∈ E0(γ). From configuration γ, there is a transition to
configuration γ′ = (q′, ν′) on occurrence of the set of events E0(γ) after delay d(γ) whenever:

ν′(e) =


⊥ if e /∈ E(q′)
ν(e)− d(γ) if e ∈ (E(q) ∩E(q′)) \ E0(γ)
t otherwise, with `e ≤ t ≤ ue.

The σ-algebra ΣG is obtained as the product between 2E and the Borel σ-algebra on
(R⊥≥0)E . Let γ = (q, ν), and B = {q′} × B′. Then, assuming Succ(q, E0(γ))(q′) > 0, we
define the Markov kernel κG by:

κG(γ,B) = Succ(q, E0(γ))(q′) ·
∫

(t1,...,tp)∈B′

( ∏
e∈E(q′)

ge(te)
)
dte1 . . . dtep

where ge(t) = fe(t) if e ∈ E(q′)\(E(q)\E0(γ)); ge(t) = δν(e)−d(γ) if e ∈ (E(q)∩E(q′))\E0(γ);
ge(t) = δ⊥ if e /∈ E(q′). In other words, for a newly activated event e, its timestamp te is
sampled (independently from the other events) according to density fe; for events inherited
from the previous state, the delay which has elapsed is applied (hence the Dirac distributions
in the definition).

I Example 76. Consider a two-machine network (call M1 and M2 the two machines), in
which crash times (event denoted crashi for machine Mi) follow an exponential distribution
with parameter λi (λi ∈ R>0) and reboot times (event denoted rebooti for machine Mi)
follow a uniform distirbution over interval [0, Ui] for some positive integer Ui. A GSMP
model for the network is given on Figure 8.

When machine Mi is up (resp. down), a delay before event crashi (resp. rebooti) occurs
and is sampled according to distribution f(crashi) (resp. f(rebooti)). After that delay the
event is triggered, unless it is preempted by some concurrent event. For instance, in state
“M1 and M2 up” (leftmost state), delays for the two events crash1 and crash2 are sampled,
and the shortest delay decides the next transition to be taken and the next state which is
reached. Note that dotted arrows represent events that happen with probability 0 (for instance,
the very same delays are sampled for the two actions crash1 and crash2); we have omitted
the corresponding labels (for readability).

We fix for the rest of this section a GSMP G = (Q, E , `, u, f,E,Succ), and TG = (SG ,ΣG , κG)
its corresponding STS. To avoid too much technicalities, we assume that G has no fixed-delay
events, that is, for every event e, `e < ue. What we will present here would nevertheless
extend to so-called single-ticking GSMPs [19].

8.2.2 The refined region graph abstraction
Due to the choice of the countdown-clock semantics (“clock values” decrease down to 0),
the thick graph defined in subsection 8.1.2 has to be twisted a bit. Furthermore standard
regions will not be fine enough to yield an interesting abstraction. We will therefore refine
regions using sets of separated configurations, that we define now.
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M1 up
M2 up

{crash1, crash2}
M1 down
M2 down

{reboot1, reboot2}

M1 up
M2 down

{reboot1, crash2}

M1 down
M2 up

{crash1, reboot2}

crash2

crash1 crash2

crash1

rebo
ot2

reboot1 rebo
ot2

reboot1

f(crashi) is an exponential distribution with parameter λi
f(rebooti) is a uniform distribution with support [0, Ui]

Figure 8 An example GSMP: a network with two machines

Let ε > 0. We say that configuration γ = (q, ν) is ε-separated if for every a, b ∈
{0}∪ {{ν(e)} | e ∈ E(q)}, either a = b or |a− b| > ε. We write CεG for the set of ε-separated
configurations.

The following lemma, stated and proven in [19], allows us to find an adequate granularity
for a refined region abstraction.

I Lemma 77 (Lemma 1 of [19]). There exists ε > 0, m ∈ N and p > 0 such that for every
γ ∈ SG, Probδγ (F≤m CεG) ≥ p.

We select ε > 0 following Lemma 77, and w.l.o.g. we assume ε is of the form 1
d with

d ∈ N>0. We let MG be the maximal constant appearing in constants {`e | e ∈ E} and
{ue | e ∈ E and ue < ∞}. Each event e ∈ E is virtually assigned a clock variable xe, and
we consider a refinement of the region equivalence for clocks {xe | e ∈ E} w.r.t. maximal
constant MG and granularity 1

d as follows. Two valuations ν, ν′ ∈ (R⊥≥0)E are equivalent
whenever the following conditions hold:

1. for every e ∈ E , either both ν(e) and ν′(e) are stricly larger than MG , or the integral
parts of d · ν(e) and d · ν′(e) coincide;

2. for every e1, e2 ∈ E , for every c ∈ 1
d · N ∩ [−MG ;MG ], for every ./ ∈ {<,≤,=,≥, >},

ν(e1)− ν(e2) ./ c if and only if ν′(e1)− ν′(e2) ./ c.
Note that the above conditions refine the ones given in subsection 8.1.2 using diagonal
constraints ([6]), and w.r.t. the granularity 1

d as well. We write RεG for the set of equivalence
classes, also called regions. We realize that any region r ∈ RεG has either only ε-separated
configurations, or only non-ε-separated configurations. In particular, CεG is a finite union of
such regions.

We then define the abstraction α : Q × RE≥0 → Q × RεG by projection, and the finite
Markov chain T rg,ε

G as follows:
its set of states is Q×RεG ;
there is an edge from (q, r) to (q′, r′) whenever there exists ν ∈ r such that κG((q, ν), {q′}×
r′) > 0;
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from each state (q, r) ∈ Q × RεG , we associate the uniform distribution over {(q′, r′) ∈
Q×RεG | there is an edge from (q, r) to (q′, r′)}.

Since T rg,ε
G is just a rescaling of a standard region automaton, we immediately get:

I Lemma 78. T rg,ε
G is a finite α-abstraction of TG.

As previously, we notice that the above abstraction is obviously complete (since it is finite).

8.2.3 Analyzing GSMPs

Let AεG = {(q, r) ∈ Q×RεG | α−1(q, r) ⊆ CεG}. As a consequence of Lemma 77 we get:

I Proposition 79. The set α−1(AεG) is a finite attractor for TG .

Finally, as for STA and using [19, Lemma 2] (which allows to prove that the conditions
of Proposition 36 are actually satisfied), we also get:

I Proposition 80. T ε,rgG is a sound α-abstraction of TG .

As consequences, we get the following decidability and approximability results for GS-
MPs:

I Corollary 81. Let G be a labelled GSMP (with no fixed-delay event), and M be a DMA.
Then:

1. we can decide whether G satisfies almost-surelyM;
2. for every initial distribution µ which is numerically amenable w.r.t. G,16 we can compute

arbitrary approximations of ProbTGµ (M).

Proof. Again, the proof is similar to the ones of Corollaries 67 and 72. We just notice that
it is obvious that if TG is a GSMP with no fixed-delay events, then so is TG nM. J

I Remark 82. We believe our approach gives new hints into the approximate quantitative
model-checking of GSMPs, for which, up to our knowledge, only few results are known. For
instance in [5, 13], the authors approximate the probability of until formulas of the form “the
system reaches a target before time T within k discrete events, while staying within a set of
safe states” (resp. “the system reaches a target while staying within a set of safe states”)
for GSMPs (resp. a restricted class of GSMPs), and study numerical aspects. However one
can notice that the contributions of [5, 13] are more the mathematical analysis of integral
equations that need to be solved than convergence of approximation schemes.

Our approach permits to have approximation algorithms (with an arbitrary precision)
for reachability or until properties for single-ticking GSMPs, or time-bounded reachability
or until properties for the class of GSMPs with no cycle of immediate events (immediate
events are fixed-delay events with delay 0).17 The numerical aspects in our computations
can be dealt with as in [5, 13].

16We say that a distribution µ is numerically amenable w.r.t. G if, given k ∈ N, given ε > 0
and given a sequence of states and refined regions (q0, r0), (q1, r1), . . . , (qk, rk), one can approximate
ProbTGµ (Cyl((q0, r0), (q1, r1), . . . , (qk, rk))) up to ε.

17We recall the discussion on non-Zeno real-time systems of Section 7.5 (page 32), and realize that such
GSMPs are almost-surely non-Zeno (see Appendix 8).
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8.3 Stochastic time Petri nets

As a last instantiation of our general framework, we briefly discuss a particular class of gen-
eral semi-Markov processes, namely GSMPs induced by stochastic time Petri nets (STPNs) [37].
Explaining how STPNs fit in our framework is interesting on its own since, on the one hand
they admit a simpler abstraction than GSMPs, and on the other hand it allows us to compare
to existing work on the transient analysis of STPNs [32, 40]. STPNs form a probabilistic and
timed extension of the well-known Petri nets. These models are natural to represent con-
current systems in which events have random durations. An STPN is defined by a finite set
of places, and a finite set of transitions, each equipped with a probability distribution over
R≥0. The transitions in STPNs correspond to events in GSMPs. Now, the set of enabled
events (here enabled transitions), is determined by the current marking. As for standard
Petri nets, a marking maps places to natural numbers, representing the number of tokens in
each place of the net. A transition is then enabled when the marking contains at least one
token per input place. The difference with standard Petri nets lies in the choice of which
transition will fire and when. When a transition has just fired, one token is consumed in
each input place, one is added to each output place, and for every newly enabled transition,
a delay is fired according to its associated probability distribution. The transition with
minimum delay fires after this delay elapses, possibly disabling transitions or enabling new
ones. Given an initial marking, the semantics of an STPN is thus an uncountable stochastic
transition system where the states are tuples consisting of a marking, and a time to fire (the
remaining delay) for each enabled transition.

In order to fit in our framework, we consider STPNs with the following two restrictions,
as in [32, 40]: on the one hand, the underlying Petri net is bounded, i.e. the number of
reachable markings is finite; and on the other hand, the stochastic process defined by the
STPN is Markov regenerative. Let us explain in details this last assumption. When us-
ing arbitrary distributions to model the random duration of the transitions in the STPN,
the remaining delays of transitions that stay enabled (when a transition just fired) have
to be stored. Indeed, they will be compared with newly sampled durations to determine
the next minimum delay, and thus impact the time to elapse as well as the next transition
to fire. A regeneration point in the stochastic process defined by an STPN is a state for
which the remaining duration of each enabled transition is non-zero only for transitions with
exponentially distributed durations [32] (in [40], the condition is slightly more general, but
more technical to explain, hence we focus on [32]). For such states, the non-zero remaining
durations can indeed be forgotten and re-sampled using the same exponential distribution
without altering the STPN semantics, thanks to the memoryless property of exponential
distributions. An STPN is said to be Markov regenerative when almost surely regenera-
tion points are encountered infinitely often with probability 1. Under our assumptions of
boundedness of the Petri net, and Markov regeneration, clearly enough the STPN admits a
finite attractor, namely the set of its regeneration points.

To apply our results to stochastic processes generated by STPNs, we first identify a finite
state abstraction which will happen to be a sound abstraction. We let T1 be the stochastic
process defined by an STPN, and define a finite-state Markov chain T2, that corresponds
to the state-class graph (see e.g. [32]) equipped with uniform discrete distributions. More
precisely, the states of the abstraction T2 consist of state classes, that are the equivalent
of regions for time Petri nets (we consider state classes just before sampling newly enabled
transitions): state classes gather configurations with same marking and same ordering on re-
maining delays for transitions. Given that Petri nets are bounded, and their set of transitions
is finite, the state space of T2 is finite. Some states correspond to regeneration points: those
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in which the only transitions with non-zero remaining delay are exponentially distributed;
in that case we assume w.l.o.g. that they will be resampled, which allows one to describe
such a state in T2 using only its marking. Further, writing α for the abstraction, to build T2,
there is a transition from state s to state t as soon as there exists a transition in T1 between
some state of α−1(s) and α−1(t). If A = {s1, · · · , sn} denotes the set of regeneration points,
it is important to realize that under this abstraction α, for every si ∈ A, α−1(si) = si. Due
to the hypothesis that regeneration points are encountered almost-surely infinitely often,
the set A is an attractor both in the concrete stochastic process, and in the finite-state
abstraction. Moreover, for every si ∈ A and every α-closed set B of the concrete stochastic
process T1 such that there is a path from si to B, we let ki,B be its length and pi,B be its
probability, so that ProbT1

δsi
(F≤ki,B B) ≥ pi,B . Letting k = maxi,B ki,B and p = mini,B pi,B ,

we obtain that for every si ∈ A and every α-closed set B, either ProbT1
si (F≤k B) ≥ p, or

ProbT1
si (F≤k B) = 0. Therefore, we can apply Proposition 36 (see page 20), to derive that

T1 is decisive w.r.t. every α-closed set. Further, by Proposition 40, we obtain that T2 is a
sound α-abstraction of T1.

Similarly to the general case of GSMPs, we can thus conclude that the approximate
quantitative model checking of STPNs can be done, provided numerical computations are
amenable.

In [40], the authors provide a technique to perform the quantitative verification of time-
bounded until properties in bounded STPNs that are Markov regenerative, with the assump-
tion of a bound on the number of transitions between regeneration points (we call it strong
Markov regenerative). As discussed above, we can relax the hypothesis on the bounded num-
ber of transitions between regeneration points, since the mere Markov regeneration property
suffices to guarantee the existence of an attractor. A simple criterion to ensure Markov re-
generation is to assume that every cycle in the state class graph contains a regeneration
point (it is in fact equivalent to the strong Markov regeneration property). Note also that
already the (weak) Markov regeneration implies that the stochastic process is almost-surely
non-Zeno (since almost-surely states with exponentially distributed events are visited infin-
itely often), and therefore the approximation schemes for time-bounded reachability or until
properties apply. For a fair comparison with the work of [32, 40], note however that their
contribution focuses on efficient numerical computations of probabilities for time-bounded
reachability or until properties. In contrast, we totally ignore the efficiency of probability
computations and focus on sufficient conditions that enable our general framework to apply.

9 A guided tour of STSs

We now give an overview of the results presented in this paper. For improving readability,
not all precise statements are listed. For instance, we omit the results which assume a fixed
initial distribution. Also, few notations are borrowed from the paper, yet the global picture
is almost self-contained.

The guide should be read as follows. Given an STS T and a property ϕ, Figures 9 and 10
provide the assumptions on T to be able to perform the qualitative or quantitative analysis
of ϕ on T . Note that when we consider abstractions T1

α−→ T2, then we assume T1 = T .
Then, Figures 11, 12 and 13 summarize the relationships between the various notions. They
should be used to know how to prove the properties that are expected of the model, either
directly or via an abstraction (which needs to be designed).



CONTENTS 47

T satisfying decisiveness properties
ϕ (repeated) reach. property

´
simple 0-reachability property on T

Sec. 6.1

T1
α−→ T2 sound and complete abst.

T1 satisfying decisiveness properties
w.r.t. α-closed sets

ϕ (repeated) reach. propert

 simple 0-reachability property on T2Sec. 6.2

T DMC with finite attractor
ϕ given by (det.) automatonM

´ almost-sure reachability property in T nM
of states given by the abstract graph
of the attractor of T nM

Sec. 6.3

T1 STS and T1
α−→ T2 abst.

T2 DMC with finite attractor
ϕ given by (det.) automatonM
T1 nM αM−−→ T2 nM sound abst.


almost-sure reachability property in T1 nM
of some states given by the abstract graph
of the attractor of T2 nM

Sec. 6.4

Figure 9 Qualitative analysis: given T an STS and ϕ a property, decide whether ProbT (ϕ) = 0
or = 1. T is replaced with T1 in case of an abstraction. The edge reads “amounts to”.

10 Conclusion

This paper deals with general stochastic transition systems (hence possibly continuous state-
space Markov chains). We defined abstract properties of such stochastic processes, which
allow one to design general procedures for their qualitative or quantitative analysis. The
effectiveness of the approach requires some effectiveness assumption on specific high-level
formalisms that are used to describe the stochastic process. We have demonstrated the
effectiveness of the approach on three classes of systems: stochastic timed automata, gen-
eralized semi-Markov processes and stochastic time Petri nets. In both cases, we recover
known results; but our approach yields further approximability results, which, up to our
knowledge, are new.

We believe that, more importantly, we provide in this paper a methodology to understand
stochastic models from a verification and algorithmics point-of-view. Section 9 gives a high-
level description of our results, and of properties that should be satisfied by the stochastic
model in order to apply our algorithms. In many cases, we showed that the hypotheses
were really necessary to get the expected results, by providing counter-examples when the
hypotheses are relaxed.

As future work, we plan to investigate new applications, such as infinite-state systems
that occur in parameterized verification. Applying our results to stochastic hybrid systems
is very tempting. However, our approach heavily relies on the existence of a sound finite or
countable abstraction of the system. In case of stochastic timed automata, we noticed that
although a finite time-abstract bisimulation always exists, decisiveness is not guaranteed
(see Example 62). It thus seems hard to identifiy decisive subclasses of stochastic hybrid
systems: most often, the underlying hybrid system does not admit a finite or countable
time-abstract bisimulation [31]. Nevertheless, as mentionned at the end of Section 7, one
can consider revisiting results on the time-bounded analysis of stochastic hybrid systems
(see e.g. [21, 44]).
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T satisfying decisiveness properties
ϕ (repeated) reach. property

´
approx. scheme

Sec. 7.1
and 7.2

T DMC with finite attractor
ϕ given by (det.) automatonM

´ approx. scheme on T nM applied to a
reach. property given by the abstract graph
of the attractor of T nM

Sec. 7.3

T1 STS and T1
α−→ T2

T2 DMC with finite attractor
ϕ given by (det.) automatonM
T1 nM αM−−→ T2 nM sound abst.


approx. scheme on T1 nM applied to a
reach. property given by the abstract graph
of the attractor of T2 nM

Sec. 7.4

T RT-STS a.s. non-zeno
time-bounded until or reach. property

´
natural attractors A∆,
hence approx. schemeSec. 7.5

Figure 10 Quantitative analysis (Section 7): given T an STS and ϕ a property, compute (or
approximate) ProbT (ϕ). In case of the abstraction, T1 = T . The edge reads “amounts to”.

T is Dec(B) T is StrDec(B) T is PersDec(B) T is fair(B)

T DMC with
a finite attractor

T finite MC

T nM DMC with
a finite attractor

B = 2S

Lem. 41

Figure 11 Properties of STS (Section 3.4 and Lemma 41)

Also, we would like to adopt a similar generic approach for processes with non-determinism
like Markov decision processes, or even stochastic two-player games.

Finally, let us mention that our approach could be interpreted in the context of stochastic
relations [25], and that, for instance, the pushforward α# corresponds to the Giry monad
applied to the abstraction α. We thank an anonymous reviewer to point us [25], and believe
this may inspire further work to better understand abstractions of STSs.

Acknowledgement. We would like to warmly thank the anonymous referees, who provided
exceptionally detailed reviews which greatly helped improving the paper.
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– Appendix –
Former results already stated in the core of the paper are put in a box. New results are

normally stated without box.

A Technical results of Section 2

A.1 Additional technical results for Subsection 2.2
We discuss some properties on the probability measures that we defined on paths of an STS.
While not essential for the global understanding of the paper, they are useful in some of the
coming proofs.

Recall that, if s ∈ S, the Dirac distribution over s, denoted δs, is defined for every
measurable set A, by δs(A) = 1 if s ∈ A, and δs(A) = 0 otherwise.

Given any initial distribution µ, we can decompose the probability measure ProbTµ into
the various probability measures ProbTδs for s ∈ S.

I Lemma 83. For every $ ∈ FT ,

ProbTµ ($) =
∫
s0∈S

ProbTδs0
($)µ(ds0)

Proof. Observe that if the initial distribution is the Dirac distribution δs over state s ∈ S,
then we have that

ProbTδs(Cyl(A0, . . . , An)) =
{

0 if s /∈ A0,

ProbTκ(s,·)(Cyl(A1, . . . , An)) otherwise.

It follows that for every µ ∈ Dist(S), we can write

ProbTµ (Cyl(A0, . . . , An)) =
∫
s0∈A0

ProbTδs0
(Cyl(A0, . . . , An))µ(ds0)

and thus, by uniqueness of the measure extension, for every $ ∈ FT ,

ProbTµ ($) =
∫
s0∈S

ProbTδs0
($)µ(ds0).

This concludes the proof of the lemma. J

Recall that given two probability distributions µ and ν over some probability space
(S,Σ), µ and ν are qualitatively equivalent if for each A ∈ Σ, µ(A) = 0 ⇔ ν(A) = 0.
The next lemma establishes that two qualitatively equivalent initial distributions yield two
qualitatively equivalent distributions over paths.

I Lemma 84. Let µ and ν be two probability measures over (S,Σ). If µ and ν are qualit-
atively equivalent, then ProbTµ and ProbTν are also qualitatively equivalent.

Proof. We have to show that for each π ∈ FT , ProbTµ (π) = 0 ⇔ ProbTν (π) = 0. Since the
complement of each cylinder is a finite union of cylinders and since each denumerable unions
of cylinders can be written as a denumerable disjoint union of cylinders, it suffices to show
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this for each cylinder Cyl(A0, . . . , An) with A0, . . . , An ∈ Σ. We have to show that for each
A0, . . . , An ∈ Σ,

ProbTµ (Cyl(A0, . . . , An)) = 0⇔ ProbTν (Cyl(A0, . . . , An)) = 0.

It should be observed that, by symmetry, it suffices to show one of the implications. First,
assume n = 0 and fix A0 ∈ Σ. Then from the definition of ProbTµ and ProbTν and from the
hypothesis, we get that:

ProbTµ (Cyl(A0)) = 0⇔ µ(A0) = 0⇔ ν(A0) = 0⇔ ProbTν (Cyl(A0)) = 0.

Now consider n = 1 and fix A0, A1 ∈ Σ. Suppose that ProbTµ (Cyl(A0, A1)) = 0, i.e. from
the definition:∫

s0∈A0

κ(s0, A1)µ(ds0) = 0. (2)

Write B = {s0 ∈ A0 | κ(s0, A1) > 0}. We can write B = κ(·, A1)−1(]0, 1]) ∩ A0 which is in
Σ from the hypotheses over κ. From (2), we can easily check that µ(B) = 0, which implies
that ν(B) = 0 and thus∫

s0∈A0

κ(s0, A1)ν(ds0) = 0.

Using again the definition, it follows that ProbTν (Cyl(A0, A1)) = 0. Now, assume that n ≥ 2,
fix A0, . . . , An ∈ Σ and assume that ProbTµ (Cyl(A0, . . . , An)) = 0. Remember that

ProbTµ (Cyl(A0, . . . , An)) =∫
s0∈A0

(∫
s1∈A1

. . .
(∫

sn−1∈An−1

κ(sn−1, An)κ(sn−2,dsn−1)
)
. . . κ(s0, ds1)

)
µ(ds0).

We inductively define:{
Bn−1 = κ(·, An)−1(]0, 1]) ∩An−1

Bi = κ(·, Bi+1)−1(]0, 1]) ∩Ai ∀0 ≤ i ≤ n− 2.

From the hypotheses over κ, it is easily seen that for each 0 ≤ i ≤ n − 1, Bi ∈ Σ. Let us
consider the value

∫
sn−1∈An−1

κ(sn−1, An)κ(sn−2, dsn−1). From the definition of Bn−1, it
holds that∫

sn−1∈An−1

κ(sn−1, An)κ(sn−2, dsn−1) =
∫
sn−1∈Bn−1

κ(sn−1, An)κ(sn−2, dsn−1)

= ProbTκ(sn−2,·)(Cyl(Bn−1, An)).

We thus get that

ProbTµ (Cyl(A0, . . . , An)) =∫
s0∈A0

. . .
(∫

sn−2∈An−2

ProbTκ(sn−2,·)(Cyl(Bn−1, An))κ(sn−3, dsn−2)
)
. . . µ(ds0).

We prove the two following statements: for each 0 ≤ i ≤ n− 2,

(a) {si ∈ S | ProbTκ(si,·)(Cyl(Bi+1, . . . , Bn−1, An)) > 0} ∩Ai = Bi and
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(b)∫
si∈Ai

ProbTκ(si,·)(Cyl(Bi+1, . . . , Bn−1, An))κ(si−1, dsi) = ProbTκ(si−1,·)(Cyl(Bi, . . . , Bn−1, An)),

where if i = 0, κ(si−1, ·) will stand for the initial distribution µ. Point (a) is here in
order to establish that the sets {si ∈ S | ProbTκ(si,·)(Cyl(Bi+1, . . . , Bn−1, An)) > 0} ∩ Ai are
measurable, and point (b) aims at reducing our integrals to sets whose images have positive
values. It should be observed that the second point is an immediate consequence of the
first point. We thus only need to prove point (a). We do this by induction over i. First, if
i = n− 2, we show that

{sn−2 ∈ S | ProbTκ(sn−2,·)(Cyl(Bn−1, An)) > 0} = {sn−2 ∈ S | κ(sn−2, Bn−1) > 0}

which will ensure that (a) is satisfied. First assume that sn−2 ∈ S is such that

ProbTκ(sn−2,·)(Cyl(Bn−1, An)) > 0.

Towards a contradiction, assume that κ(sn−2, Bn−1) = 0. Then it holds that

0 = κ(sn−2, Bn−1) = ProbTκ(sn−2,·)(Cyl(Bn−1)) ≥ ProbTκ(sn−2,·)(Cyl(Bn−1, An)) > 0

which is the needed contradiction. Now assume that κ(sn−2, Bn−1) > 0. Then from the
definitions of Bn−1 and of ProbTκ(sn−2,·), and from classical properties on integrals, it is
straightforward to check that the second inclusion holds. Now suppose that point (a) holds
for each i+ 1 ≤ j ≤ n−2 for some i ≥ 0, and let us show that it is still true for i. As before,
it suffices to establish that

{si ∈ S | ProbTκ(si,·)(Cyl(Bi+1, . . . , Bn−1, An)) > 0} = {si ∈ S | κ(si, Bi) > 0}.

The first inclusion can be verified just like in the first case. Now assume that κ(si, Bi+1) > 0.
We know that

ProbTκ(si,·)(Cyl(Bi+1, . . . , Bn−1, An)) =∫
si+1∈Bi+1

ProbTκ(si+1,·)(Cyl(Bi+2, . . . , Bn−1, An))κ(si, dsi+1).

Using the induction hypothesis over i+ 1, we get that for each si+1 ∈ Bi+1,

ProbTκ(si+1,·)(Cyl(Bi+2, . . . , Bn−1, An)) > 0.

And since κ(si, Bi+1) > 0, this induces that

ProbTκ(si,·)(Cyl(Bi+1, . . . , Bn−1, An)) > 0

which concludes that point (a) is satisfied. Hence from points (a) and (b), we get that

ProbTµ (Cyl(A0, . . . , An)) = ProbTµ (Cyl(B0, . . . , Bn−1, An))

=
∫
s0∈B0

ProbTκ(s0,·)(Cyl(B1, . . . , Bn−1, An))µ(ds0).

SinceB0 = {s0 ∈ A0 | ProbTκ(s0,·)(Cyl(B1, . . . , Bn−1, An)) > 0} and since ProbTµ (Cyl(A0, . . . , An)) =
0, it follows that µ(B0) = 0. From the hypothesis, we thus get that ν(B0). Now observing
that we can prove similarly that ProbTν (Cyl(A0, . . . , An)) = ProbTν (Cyl(B0, . . . , Bn−1, An)),
we can establish that ProbTν (Cyl(A0, . . . , An)) = 0 which concludes the proof. J
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A.2 Missing proofs of Subsections 2.3 and 2.5

I Lemma 5. Let µ ∈ Dist(S) be an initial distribution and let (Ai)0≤i≤n be a sequence of
measurable sets. Write ν0 = µA0 , the conditional probability of µ given A0, and for every
1 ≤ j ≤ n− 1, write νj = (ΩT (νj−1))Aj . Then, for every 0 ≤ j ≤ n:

ProbTµ (Cyl(A0, A1, . . . , An)) =

µ(A0) ·
j∏
i=1

(ΩT (νi−1))(Ai) · ProbTΩT (νj)(Cyl(Aj+1, . . . , An)) .

Proof. The proof is by induction on j. Assume that j = 0, we have to show:

ProbTµ (Cyl(A0, A1, . . . , An)) = µ(A0) · ProbTΩT (ν0)(Cyl(A1, . . . , An)).

First:

ProbTµ (Cyl(A0, . . . , An)) = ProbTµ (Cyl(A0) ∩ Cyl(S,A1, . . . , An))
= ProbTµ (Cyl(A0)) · ProbTµ (Cyl(S,A1, . . . , An) | Cyl(A0))
= µ(A0) · ProbTµA0

(Cyl(A0, . . . , An)).

Now let us unfold ProbTΩT (ν0)(Cyl(A1, . . . , An)):

ProbTΩT (ν0)(Cyl(A1, . . . , An)) =
∫
s1∈A1

ProbTκ(s1,·)(Cyl(A2, . . . , An))(ΩT (ν0))(ds1)

=
∫
s1∈A1

ProbTκ(s1,·)(Cyl(A2, . . . , An))
∫
s0∈S

κ(s0, ds1)ν0(ds0)

=
∫
s0∈A0

(∫
s1∈A1

ProbTκ(s1,·)(Cyl(A2, . . . , An))κ(s0,ds1)
)
µA0(ds0)

=
∫
s0∈A0

ProbTκ(s0,·)(Cyl(A1, . . . , An))µA0(ds0)

= ProbTµA0
(Cyl(A0, . . . , An)).

This concludes the proof for j = 0.
Fix 0 < j ≤ n and assume that for each 0 ≤ i < j the equality above holds. We will

prove that it is still the case for j. First, observe that if j = n then the induction hypothesis
states that

ProbTµ (Cyl(A0, A1, . . . , An)) = µ(A0) ·
n−1∏
i=1

(ΩT (νi−1))(Ai) · ProbTΩT (νn−1)(Cyl(An))

= µ(A0) ·
n−1∏
i=1

(ΩT (νi−1))(Ai) · ΩT (νn−1)(An)

= µ(A0) ·
n∏
i=1

(ΩT (νi−1))(Ai)

which is what we wanted. Otherwise, if j < n, then the hypothesis induction states that

ProbTµ (Cyl(A0, A1, . . . , An)) =

µ(A0) ·
j−1∏
i=1

(ΩT (νi−1))(Ai) · ProbTΩT (νj−1)(Cyl(Aj , . . . , An)).
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Then using a similar argument as in the first case, we get that

ProbTΩT (νj−1)(Cyl(Aj , . . . , An)) = ΩT (νj−1)(Aj) · ProbΩT (ΩT (νj−1)Aj )(Cyl(Aj+1, . . . , An))

= ΩT (νj−1)(Aj) · ProbTΩT (νj)(Cyl(Aj+1, . . . , An))

since νj = (ΩT (νj−1))Aj . This concludes the proof. J

Proof of the fact that the σ-algebra Σp (the σ-algebra product over S × Q) coincides with
Σ′, the set of all subsets of S ×Q of the form

⋃
q∈Q Cq ×{q}, where Cq ∈ Σ for every q ∈ Q

(stated page 11).

Proof. It suffices to show that

(i) Σ′ contains all rectangles;
(ii) Σ′ ⊆ Σp; and
(iii) Σ′ is a σ-algebra.
Property (i) follows from the decomposition of any rectangle X ×Q′ into elements of Σ′:

X ×Q′ =
⋃
q∈Q′

X × {q} ∪
⋃

q∈(Q′)c
∅ × {q}.

Property (ii) is straightforward since for every q ∈ Q, Cq × {q} is a rectangle and therefore,
the union

⋃
q∈Q Cq × {q} belongs to the σ-algebra Σp generated by the rectangles.

We finally establish property (iii). First Σ′ is non-empty as ∅ ∈ Σ′. Then, for A =
⋃
q∈Q Cq×

{q} ∈ Σ′, the complement Ac =
⋃
q∈Q C

c
q ×{q} still belongs to Σ′ since Σ is a σ-algebra and

hence for each q, Ccq ∈ Σ. Similarly, we get that Σ′ is closed under denumerable unions. J

I Proposition 85. Let µ ∈ Dist(S) be an initial distribution for T , and M = (Q, q0, E,F)
be a DMA. Then:

ProbTµ (T [M]) = ProbTnM
µ×δq0

({ρ ∈ Paths(T nM) | ρ |= F}) .

Proof. We will establish a link between distributions over Paths(T ) and distributions over
Paths(T nM). In order to do so, we introduce some notations. Given A0, A1, . . . , An ∈ Σ′
we write for each i, Ai =

⋃
q∈QAi,q × {q}. Also given u1, . . . , un ∈ 2AP and q ∈ Q we

inductively define{
qu1 = q′ ∈ Q such that (q, u1, q

′) ∈ E
qu1...ui = q′ ∈ Q such that (qu1...ui−1 , ui, q

′) ∈ E, ∀2 ≤ i ≤ n.

Observe that sinceM is deterministic, those states are uniquely defined. We then have the
following result.

I Lemma 86. For each initial distribution µ ∈ Dist(S) for T , for each state q ∈ Q of M,
for each n ∈ N and for each A0, . . . , An ∈ Σ′, it holds that

ProbTnM
µ×δq (Cyl(A0, A1, . . . , An)) =∑

u1,...,un∈2AP

ProbTµ (Cyl(A0,q ∩ L−1(u1), A1,qu1
∩ L−1(u2), . . . ,

An−1,qu1...un−1
∩ L−1(un), An,qu1...un

)).
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Proof of the lemma. We prove it by induction over n. First if n = 0, we have to show that
for every µ ∈ Dist(S), every q ∈ Q and every A0 ∈ Σ′,

ProbTnM
µ×δq (Cyl(A0)) = ProbTµ (A0,q)

which is trivial from the definition of µ×δq. Now fix n ≥ 0. Assume that for each 0 ≤ i ≤ n,
the above property holds true and show that it is still the case for i = n+1. Let µ ∈ Dist(S),
q ∈ Q and A0, . . . , An+1 ∈ Σ′. We have that

ProbTnM
µ×δq (Cyl(A0, . . . , An+1))

=
∫

(s0,q′)∈A0

ProbTnM
κ′((s0,q′),·)(Cyl(A1, . . . , An+1))d(µ× δq)((s0, q

′))

=
∫
s0∈A0,q

ProbTnM
κ′((s0,q),·)(Cyl(A1, . . . , An+1))dµ(s0)

=
∑

u1∈2AP

∫
s0∈A0,q∩L−1(u1)

ProbTnM
κ′((s0,q),·)(Cyl(A1, . . . , An+1))dµ(s0)

=
∑

u1∈2AP

∫
s0∈A0,q∩L−1(u1)

ProbTnM
κ(s0,·)×δqu1

(Cyl(A1, . . . , An+1))dµ(s0) (3)

from unicity of qu1 .

Using the induction hypothesis, we get that

ProbTnM
κ(s0,·)×δqu1

(Cyl(A1, . . . , An+1)) =∑
u2,...,un+1∈2AP

ProbTκ(s0,·)(Cyl(A1,qu1
∩L−1(u2), . . . , An,qu1...un

∩L−1(un+1), An+1,qu1...un+1
)).

Combining with (3), we thus obtain that

ProbTnM
µ×δq (Cyl(A0, . . . , An+1)) =∑

u1,...,un+1∈2AP

ProbTκ(s0,·)(Cyl(A0,q∩L−1(u1), . . . , An,qu1...un
∩L−1(un+1), An+1,qu1...un+1

))

which concludes the proof. J

The proposition is a direct consequence of the previous lemma. J

B Technical results of Section 3

We give here the missing proofs of Section 3.

B.1 Proof of Lemma 14
I Lemma 14. Given B ∈ Σ, it holds that:

1. ‹B belongs to the σ-algebra Σ;
2. for every µ ∈ Dist(‹B), ProbTµ (FB) = 0;
3. for every µ ∈ Dist(S), if µ((‹B)c) > 0, then ProbTµ (FB) > 0;
4. for every µ ∈ Dist(S), ProbTµ (F ‹B) = ProbTµ (FG ‹B) = ProbTµ (GF ‹B);
5. for every µ ∈ Dist(S), ProbTµ (FB ∨ F ‹B) = ProbTµ (FB ∨ (¬BU ‹B)).
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Proof. We first prove the first point. Remember that given B ∈ Σ,‹B = {s ∈ S | ProbTδs(FB) = 0}.

Observe that we can write:‹B =
⋂
n≥0
{s ∈ S | ProbTδs(Cyl(

n times︷ ︸︸ ︷
S, . . . , S,B)) = 0}.

It thus suffices to show that for each n ≥ 0,

{s ∈ S | ProbTδs(Cyl(
n times︷ ︸︸ ︷
S, . . . , S,B)) = 0} ∈ Σ.

We will use similar arguments as in the proof of Lemma 84. Remember that if n ≥ 1, it

holds that ProbTδs(Cyl(
n times︷ ︸︸ ︷
S, . . . , S,B)) = ProbTκ(s,·)(Cyl(

n−1 times︷ ︸︸ ︷
S, . . . , S ,B)). First, if n = 0 then this

set corresponds to the set {s ∈ S | δs(B) = 0} = Bc which is in Σ. Now if n = 1 then

{s ∈ S | Probκ(s,·)(Cyl(B)) = 0} = (κ(·, B))−1({0})

which is in Σ from the hypotheses over κ. Now assume that n ≥ 2, it holds that

ProbTκ(s,·)(Cyl(
n−1 times︷ ︸︸ ︷
S, . . . , S ,B)) =

∫
s1∈S

· · ·
∫
sn−1∈S

κ(sn−1, B)κ(sn−2, dsn−1) · · ·κ(s1, ds2)κ(s,ds1).

We inductively define:{
Bn−1 = κ(·, B)−1(]0, 1])
Bi = κ(·, Bi+1)−1(]0, 1]) ∀0 ≤ i ≤ n− 2.

From the hypotheses over κ, it holds that Bi ∈ Σ for each 0 ≤ i < n. In the sequel, s0 denotes
s. As in the proof of Lemma 84, we can show that firstly,

∫
sn−1∈S κ(sn−1, B)κ(sn−2, dsn−1) =

ProbTκ(sn−2,·)(Cyl(Bn−1, B)) and that for each 1 ≤ i ≤ n− 2,

(a) {si ∈ S | ProbTκ(si,·)(Cyl(Bi+1, . . . , Bn−1, B)) > 0} = Bi and
(b)∫
si∈S

ProbTκ(si,·)(Cyl(Bi+1, . . . , Bn−1, An))κ(si−1, dsi) = ProbTκ(si−1,·)(Cyl(Bi, . . . , Bn−1, An)).

It follows that

ProbTκ(s,·)(Cyl(
n−1 times︷ ︸︸ ︷
S, . . . , S ,B)) = ProbTκ(s,·)(Cyl(B1, . . . , Bn−1, B))

=
∫
s1∈B1

ProbTκ(s1,·)(Cyl(B2, . . . , Bn−1, B))κ(s,ds1)

Now since for each s1 ∈ B1, ProbTκ(s1,·)(Cyl(B2, . . . , Bn−1, B)) > 0, it holds that

ProbTκ(s,·)(Cyl(
n−1 times︷ ︸︸ ︷
S, . . . , S ,B)) = 0
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if and only if κ(s,B1) = 0, i.e. if and only if s /∈ B0. And since B0 ∈ Σ, it follows that
Bc0 ∈ Σ and thus

Bc0 = {s ∈ S | ProbTδs(Cyl(
n times︷ ︸︸ ︷
S, . . . , S,B)) = 0} ∈ Σ.

The second property is a direct consequence of the definition of ‹B.

We now focus on the third property. Towards a contradiction, assume that there is
µ ∈ Dist(S) such that µ((‹B)c) > 0 but ProbTµ (FB) = 0. It follows that there is s ∈ (‹B)c

such that ProbTδs(FB) = 0 and thus s ∈ ‹B which is the wanted contradiction.

Let us show the fourth item. It should be observed that given µ ∈ Dist(S), ProbTµ (FG ‹B) ≤
ProbTµ (GF ‹B) ≤ ProbTµ (F ‹B). It thus suffices to show that ProbTµ (FG ‹B) = ProbTµ (F ‹B).
Since EvT (FG ‹B) ⊆ EvT (F ‹B), towards a contradiction, we assume that ProbTµ (F ‹B ∧
GF (‹B)c) > 0. Since

EvT (F ‹B ∧GF (‹B)c) ⊆ EvT (
∨
n≥0

(F=n ‹B ∧ F>n (‹B)c))

=
⋃
n≥0

⋃
m>0

Cyl(
n−1 times︷ ︸︸ ︷
S, . . . , S , ‹B, m times︷ ︸︸ ︷

S, . . . , S, (‹B)c)

it follows that there is n ∈ N and m > 0 such that

ProbTµ (Cyl(
n−1 times︷ ︸︸ ︷
S, . . . , S , ‹B, m times︷ ︸︸ ︷

S, . . . , S, (‹B)c)) > 0.

From Lemma 5, writing ν = Ω(n)
T (µ), we get that

ProbTν (Cyl(‹B, m times︷ ︸︸ ︷
S, . . . , S, (‹B)c)) > 0.

And from the third property proven previously, we deduce that

ProbTν
B̃

(FB) > 0

with ν
B̃
∈ Dist(‹B) which contradicts the second property of this lemma.

Finally, we prove the last property. It is straightforward by observing that the two events
measured in this equality are exactly the same:

EvT (FB ∨ F ‹B) = EvT (FB ∨ (¬BU ‹B)).

J

B.2 Proof of Proposition 23

I Proposition 87. Let B ⊆ Σ and µ ∈ Dist(S). The following implications hold:

1. T is Dec(µ,B) ⇐= T is StrDec(µ,B) ⇐⇒ T is PersDec(µ,B) =⇒ T is fair(µ,B)
2. T is Dec(B) ⇐⇒ T is StrDec(B) ⇐⇒ T is PersDec(B) =⇒ T is fair(B)
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Proof. From the definitions, the following implications obviously hold true. For each B ⊆ Σ
and for each µ ∈ Dist(S):
T is StrDec(µ,B) =⇒ T is Dec(µ,B), and
T is PersDec(µ,B) =⇒ T is Dec(µ,B).

It then turns out that strong decisiveness and persistent decisiveness are two equivalent
notions.

I Lemma 88. For each B ⊆ Σ and for each µ ∈ Dist(S), it holds that StrDec(µ,B) is
equivalent to PersDec(µ,B).

Proof. Fix B ⊆ Σ and µ ∈ Dist(S). Fix B ∈ B and assume that T is PersDec(µ,B), i.e. for
each p ≥ 0, ProbTµ (F≥pB ∨ F≥p ‹B) = 1. We want to show that T is StrDec(µ,B), i.e. that
ProbTµ (GFB ∨F ‹B) = 1, or equivalently that ProbTµ (FGBc ∧G (‹B)c) = 0. We have that:

ProbTµ (FGBc ∧G (‹B)c) ≤
∑
p≥0

ProbTµ (G≥p(Bc ∩ (‹B)c)

=
∑
p≥0

(1− ProbTµ (F≥pB ∨ F≥p ‹B))

= 0 from the hypothesis.

Hence we get that ProbTµ (GFB ∨F ‹B) = 1 and thus T is StrDec(µ,B) and StrDec(µ,B) as
it holds true for each B ∈ B.

Now fix again B ∈ B and assume that T is StrDec(µ,B), i.e. ProbTµ (GFB ∨ F ‹B) = 1.
From Lemma 14 (fourth item), we get that ProbTµ (GFB ∨ GF ‹B) = 1 and it is then
straightforward to establish that for each p ≥ 0, ProbTµ (F≥pB ∨ F≥p ‹B) = 1. We hence
deduce that T is PersDec(µ,B) and thus PersDec(µ,B) as it holds true for each B ∈ B. This
concludes the proof. J

Now, we have the following equivalences between the decisiveness notions.

I Lemma 89. For each B ⊆ Σ, it holds that all three notions PersDec(B), StrDec(B) and
Dec(B) are equivalent.

Proof. Fix B ⊆ Σ. From the above results, it only remains to prove that Dec(B) ⇒
StrDec(B) or Dec(B) ⇒ PersDec(B). We prove the last one. We pick B ∈ B and as-
sume that T is Dec(B), i.e. for each µ ∈ Dist(S), ProbTµ (FB ∨ F ‹B) = 1. Pick µ ∈ Dist(S)
and i ≥ 0. We get that

ProbTµ (G≥iBc ∧G≥i (‹B)c) ≤ ProbTµi(G (Bc ∩ (‹B)c))

where µi = Ω(i)
T (µ), from Lemma 5

and from a similar argument as in the proof of Lemma 19
≤ 0 since T is Dec(B).

Hence for each i ≥ 0, ProbTµ (F≥iB∨F≥i ‹B) = 1 and since it holds true for each µ ∈ Dist(S)
and each B ∈ B, we get that T is PersDec(B). J

Finally, we show the following links between fairness and decisiveness.

I Lemma 90. For each B ⊆ Σ and for each µ ∈ Dist(S), it holds that StrDec(µ,B) implies
fair(µ,B), and StrDec(B) implies fair(B).
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Proof. Fix B ⊆ Σ and µ ∈ Dist(S). Assume that T is strongly decisive w.r.t. B from µ,
that is for each B ∈ B, ProbTµ (GFB ∨F ‹B) = 1. We want to prove that for each B ∈ B, for
each B′ ∈ PreProb(B) with ProbTµ (GFB′) > 0, we have that ProbTµ (GFB | GFB′) = 1.

Fix B ∈ B and B′ ∈ PreProb(B) such that ProbTµ (GFB′) > 0. We can notice that

ProbTµ (GFB′ ∧ F ‹B) = 0. (4)

Indeed, towards a contradiction, assume that ProbTµ (GFB′ ∧ F ‹B) > 0. Observe that

EvT (GFB′ ∧ F ‹B) =
⋃
n≥0

⋂
m≥0

⋃
l≥m

Cyl(
n times︷ ︸︸ ︷
S, . . . , S, ‹B, l times︷ ︸︸ ︷

S, . . . , S,B′).

Then, there are n,m ∈ N such that

ProbTµ (Cyl(
n times︷ ︸︸ ︷
S, . . . , S, ‹B, m times︷ ︸︸ ︷

S, . . . , S,B′)) > 0.

It follows, from Lemma 5 like seen previously, that there is ν ∈ Dist(S) (ν = Ω(n)
T (µ)), such

that

ProbTν (Cyl(‹B, m times︷ ︸︸ ︷
S, . . . , S,B′)) > 0.

And since B′ ∈ PreProb(B), we get that

ProbTν (Cyl(‹B, m times︷ ︸︸ ︷
S, . . . , S,B′, B)) > 0.

Hence, ν(‹B) > 0 and we can apply Lemma 14 (second item) to obtain a contradiction.
Hence, equation (4) holds. We then write:

1 = ProbTµ (GFB ∨ F ‹B | GFB′) from strong decisiveness

=
ProbTµ ((GFB ∨ F ‹B) ∧GFB′)

ProbTµ (GFB′)

=
ProbTµ ((GFB ∧GFB′) ∨ (F ‹B ∧GFB′))

ProbTµ (GFB′)

=
ProbTµ (GFB ∧GFB′)

ProbTµ (GFB′)
from (4)

= ProbTµ (GFB | GFB′)

which proves that StrDec(µ,B) ⇒ fair(µ,B). Then, the implication StrDec(B) ⇒ fair(B) is
immediate since the previous implication holds for any initial distribution µ ∈ Dist(S). J

This concludes the proof of the proposition. J

C Technical results of Section 4

C.1 Additional technical results for Subsection 4.1
We now establish several technical results, which make explicit how STSs are related through
an α-abstraction. The relationship is only qualitative, in the sense that it only relates posit-
ive reachability probabilities, but does not relate almost-sure or lower-bounded probabilities.
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I Lemma 91. Let α : (S1,Σ1)→ (S2,Σ2) be a measurable function. Then for every s ∈ S2
and every µ ∈ Dist(α−1({s})), α#(µ) = δs.

Proof. Fix s ∈ S2 and µ ∈ Dist(α−1({s})). For each A ∈ Σ2, we have that (α#(µ))(A) =
µ(α−1(A)). If s ∈ A, then α−1({s}) ⊆ α−1(A) and thus µ(α−1(A)) = 1. Otherwise, if
s /∈ A, then α−1({s}) ∩ α−1(A) = ∅ and thus µ(α−1(A)) = 0. This directly implies that
α#(µ) = δs. J

I Lemma 92. Assume that T2 is an α-abstraction of T1. Then, for every i ∈ N, for every
µ ∈ Dist(s1), α#(Ω(i)

T1
(µ)) is equivalent to Ω(i)

T2
(α#(µ)).

Proof. We show this by induction on i. Case i = 1 is by definition. Fix some i ≥ 1 and
assume that the statement holds true for each 1 ≤ j ≤ i. By induction hypothesis, we
have that α#(Ω(i)

T1
(µ)) is equivalent to Ω(i)

T2
(α#(µ)). We want to show that α#(Ω(i+1)

T1
(µ)) is

equivalent to Ω(i+1)
T2

(α#(µ)).
We first notice that ΩT2(α#(Ω(i)

T1
(µ))) is equivalent to Ω(i+1)

T2
(α#(µ)). Indeed write ν =

α#(Ω(i)
T1

(µ)) and ν′ = Ω(i)
T2

(α#(µ)). From the induction hypothesis, we know that ν and ν′.
Following a similar argument as in the proof of Lemma 84 and from the definition of ΩT2 , we
can deduce that ΩT2(ν) is equivalent to ΩT2(ν′). So it remains to show that ΩT2(α#(µ′)) is
equivalent to α#(ΩT1(µ′)), when µ′ = Ω(i)

T1
(µ). This is by definition of an α-abstraction. J

In other words, the above lemma states that for each A ∈ Σ2 and for each i ∈ N,

ProbT1
µ (F=i α

−1(A)) > 0⇐⇒ ProbT2
α#(µ)(F=iA) > 0 .

This can even be generalized to cylinders:

I Lemma 93. Assume that T2 is an α-abstraction of T1. Then for every µ ∈ Dist(S1), for
every (Ai)0≤i≤n ∈ Σn+1

2 ,

ProbT1
µ (Cyl(α−1(A0), . . . , α−1(An))) > 0⇐⇒ ProbT2

α#(µ)(Cyl(A0, . . . , An)) > 0 .

Proof. We do the proof by induction on n. The case n = 0 is obvious from the definition of
α#. Now fix n ≥ 1 and assume that for each 0 ≤ k ≤ n − 1, for each µ ∈ Dist(S1) and for
each (Ai)0≤i≤k ∈ Σk+1

2 ,

ProbT1
µ (Cyl(α−1(A0), . . . α−1(Ak))) > 0⇔ ProbT2

α#(µ)(Cyl(A0, . . . , Ak)) > 0.

We show that it is still the case for n. Fix µ ∈ Dist(S1) and (Ai)i≥n+1 ∈ Σn+2
2 . We let

ν0 = µα−1(A0) and ν′0 = (α#(µ))A0 . Note that we hence assume that µ(α−1(A0)) > 0. We
first realize that ν′0 = α#(ν0). Indeed for each A ∈ Σ2,

(α#(ν0))(A) = ν0(α−1(A)) = µ(α−1(A ∩A0))
µ(α−1(A0)) = (α#(µ))(A ∩A0)

(α#(µ))(A0) = ν′0(A).

Then, applying Lemma 5, we get:

ProbT1
µ (Cyl(α−1(A0), α−1(A1), . . . , α−1(An)))

= µ(α−1(A0)) · ProbT1
ΩT1 (ν0)(Cyl(α−1(A1), . . . , α−1(An)))

and

ProbT2
α#(µ)(Cyl(A0, A1, . . . , An)) = (α#(µ))(A0) · ProbT1

ΩT2 (ν′0)(Cyl(A1, . . . , An)).
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By definition of an α-abstraction, the measures ΩT2(ν′0) and α#(ΩT1(ν0)) are equivalent.
Hence from Lemma 84,

ProbT2
ΩT2 (ν′0)(Cyl(A1, . . . , An)) > 0⇔ ProbT2

α#(ΩT1 (ν0))(Cyl(A1, . . . , An)) > 0.

From the hypothesis of induction, we get that

ProbT2
α#(ΩT1 (ν0))(Cyl(A1, . . . , An)) > 0⇔ ProbT1

ΩT1 (ν0)(Cyl(α−1(A1), . . . , α−1(An))) > 0.

Since (α#(µ))(A0) = µ(α−1(A0)), we conclude:

ProbT1
µ (Cyl(α−1(A0), α−1(A1), . . . , α−1(An))) > 0⇔ ProbT2

α#(µ)(Cyl(A0, A1, . . . , An)) > 0.

We still have to consider the case where µ(α−1(A0) = 0. In that case, (α#(µ))(A0) = 0 and
thus

ProbT1
µ (Cyl(α−1(A0), α−1(A1), . . . , α−1(An))) = 0 = ProbT2

α#(µ)(Cyl(A0, A1, . . . , An))

which terminates the proof. J

As an immediate consequence, the positivity of properties with bounded witnesses are
preserved through α-abstractions:

I Corollary 94. Assume that T2 is an α-abstraction of T1. Then for every µ ∈ Dist(S1), for
every A,B ∈ Σ2:

ProbT1
µ (EvT1(α−1(A)Uα−1(B))) > 0⇐⇒ ProbT2

α#(µ)(EvT2(AUB)) > 0 .

Soundness and completeness of abstractions

When the abstract system T2 is a DMC, soundness and completeness have a simpler char-
acterization, which will be useful in the proofs.

I Lemma 95. Assume T2 is a DMC. Then:
T2 is an α-abstraction of T1 iff for every s, s′ ∈ S2,

κ2(s, {s′}) > 0⇐⇒ ∀µ ∈ Dist(α−1({s})), ProbT1
µ (Cyl(S1, α

−1({s′}))) > 0 .

T2 is sound iff for every s ∈ S2 and every B ∈ Σ2,

ProbT2
δs

(FB) = 1 =⇒ ∀µ ∈ Dist(α−1({s})), ProbT1
µ (Fα−1(B)) = 1 .

T2 is complete iff for every s ∈ S2 and every B ∈ Σ2,

∀µ ∈ Dist(α−1({s})), ProbT1
µ (Fα−1(B)) = 1 =⇒ ProbT2

δs
(FB) = 1 .

Proof. We handle the case of soundness. Indeed assume that for each s ∈ S2 and for each
B ∈ Σ2, the condition presented in the statement (second item) holds true. Then fix µ ∈
Dist(S1), B ∈ Σ2 and assume that ProbT2

α#(µ)(FB) = 1 and show that ProbT1
µ (Fα−1(B)) = 1.

Towards a contradiction, assume that ProbT1
µ (Fα−1(B)) < 1. Then, since T2 is a DMC, there

is s ∈ S2 such that µ(α−1(s)) > 0 and

ProbT1
µα−1(s)

(Fα−1(B)) < 1.

From the hypothesis, it follows that ProbT2
δs

(FB) < 1. Observe that since µ(α−1(s)) > 0,
we have that (α#(µ))(s) > 0. Hence we get a contradiction by noticing:

ProbT2
α#(µ)(FB) ≤ (α#(µ))(s) · ProbT2

δs
(FB) < 1.

J



CONTENTS 65

C.2 Missing proofs in Subsection 4.2
I Proposition 96. If T2 is a µ-sound α-abstraction of T1, then for every B ∈ Σ2:

T2 is Dec(α#(µ), B) =⇒ T1 is Dec(µ, α−1(B)) .

In order to prove Proposition 33, we first show the following technical lemma, which
relates avoid-sets in T1 and in T2.

I Lemma 97. Let T2 be an α-abstraction of T1. Then, for every B ∈ Σ2: ·�α−1(B) = α−1(‹B).

Proof. Fix B ∈ Σ2. We have the series of equivalences:

s ∈·�α−1(B)⇐⇒ ProbT1
δs

(Fα−1(B)) = 0

⇐⇒ ProbT2
α#(δs)(FB) = 0 (Corollary 94).

Now from Lemma 91, one can show that α#(δs) = δα(s) by noticing that δs ∈ Dist(α−1(α(s))).
Hence s ∈·�α−1(B) iff α(s) ∈ ‹B (i.e. s ∈ α−1(‹B)), which concludes the proof. J

We are now ready to prove Proposition 33.

Proof of Proposition 33. Fix B ∈ Σ2 and assume that T2 is Dec(α#(µ), B), i.e.

ProbT2
α#(µ)(FB ∨ F ‹B2) = 1 . (5)

To show that T1 is Dec(µ, α−1(B)), by Lemma 97, it suffices to prove that

ProbT1
µ (Fα−1(B) ∨ Fα−1(‹B2)) = 1 .

The latter is immediate by (5) since T2 is µ-sound. J

I Proposition 98. Let T2 be a DMC such that T2 is an α-abstraction of T1.

1. Assume that there is a finite set A2 = {s1, . . . , sn} ⊆ S2 such that A2 is an attractor for
T2 and A1 =

⋃n
i=1 α

−1(si) = α−1(A2) is an attractor for T1.
2. Assume moreover that for every 1 ≤ i ≤ n, for every α-closed set B in Σ1, there exist

p > 0 and k ∈ N such that:
for every µ ∈ Dist(α−1(si)), ProbT1

µ (F≤k B) ≥ p, or
for every µ ∈ Dist(α−1(si)), ProbT1

µ (FB) = 0.
Then T1 is decisive w.r.t. every α-closed set.

Proof. Fix B ⊆ S2 and µ ∈ Dist(S1). We want to show that T1 is µ-decisive w.r.t. α−1(B).
We therefore have to show that ProbT1

µ (Fα−1(B) ∨ Fα−1(‹B)) = 1. Towards a contradic-
tion we assume that ProbT1

µ (G (¬α−1(B)) ∧ G (¬α−1(‹B))) > 0, i.e. ProbT1
µ (Gα−1(Bc) ∧

Gα−1((‹B)c)) > 0. Since A1 = α−1(A2) is an attractor of T1, we deduce from Lemma 19
that ProbT1

µ (GFα−1(A2)) = 1, hence:

ProbT1
µ (Gα−1(Bc) ∧Gα−1((‹B)c) ∧GFα−1(A2)) > 0 . (6)

We let A′2 ⊆ A2 be the subset of states s of A2 such that:

ProbT1
µ (Gα−1(Bc) ∧Gα−1((‹B)c) ∧GFα−1({s})) > 0 .
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Due to equation (6), A′2 is non-empty, and furthermore every such s belongs to Bc and (‹B)c.
We set A′1 = α−1(A′2).

In particular, A′1 ⊆ α−1((‹B)c), hence from Lemma 14 (third item) we get that for every
ν ∈ Dist(A′1), ProbT1

ν (Fα−1(B)) > 0. According to hypothesis (†), for every s ∈ A′2, we can
find ps > 0 and ks ∈ N such that for every νs ∈ Dist(α−1(s)),

ProbT1
νs (F≤ks α−1(B)) ≥ ps.

Then taking p = min{ps | s ∈ A′2} > 0 and k = max{ks | s ∈ A′2} ∈ N (since A′2 is finite), it
holds that for every ν ∈ Dist(A′1),

ProbT1
ν (F≤k α−1(B)) ≥ p hence ProbT1

ν (G≤k α−1(Bc)) ≤ 1− p. (7)

From (6), we deduce that:

0 < ProbT1
µ (Gα−1(Bc) ∧Gα−1((‹B)c) ∧GFA′1) ≤ ProbT1

µ (Gα−1(Bc) ∧GFA′1)

Standardly in the literature (see e.g. [1, Lemma 3.4]), one infers immediately from (7) that

ProbT1
µ (Gα−1(Bc) ∧GFA′1) ≤ lim

n→∞
(1− p)n = 0

However we believe this is not so immediate, especially in our general setting, and we develop
a complete proof below. Note that with this result, we exhibit a contradiction, which will
conclude the proof.

It remains to show the last inequality. First we introduce some useful notations. Observe
that from the definition of A′1, it holds that A′1 ⊆ α−1(Bc). Then for each j ∈ N, we will write
Bc[j] for the finite sequence α−1(Bc), . . . , α−1(Bc) where α−1(Bc) occurs exactly j times, and
similarly we will write (Bc \ A′1)[j] for the finite sequence α−1(Bc) \ A′1, . . . , α−1(Bc) \ A′1
where α−1(Bc) \A′1 occurs exactly j times. Then observe that

EvT1(GFA′1 ∧Gα−1(Bc)) =⋂
n∈N

⋃
j0∈N

⋃
(j1,...,jn)∈Nn≥k

Cyl(Bc[j0], A
′
1, B

c
[j1], A

′
1, B

c
[j2], . . . , B

c
[jn−1], A

′
1, B

c
[jn]), (8)

where N≥k denotes the set of natural numbers larger than or equal to k. We depict such
a cylinder and what we can infer on the probabilities on Figure 14. As all behaviours are
always in α−1(Bc), the big rectangle represents this set, while the small one represents
A′1 ⊆ α−1(Bc) which we know is reached infinitely often with probability 1. The behaviours
are thus decomposed according to each visit in A′1 followed by at least k moves (while staying
in A′1). The dashed arrows represent the k first steps. Note that within those k steps, A′1
could be reached but it has no importance. What matters here is the fact that from A′1, the
probability of the next k steps within α−1(Bc) is upper bounded by 1−p. The curled arrows
hold for the next visit to A′1 which we hence know that it will happen with probability 1.

We will prove by induction over n that for each n ≥ 0 and for each ν ∈ Dist(S1),

ProbT1
ν

( ⋃
j0∈N

⋃
(j1,...,jn)∈Nn≥k

Cyl(Bc[j0], A
′
1, B

c
[j1], A

′
1, B

c
[j2], . . . , B

c
[jn−1], A

′
1, B

c
[jn])

)
≤ (1− p)n.

Observe that for each n ≥ 0, it holds that⋃
j0∈N

⋃
(j1,...,jn)∈Nn≥k

Cyl(Bc[j0], A
′
1, B

c
[j1], A

′
1, B

c
[j2], . . . , B

c
[jn−1], A

′
1, B

c
[jn]) ⊆

⋃
j0∈N

⋃
(j1,...,jn−1)∈Nn−1

≥k

Cyl(Bc[j0], A
′
1, B

c
[j1], A

′
1, B

c
[j2], . . . , B

c
[jn−1], A

′
1, B

c
[k]).
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Figure 14 Scheme for the proof of Proposition 36.

Hence it is enough to demonstrate that for each n ≥ 0 and for each ν ∈ Dist(S1),

ProbT1
ν

( ⋃
j0∈N

⋃
(j1,...,jn−1)∈Nn−1

≥k

Cyl(Bc[j0], A
′
1, B

c
[j1], A

′
1, B

c
[j2], . . . , B

c
[jn−1], A

′
1, B

c
[k])
)
≤ (1−p)n.

(9)

First fix n = 0 and ν ∈ Dist(S1). It corresponds to the two first arrows on Figure 14. We
will show that for each m ≥ 0,

ProbT1
ν

( m⋃
j=0

Cyl(Bc[j], A′1, Bc[k])
)
≤ 1− p,

that is we decompose Figure 14 according to the length of the first curled arrow. We first
prove cases m = 0 and m = 1 in order to illustrate what is happening, and then we will
make the general case. If m = 0, it then holds that

ProbT1
ν (Cyl(A′1, Bc[k])) = ν(A′1) · ProbT1

νA′1
(Cyl(A′1, Bc[k]))

≤ ProbT1
νA′1

(Cyl(Bc[k+1])) ≤ 1− p (10)

where the first inequality holds from the fact that A′1 ⊆ α−1(Bc), and the second one
from (7). Note that we assumed here that ν(A′1) > 0, but it has no importance since if
ν(A′1) = 0, then the inequality trivially holds. Now if m = 1, first observe that

Cyl(A′1, Bc[k]) ∪ Cyl(Bc, A′1, Bc[k]) = Cyl(A′1, Bc[k]) ∪ Cyl(Bc \A′1, A′1, Bc[k])

where in the second member of the equality, the union is disjoint. It follows that, writting
ν′0 = νBc\A′1 and ν1 = (ΩT1(ν′0))A′1 :

ProbT1
ν

(
Cyl(A′1, Bc[k]) ∪ Cyl(Bc, A′1, Bc[k])

)
= ProbT1

ν (Cyl(A′1, Bc[k])) + ProbT1
ν (Cyl(Bc \A′1, A′1, Bc[k]))

≤ ν(A′1) · (1− p) + ν(Bc \A′1) · (ΩT1(ν′0))(A′1) · ProbT1
ν1

(Cyl(A′1, Bc[k])) from Lemma 5

≤ ν(A′1) · (1− p) + ν(Bc \A′1) · (ΩT1(ν′0))(A′1) · (1− p) ≤ (1− p).

Note that we again assumed here that ν(Bc \ A′1) > 0 and (ΩT1(ν′0))(A′1) > 0, which has
again no importance since otherwise, the probability of one of the cylinders would be equal
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to 0 and which would thus not interfere on the above inequality. We now prove the general
case for m ≥ 2. Again, we can decompose the union of the cylinders into a disjoint one as
follows:

m⋃
j=0

Cyl(Bcj , A′1, Bc[k]) =
m⋃
j=0

Cyl((Bc \A′1)j , A′1, Bc[k])).

We use the following notations: ν′0 = νBc\A′1 , ν0 = νA′1 , and
for each 1 ≤ i ≤ m− 1, ν′i = (ΩT1(ν′i−1))Bc\A′1 and
for each 1 ≤ i ≤ m, νi = (ΩT1(ν′i−1))A′1 .

Note that we assume again that the conditional probability are well-defined, but like in cases
m = 0 and m = 1, we can make this supposition w.l.o.g. Then using Lemma 5 and the
observation (7), we get that:

ProbT1
ν

( m⋃
j=0

Cyl(Bc[j], A′1, Bc[k])
)

=
m∑
j=0

ProbT1
ν (Cyl(Bc[j], A′1, Bc[k]))

= ν(A′1) · ProbT1
ν0

(Cyl(A′1, Bc[k]))

+
m∑
j=1

(
ν(Bc \A′1) ·

j−1∏
i=1

(ΩT1(ν′i))(Bc \A′1) · (ΩT1(ν′j−1)(A′1) ·

≤1−p︷ ︸︸ ︷
ProbT1

νj (Cyl(A′1, Bc[k]))
)

≤ (1− p) ·
(
ν(A′1) +

m∑
j=1

(
ν(Bc \A′1) ·

j−1∏
i=1

(ΩT1(ν′0))(Bc \A′1) · (ΩT1(ν′j−1)(A′1)
))

= (1− p) · ProbT1
ν

( m⋃
j=0

Cyl(Bc[j], A′1)
)
≤ 1− p

where the last equality comes again from Lemma 5, but in the other sense this time. Finally
through the limit over m, we obtain that (9) is true when n = 0.

Now fix n ≥ 0 and assume that for 0 ≤ l ≤ n and for each ν ∈ Dist(S1), the inequality (9)
holds true. We get in particular that for each ν ∈ Dist(S1),

ProbT1
ν

( ⋃
j0∈N

⋃
(j1,...,jn−1)∈Nn−1

≥k

Cyl(Bc[j0], A
′
1, B

c
[j1], A

′
1, B

c
[j2], . . . , B

c
[jn−1], A

′
1, B

c
[k])
)
≤ (1−p)n.

We want to show that (9) is still satisfied for n + 1. Like in case n = 0, we will show that
for each m ≥ 0,

ProbT1
ν

( m⋃
j=0

⋃
(j1,...,jn)∈Nn≥k

Cyl(Bc[j], A′1, Bc[j1], A
′
1, B

c
[j2], . . . , B

c
[jn], A

′
1, B

c
[k])
)
≤ (1− p)n+1.

We thus again decompose the scheme of Figure 14 according to the length of the first arrow.
In fact the proof is very similar to the case n = 0 as once you hit for the second time α−1(Bc)
in the scheme (i.e. after the first dashed arrow), the induction hypothesis can be applied.
What happens before is the exact same behaviour as in the case for n = 0. For each m ≥ 0
this finite union of cylinders can be decomposed into a finite union of disjoint sets as follows:

m⋃
j=0

⋃
(j1,...,jn)∈Nn≥k

Cyl(Bc[j], A′1, Bc[j1], A
′
1, B

c
[j2], . . . , B

c
[jn], A

′
1, B

c
[k]) =

m⋃
j=0

⋃
(j1,...,jn)∈Nn≥k

Cyl((Bc \ A′1)[j], A
′
1, B

c
[j1], A

′
1, B

c
[j2], . . . , B

c
[jn], A

′
1, B

c
[k]).
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Then using Lemma 5 and this decomposition into a disjoint union, it holds that

ProbT1
ν

( m⋃
j=0

⋃
(j1,...,jn)∈Nn≥k

Cyl(Bc[j], A′1, Bc[j1], A
′
1, B

c
[j2], . . . , B

c
[jn], A

′
1, B

c
[k])
)

=

m∑
j=0

αj · ProbT1
µj

( ⋃
j′∈N

⋃
(j2,...,jn)∈Nn−1

≥k

Cyl(Bc[j′], A′1, Bc[j2], . . . , B
c
[jn], A

′
1, B

c
[k])
)
,

where for each 0 ≤ j ≤ m, 0 < αj < 1 and µj ∈ Dist(S1) are given by Lemma 5, where αj
corresponds to:

αj = ProbT1
ν (Cyl((Bc \A′1)[j], A

′
1, B

c
[k])).

Note that this is possible due to the fact that we look at the union of all j1 ≥ k. Using the
induction hypothesis and this last equality, we get that

ProbT1
ν

( m⋃
j=0

⋃
(j1,...,jn)∈Nn≥k

Cyl(Bc[j], A′1, Bc[j1], A
′
1, B

c
[j2], . . . , B

c
[jn], A

′
1, B

c
[k])
)

≤ (1− p)n · ProbT1
ν

( m⋃
j=0

Cyl(Bc[j], A′1, Bc[k])
)

≤ (1− p)n+1

where the last inequality stands from what we have done in case n = 0. Through the limit
over m, we can thus deduce that (9) is still true for n+ 1.

Finally coming back to (8), through the limit over n this time, we conclude that

ProbT1
µ (GFA′1 ∧Gα−1(Bc)) ≤ lim

n→∞
(1− p)n = 0.

This concludes the proof. J

I Proposition 99. Let T2 be a finite Markov chain such that T2 is an α-abstraction of T1. Fix
µ ∈ Dist(S1), and assume that T1 is µ-fair w.r.t. every α-closed set. Then T1 is µ-decisive
w.r.t. every α-closed set.

Proof. As T2 is a finite Markov chain, it can be viewed as a graph. We can therefore speak
of the bottom strongly connected components (BSCC) of T2 (a BSCC is a subset C ⊆ S2 such
that for all s, s′ ∈ C, if s′ is reachable from s, then s is reachable from s′ as well). We write
BSCC(T2) for the set of BSCCs of T2. We define C = {s ∈ S2 | ∃C ∈ BSCC(T2), s ∈ C}.
We first prove that ProbT1

µ (Fα−1(C)) = 1. In order to establish this, we show that for each
s ∈ S2, ProbT1

µ (GFα−1(s)) > 0 implies that s ∈ C. Indeed, pick s ∈ S2 such that:

ProbT1
µ (GFα−1({s})) > 0.

We can state that for each k ≥ 1 and for each s0, s1, . . . , sk ∈ S2 with s0 = s and such that
for each 0 ≤ i < k, κ2(si, si+1) > 0, it holds that

ProbT1
µ (GFα−1(sk) | GFα−1(s)) = 1.
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We prove this by induction over k. First fix k = 1 and let s1 ∈ S2 such that κ2(s, s1) > 0.
Then for every ν ∈ Dist(α−1(s)), ProbT1

ν (Cyl(α−1({s}), α−1({s1}))) > 0. Hence α−1(s) ∈
PreProbT ({α−1(s1)}). And since T1 is fair w.r.t. α-closed sets, we get that

ProbT1
µ (GFα−1({s1}) | GFα−1({s})) = 1.

Now fix k > 1 and assume that for each 1 ≤ j < k and for each s0, . . . , sj ∈ S2 with s0 = s

and such that for each 0 ≤ i < j, κ2(si, si+1) > 0, it holds that

ProbT1
µ (GFα−1(sj) | GFα−1(s)) = 1.

We want to show that it is still the case for k. Fix s0, s1, . . . , sk ∈ S2 satisfying all the
desired hypotheses. Using the induction hypothesis, we know that ProbT1

µ (GFα−1(sk−1) |
GFα−1(s0)) = 1 and ProbT1

µ (GFα−1(sk) | GFα−1(sk−1)) = 1. We can then compute:

ProbT1
µ (GFα−1(sk) | GFα−1(s0))

= ProbT1
µ (GFα−1(sk) ∧GFα−1(sk−1) | GFα−1(s0))

= ProbT1
µ (GFα−1(sk) | GFα−1(sk−1) ∧GFα−1(s0)) · ProbT1

µ (GFα−1(sk−1) | GFα−1(s0))
= 1

from the induction hypothesis. This shows that for every state s′ which is reachable from s

in T2,

ProbT1
µ (GFα−1({s′}) | GFα−1({s})) = 1.

Then fix s′ reachable from s in T2. We can show that s is also reachable from s′. Towards
a contradiction, assume that it is not the case. It follows that

ProbT1
µ (GFα−1({s′}) ∧GFα−1({s})) = 0

which is a contradiction with ProbT1
µ (GFα−1({s′}) | GFα−1({s})) = 1 and ProbT1

µ (GFα−1({s})) >
0. We deduce thus that s belongs to a BSCC of T2.

We can now prove that ProbT1
µ (Fα−1(C)) = 1. Indeed observe first that from the fi-

niteness of T2, it holds that for every paths ρ = t0t1t2 . . . ∈ Paths(T1), there is s ∈
S2 such that {i ∈ N | ti ∈ α−1(s)} is infinite. Keeping this in mind, we write S2 =
{s1, . . . , sk, sk+1, . . . , sn} where k ≥ 1 and {s1, . . . , sk} = C. Then we can write

Paths(T1) =EvT1(GFα−1(s1)) ∪ EvT1(GFα−1(s2) ∧ FG¬α−1(s1))

∪ · · · ∪ EvT1(GFα−1(sn) ∧
n−1∧
i=1

FG¬α−1(si)).

From what we have shown previously, we now get that for each j ≥ k + 1,

0 = ProbT1
µ (GFα−1(sj)) ≥ ProbT1

µ (GFα−1(sj) ∧
j−1∧
i=1

FG¬α−1(si)).

And we conclude that

1 = ProbT1
µ (Paths(T1))

=
k∑
j=1

ProbT1
µ (GFα−1(sj) ∧

j−1∧
i=1

FG¬α−1(si))

≤ ProbT1
µ (Fα−1(C)).
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We are now able to prove that T1 is Dec(µ,B). Fix B ⊆ S2, we want to show that
ProbT1

µ (Fα−1(B) ∨ Fα−1(‹B)) = 1. We have that

ProbT1
µ (Fα−1(B) ∨ Fα−1(‹B))

=
∑

C∈BSCC(T2) s.t.
ProbT1

µ (Fα−1(C))>0

ProbT1
µ (Fα−1(C)) · ProbT1

µ (Fα−1(B) ∨ Fα−1(‹B) | Fα−1(C)).

Now we fix some C ∈ BSCC(T2) such that ProbT1
µ (Fα−1(C)) > 0. There are two cases:

first if there is s ∈ C such that s ∈ B, then α−1(s) ⊆ α−1(B) and thus ProbT1
µ (Fα−1(B)∨

Fα−1(‹B) | Fα−1(C)) = 1;
or for each s ∈ C, s ∈ ‹B which implies that α−1(C) ⊆ α−1(‹B) and it that case again
ProbT1

µ (Fα−1(B) ∨ Fα−1(‹B) | Fα−1(C)) = 1.
We finally conclude that

ProbT1
µ (Fα−1(B) ∨ Fα−1(‹B)) =

∑
C∈BSCC(T2) s.t.

ProbT1
µ (Fα−1(C))>0

ProbT1
µ (Fα−1(C))

= ProbT1
µ (Fα−1(C)) = 1.

J

D Technical results of Section 5

I Lemma 41. Assume that A is an attractor for T . Then A×Q is an attractor for T nM.
Furthermore, if A is finite, then so is A×Q.

We first prove the following lemma.

I Lemma 100. Fix µ ∈ Dist(S) and assume that A ∈ Σ is a µ-attractor for T . Then for
each q ∈ Q, A×Q is a (µ× δq)-attractor for T nM.

Proof. Fix µ ∈ Dist(S) and A ∈ Σ such that ProbTµ (FA) = 1. Fix q ∈ Q. We know that

EvTnM(FA×Q) = EvTnM(
⋃
n∈N

Cyl(
n times︷ ︸︸ ︷

S′, . . . , S′, A×Q)).

Then from Lemma 86, we know that for each n ∈ N

ProbTnM
µ×δq (Cyl(

n times︷ ︸︸ ︷
S′, . . . , S′, A×Q)) =

∑
u1,...,un∈2AP

ProbTµ (Cyl(L−1(u1), . . . ,L−1(un), A))

= ProbTµ (Cyl(
n times︷ ︸︸ ︷
S, . . . , S,A×Q).

As this holds true for each n ≥ 0, we thus get that Probµ×δq (FA × Q) = ProbTµ (FA) = 1
from the hypothesis. This concludes the proof. J
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Proof of Lemma 41. Fix A ∈ Σ such that for each µ ∈ Dist(S), ProbTµ (FA) = 1. We want
to prove that for each ν ∈ Dist(S ×Q), ProbTnM

ν (FA ×Q) = 1. Fix ν ∈ Dist(S ×Q) and
compute:

ProbTnM
ν (FA×Q) =

∑
q∈Q

ν(S × {q}) · ProbTnM
νS×{q}

(FA×Q).

Note that νS×{q} induces a distribution νq ∈ Dist(S) as follows: for each B ∈ Σ, νq(B) =
νS×{q}(B × {q}). Writing µ = νq it then holds that νS×{q} = µ × δq. We then get, from
the hypothesis and Lemma 100, that ProbTnM

νS×{q}
(FA × Q) = 1 for each q ∈ Q. Hence,

ProbTnM
ν (FA×Q) =

∑
q∈Q ν(S × {q}) = 1 which concludes the proof. J

I Lemma 47. Let αM : S1×Q→ S2×Q be the lifting of α such that αM(s, q) = (α(s), q).
If T2 is an α-abstraction of T1, then T2 nM is an αM-abstraction of T1 nM. Furthermore,
if T1nM is Dec(B) where B = {α−1

M (B) | B ∈ Σ′2}, then T2nM is a sound αM-abstraction
of T1 nM.

Proof. We first show that T2 nM is an αM-abstraction of T1 nM. It suffices to show that
for each µ ∈ Dist(S1), for each q, q′ ∈ Q and for each Bq′ ∈ Σ2,

ProbT1nM
µ×δq (Cyl(S1×Q,α−1

M (Bq′×{q′}))) > 0⇔ ProbT2nM
(αM)#(µ×δq)(Cyl(S2×Q,Bq′×{q′})) > 0.

(11)

Fix µ ∈ Dist(S1), q, q′ ∈ Q and Bq′ ∈ Σ2. Write u ∈ 2AP for the unique label such that
(q, u, q′) ∈ E. In order to prove (11), we will use the fact that T2 is an α-abstraction of T2.
And in order to make the link with the wanted equivalence, we will use Lemma 86. We can
establish that (αM)#(µ× δq) = α#(µ)× δq. Indeed given p ∈ Q and Cp ∈ Σ2, it holds that

(αM)#(µ× δq)(Cp × {p}) = (µ× δq)(α−1(Cp){p})
= µ(α−1(Cp)) · δq(p)
= α#(µ)(α−1(Cp)) · δq(p) = (α#(µ)× δq)(Cp × {p}).

Hence we get that

ProbT2nM
(αM)#(µ×δq)(Cyl(S2 ×Q,Bq′ × {q′})) > 0⇔ ProbT2

α#(µ)(Cyl(L−1
2 (u), Bq′)) > 0

⇔ ProbT1
µ (Cyl(L−1

1 (u), α−1(Bq′))) > 0
⇔ ProbT1nM

µ×δq (Cyl(S1 ×Q,α−1
M (Bq′ × {q′}))) > 0

where the first and third equivalences hold from Lemma 86, and the second equivalence
holds from the fact that T2 is an α-abstraction of T1.

Finally, since T1 nM is decisive w.r.t α−1
M (B) for each B ∈ Σ′2 and since T2 nM is an

αM-abstraction of T1 nM, Proposition 40 allows us to conclude that T2 nM is a sound
αM-abstraction of T1 nM. J

We give here the (partial) counter-example mentioned in Remark 48.
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I Example 101. We illustrate Remark 48 by exhibiting an example where soundness (w.r.t.
a fixed distribution) as well as decisiveness properties do not transfer to the product with a
deterministic Muller automaton.

Consider the DMC T1 depicted on the left of Figure 15 which corresponds to the random
walk over N from Example 2, when p = 2/3. Consider also the finite MC T2 on the right
of the same figure. Clearly enough, T2 is an α-abstraction of T1 for the mapping α : N →
{s0, s1, s2} defined as follows: α(0) = s0, α(1) = s1 and α(i) = s2 for any i ≥ 2.

Define µ = δ0 as the initial distribution in T1. For any B ⊆ N, ProbT1
µ (FB) = 1 and it

follows that T2 is a µ-sound α-abstraction of T1. It should be noted that it is however not
sound when considering µ′ = δ1 as initial distribution. Indeed, ProbT1

µ′ (F {0}) < 1 though
ProbT2

δs1
(F {s0}) = 1 (and δs1 = α#(µ′)).
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Figure 15 Left, T1 a random walk over N and right, its sound finite abstraction T2.

Consider now the Muller automaton of Section 2 on the left of Figure 2. As stated in
Lemma 47, it holds that T2 nM is an αM-abstraction of T1 nM where for each n ∈ N and
each q ∈ Q, αM((n, q)) = (α(n), q). Consider µ × δq0 = δ(0,q0) and B = {(s0, q2)}. It then
holds that (αM)#(µ× δq0) = δ(s0,q0) and that α−1

M (B) = {(0, q2)}. It is easily observed that
starting in state (0, q0) (resp. (s0, q0)) in T1 nM (resp. T2 nM), then if we visit in the
future a state (0, q) (resp. (s0, q)) we will necessarily get that q = q2. Keeping this in mind,
one can see that ProbT2nM

δ(s0,q0)(FB) = 1 while

ProbT1nM
µ×δq0

(Fα−1
M (B)) = ProbT1nM

δ(1,q1)
(Fα−1

M (B)) = ProbT1
µ′ (F {0}) < 1

where the first equality holds from Lemma 5 and the second equality holds from Lemma 86.
This proves that T2 nM is not (µ× δq0)-sound for T1 nM.

Now, observe that T1 is decisive w.r.t. any set of states B ⊆ N from µ as we have seen
that ProbT1

µ (FB) = 1 for any set of states B. It should be noted that T1 is not decisive
by considering µ′ as the initial distribution and B = {0}. In this case, {̃0} = ∅ and thus
ProbT1

µ′ (F {0} ∨ F {̃0}) = ProbT1
µ′ (F {0}) < 1. Consider now T1 nM, we have already shown

that ProbT1nM
µ×δq0

(F {(0, q2)}) < 1. It can be established that ‚�{(0, q2)} = (2N + 1)× {q0, q2} ∪
2N×{q1} which are states not reachable from (0, q0). We deduce that ProbT1nM

µ×δq0
(F {(0, q2)}∨

F‚�{(0, q2)}) = ProbT1nM
µ×δq0

(F {(0, q2)}) < 1. This shows that T1 nM is not decisive w.r.t.
{(0, q2)} from µ× δq0 .

E Technical results of Section 6

E.1 Additional technical results for Subsection 6.1
I Lemma 102. For every µ ∈ Dist(S)

(i) ProbTµ (FB ∧ (¬BU ‹B)) = 0;
(ii) ProbTµ (GFB ∧ F ‹B) = 0.
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Proof. We first prove point (i). Since B cannot be reached while we are in ¬B, it holds
that

ProbTµ (FB ∧ (¬BU ‹B)) = ProbTµ (¬BU (‹B ∧ FB)).

Relaxing the constraint on the until, we get ProbTµ (¬BU (‹B ∧FB)) ≤ ProbTµ (F (‹B ∧FB)),
and the latter is null by definition of ‹B. This proves the first item.

Point (ii) is straightforward from the definition of ‹B by observing that ProbTµ (GFB ∧
F ‹B) ≤ ProbTµ (F (‹B ∧ FB)) = 0. J

I Lemma 103. For every µ ∈ Dist(S), if T is PersDec(µ,B), then ProbTµ (F ‹B ∧ F ‹‹B) = 0.

Proof. Assume that T is PersDec(µ,B), i.e. for each p ≥ 0, ProbTµ (F≥pB ∨ F≥p ‹B) = 1.

Towards a contradiction, we suppose that ProbTµ (F ‹B ∧ F ‹‹B) > 0. Since

EvT (F ‹B ∧ F ‹‹B) =
⋃
n≥0

⋃
m≥0

EvT (F=n ‹B) ∩ EvT (F=m
‹‹B),

we deduce that there are n,m ≥ 0 such that ProbTµ (F=n ‹B ∧ F=m
‹‹B) > 0. We write e

for the event e = EvT (F=n ‹B ∧ F=m
‹‹B). We can show that ProbTµ (F≥nB | e) = 0 and

ProbTµ (F≥m ‹B | e) = 0. Indeed we get that:

ProbTµ (F≥nB | e) =
ProbTµ ((F≥nB) ∧ e)

ProbTµ (e)

≤
ProbTµ (F≥nB ∧ F=n ‹B)

ProbTµ (e)
= 0

from the definition of ‹B. The equality ProbTµ (F≥m ‹B | e) = 0 is proved similarly. Writing
q = max(m,n), it follows that

ProbTµ (F≥q B ∨ F≥q ‹B | e) = 0.

And since ProbTµ (e) > 0, this contradicts the fact that T is PersDec(µ,B), which concludes
the proof. J

E.2 Qualitative analysis of simple properties
I Proposition 104. Let µ ∈ Dist(S). Then we have the following implications, yielding
various characterizations for the qualitative analysis of STSs (under specified assumptions):
Almost-sure reachability

if ProbTµ (FB) = 1 then ProbTµ (¬BU ‹B) = 0;
if T is Dec(µ,B) and ProbTµ (¬BU ‹B) = 0, then ProbTµ (FB) = 1.

Almost-sure repeated reachability
if ProbTµ (GFB) = 1 then ProbTµ (F ‹B) = 0;
if T is StrDec(µ,B) and ProbTµ (F ‹B) = 0, then ProbTµ (GFB) = 1.

Positive repeated reachability
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if T is Dec(µ, ‹B) and if ProbTµ (GFB) > 0, then ProbTµ (F ‹‹B) > 0;

if T is PersDec(µ,B) and if ProbTµ (F ‹‹B) > 0, then ProbTµ (GFB) > 0.

Proof. We start with almost-sure reachability. We start with the first implication. Since
the event EvT (FB) is almost-sure, we have

ProbTµ (¬BU ‹B) = ProbTµ ((¬BU ‹B) ∧ FB)

and then it is straightforward from point (i) of Lemma 102.
In order to prove the other implication, we need the assumption that T is Dec(µ,B).

We have that:

1 = ProbTµ (FB ∨ F ‹B) = ProbTµ (FB ∨ (¬BU ‹B)) from Lemma 14 (fifth item)

= ProbTµ (FB) + ProbTµ (¬BU ‹B) from Lemma 102 (point (i)).

Then from ProbTµ (¬BU ‹B) = 0, we derive that ProbTµ (FB) = 1.

We now consider almost-sure repeated reachability. Since the event EvT (GFB) is
almost-sure, we have

ProbTµ (F ‹B) = ProbTµ (F ‹B ∧GFB)

and then it is straightforward from point (ii) of Lemma 102.
In order to prove the second item, we assume that T is StrDec(µ,B), i.e. ProbTµ (GFB∨

F ‹B) = 1. By assumption, the event EvT (F ‹B) has probability 0, and thus EvT (GFB) is
almost-sure.

We now consider positive repeated reachability. For the first item, we only require T to
be Dec(µ, ‹B), that is ProbTµ (F ‹B∨F ‹‹B) = 1. Since the event EvT (F ‹B∨F ‹‹B) is almost-sure,
we derive the equality:

ProbTµ (GFB) = ProbTµ (GFB ∧ (F ‹B ∨ F ‹‹B)) .

Now from point (ii) of Lemma 102, we get that ProbTµ (GFB∧(F ‹B∨F ‹‹B)) = ProbTµ (GFB∧

F ‹‹B). Therefore ProbTµ (GFB ∧ F ‹‹B) = ProbTµ (GFB) > 0, and thus ProbTµ (F ‹‹B) > 0.

Assume now that T is PersDec(µ,B) and that ProbTµ (F ‹‹B) > 0. Lemma 103 implies that
ProbTµ (F ‹B) < 1. Since PersDec(µ,B) implies StrDec(µ,B), it follows that ProbTµ (GFB ∨
F ‹B) = 1 and thus, ProbTµ (GFB) > 0. J

F Technical results of Section 7

I Proposition 105 (Approximation scheme for reachability properties). If T is Dec(µ,B), then
the two sequences (pYes

n )n and (1− pNo
n )n are adjacenta and converge to ProbTµ (FB).

a Recall that two sequences (an)n∈N and (bn)n∈N are said adjacent if w.l.o.g. (an) is non-decreasing,
(bn) is non-increasing and the sequence (an − bn)n∈N converges to 0.
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Proof. We have that:

lim
n→+∞

pYes
n + pNo

n = ProbTµ (FB) + ProbTµ (¬BU ‹B)

= ProbTµ (FB ∨ (¬BU ‹B)) from point (i) of Lemma 102

= ProbTµ (FB ∨ F ‹B) from Lemma 14 (fifth item)
= 1 .

The last equality comes from the decisiveness assumption. J

I Proposition 106 (Approximation scheme for repeated reachability). If T is PersDec(µ,B)
and Dec(µ, ‹B), then the two sequences (qYes

n )n and (1− qNo
n )n are adjacent and converge to

ProbTµ (GFB).

Proof. Since T is Dec(µ, ‹B), it holds that ProbTµ (F ‹B ∨F ‹‹B) = 1. Since T is PersDec(µ,B),
one derives from Lemma 103 that

ProbTµ (F ‹‹B) = 1− ProbTµ (F ‹B).

We can now show that

1− ProbTµ (F ‹B) = ProbTµ (GFB).

It comes from the fact that PersDec(µ,B) is equivalent to StrDec(µ,B) and from point (ii)
of Lemma 102. This proves the first part of the corollary.

Finally, we can directly establish from Lemma 103 and from the hypothesis Dec(µ, ‹B),
that limn→+∞ qYes

n + qNo
n = 1. J

G Technical results of Section 8

In this section, we argue why GSMPs with no cycle of immediate events are almost-surely
non-zeno. We call immediate event a fixed-delay event with delay 0.

I Lemma 107. Let G = (Q, E , `, u, f,E,Succ) be a GSMP with no cycle with immediate
fixed-delay events. Fix q0 ∈ Q an initial state, and µ the measure assigning probability 1 to
q0. Then:

ProbTGµ ({ρ ∈ Paths(TG) | ρ is zeno}) = 0

Sketch. Let d > 0 be smaller than any constant appearing in the non-immediate events of
G. There is λ0 > 0 such that for every non-immediate event e,

∫∞
t=d fe(t)dt ≥ λ0.

We consider a non-stochastic interpretation of G, where delays of events are selected
non-deterministically in the supports of the distributions. Pick a finite run ρ that can be
generated that way from an initial configuration, and let γ = (q, ν) be its last configuration.
In any firable sequence of transitions q E1−−→ q1 . . .

EN−−→ qN of length N > |Q| · |E| from γ,
there is an event which is newly enabled along that sequence, and there is 1 ≤ i < k ≤ N

with e ∈ E(qj) for every i ≤ j < k and e ∈ Ek.
Towards a contradiction assume it is not the case, then this means that each event e in Ei

for some 1 ≤ i ≤ N is either an immediate event or an event in E(q)∩
⋂
j<i E(qj)∩

⋂
j<iE

c
j

(that is, e was already enabled in q, it is fired by Ei, and was not disabled inbetween).
There can be at most |E(q)| ≤ |E| such events which are not immediate. Furthermore, by
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assumption, there is no cycle with only immediate events. Hence as soon as N > |Q| · |E|,
this is not possible. Hence, this implies the above claim.

Hence with probability lower-bounded by λ0, the duration of a continuation of ρ along
that sequence of edges will be larger than d. Hence, providing more details here, we deduce
that almost-surely, runs will diverge. J
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