
UMONS

Faculté des Sciences

Département de Mathématiques

Veri�cation and synthesis of MITL
through alternating timed automata

Morgane Estiévenart

A dissertation submitted in ful�lment of the requirements of

the degree of Docteur en Sciences

Advisor Jury

Pr. Thomas Brihaye Pr. Thomas Brihaye

Université de Mons, Belgium Université de Mons, Belgium

Pr. Gilles Geeraerts Pr. Véronique Bruyère

Université libre de Bruxelles, Belgium Université de Mons, Belgium

Pr. Gilles Geeraerts

Université libre de Bruxelles, Belgium

Pr. Nicolas Markey

École Normale Supérieure de Cachan, France

Pr. Jean-François Raskin

Université libre de Bruxelles, Belgium

Pr. Cédric Rivière

Université de Mons, Belgium

September 2015

Acknowledgements

Mes premiers remerciements vont à mes deux co-directeurs de thèse Thomas

Brihaye et Gilles Geeraerts, qui ont cru en moi en m'acceptant comme doctorante.

Je voudrais leur exprimer ma gratitude pour m'avoir accompagnée tout au long

de ces quatre années et pour m'avoir guidée dans chacune des activités de la

vie d'un chercheur que j'ai découverte à leurs côtés. Votre expérience et vos

conseils judicieux ont été d'une grande aide: ils m'ont notamment permis de

me familiariser avec la formalisation d'idées clés et la rédaction (en anglais !)

de papiers. Merci également pour votre compréhension face à mes di�cultés en

anglais et mon aversion des longs voyages avec lesquelles il n'a pas toujours été

facile de composer.

Je remercie ensuite tous les membres de mon jury pour avoir eu le courage

d'accepter la relecture de ma thèse et la tâche de la juger.

Je me dois aussi de remercier ma famille qui a toujours cru en moi, sûrement

plus que je n'en suis moi-même capable. Merci d'avoir toujours été là pour moi et

de m'avoir toujours soutenue dans mes choix. Merci de m'aider et de m'épauler

dans mes entreprises, même les plus farfelues ! Merci pour votre gentillesse et

vos attentions, biens rares dont j'ai la chance de pouvoir pro�ter.

Je n'oublie pas non plus mes amis, pour les moments de détente nécessaires à

la décompression. Je les remercie pour tous ces moments partagés, ces nombreux

iii

iv

fous rires et les soirées inoubliables au Kot et Jeux ou ailleurs, souvent autour de

jeux de société, toujours dans la joie de vivre et la bonne humeur !

Table of Contents

Acknowledgements iii

List of Figures xi

List of Tables xvii

List of Algorithms xix

1 Introduction 1

2 Preliminaries 9

2.1 Basic notions . 11

2.2 Automata . 14

2.3 Alternating automata . 20

2.4 Linear Temporal Logic . 29

v

vi Table of Contents

2.4.1 The LTL syntax and semantics 29

2.4.2 The problems . 31

2.5 From LTL to Alternating Automata 34

2.6 Timed automata . 36

2.7 Alternating timed automata . 44

2.8 Metric Temporal Logic . 57

2.8.1 MTL syntax and pointwise semantics 58

2.8.2 The problems . 60

2.9 From MTL to OCATA . 85

2.10 The continuous semantics . 88

2.10.1 Timed state sequences . 88

2.10.2 Timed automata and alternating timed automata 90

2.10.3 Metric Temporal Logic . 90

2.11 Alternative real-time logics . 95

2.11.1 MITL . 96

2.11.2 MITL0,8 . 97

2.11.3 ECL . 98

2.11.4 LTL� . 102

vii

I MITL Satis�ability and Model-Checking 105

3 An interval semantics for OCATA 107

4 MITL satis�ability and model-checking over �nite words 127

4.1 From MITL to timed automata 128

4.1.1 The approximation functions f�Φ 130

4.1.2 Towards a timed automaton 144

4.2 MITL model-checking: the techniques 151

4.3 Antichain-based heuristic . 167

4.4 Zone-based algorithm . 186

4.5 Order-based heuristic for zones 202

5 MITL satis�ability and model-checking over in�nite words 207

5.1 TOCATA: a class of OCATA for MITL 208

5.1.1 Tree-like OCATA . 209

5.1.2 Properties of TOCATA 213

5.2 From MITL to Büchi Timed Automata 220

5.2.1 A Büchi transition system for each OCATA 221

5.2.2 Towards a Büchi timed automaton 227

5.3 MITL model-checking with TOCATA: the techniques 235

viii Table of Contents

5.4 Region-based algorithm . 238

5.5 Zone-based algorithm . 250

6 Experimental results 263

II MITL Reactive Synthesis 279

7 MITL BRSPlant algorithm 281

7.1 Towards a timed game . 282

7.2 Towards a deterministic STS . 290

7.3 The algorithm . 301

7.4 Order-based algorithms . 307

8 Experimental results 323

9 Conclusion and future work 331

A Proofs of Propositions 4.8 and 4.9 335

B Proofs of the bisimulation lemma over �nite and in�nite words345

C Proof of Proposition 5.20 353

D Other proofs of Section 5.4 361

ix

E Proof of Proposition 5.50 365

Bibliography 371

List of Figures

2.1 The automaton B. 14

2.2 The automaton Bdet. 16

2.3 A non-determinizable Büchi automaton. 17

2.4 The automaton D. 17

2.5 Alternating automaton A . 21

2.6 Alternating automaton A . 23

2.7 Representations of a run of an alternating automaton. 24

2.8 Alternating automaton A . 27

2.9 Automaton BA such that LpAq � LpBAq 27

2.10 Büchi automaton BMH such that LωpAq � LωpBMHq 28

2.11 Run on the word acbca. 28

2.12 OCATA AΦ with Φ � 2pañ ♦bq. 36

xi

xii List of Figures

2.13 TA B . 40

2.14 A non-determinizable timed automaton. 42

2.15 OCATA A . 46

2.16 The OCATA A . 48

2.17 OCATA A . 51

2.18 Two views on a �nite run of the OCATA in Figure 2.17. 52

2.19 The timed automaton B. 54

2.20 The alternating timed automaton BC 54

2.21 The Büchi alternating timed automaton A. 58

2.22 The co-Büchi alternating timed automaton AC 58

2.23 Encoding of a run presenting an insertion error of C 64

2.24 Channel machine C . 65

2.25 The STS ST � pS, s0,∆, F q (left) and its corresponding timed

automaton (right). 71

2.26 The STS ST 1 � pS1, s10,∆1, F 1q. 71

2.27 The STS STΦ. 75

2.28 The STS ST (left) and the plant P (right). 78

2.29 A plant P. 80

2.30 A plant P (left) and a plant P 1 (right). 83

xiii

2.31 The deterministic STS STΦ (left) and ST 1Φ (right). 83

2.32 OCATA AΦ with Φ � 2pañ ♦r1,2sbq. 87

2.33 OCATA A with LpAq �
q
2pañ ♦r1,2sbq

y
. 87

2.34 Channel machine C . 94

2.35 Encoding of a run of C . 95

2.36 Relative expressiveness over in�nite words for the pointwise se-

mantics (left) and the continuous semantics (right). 103

3.1 OCATA A . 112

3.2 An OCATA A on Σ � tau. 114

3.3 OCATA AΦ with Φ � 2pañ ♦r1,2sbq. 118

3.4 Several OCATA runs. 119

3.5 OCATA A . 125

3.6 Run and f -run of A. 125

4.1 OCATA AΦ with Φ � 2pañ ♦r1,2sbq. 128

4.2 The grouping of clocks. 129

4.3 Several OCATA runs. 129

4.4 An OCATA A for formula Φ � 2
�
añ

�
♦r0,1sb^ ♦r0,1sc

��
. . . . 132

4.5 OCATA AΦ with Φ � 2pañ ♦r1,2sbq. 150

4.6 The timed automaton BΦ. 151

xiv List of Figures

4.7 OCATA A Φ with Φ � 2pañ ♦r1,3sbq. 154

4.8 A timed automaton B. 154

4.9 Representation of a part of SB, Φ. 155

4.10 (above) Summarize on H. (below) Summarize on con�gurations. 171

4.11 OCATA A Φ with Φ � 2pañ ♦r1,3sbq. 189

4.12 A timed automaton B. 189

5.1 A TOCATA example . 210

5.2 An OCATA A for formula Φ � 2
�
añ

�
♦r0,1sb^2r0,4r

�
♦r0,1sc

���
. 211

5.3 OCATA A Φ with Φ � 2pañ ♦r1,3sbq. 237

5.4 A timed automaton B. 237

5.5 Representation of a part of SB, Φ. 238

5.6 OCATA A Φ with Φ � 2pañ ♦r1,3sbq. 253

5.7 A timed automaton B. 253

6.1 OCATA A with LpAq �
q
2pañ ♦r1,2sbq

y
. 264

6.2 Blift2 . 266

7.1 An atomic STS. 283

7.2 The atomic STS ST . 284

7.3 The atomic STS ST . 289

xv

7.4 The STS STP,µ. 289

7.5 The STS STP,ν . 290

7.6 The STS STP,µ. 293

7.7 The complete OCATA A Φ. 293

7.8 Representation of a part of STP, Φ. 294

7.9 Representation of a part of ST �P, Φ. 297

7.10 Representation of a part of ST �P, Φ. 302

7.11 Representation of a part of Det. 302

7.12 Representation of the situation of case 2., when minpDq has no
successor. 318

7.13 Relative inclusions of T , T�, T� and, according to isomorphism,

of T�min and T�min. 321

8.1 The plant P used to represent the scheduling problem. 324

List of Tables

2.1 Summary of the decidability results for the MTL model-checking

problems . 95

6.1 Finite words without order - Benchmark for the satis�ability. Re-

ported values are execution time in ms / number of explored re-

gions or zones. 269

6.2 Finite words with order - Benchmark for the satis�ability. Re-

ported values are execution time in ms / number of explored re-

gions or zones. 270

6.3 Finite words without order - Benchmark for the model-checking.

Reported values are execution time in ms / number of explored

regions or zones. 272

6.4 Finite words with order - Benchmark for the model-checking. Re-

ported values are execution time in ms / number of explored re-

gions or zones. 273

xvii

xviii List of Tables

6.5 In�nite words without order - Benchmark for the satis�ability.

Reported values are execution time in ms / number of explored

regions or zones. 276

6.6 In�nite words without order - Benchmark for the model-checking.

Reported values are execution time in ms / number of explored

regions or zones. 277

8.1 Scheduling problem - Controllable formulas. Reported values are

execution time in ms, followed by the number of constructed loca-

tions of Det / of ST �P, Φ. 326

8.2 Scheduling problem - Uncontrollable formulas. Reported values

are execution time in ms, followed by the number of constructed

locations of Det / of ST �P, Φ. 327

8.3 Lift problem. Reported values are execution time in ms, followed

by the number of constructed locations of Det / of ST �P, Φ. . . . 330

List of Algorithms

1 EmptinessAlgorithm . 19

2 EmptinessAlgorithmIn�niteWords 20

3 MITLModelChecking . 166

4 NaiveMITLModelChecking . 167

5 UpwardClosureReach . 174

6 MinReach . 178

7 OptimizedMinReach . 181

8 ImprovedMITLModelChecking 185

9 MITLModelCheckingWithZones 202

10 MITLModelCheckingOverIn�niteWords 248

11 MITLModelCheckingOverIn�niteWordsWithZones 262

xix

. .CHAPTER 1

Introduction

Nowadays, computer systems are frequently used in our daily life. We �nd

them in a multitude of current life devices : smartphones, cars, online banking,

. . . Such systems often work in continuous interaction with their environment

and are so called reactive systems.

For economic reasons as well as security purposes, it is important that reactive

systems do not experience any error. In certain �elds, this property is even

essential. For instance, it is unacceptable that an air tra�c control system is

erroneous: numerous lifes are at stake. However, by the past, several reactive

systems caused casualties. We can cite the death by radiation overdose of at least

six cancer patients, due to a software bug in the control part of the radiation

therapy machine Therac-25, between 1985 and 1987. The correctness of reactive

systems may also cause big �nancial losses. It was the case for Intel in 1994: they

commercialized processors `Intel Pentium II' containing a �oating point division

bug. It cost $475 million to replace these erroneous processors. Another well-

known bug example is the explosion of the rocket Ariane 5 in 1996, a few seconds

after its launch. This was due to a conversion in its guidance system, of a 64-bit

1

2 Chapter 1. Introduction

�oating point number to a 16-bit signed integer.

To avoid those disastrous situations, the need of techniques and tools to verify

the correctness of reactive systems grew. The classical technique used to try to

ensure the correctness of a software is the testing. However, to test a system for

correctness takes a lot of time and, furthermore, it is not an infallible technique.

Indeed, the testing of a software enables to verify several (various) behaviours

of the system... but not all of them! So, as Dijkstra said, testing enables to

detect the presence of a bug, but not to ensure their absence. The �eld of formal

veri�cation, a branch of theoretical computer science, is dedicated to the research

of solutions for these problems. The most famous approach to this problem is

probably the model-checking technique [10].

Model-checking. Model-checking is a formal veri�cation method that enables

to prove the correctness of reactive systems. To perform model-checking, amodel-

checker is given two entries: piq a representation of the system to analyse and piiq

a property the system must satisfy. Generally, the system is modeled by means

of a Büchi automaton B [10, 37] and the property to prove is usually expressed

using a linear temporal logic (LTL) formula [53]. Establishing the correctness of

the system amounts to showing that the language LpBq of the system (represent-

ing all its possible behaviors) is included in the language of a Büchi automaton

BΦ recognizing the language JΦKω of the formula (representing the correct be-

haviors). More recently, another technique uses a preliminary translation of Φ

into an alternating automaton AΦ recognizing JΦKω. AΦ is then turned into a

Büchi automaton BΦ recognizing the same language. This technique enables to

construct BΦ from AΦ on the �y, so that an answer to the model-checking prob-

lem might be given back before the entire automaton BΦ is constructed.

Those checking methods have reached a deep maturity level, as can be seen

from the various industrial and academical existing tools, such as SPIN [58] and

nuSMV [24]. Recently, a new promising approach, based on antichains has been

developed in the academical sector. This approach has allowed to revisit several

classical algorithms as language inclusion and universality for automata over �nite

3

words [64] and in�nite words (with Büchi acceptance condition) [29]. Antichains

also enable to revisit algorithms for the LTL satis�ability and model-checking

problems [66]. Promising software tools, as ALASKA [65] and ALPAGA [13],

based on those new algorithms, have allowed to quantify the e�ciency of this

antichain approach.

Although those tools, used in the industrial sector, enabled to verify a multitude

of reactive systems, the veri�cation of a lot of them is limited by the expressiv-

ity of LTL. Indeed, LTL only allows to express qualitative properties about the

sequence of events happening in the systems. This logic allows, for example, to

express the following property: `every request will �nally be followed by a grant'.

In reactive system modeling, it is often necessary to express real-time quanti-

tative constraints. In the previous example, the guaranty of the existence of a

grant might not be a su�cient information, in some practical cases. As a matter

of fact, the elapsed time between the request and the grant cannot be ignored

to ensure the correctness of the system. LTL does not allow to express those

quantitative aspects, therefore it is natural to consider real-time extensions of

this logic as the Metric Temporal Logic (MTL), introduced in [39]. MTL allows

to express, for example, the following property: `Every request will be followed

by a grant within three seconds'. Timed automata [4], taking into account those

real-time aspects present in the systems, have also been introduced. Those kind

of automata thus allow to describe reactive systems taking into account their

real-time aspects.

Hence, timed automata and MTL compose a `real-time' twin of Büchi automata

and LTL. Unfortunately, the MTL model-checking problem over in�nite words is

undecidable [7] and it is decidable (but non primitive recursive) over �nite words

(for the pointwise semantics). The couple timed automata/MTL is therefore not

a good candidate to reach real-time veri�cation methods that could be used in

practice. This explains why very few tools performing real-time veri�cation are

actually available, with the notable exception of the UPPAAL tool [41], that can

only check a restricted set of non-quantitative properties (no real-time). Practi-

cal and e�cient tools allowing to verify a wide range of real-time properties over

models as automata would nevertheless be useful as well to the academic sector

4 Chapter 1. Introduction

as to the industrial one. It is in this spirit that several research works considered

restrictions of MTL, to get round the undecidability limit. This thesis also takes

part in this line of research.

Metric Interval Temporal Logic. Facing the undecidability and high com-

plexity level over the problems linked to MTL, several fragments of MTL were in-

vestigated. A noticeable one is the Metric Interval Temporal Logic (MITL), a syn-

tactic fragment of MTL [5]. Its model-checking was proved to be 2EXPSPACE-

complete in [5], thanks to the construction, for any MITL formula Φ, of a Büchi

timed automaton BΦ recognizing JΦKω. However, this construction is unintu-

itive and not amenable to an e�cient implementation. Indeed, the de�nition of

BΦ does not enable to construct this automaton on the �y, but obliges to con-

struct it entirely before we can compare it to the language of the system of the

model-checking problem. An alternative technique, based on the notion of signal

has been proposed by Maler et al. in [44]. However the semantics used there

slightly di�ers from that of [5]. As far as we know, these theoretical results never

led to any implementation of an MITL model-checker. Notice that, as a twin

of the LTL case, Ouaknine and Worrell [51] showed how each MTL formula Φ

(and so, in particular, each MITL formula) can be translated into an alternating

timed automaton with one clock (OCATA) recognizing JΦK (over �nite words).

However, this line of research had never been pursued, in way to perform MITL

model-checking using this translation. This is the object of the �rst part of this

thesis.

Reactive synthesis. As we have just seen, model-checking enables to auto-

matically verify the correctness of a given system, regarding a desired property.

Nevertheless, this veri�cation can only be performed once the system has already

been developed. This way, if a model-checker detects an error, the system must

be design again. To avoid this `trial and error' approach, the reactive synthesis

has been proposed. Given a property, expressed by an LTL formula, the reactive

synthesis problem consists in �nding how a system might be designed to satisfy

the given property. This way, the created system is correct by construction: it is

5

not necessary to verify it anymore.

The LTL reactive synthesis problem was �rst studied in [54] and [1]: it was proved

to be 2EXPTIME-complete. This high complexity has �rst hindered the devel-

opment of algorithm, e�cient in practice, to solve the LTL reactive synthesis

problem. More recently, the use of antichains and e�cient data structures en-

abled to overcome those di�culties and to develop interesting heuristics to solve

this problem [32].

As for the model-checking problem, real-time twins to the LTL reactive synthesis

have been proposed. On the one hand, the reactive synthesis of the Event-Clock

Logic (ECL) was investigated in [36], but was showed to be undecidable. On

the second hand, a reactive synthesis using timed automata and MTL has also

been investigated. In [31], the authors consider a speci�cation represented by

a timed automaton. They show that the reactive synthesis de�ned this way is

undecidable. However, the problem becomes again decidable when �xing a priori

the resources (number of given clocks, maximal constant used and the precision)

provided to synthesize a correct system. In [17], the MTL reactive synthesis is

considered. Once again, it is showed to be undecidable in general but decidable

for �xed ressources, over �nite words. Precisely, the MTL reactive synthesis, with

�xed resources, over �nite words, is showed to be a non-primitive recursive prob-

lem. This theoretical result hinders to develop an algorithm solving this problem

and feasible in practice.

Structure and contributions of the thesis. Let us now present the contri-

butions of each chapter of this thesis.

Chapter 2 is dedicated to basic de�nitions. We also present some existing

results related to the framework of this thesis. In particular, we present the

translation from each MTL formula Φ to an OCATA recognizing JΦK ([51]). The
thesis is then divided into two parts, respectively dedicated to the model-checking

and the reactive synthesis of MITL.

Part I. This part is dedicated to the MITL model-checking. In Chapter 3, we

introduce a new semantics for OCATA, parametrized by an approximation func-

6 Chapter 1. Introduction

tion. We prove that, in general, the language it produces is an underapproxima-

tion of the language obtained with the classical semantics. Chapter 4 is devoted

to the setting of �nite words. We show that, when considering an OCATA AΦ

recognizing the language of an MITL formula Φ and using a particular approx-

imation function, our semantics and the classical one correspond, i.e. AΦ also

recognizes JΦK with our semantics (parametrized by the appropriate approxima-

tion function). Using our new semantics, we then show that we can turn AΦ into

a timed automaton over �nite words recognizing JΦK, in an intuitive way. Then,

we present our techniques to perform on the �y MITL model-checking from AΦ,

using regions as well as zones. We furthermore introduce some heuristics using

antichains for these algorithms. The results obtained in Chapters 3 and 4 were

subject to a publication: [19] (arXiv reference: [20]). Chapter 5 is dedicated

to in�nite words: its aim is to extend the results of Chapter 4 to this setting.

Although this extension may seem intuitive, the formal mecanism to obtain it

is not trivial. In particular, we need to introduce and study a particular class

of OCATA, that we called tree-like OCATA (TOCATA). We remark that each

OCATA AΦ produced from an MITL formula Φ is in fact a TOCATA. A partic-

ularly interesting property of TOCATA is that they are easily complementable.

This is the basis result enabling to extend the results obtained over �nite words

to the setting of in�nite words. In Chapter 6, we present the results obtained

using our prototype of tool implementing the algorithms of Chapters 4 and 5, on

some benchamarks. The contributions obtained in Chapters 3 and 4 were also

subject of a publication: [21] (arXiv reference: [22]).

Part II. In this second part, we study the MITL reactive synthesis with �xed

resources. We follow the techniques developed in [17] over MTL, for the particular

case of MITL. In this paper, an OCATA AΦ is used to represent the language

JΦK (over �nite words) of the MTL formula Φ of the reactive synthesis problem.

We show how the techniques of [17] may be adapted using our new semantics

over AΦ, for an MITL formula Φ. Then, we show that, while the MTL reactive

synthesis was proved to be a non primitive recursive problem in [17], we provide

an algorithm executing in time triply exponential in the size of Φ for the particular

7

case of MITL.

We conclude this thesis by Chapter 9, in which we list some possible exten-

sions of our work.

. .CHAPTER 2

Preliminaries

In this chapter, we recall some basic notions and �x useful notations. We

will furthermore discuss about di�erent kinds of automata and temporal logics.

The �rst sections are addressed to untimed automata and untimed logics, we

then move on to the timed setting. In the �rst sections, we will focus on the

pointwise semantics of all these objects. Then, for the sake of completeness,

we will dedicate a section to the continuous semantics for the automata and

temporal logics previously de�ned. However, in the following chapters, we will

only be interested in the pointwise semantics: the contributions of this thesis

only concern this setting.

The �rst section �xes notations for intervals and recalls the notions of words,

timed words and language.

The following sections concerns the untimed setting, over the pointwise se-

mantics. We begin by recalling the notions of automaton (over �nite words), of

Büchi automaton (over in�nite words), of runs and languages. We will then be

interested in their determinized versions and in their complements. We �nally

9

10 Chapter 2. Preliminaries

present well-known results about their emptiness and universality problems.

We also present the classes of alternating automata over �nite and in�nite words:

we recall how are de�ned their runs and languages. We then present an existing

method to translate an alternating automaton over �nite words into an automa-

ton over �nite words recognizing the same language. We end exhibiting such a

translation for the setting of in�nite words.

The Linear Temporal Logic (LTL) is the �rst logic we are interested in. We

recall its syntax andpointwise semantics. Several problems over LTL were stud-

ied in the litterature. We consider the LTL satis�ability, model-checking and

reactive synthesis problems: we present the associated decidability and complex-

ity results. We �nally recall an interesting translation from LTL formulas to

alternating automata recognizing the same languages.

We then enter the timed setting, over the pointwise semantics. We observe

timed automata (over �nite words) and Büchi timed automata (over in�nite

words), their runs and languages. We consider their determinization and de-

terminizability problems, and also discuss their complementation and their uni-

versality problems.

The classes of alternating timed automata with one clock (OCATA), over �nite

and in�nite words, are the last kinds of automata we are interested in. We re-

call the notions of run and languages of such automata. We then recall several

well-known results about their emptiness problem. Finally, we discuss their com-

plementation.

Then, we recall the de�nitions of the Metric Temporal logic (MTL), its syntax

and its pointwise semantics. We consider, as twins of the main problems over

LTL already de�ned, the MTL satis�ability, model-checking and reactive syn-

thesis problems. We present several alternative de�nitions of the MTL reactive

synthesis problem. We exhibit the known decidability and undecidability results

about them. As well as there exists a translation from LTL to alternating au-

tomata, each MTL formula can be translated into an OCATA recognizing its

language. This last translation will be described through a complete section and

used all along this thesis.

2.1 Basic notions 11

A section is then addressed to the continuous semantics. We de�ne timed

state sequences that are twins of timed words and recall the MTL continuous

semantics. We present those de�nitions for the sake of completeness but they

will not be used anymore for the rest of this thesis.

We end this chapter displaying some alternative real-time logics: we present

their syntax and their pointwise semantics. For the sake of completeness, we also

present their continuous semantics, although the contributions of this thesis only

concern the pointwise one. More precisely, we will consider the Metric Interval

Temporal Logic (MITL), its fragment MITL0,8, the Event-Clock Logic (ECL)

and its fragment LTL�. We exhibit some well-known results about these logics.

In particular, the MITL satis�ability and model-checking problems, to which we

will adress a complete part of this thesis, are known to be EXPSPACE-complete.

2.1 Basic notions

Let R, R�, N and N0 denote respectively the sets of real, non-negative real,

natural and strictly positive natural numbers.

The notion of `interval' will be often used is this thesis. It is a key point in

the de�nitions of the real-time logics and automata we will use. Here is its formal

de�nition and some useful notations.

De�nition 2.1. We call interval a convex subset of R. We rely on the classical

notation xa, by for intervals, where x and y are r or s, a P RYt�8u, b P RYt�8u
and a ¤ b.

For an interval I � xa, by, we call a and b the endpoints of I. We let infpIq � a

be the in�mum of I, suppIq � b be its supremum and |I| � suppIq � infpIq be its

length. If x is r (respectively s) we say that I is left-closed (respectively left-open).

If y is s (respectively r) we say that I is right-closed (respectively right-open).

De�nition 2.2. We note IpRq the set of all intervals. Similarly, we note IpR�q

12 Chapter 2. Preliminaries

(respectively IpN8qq the set of all intervals whose endpoints are in R� (respec-

tively in NY t�8u).

De�nition 2.3. Let I, J P IpRq, t P R�, r P R and ' P t ,¡u. we note:

� I � t for the interval ti� t P R | i P Iu,

� I � t for the interval ti� t P R | i P I and i ¥ tu,

� I J i� @i P I,@j P J : i j,

� I ' r i� @i P I, i ' r.

De�nition 2.4. For I1, I2 P R, with I1 � x1 a, b y1, I2 � x2 c, d y2 and I1 I2,

we say that I1 and I2 are adjacent i� b � c and I1 Y I2 � x1 a, d y2.

The logics de�ned later enable to provide properties about words and timed

words. In the same way, the automata we will de�ned are acceptors of (timed)

words. These words are de�ned over an alphabet, which is a (�nite or in�nite)

set of elements called letters.

De�nition 2.5. A word over the alphabet Σ is a �nite or in�nite sequence σ �

σ1σ2σ3 . . . of elements in Σ.

We denote by |σ| � n the length of σ: it is the number of elements of σ, when σ

is �nite; and �8 otherwise.

We denote by ε the empty word. |ε| � 0.

We denote by Σ� the set of all �nite words over Σ and by Σω the set of all in�nite

words over Σ.

Example 2.6. Let us consider the alphabet Σ � ta, bu.

σ � aaabab is an element of Σ�: it is a �nite word over Σ. The length of σ is

equal to 6: |σ| � 6.

The word σ1 � ababab . . . is an element of Σω: it is an in�nite word over Σ and

|σ1| � �8. In the sequel, we will sometimes use ω-regular expressions to simply

represent languages. Here, σ1 can also be written pabqω.

2.1 Basic notions 13

De�nition 2.7. A time sequence τ � τ1τ2τ3 . . . is a word over R� such that

@i |τ |, τi ¤ τi�1.

A timed word over the alphabet Σ is a pair θ � pσ, τq where σ is a word over Σ,

τ a time sequence and |σ| � |τ |. We also note θ as pσ1, τ1qpσ2, τ2qpσ3, τ3q . . ., and

let |θ| � |σ|.

We note ε the empty timed word, we have |ε| � 0.

We denote by TΣ� the set of all �nite timed words over Σ and by TΣω the set of

all in�nite timed words over Σ.

De�nition 2.8. A language is a (possibly in�nite) set of words and a timed

language is a (possibly in�nite) set of timed words.

Remark 2.9. In the sequel, we indi�erently call language a set of �nite words

or a set of in�nite words. In general, the kind of considered words will be clear

from the context, otherwise, it will be speci�ed.

The same remark holds for timed languages.

Example 2.10. Let us consider the alphabet Σ � ta, bu. Let us note σ � aaabab

and τ � 0.2 1 3.4 3.35 3.4 6. θ � pσ, τq is an element of TΣ�: it is a �nite timed

word over Σ. We can also denote θ as pa, 0.2qpa, 1qpa, 3.4qpb, 3.35qpa, 3.4qpb, 6q.

The length of θ is equal to 6: |θ| � 6.

Let us note σ1 � ababab . . . and τ 1 � 0 1 2 3 4 5 θ1 � pσ1, τ 1q is an el-

ement of TΣω: it is an in�nite timed word over Σ. θ1 can also be denoted

θ1 � pa, 0qpb, 1qpa, 2qpb, 3qpa, 4qpb, 5q . . . and |θ1| � �8.

Let us note θ2 � pσ2, τ2q with: @i ¥ 1, σi � a; τ1 � 0 and @j ¥ 2, τj � τj�1�
1
2j
.

θ2 is also a timed word.

Let us note L1 � tθu: it is a timed language (of �nite timed words) over Σ.

The set L2 of in�nite timed words over Σ whose �rst letter is a is also a timed

language (of in�nite timed words): L2 � tθ � pσ, τq | σ1 � a ^ |θ| � �8u. We

have that: θ2 P L2.

For the untimed setting, L3 � tσ
1u and L4 � Σ� are languages over Σ, respec-

tively of in�nite and �nite words.

14 Chapter 2. Preliminaries

`0

`1

`2 `3

a

a

a, b a

b

a

Figure 2.1: The automaton B.

2.2 Automata

Before to consider the timed setting, we recall the simple notion of (untimed)

automaton ([37]). It is a classical model dating from the �fties and having a lot

of applications.

Here is the de�nition of the syntax of automata. We then distinguish au-

tomata accepting �nite words and Büchi automata, that accept in�nite words.

De�nition 2.11. An automaton (or a Büchi automaton (BA), when interpreted

over in�nite words) is a tuple B � pΣ, L, `0, F, δq, where Σ is a �nite alphabet,

L is a �nite set of locations, `0 P L is the initial location, F � L is the set of

accepting locations, and δ : L� Σ Ñ 2L is the transition function.

Example 2.12. As an example, consider the automaton B of Figure 2.1, over

the alphabet Σ � ta, bu. It has four locations `0, `1, `2 and `3. We represent

its initial location `0 with an ingoing arrow. The accepting locations from F are

drawn with a double circle: F � t`1, `3u. The transition function of B is given by:

δp`0, aq � t`0, `1, `2u, δp`0, bq � t`0u, δp`1, aq � t`1u, δp`1, bq � H, δp`2, aq � H,

δp`2, bq � t`3u, δp`3, aq � t`2u and δp`3, bq � H.

As we will see thanks to the following de�nitions, an automaton is an acceptor

of words.

2.2 Automata 15

De�nition 2.13. Let B � pΣ, L, `0, F, δq be an automaton. Let σ � σ1σ2σ3 . . .

be a (�nite or in�nite) word over Σ. We note `
σ
ÝÑ `1 i� `1 P δp`, σq. A run of

B on σ is a (respectively, �nite or in�nite) sequence of transitions labelled by σ,

i.e. a sequence of the form: `0
σ1ÝÑ `1

σ2ÝÑ `2 . . .
σiÝÑ `i

A �nite run is accepting if its last con�guration is accepting. An in�nite run is

accepting i� there are in�nitely many `i P F (i.e. we consider a Büchi acceptance

condition).

We say that a word σ is accepted by B i� there is an accepting run of B on σ.

De�nition 2.14. We denote by LpBq the set of �nite words accepted by an au-

tomaton B and by LωpBq the set of in�nite words accepted by B. We call LpBq
and LωpBq the languages of B, respectively over �nite and in�nite timed words.

Example 2.15. Consider again the automaton B of Figure 2.1. Let us observe

the �nite word σ � baba. Here are two possible runs of B on σ:

π1 � `0
b
ÝÑ `0

a
ÝÑ `2

b
ÝÑ `3

a
ÝÑ `2

π2 � `0
b
ÝÑ `0

a
ÝÑ `0

b
ÝÑ `0

a
ÝÑ `1

π1 is not accepting because `2 R F . Nevertheless, π2 is accepting (as `1 P F) and

so σ P LpBq. It is easy to see that LpBq consists in the �nite words over Σ whose

last letter is a or that �nish by `ab'. In a same way, LωpBq is the set of words

σ1σ2σ3 . . . over Σ such that: there is n0 ¥ 1 such that for all i ¥ n0, σi � a ; or

there is m0 ¥ 1 such that for all i ¥ 0, σm0�p2i�1q � a and σm0�2i � b. Using

ω-regular expressions:

LωpBq � pa� bq�aω � pa� bq�pabqω.

An interesting characteristic of automata is the fact that they can be deter-

ministic. A deterministic automaton has at most one run on each word.

De�nition 2.16. An automaton B � pΣ, L, `0, F, δq is deterministic i� for all

` P L, for all σ P Σ, |δp`, σq| ¤ 1.

16 Chapter 2. Preliminaries

t`0u t`0, `1, `2u t`0, `3u
a

b a

b

a

b

Figure 2.2: The automaton Bdet.

For each automaton B, interpreted over �nite words, we can construct a deter-
ministic automaton Bdet accepting the same language [55]. This can be done using

a method called the subset construction. Indeed, the locations of the determin-

istic automaton constructed are subsets of locations of the original automaton.

Here is the formal de�nition of Bdet:

De�nition 2.17. Let B � pΣ, L, `0, F, δq be an automaton. We de�ne the deter-

ministic automaton Bdet � pΣ, L1, `10, F 1, δ1q, with:

� L1 � 2L,

� `10 � t`0u,

� F 1 � tS � L | S X F � Hu,

� δ1 : L1 � Σ Ñ L1 such that δ1pS, σq �
�
`�PS δp`�, σq.

Theorem 2.18. For each automaton B, the deterministic automaton Bdet is such
that: LpBdetq � LpBq.

Example 2.19. The automaton Bdet of Figure 2.2 is the deterministic automaton

obtained from the automaton B of Figure 2.1 using the subset construction.

However, this subset construction fails over in�nite words, and, in general,

Büchi automata are not determinizable ([37]):

De�nition 2.20. A Büchi automaton B � pΣ, L, `0, F, δq is said determinizable

over in�nite words if there is a deterministic Büchi automaton Bdet such that

LωpBq � LωpBdetq.

2.2 Automata 17

`0 `1
b

a, b b

Figure 2.3: A non-determinizable Büchi automaton.

t`0u t`0, `1u

a b

b

a

Figure 2.4: The automaton D.

Theorem 2.21. In general, Büchi automata are not determinizable.

The Büchi automaton of Figure 2.3 recognizes the language of all in�nite

words containing a �nite number of a's. There is no deterministic Büchi automa-

ton recognizing this language.

Example 2.22. Let us consider the Büchi automaton of Figure 2.3. If we apply

the subset construction on this automaton, we obtain the automaton D of Fig-

ure 2.4. D is deterministic but it does not recognize anymore the language of all

in�nite words containing a �nite number of a's. For instance, pabqω P LωpDq.

This problem was overcome using another kind of automata called Muller au-

tomata. The structure of these automata is very close to that of Büchi automata,

but they accept words in a di�erent way.

De�nition 2.23. A Muller automaton is a tuple I � pΣ, L, `0,F , δq, where Σ

is a �nite alphabet, L is a �nite set of locations, `0 P L is the initial location,

F � 2L is a familly of sets of accepting locations, and δ : L � Σ Ñ 2L is the

transition function.

A Muller automaton I � pΣ, L, `0,F , δq accepts an in�nite word Σ if there

is a run (see De�nition 2.13) of I on σ such that the set of locations it goes

18 Chapter 2. Preliminaries

through in�nitely often is precisely one F P F . The language LωpIq of a Muller

automaton is the set of in�nite words accepted by I.

While a Büchi automaton is not determinizable in general, one can always

�nd a deterministic Muller automaton recgnizing its language.

Theorem 2.24 ([59]). For each Büchi automaton B, there is a deterministic

Muller automaton I such that LωpBq � LωpIq.

For a given automaton, a second interesting characteristic is the fact that

we can construct an automaton representing the complement of its language, as

de�ned below.

De�nition 2.25. Let B � pΣ, L, `0, F, δq be an automaton (respectively, be a

Büchi automaton). We say that B is complementable if there is an automaton

(respectively, a Büchi automaton) BC such that LpBCq � Σ�zLpBq (respectively,
such that LpBCq � ΣωzLpBq).

Theorem 2.26 ([59]). Each automaton over �nite words and each Büchi au-

tomaton is complementable.

De�nition 2.27. The emptiness problem asks, given an automaton (respectively,

a Büchi automaton) B, if LpBq � H (respectively, if LωpBq � H).

Theorem 2.28 ([10]). The emptiness problem is decidable for automata and

Büchi automata.

The emptiness problem for automata and Büchi automata can easily be solved

using graphs traversals. Indeed, to verify if the �nite word language of an au-

tomaton C is empty only consists in looking for a path to an accepting location

of C. Algorithm 1 answers the emptiness problem for automata over �nite words.

For a Büchi automaton B � pΣ, L, `0, F, δq, another �x-point algorithm is used,

to verify if a reachable accepting location of B is reachable from itself. Algo-

rithm 2 answers the emptiness problem for automata over in�nite words. It uses

the following notations, for ` � L, S � L and n P N:

2.2 Automata 19

� δpSq �
�
`PS δp`q;

� δnp`q � δpδn�1p`qq, with δ0p`q � ` and δ1p`q � δp`q;

� δ�p`q �
�
nPN

δnp`q and δ�p`q �
�
nPN0

δnp`q.

Remark that, as L is �nite, Dm P N : δ�p`q �
�m
n�1 δ

np`q.

Algorithm 1 EmptinessAlgorithm

Input: An automaton B � pΣ, L, `0, F, δq over �nite words.
Output: `true' i� LpBq � H.

1: S Ð `0

2: Spre Ð H

3: while S � Spre do

4: if there is an accepting ` P S then

5: return `false'

6: end if

7: Spre Ð S

8: S Ð S Y δpSq

9: end while

10: return `true'

De�nition 2.29. The universality problem asks, given an automaton (respec-

tively, a Büchi automaton) B � pΣ, L, `0, F, δq, if LpBq � Σ� (respectively, if

LωpBq � Σω).

Theorem 2.30. The universality problem is decidable for automata and Büchi

automata.

This result is closely linked to the fact that automata and Büchi automata

are complementable. Indeed, to decide the universality of a given automaton B,
we can compute the automaton BC , recognizing the complement of its language,

and then use the algorithm solving the emptiness problem on BC .

20 Chapter 2. Preliminaries

Algorithm 2 EmptinessAlgorithmIn�niteWords

Input: A Büchi automaton B � pΣ, L, `0, F, δq.
Output: `true' i� LpBq � H.

1: C Ð H

2: D Ð δ�p`0q X F
3: while C � D do

4: C Ð D

5: D Ð δ�pDq X F
6: end while

7: if D � H then

8: return true

9: else

10: return false

11: end if

2.3 Alternating automata

Alternating automata ([37]) are an extension of automata. In classical au-

tomata, all transitions from a unique location, labelled by the same letter can be

seen as disjunctions. For example, for the automaton of Figure 2.1, the transi-

tions from location `0 with letter a could be described as δp`0, aq � `0 _ `1 _ `2.

Alternating automata generalize plain automata in the sense that they admit

conjunctive transitions as well as disjunctive ones: `0 _ p`1 ^ `2q could also be a

transition, for an alternating automaton. Intuitively, when taking a conjunctive

transition, an alternating automaton creates several copies of itself that run in

parallel and must all accept the su�x of the word.

Syntax of alternating automata. To give the syntax of alternating automata,

we start by de�ning positive boolean formulas, which are used in the transition

function of alternating automata.

De�nition 2.31. Let L be a �nite set. The set of positive boolean formulas over

2.3 Alternating automata 21

`0 `1 `2

b a a, b

ba

Figure 2.5: Alternating automaton A

L, denoted by B�pLq, contains J, K, all elements from L, and all �nite boolean

combinations over L built with ^ and _.

De�nition 2.32. An alternating automaton is a tuple A � pΣ, L, `0, F, δq

where Σ is a �nite alphabet, L is a �nite set of locations, `0 is the initial location,

F � L is a set of accepting locations, δ : L � Σ Ñ B�pLq is the transition

function.

Example 2.33. As an example, consider the alternating automaton A in Fig-

ure 2.5, over the alphabet Σ � ta, bu. A has three locations `0, `1 and `2,

such that `0 is initial and `0 and `2 are �nal. Its transition function is given

by: δp`0, aq � `0 ^ `1, δp`0, bq � `0, δp`1, aq � `1, δp`1, bq � `2 and δp`2, aq �

δp`2, bq � `2. Observe that, in the �gure, we represent the (conjunctive) transi-

tion δp`0, aq � `0^`1 by an arrow splitting in two branches connected respectively

to `0 and `1. Intuitively, taking this transition means that, when reading an a

from location `0, the automaton should start two copies of itself, one in location

`0, and a second in location `1. Both copies should accept the su�x for the word

to be accepted (this notion will be de�ned formally in a following paragraph).

Semantics of alternating automata. We now explain the semantics of alter-

nating automata. We start by de�ning what is a con�guration of an alternating

automaton and how it can move from one con�guration to another using the

notion of minimal model.

De�nition 2.34. A con�guration of an alternating automaton A is a (possibly

empty) �nite set of locations of A. The initial con�guration of A is t`0u. A

22 Chapter 2. Preliminaries

con�guration is accepting i� all the locations it contains are accepting.

We note Config pAq the set of all con�gurations of A.

De�nition 2.35. Let L be a �nite set. A subsetM of L is a model of γ P B�pLq

if the truth assignment that assigns J to the elements ofM and K to the elements

of LzM satis�es γ. We say that M is a minimal model of γ i� M is a model of

γ and no proper subset of M is a model of γ.

Intuitively, for ` P L and σ P Σ, a minimal model of δp`, σq represents one

con�guration that the automaton can reach from location ` by reading σ.

Example 2.36. Let us consider again the alternating automaton of Figure 2.5.

A modelM of δp`0, aq � `0^`1 must at least contain locations `0 and `1. Indeed,

ifM does not contain `0 or `1, the truth assignment that assigns J to the elements

of M and K to the elements of LzM does not satisfy `0 ^ `1. So, the models of

δp`0, aq are t`0, `1u and t`0, `1, `2u; and its unique minimal model is t`0, `1u.

We now de�ne some notations enabling to simply express what are the pos-

sible successors of a given con�guration of an alternating automaton.

De�nition 2.37. We denote Succp`, σq � tM |M is a minimal model of δp`, σqu.

We lift the de�nition of Succ to con�gurations C as follows: SuccpC, σq is the set

of all con�gurations C 1 of the form Y`PCM`, where, for all ` P C: M` P Succp`, σq.

That is, each C 1 P SuccpC, σq is obtained by choosing one minimal model M` in

Succp`, σq for each ` P C, and taking the union of all those M`.

Example 2.38. Let us consider the alternating automaton of Figure 2.6 and

its con�guration C � t`0, `4u. We want to compute SuccpC, aq. We start

by calculating Succp`0, aq and Succp`4, aq. The minimal models of δp`0, aq �

p`0 ^ `1q _ p`0 ^ `4q _ `3 are C1 � t`0, `1u, C2 � t`0, `4u and C3 � t`3u. So,

Succp`0, aq � tC1, C2, C3u. The unique minimal model of δp`4, aq � `1 is D1 �

t`1u. So, Succp`0, aq � tD1u. Hence, SuccpC, aq � tC1YD1, C2YD1, C3YD1u �

tt`0, `1u, t`0, `4, `1u, t`3, `1uu.

2.3 Alternating automata 23

`0 `1 `2

`3 `4

a a

b a, b

a

ba

a

Figure 2.6: Alternating automaton A

Runs of alternating automata. We can now formally de�ne the notion of run

of an alternating automaton. Each new con�guration in the run is obtained by

performing a discrete step, which characterizes the semantics of an alternating

automaton. The de�nition of run is based on this discrete step.

De�nition 2.39. Let A be an alternating automaton. The semantics of A is

the transition system TA � pConfig pAq ,ÝÑq on the con�gurations of A de�ned

as follows. The transition relation ÝÑ takes care of discrete transitions between

locations: C
σ
ÝÑ C 1 i� C 1 P SuccpC, σq. We let ÝÑ�

�
σPΣ

σ
ÝÑ.

De�nition 2.40. Let A � pΣ, L, `0, F, δq be an alternating automaton and let

σ be a �nite or in�nite word. A run of A on σ is a �nite or in�nite sequence

of discrete transitions in TA that is labelled by σ, i.e. a sequence of the form:

C0
σ1ÝÑ C1

σ2ÝÑ C2 . . .
σnÝÑ Cn

Observe that for all pairs of con�gurations C, C 1 such that C 1 P SuccpC, σq

for some σ, each ` P C can be associated with a unique set destpC,C 1, `q � C 1

containing all the `successors' of ` in C 1 and obtained as follows. By de�nition,

C 1 �
�
`PCM`, where each M` P Succp`, σq is the minimal model that has been

chosen for ` when computing SuccpC, σq. Then, we let destpC,C 1, `q �M`.

The function dest allows to de�ne a DAG representation of runs. We regard

a run π as a rooted DAG Gπ � pV,Ñq, whose vertices V correspond to the

24 Chapter 2. Preliminaries

π

C0

`0
�

C1
a

`0

`1
�

C2
a

`0

`1

�

C3
b

`0

`2

�

C4
b

`0

`1

`2

�

C5
a

`0

`2

�

Figure 2.7: Representations of a run of an alternating automaton.

locations of the alternating automaton (vertices at depth i correspond to Ci),

and whose set of edgesÑ expresses the transitions of the alternating automaton.

Here is its formal de�nition.

De�nition 2.41. Let A � pΣ, L, `0, F, δq be an alternating automaton and let

π � C0
σ1ÝÑ C1

σ2ÝÑ C2 . . .
σnÝÑ Cn . . . be a run of A on σ. We de�ne the rooted

DAG Gπ � pV,Ñq with:

� V �
�

0¤i¤|σ| Vi, where for all 0 ¤ i ¤ |σ|: Vi � tp`, iq | ` P Ciu is the set

of all vertices of depth i ;

� the root of Gπ is p`0, 0q ; and

� p`1, i1q Ñ p`2, i2q i� i2 � i1 � 1 and `2 P destpCi1 , Ci2 , `1q.

Example 2.42. Figure 2.7 displays the two possible representations of a run π

of the alternating automaton A in Figure 2.5, on the word a a b a b: grey boxes

highlight the successive con�gurations. The edges of the DAG of the run De�-

nition 2.41 are obtained observing function dest. For instance, the edges linking

locations of C1 to locations of C2 are obtained thanks to destpC1, C2, `0q and

destpC1, C2, `1q. We have: C2 �
�
`PC1

M`, for the minimal modelsM`0 � t`0, `1u

of δp`0, aq, and M`1 � t`1u of δp`1, aq. Hence, destpC1, C2, `0q � M`0 � t`0, `1u:

there is an edge from `0 in C1 to locations `0 and `1 in C2. In a similar way,

destpC1, C2, `0q � M`1 � t`1u: there is an edge from `1 in C1 to location `1 in

C2.

2.3 Alternating automata 25

Language of alternating automata. We can now de�ne the accepted language

of an alternating automaton, over �nite and in�nite words.

For �nite words, the characterisation of runs given by De�nition 2.40 is more

convenient:

De�nition 2.43. A �nite run is accepting i� its last con�guration Cn is accept-

ing and we say that a �nite word is accepted by A i� there exists an accepting

�nite run of A on this word. We note LpAq the language of all �nite words

accepted by A.

Nevertheless, to de�ne when an in�nite word is accepted by A, we need to

use the DAG characterisation of runs.

De�nition 2.44. We call branch of a run represented by a DAG Gπ a (�nite or)

in�nite path in Gπ. We note BranωpGπq the set of all in�nite branches of Gπ

and, for β P BranωpGπq, we note Inf pβq the set of locations occurring in�nitely

often along β.

The run represented by Gπ is accepting i� @β P BranωpGπq, Inf pβq X F � H

(i.e. we consider a Büchi acceptance condition). We say that an in�nite word θ

is accepted by A i� there exists an accepting run of A on θ.

We note LωpAq the language of all in�nite words accepted by A.

Example 2.45. Let us observe again the run π given in Figure 2.7, for the

alternating automaton A of Figure 2.5, on the �nite word σ � a a b b a. It is

accepting because C5 is accepting. If σ is extended by an in�nite number of

b's, we obtain an in�nite word also accepted by A. Indeed, the run of A on this

in�nite word has π as pre�x and the two unique branches of this run will in�nitely

keep looping on `0 and `2, which are accepting locations. LpAq is the set of �nite
words on Σ � ta, bu where each a is eventually followed by a b. On the other

hand, LωpAq is the set of in�nite words on Σ satisfying the same property.

From alternating automata to automata. Classical methods enable to trans-

late an alternating automaton into an automaton recognizing the same language.

26 Chapter 2. Preliminaries

Over �nite words, this translation from an alternating automaton A to an au-

tomaton BA uses a subset construction very close to that enabling to determinize

an automaton over �nite words. The main di�erence is that a powerset location

is now accepting if the locations of the alternating automaton it contains are all

accepting. Here is the formal de�nition of BA:

De�nition 2.46. Let A � pΣ, L, `0, F, δq be an alternating automaton. We de�ne

the automaton BA � pΣ, L1, `10, F 1, δ1q, with:

� L1 � 2L,

� `10 � t`0u,

� F 1 � 2F ,

� δ1 : L1 � Σ Ñ 2L
1
such that S1 P δ1pS, σq i� S1 �

�
`PSM

`, with, @` P S, a

minimal model M ` of δp`, σq.

Example 2.47. Let us consider the alternating automatonA of Figure 2.8. LpAq
is the set of �nite words on Σ � ta, b, cu satisfying the following property: the

�rst letter of the word is an a, each c it contains is eventually followed by a b

and each b it contains is eventually followed by an a. The subset construction

of de�nition 2.46, applied to A gives the automaton BA (over �nite words) of

Figure 2.9 with LpAq � LpBAq.

Nevertheless, when considering a Büchi alternating automaton (over in�nite

words), a more involved method is required to turn it into a non-deterministic

Büchi automaton. Indeed, the acceptance condition observes the branches of

the DAG representation of a run: all of them must in�nitely often visit F . The

problem with this acceptance condition is that we cannot decide if a run of A
is accepting only observing the sequence of its con�gurations. Instead, we must

take into account the di�erent branches to be sure all of them visit F in�nitely

often. Miyano and Hayashi have proposed such a translation ([46]) using markers

(a marker for each location forming a con�guration) to distinguish branches on

2.3 Alternating automata 27

`0

`1 `2

`3 `4

a, b a, c

a, c b, c

c

b

b

a

a

Figure 2.8: Alternating automaton A

t`0u t`1, `3u t`1, `4u t`2, `4u

t`2, `3u

a b c

a, c

a b

a b c

c
b

a

Figure 2.9: Automaton BA such that LpAq � LpBAq

which F has already been visited from others. Each location of a con�guration

of A is marked by J or K if, respectively, the run has visited F on the branches

leading to this location or not. When all the branches have visited F (i.e. all the

locations of the con�guration reached are marked by J), we reach an accepting

con�guration: we then reset all the markings to K. Hence, if we encounter

in�nitely many such accepting con�gurations we are sure that each branch visit

F in�nitely often.

Example 2.48. Let us consider again the alternating automaton A of Figure 2.8.

LωpAq is the set of in�nite words on Σ � ta, b, cu such that the �rst letter of the

word is an a, each c it contains is eventually followed by a b and each b it contains

is eventually followed by an a. The Miyano-Hayashi construction gives the Büchi

automaton BMH of Figure 2.10: LωpAq � LωpBMHq.

28 Chapter 2. Preliminaries

tp`0,Kqu tp`1,Jq,p`3,Jqu tp`1,Kq,p`4,Jqu tp`2,Kq,p`4,Jqu

tp`2,Jq,p`3,Kqu tp`1,Jq,p`4,Jqu tp`2,Kq,p`4,Kqu

a b c

a,c

c

a b

a

a b c

c

a

b c

b

a

b

Figure 2.10: Büchi automaton BMH such that LωpAq � LωpBMHq

C0

`0

�

C1
a

`1

`3

�

C2
c

`1

`4

�

C3
b

`2

`3

�

C4
c

`2

`4

�

C5
a

`1

`4

�
...

Figure 2.11: Run on the word acbca.

Remark that the in�nite word σ � acpabcqω is in LωpAq. This word is indeed

accepted by BMH . Observe that, the automaton BA (of Figure 2.9), given by the

subset construction, does not accept σ when interpreted as a Büchi automaton.

It is due to the fact that A accepts a �nite word if it reaches `1 and `3 at the

same time. Instead, for an in�nite word to be accepted, locations `1 and `3 may

be reached in a desynchronized manner, as is the run of A on σ (see Figure 2.11).

The automaton BMH obtained by the Miyano-Hayashi method takes this fact

into account.

2.4 Linear Temporal Logic 29

2.4 Linear Temporal Logic

Temporal logics are used to represented subsets of words over a given al-

phabet, as well as automata. In particular, Linear Temporal Logic (LTL) is

convenient to specify desired properties over words.

2.4.1 The LTL syntax and semantics

First, let us formally de�ne the syntax of LTL.

De�nition 2.49 (LTL syntax). Given a �nite alphabet Σ, the formulas of LTL

are de�ned by the following syntax, where σ P Σ:

Φ := J | σ | Φ1 ^ Φ2 | Φ | Φ1UIΦ2.

In the sequel, we rely on the following usual shortcuts. The `eventually'

operator: ♦Φ stands for JUΦ. The `always' operator: 2Φ stands for ♦ Φ. We

will also use Φ1ŨΦ2 for p Φ1U Φ2q.

We now de�ne the LTL semantics. We will see that this semantics is adapted

for the setting of �nite words as well as for that of in�nite words.

De�nition 2.50 (LTL semantics). Given a word σ over Σ, a position 1 ¤ i ¤

|σ| and an LTL formula Φ, we say that σ satis�es Φ from position i, written

pσ, iq |ù Φ i� the following holds:

� pσ, iq |ù J,

� pσ, iq |ù σ i� σi � σ,

� pσ, iq |ù Φ1 ^ Φ2 i� pσ, iq |ù Φ1 and pσ, iq |ù Φ2,

� pσ, iq |ù Φ i� pσ, iq * Φ,

30 Chapter 2. Preliminaries

� pσ, iq |ù Φ1UΦ2 i�

Di ¤ j ¤ |θ|, such that pσ, jq |ù Φ2 and @i ¤ k j, pσ, kq |ù Φ1.

We say that σ satis�es Φ, written σ |ù Φ, i� pσ, 1q |ù Φ. We note

JΦK :� tσ | |σ| 8 and σ |ù Φu

the �nite word language of Φ and

JΦKω :� tσ | |σ| � �8 and σ |ù Φu

the in�nite word language of Φ.

Example 2.51. LTL enables to express qualitative properties, on the sequence

of events. For instance, the LTL formula Φ � 2ppñ ♦qq expresses that `each p

will be eventually followed by a q'.

We still need to de�ne what is a subformula of a given LTL formula.

De�nition 2.52. Let Φ be an LTL formula, we note SubpΦq the set of all sub-

formulas of Φ, i.e.:

� Sub pΦq � tΦu when Φ P tJu Y Σ,

� Sub p Φq � t Φu Y Sub pΦq and

� Sub pΦq � tΦu Y Sub pΦ1q Y Sub pΦ2q when either Φ � Φ1UIΦ2 or Φ �

Φ1 ^ Φ2.

We de�ne the size of an LTL formula as follows:

De�nition 2.53. Let Φ be an LTL formula. We let |Φ| denote the size of Φ,

de�ned as the number of U modalities it contains.

2.4 Linear Temporal Logic 31

2.4.2 The problems

In this section, we de�ne the problems on LTL we are interested in. We also

present the decidability and complexity results concerning them.

Satis�ability. The �rst problem on the LTL logic consists in verifying that there

exists a word satisfying a given LTL formula.

De�nition 2.54. Let Φ be an LTL formula. We say that Φ is satis�able over

�nite (respectively in�nite) words i� there exists a �nite (respectively in�nite)

word σ such that σ satis�es Φ.

De�nition 2.55. The satis�ability problem over �nite (respectively in�nite) words

is the problem of deciding if a given LTL formula Φ is satis�able over �nite (re-

spectively in�nite) words.

Algorithmically, to solve the LTL satis�ability problem consists in verifying if

JΦK � H (or JΦKω � H, over in�nite words), see De�nition 2.27. In general, over

�nite words, an automaton BΦ recognizing JΦK is constructed and the algorithm

consists in looking for a path to an accepting location of BΦ. Over in�nite word,

a �x-point algorithm is used to verify if a reachable accepting location of BΦ is

reachable from itself (see Algorithms 1 and 2).

De�nition 2.56 ([25]). The LTL satis�ability problems, over �nite and in�nite

words, are PSPACE-complete.

Model-Checking. The main problem on the LTL logics we are interested in is

the `LTL Mordel-Checking problem' ([61, 63]). Being given an automaton or a

Büchi automaton B and an LTL formula Φ, it consists in verifying if the language

of B is included in the language of Φ. In other words, it enables to verify if each

accepting run of B satis�es the property described by Φ.

De�nition 2.57. Let C be an automaton and Φ be an LTL formula. The LTL

model-checking problem over �nite words is to decide if the following inclusion

32 Chapter 2. Preliminaries

holds: LpCq � JΦK.
Symmetrically, let B be a Büchi automaton and Φ be an LTL formula. The LTL

model-checking problem over in�nite words is to decide if the following inclusion

holds: LωpBq � JΦKω.

De�nition 2.58 ([61]). The LTL model-checking problem is PSPACE-complete.

Classical algorithms to solve the LTL model-checking problem work as fol-

lows. We �rst remark that the inclusion LpBq � JΦK is indeed equivalent to

verify that LpBq X J ΦK � H ; as well as LωpBq � JΦKω is equivalent to

LωpBq X J ΦKω � H. So, these algorithms consist in negating Φ and then con-

structing an automaton (respectively, a Büchi automaton) B Φ that recognizes

J ΦK (respectively, J ΦKω) in way to verify that LpBq X LpB Φq � H (respec-

tively, LωpBq X LωpB Φq � H). The last step is to construct an automaton (re-

spectively, a Büchi automaton) B�B Φ such that LpB�B Φq � LpBqXLpA Φq

(respectively, LωpB � B Φq � LωpBq X LωpA Φq) and verify if its language is

empty. Those model-checking methods have reached a high maturity level, as

can be seen from the various industrial and academical existing tools, such as

SPIN and nuSMV ([24, 58]).

Remark that, these algorithms �nally solve the LTL model-checking problem ver-

ifying if LpB�B Φq � H (or LωpB�B Φq � H). This is why the algorithms to

solve the LTL model-checking and LTL satis�ability problems are very close to

each other: once they are given B � B Φ or BΦ, they uses the same techniques

to verify if its language is empty or not.

More recently, a new technique, that proved its e�ciency in practice, was

proposed ([34]) to solve the LTL model-checking problem on the �y. To verify

if LpBq X J ΦK � H, an alternating automaton A Φ recognizing J ΦK is �rst

constructed. The interest is that such an alternating automaton has a size linear

in the size of Φ, while an automaton recognizing J ΦK has in general a size

exponential in the size of Φ. The aim is then to verify if LpBq XLpA Φq � H.

This is done constructing on the �y an automaton B � A Φ such that LpB �

2.4 Linear Temporal Logic 33

A Φq � LpBq X LpA Φq. On the �y means the locations and transitions of

B �A Φ are constructed one by one, from the initial location of B �A Φ. The

construction can be stopped as soon as a path leading to an accepting location is

found: it proves that LpBqXLpA Φq � H. In practice, this on the �y algorithm

is more e�cient than the classical one because the construction of the whole

automaton B �A Φ might be avoided.

A similar method also exists in the setting of in�nite words ([34]): a �x-point

algorithm is used to verify on the �y if the part of B � A Φ yet constructed

contains an accepting run, i.e. if a reachable accepting location of the constructed

part of B �A Φ is reachable from itself. In such a case, the construction can be

stopped and the LTL model-checking algorithm answers LωpBq � JΦKω.

In the following subsection, we will formally explain the translation from an

LTL formula to an alternating automaton. This is the basis construction of this

e�cient algorithm solving the LTL model-checking problem. We will use a similar

construction to solve the model-checking problem of another logic, namelyMITL,

investigated in our contributions.

Reactive synthesis. We have just seen that model-checking algorithms enable

to verify that all the executions of a given system, represented by a (Büchi)

timed automaton, satisfy desired properties, expressed by LTL formulas. Never-

theless, when the system does not satisfy the given property, it is erroneous and

must be designed again. The reactive synthesis aims to avoid this trial-and-error

approach.

The LTL reactive synthesis problem [1, 32, 54] considers a property, given

by an LTL formula. It is formalized by a game played between two players: the

environment and the controller. The aim of the controller is to manage to build

a system satisfying the given property, despite the constraints of the reality,

represented by the environment. To solve the LTL reactive synthesis problem

consists in computing a controller that, when composed with the environment,

will satisfy the property.

34 Chapter 2. Preliminaries

The LTL reactive synthesis is played on a particular semanics of LTL in which

letters are replaced by atomic propositions.

De�nition 2.59. The LTL reactive synthesis is formalized by the following game.

Given an LTL formula Φ and a partition of its atomic propositions AP into C and

E, the controller starts by giving a subset C0 � C of propositions, the environment

responds by giving a subset of propositions E0 � E, then the controller gives

C1 � C and the environment responds by E1 � E, and so on. This game lasts

forever and the outcome of the game is the in�nite word σ̄ � pC0 Y E0qpC1 Y

E1qpC2 Y E2q � � � P p2
AP qω. The controller wins if the resulting in�nite word

σ̄ P JΦKω. The LTL reactive synthesis problem asks to produce a winning strategy

for the controller.

The complexity of the LTL reactive synthesis problem was studied in [54].

Theorem 2.60 ([54]). The LTL reactive synthesis is 2EXPTIME-complete.

2.5 From LTL to Alternating Automata

We recall the translation from an LTL formula Φ to an alternating automaton

AΦ recognizing JΦK. This translation is the basis of e�cient algorithms solving

the LTL model-checking problem. We present here the translation due to Ouak-

nine and Worrell ([51]). This translation was proposed for the Metric Temporal

Logic (MTL) in [51] and includes timed aspects. We chose to present it for the

sake of continuity because we will use it on the entire MTL in a following section.

For the present setting, we removed the timed aspects of the de�nition of [51] in

way to make it correspond to plain LTL formulas. There exists other translations,

slightly di�ering from the present one, also used in such algorithms ([34, 45, 62]).

To formally de�ne AΦ, observe that we can transform any LTL formula in an

equivalent LTL formula in negative normal form (in which negation can only be

2.5 From LTL to Alternating Automata 35

present on letters σ P Σ), of the same size, using the operators: ^,_, , U and

Ũ .

Example 2.61. The LTL formula Φ � 2pa ñ ♦bq is equivalent to the formula

KŨp a_JUbq, which is in negative normal form. Its negation,
�
2pañ ♦bq

�
,

is equivalent to the following negative normal form formula: JUpa^KŨ bq.

De�nition 2.62. For an LTL formula Φ in negative normal form, we let AΦ �

pΣ, L, `0, F, δq where: L is the set containing the initial copy of Φ, noted `Φinit',

and all the formulas of SubpΦq whose outermost connective is `U ' or `Ũ '; `0 �

Φinit; F is the set of the elements of L of the form Φ1ŨIΦ2. Finally δ is de�ned

by induction on the structure of Φ:

� δpΦinit, σq � δpΦ, σq

� δpΦ1 _ Φ2, σq � δpΦ1, σq _ δpΦ2, σq

� δpΦ1 ^ Φ2, σq � δpΦ1, σq ^ δpΦ2, σq

� δpΦ1UΦ2, σq � δpΦ2, σq _ pδpΦ1, σq ^ Φ1UΦ2q

� δpΦ1ŨΦ2, σq � δpΦ2, σq ^ pδpΦ1, σq _ Φ1ŨΦ2q

� @σ1, σ2 P Σ:

δpσ1, σ2q �

#
true if σ1=σ2

false if σ1 � σ2

and δp σ1, σ2q �

#
false if σ1=σ2

true if σ1 � σ2

� @σ P Σ: δpJ, σq � J and δpK, σq � K.

Example 2.63. Let us consider the LTL formula Φ � 2pa ñ ♦bq, which is a

shorthand for KŨ
�
a ñ pJUbq

�
. The alternating automaton AΦ is given in Fig-

ure 2.12, where the location `2 corresponds to Φ and the location `♦ corresponds

to JUr1,2sb. One can check that this automaton follows strictly the above de�-

nition. Observe the edge labeled by b from `♦, without target state: it depicts

the fact that δpJUb, bq � J _ pJUbq � J. Intuitively, when the automaton has

a copy in location ``♦' and reads a b, the copy can be removed (no condition

36 Chapter 2. Preliminaries

Φinit `2 `♦

b a

b
a

a

b

Figure 2.12: OCATA AΦ with Φ � 2pañ ♦bq.

remains on this copy to satisfy Φ).

In the present example, Φinit might be suppressed and `2 used as initial loca-

tion instead. However, in general, Φinit is useful. For instance, when considering

Φ1 � ♦a^Φ, a conjunctive arc starts from location Φinit and leads to a location

representing ♦a and to a location representing Φ, in way they are both veri�ed.

2.6 Timed automata

This subsection is dedicated to timed automata. They have been introduced

by Alur and Dill in [3] to model real-time systems and studied in details in [4].

This model is really popular. It is used in the academic sector as well as in the

industry. It is in particular used by the standard model-checker UPPAAL [41].

We here de�ne the syntax and the languages accepted by timed automata (over

�nite timed words) and by Büchi timed automata (over in�nite timed words).

We start by de�ning the syntax and semantics of timed automata, based on

the notion of guard. Then, we distinguish timed automata that accept �nite

timed words from Büchi timed automata, accepting in�nite timed words, and

de�ne their languages.

De�nition 2.64. Let X be a set of clocks. We de�ne the set of guards over X,

denoted GpXq, by the following grammar:

Φ := J | x ' c | Φ1 ^ Φ2,

2.6 Timed automata 37

where x P X, c P N and ' P t ,¤,¡,¥u. x ' c is simply called a clock

constraint.

In the sequel, we will use some shortcuts to express guards over a clock x.

For instance, for n,m P N, we will note x � n instead of px ¤ nq ^ px ¥ nq, and

x P rn,mr instead of px ¥ nq ^ px mq.

De�nition 2.65. A timed automaton (TA) (or a Büchi timed automaton (BTA),

when interpreted over in�nite words) is a tuple B � pΣ, L, `0, X, F, δq, where Σ

is a �nite alphabet, L is a �nite set of locations, `0 P L is the initial location,

X is a �nite set of clocks, F � L is the set of accepting locations, and δ �

L�Σ�GpXq�2X�L is a �nite set of transitions. For a transition p`, σ, g, r, `1q,

we say that g is its guard, and r its reset.

Example 2.66. As an example, consider the TA B in Figure 2.13, over the

alphabet Σ � ta, bu. B has two locations `0 and `1, such that `0 is initial

and �nal. B has a unique clock x and its transition function is given by:

δ � tp`0, b,J,H, `0q, p`0, a,J, txu, `1q, p`1, b, x � 1,H, `0qu.

To de�ne what a run of a timed automaton is, we �rst de�ne the notion of

valuation, the notion of con�guration and what are timed and discrete successors

between con�gurations.

De�nition 2.67. Let X be a set of clocks.

� A valuation over X is a mapping v : X Ñ R�.

� The satisfaction of a clock constraint g P GpXq by a valuation v over X is

de�ned inductively in the usual way and denoted by v |ù g.

� For t P R�, we let v� t to be the valuation de�ned by pv� tqpxq � vpxq � t

for all x P X.

� For R � X, we let vrR :� 0s to be the valuation de�ned by pvrR :� 0sqpxq �

0 if x P R, and pvrR :� 0sqpxq � vpxq otherwise.

38 Chapter 2. Preliminaries

De�nition 2.68. Let B � pΣ, L, `0, X, F, δq be a (Büchi) timed automaton. A

con�guration of B is a pair p`, vq, where ` P L and v is a valuation of the clocks

in X. A con�guration p`, vq is accepting i� ` P F . We denote by Config pBq the
set of all con�gurations of B.

De�nition 2.69. Let B be a (Büchi) timed automaton and p`, vq be a con�gura-

tion of B.

� For all t P R�, we have (time successor) p`, vq
t
ù p`1, v1q i� ` � `1 and

v1 � v � t.

� For all σ P Σ, we have (discrete successor) p`, vq
σ
ÝÑ p`1, v1q i� there is

p`, σ, g, r, `1q P δ such that v |ù g and v1 � vrr :� 0s.

We write p`, vq
t,σ
ÝÝÑ p`1, v1q i� there is p`2, v2q P Config pBq such that p`, vq

t
ù

p`2, v2q
σ
ÝÑ p`1, v1q.

As we will see thanks to the following de�nitions, a timed automaton is an

acceptor of timed words.

De�nition 2.70. Let B � pΣ, L, `0, X, F, δq be a (Büchi) timed automaton and

θ � pσ, τq be a (�nite or in�nite) timed word over Σ with σ � σ1σ2σ3 . . . and

τ � τ1τ2τ3 Let us note ti � τi � τi�1 for all 1 ¤ i ¤ |θ|, assuming τ0 � 0.

A run of B on θ is a (�nite or in�nite) sequence of time and discrete successor

steps that is labelled by θ, i.e. a sequence of the form:

p`0, v0q
t1ù p`1, v1q

σ1ÝÑ p`2, v2q
t2ù p`3, v3q

σ2ÝÑ . . .
tiù p`2n�1, v2n�1q

σiÝÑ p`2n, v2nq . . . ,

where v0 assigns 0 to all clocks.

A �nite run is accepting if its last con�guration is accepting. An in�nite run

is accepting i� there are in�nitely many p`i, viq with `i P F (i.e. we consider a

Büchi acceptance condition).

We say that a timed word θ is accepted by B i� there is an accepting run of B
on θ.

2.6 Timed automata 39

In the sequel, we will often use examples in which a (Büchi) timed automaton

B has only one clock. For the sake of simplicity, when it is the case, instead of

denoting a run of B by

p`0, v0q
t1ù p`1, v1q

σ1ÝÑ p`2, v2q
t2ù p`3, v3q

σ2ÝÑ . . .
tiù p`2n�1, v2n�1q

σiÝÑ p`2n, v2nq . . . ,

and then give the value of each vipxq for 1 ¤ i ¤ 2n, we replace each vi by the

value of vipxq, giving the simpler notation

p`0, v0pxqq
t1ù p`1, v1pxqq

σ1ÝÑ p`2, v2pxqq
t2ù p`3, v3pxqq

σ2ÝÑ . . .
tiù p`2n�1, v2n�1pxqq

σiÝÑ p`2n, v2npxqq . . .

for this run.

De�nition 2.71. We denote by LpBq the set of �nite timed words accepted by the

timed automaton B and by LωpBq the set of in�nite timed words accepted by B.
We call LpBq and LωpBq the languages of B, respectively over �nite and in�nite

timed words.

Another view on the semantics of B � pΣ, B, `0, X, F, δq is to associate it with
a timed transition system TTS pBq.

De�nition 2.72. Let B � pΣ, L, `0, X, F, δq be a (Büchi) timed automaton.

We de�ne the timed transition system TTS pBq � pΣ, STTS, sTTS0 ,ÑTTS,ùTTSq,

where:

� STTS � Config pBq is the set of states;

� sTTS0 � p`0, v0q, where v0 is the valuation such that v0pxq � 0 for all x P X,

is the initial state;

� ÑTTS� STTS � Σ� STTS is the discrete transition relation where

pp`, vq, σ, p`1, v1qq PÑTTS i� p`, vq
σ
ÝÑ p`1, v1q;

� ùTTS� STTS � R� � STTS is the timed transition relation where

pp`, vq, t, p`1, v1qq PùTTS i� p`, vq
t
ù p`1, v1q.

40 Chapter 2. Preliminaries

`0 `1

b
b, x � 1

a, x :� 0

Figure 2.13: TA B

We say that a �nite timed word θ � pσ, τq is accepted by TTS pBq i� there is in

TTS pBq a �nite path starting in sTTS0 , ending in an accepting con�guration and

labeled by the �nite sequence τ1, σ1, pτ2 � τ1q, σ2, � � � , pτn � τn�1q, σn.

Similarly, an in�nite timed word θ � pσ, τq is accepted by TTS pBq i� there is

in TTS pBq an in�nite path starting in sTTS0 , containing in�nitely many p`i, viq P

Config pBq with `i P F and labelled by the in�nite sequence τ1, σ1, pτ2�τ1q, σ2, � � � ,

pτn � τn�1q, σn � � � .

We call the language of TTS pBq over �nite words, denoted by LpTTS pBqq, the
set of �nite timed words accepted by TTS pBq. Similarly, we call the language of

TTS pBq over in�nite words, denoted by LωpTTS pBqq, the set of in�nite timed

words accepted by TTS pBq.

Clearly, θ P LpBq i� θ P LpTTS pBqq and θ P LωpBq i� θ P LωpTTS pBqq.

Example 2.73. Consider again the (Büchi) TA B in Figure 2.13. Let us observe

the �nite timed word θ � pa, 2qpb, 3qpb, 3.4qpa, 3.7qpb, 4.7q. Here is an accepting

run of B on θ. As previously explained, as B has only one clock, each vi of

De�nition 2.70 has been replaced by the value of vipxq:

p`0, 0q
2
ù p`0, 2q

a
ÝÑ p`1, 0q

1
ù p`1, 1q

b
ÝÑ p`0, 1q

0.4
ù p`0, 1.4q

b
ÝÑ p`0, 1.4q

0.3
ù p`0, 1.7q

a
ÝÑ p`1, 0q

1
ù p`1, 1q

b
ÝÑ p`0, 1q.

Considering the in�nite timed word

θ � pa, 2qpb, 3qpb, 3.4qpa, 3.7qpb, 4.7qpa, 5qpb, 6qpa, 7qpb, 8q . . . ,

2.6 Timed automata 41

one can easily continue this run as an in�nite accepting run. In fact, it is easy to

see that:

LpBq � tθ � pσ, τq | σ|θ| � b and @0 ¤ i ¤ |θ| :

ppσi � aq ñ pσi�1 � b^ τi�1 � τi � 1qqu

and LωpBq � tθ � pσ, τq | @i ¥ 0 : pσi � aq ñ pσi�1 � b^ τi�1 � τi � 1qu.

As in the untimed setting, a desirable property of timed automata is the

determinism. This notion is de�ned in such a way that, for each timed word θ,

a deterministic timed automaton has at most one run on θ (as for the untimed

case).

De�nition 2.74. Let B � pΣ, L, `0, X, F, δq be a timed automaton or a Büchi

timed automaton. B is deterministic i� for all p`, σ, g, r, `1q and p`, σ
1, g1, r1, `2q

in δ, σ � σ1 implies that g ^ g1 is not satis�able.

Example 2.75. The automaton of Figure 2.14 is not deterministic because of

the elements of δ p`0, a,J,H, `0q and p`0, a,J, txu, `1q, starting from the initial

location and holding the same letter: a. However, the automaton B of Figure 2.13

is deterministic: there are no di�erent arcs starting from a same location and

carrying a same letter.

De�nition 2.76. A timed automaton B � pΣ, L, `0, X, F, δq is said determiniz-

able over �nite words if there is an automaton Bdet such that LpBq � LpBdetq.
A Büchi timed automaton B � pΣ, L, `0, X, F, δq is said determinizable over in-

�nite words if there is a Büchi automaton Bdet such that LωpBq � LωpBdetq.

De�nition 2.77. The determinizability problem asks, given a timed automaton

(respectively, a Büchi timed automaton) if it is determinizable.

Here are two theorems noticing that the determinization of timed automata

is problematic.

Theorem 2.78 ([4]). In general, timed automata and Büchi timed automata are

not determinizable.

42 Chapter 2. Preliminaries

`0 `1 `2

a a a

a, x :� 0 a, x � 1

Figure 2.14: A non-determinizable timed automaton.

Example 2.79. It is well-known that the timed automaton of Figure 2.14 is

not determinizable ([4]). Its language is the set of timed words containing two

a's at a distance of 1 time unit. This timed automaton guesses which a will be

followed by another a 1 time unit later: the transition from `0 to `1 is taken when

reading this a. Intuitively, to represent this language by a deterministic timed

automaton, we should distinguish this guessed a from others. This could be done

resetting one di�erent clock for each a read, and verifying which clock has value

1 while another a is read. Nevertheless, if n a's are read within 1 time unit, n

di�erent clocks are necessary, so that an unbounded number of clocks would be

necessary (even in the setting of �nite words).

The result given by the following theorem still surpass that of Theorem 2.78.

It says that, in general, being given a timed automaton, it is not possible to

decide if this automaton is determinizable.

Theorem 2.80 ([33]). Over �nite words, the problem of determinizability is

undecidable for timed automata.

Despite those negative result, subclasses of timed automata which are deter-

minizable have been identi�ed. As an example, in [12], a game-based algorithm

tries to produce, for a given timed automaton, a deterministic timed automa-

ton recognizing the same language. For non-determinizable timed automata,

this algorithm produces a deterministic timed automaton recognizing an over-

approximation of the original language.

Contrary to untimed automata, it is not possible in general to complement a

(Büchi) timed automaton.

2.6 Timed automata 43

De�nition 2.81. Let B � pΣ, L, `0, F, δq be a timed automaton (respectively,

be a Büchi timed automaton). We say that B is complementable if there is a

timed automaton (respectively, a Büchi timed automaton) BC such that LpBCq �
TΣ�zLpBq (respectively, such that LpBCq � TΣωzLpBq).

Theorem 2.82 ([4]). The classes of timed automata and Büchi timed automata

are not closed by complement.

Example 2.83. Let us observe again the automaton of Figure 2.14. The com-

plement of its language, i.e. the set of timed words such that there is no pair

of a's at a distance of 1 time unit, cannot be represented by any (Büchi) timed

automaton. The intuition is the same as that why the automaton is not deter-

minizable. Indeed, to determine the complement of this language, we should start

a clock for each a read, to verify that there is no a exactly one time unit later.

As un unbounded number of a's could be read within 1 time unit, an unbounded

number of clocks would be necessary (even in the setting of �nite words).

We now discuss the universality problem for timed automata.

De�nition 2.84. The universality problem asks, given a timed automaton (re-

spectively, a Büchi timed automaton) B � pΣ, L, `0, F, δq, if LpBq � TΣ� (respec-

tively, if LωpBq � TΣω).

While the universality problem is undecidable for Büchi timed automata and

even for Büchi timed automata with a unique clock, it becomes decidable for

timed automata with one clock over �nite words.

Theorem 2.85 ([4]). The universality problem is undecidable for timed automata

and Büchi timed automata with at least two clocks.

Theorem 2.86 ([48]). Over �nite words, the universality problem is decidable

for timed automata with only one clock.

Theorem 2.87 ([42]). The universality problem is undecidable for Büchi timed

automata with only one clock.

44 Chapter 2. Preliminaries

2.7 Alternating timed automata

Let us now explain the notion of (one clock) alternating timed automaton

(OCATA for short) ([51]), an extension of timed automata and alternating au-

tomata. Alternating timed automata extend timed automata in the same way

alternating automata extend (Büchi) automata: they admit conjunctive transi-

tions as well as disjunctive ones.

When using a conjunctive transition, an OCATA can create several copies of

itself (including a copy of its clock !) that run in parallel and must all accept

the su�x of the timed word. For example, Figure 2.15 displays an OCATA.

Observe that the arc starting from `0 has two destinations: `0 and `1. When the

automaton is in `0 with clock valuation v ¤ 2, and reads an a, it spawns two

copies of itself: the �rst reads the su�x of the word from p`0, vq, and the latter

from p`1, 0q (observe that the clock is reset on the branch to `1).

The standard semantics for OCATA [42, 49] is de�ned as an in�nite transition

system whose con�gurations are �nite sets of pairs p`, vq, where ` is a location

and v is the valuation of the (unique) clock. Intuitively, each con�guration thus

represents the current state of all the copies of the (unique!) clock that run

in parallel in the OCATA. The transition system is in�nite because one cannot

bound, a priori, the number of di�erent clock valuations that can appear in a

single con�guration, thereby requiring peculiar techniques, such as well quasi

orderings (see [51]) to analyse it.

To formally de�ne an OCATA, we let ΓpLq be the set of formulas de�ned by

the following grammar:

γ := J | K | γ1 _ γ2 | γ1 ^ γ2 | ` | x ' c | x.γ

where c P N, ' P t ,¤,¡,¥u and ` P L. We recall that x ' c is in fact a clock

constraint. Intuitively, the expression x.γ means that clock x must be reset to 0.

De�nition 2.88 ([51]). A one-clock alternating timed automaton (OCATA)

2.7 Alternating timed automata 45

is a tuple A � pΣ, L, `0, F, δq where Σ is a �nite alphabet, L is a �nite set

of locations, `0 is the initial location, F � L is a set of accepting locations,

δ : L� Σ Ñ ΓpLq is the transition function.

To simplify the use of the transition function, we explain how δp`, σq can

always be written in disjunctive normal form.

Remark that, for all γ1, γ2 in ΓpLq: x.pγ1 _ γ2q � x.γ1 _ x.γ2, x.pγ1 ^ γ2q �

x.γ1 ^ x.γ2, x.x.γ � x.γ, x.px ' cq � 0 ' c, x.J � J and x.K � K. Thus,

we can write any formula of ΓpLq in disjunctive normal form, and, from now

on, we assume that δp`, σq is written in this form. That is, for all `, σ, we have

δp`, σq �
�
j

�
k

Aj,k, where each term Aj,k is of the form `, x.`, x ' c or 0 ' c,

with ` P L and c P N. We call arc of the OCATA A a triple p`, σ,
�
k Aj,kq such

that
�
k Aj,k is a disjunct in δp`, σq.

Example 2.89. As an example, consider the OCATA A in Figure 2.15, over the

alphabet Σ � tau. A has three locations `0, `1 and `2, such that `0 is initial and

`0 and `1 are �nal. The transition function of A is given by: δp`0, aq � p`0^ x ¡

1q_p`0^x.`1^x ¤ 2q, δp`1, aq � p`1^x � 1q_`2 and δp`2, aq � `2. The arcs of A
are thus p`0, a, `0 ^ x ¡ 1q, p`0, a, `0 ^ x.`1 ^ x ¤ 2q, p`1, a, `1 ^ x � 1q, p`1, a, `2q

and p`2, a, `2q. Observe that, in the �gure, we represent the (conjunctive) arc

p`0, a, `0 ^ x.`1 ^ x ¤ 2q by an arrow carrying the clock constraint x ¤ 2 and

then splitting in two branches connected respectively to `0 and `1 (possibly with

di�erent resets: the reset of clock x is depicted by x :� 0). Intuitively, taking

the arc p`0, a, `0 ^ x.`1 ^ x ¤ 2q means that, when reading an a from location

`0 and clock value v ¤ 2, the automaton should start two copies of itself, one in

location `0, with clock value v, and a second in location `1 with clock value 0.

Both copies should accept the su�x for the word to be accepted (this notion will

be de�ned formally in a following paragraph).

Classical semantics. We will now explain the standard semantics of OCATA [51].

We start by de�ning what is a state and a con�guration of an OCATA and how it

can move from one con�guration to another using the notion of minimal model.

46 Chapter 2. Preliminaries

`0 `1 `2

a, x ¡ 1 a, x � 1 a

aa, x ¤ 2 x :� 0

Figure 2.15: OCATA A

De�nition 2.90. We call state of an OCATA A � pΣ, L, `0, F, δq a couple p`, vq

where ` P L and v is a valuation of its unique clock. A state p`, vq is accepting

i� ` P F .

We note S � L� R� the state space of A.

De�nition 2.91. A con�guration of an OCATA A is a (possibly empty) �nite

set of states of A. The initial con�guration of A is tp`0, 0qu. A con�guration

is accepting i� all the states it contains are accepting (in particular, the empty

con�guration is accepting).

For a con�guration C and a delay t P R�, we note C � t the con�guration

tp`, I � tq|p`, Iq P Cu.

We note Config pAq the set of all con�gurations of A.

We now de�ne the satisfaction relation `|ùv' enabling to express the notion of

minimal model.

De�nition 2.92. Let M P Config pAq be a con�guration of an OCATA A, and
v P R�. We de�ne the satisfaction relation `|ùv' on ΓpLq as:

� M |ùv J,

� M |ùv γ1 ^ γ2 i� M |ùv γ1 and M |ùv γ2,

� M |ùv γ1 _ γ2 i� M |ùv γ1 or M |ùv γ2,

� M |ùv ` i� p`, vq PM ,

� M |ùv x ' c i� v ' c,

2.7 Alternating timed automata 47

� M |ùv x.γ i� M |ù0 γ.

De�nition 2.93. We say that M is a minimal model of the formula γ P ΓpLq

with respect to v P R� i� M |ùv γ and there is no M 1 �M such that M 1 |ùv γ.

Remark that a formula γ can admit several minimal models (at most one for

each disjunct in the case of a formula of the form γ �
�
j

�
k

Aj,k, see Examples 2.94

and 2.95). Intuitively, for ` P L, σ P Σ and v P R�, each minimal model of δp`, σq

with respect to v is one of the con�gurations the automaton can reach from the

state p`, vq by reading σ.

Example 2.94. Let us consider again the OCATA of Figure 2.15. A minimal

model M of δp`0, aq with respect to 1.7 must be such that: M |ù1.7 p`0 ^ x ¡

1q _ p`0 ^ x.`1 ^ x ¤ 2q. As 1.7 ¡ 1 and 1.7 ¤ 2, we have:

M |ù1.7 p `0 ^ x ¡ 1 q _ p `0 ^ x.`1 ^ x ¤ 2 q

i� M |ù1.7 `0 or pM |ù1.7 `0 and M |ù1.7 x.`1 q

i� p`0, 1.7q PM or p p`0, 1.7q PM and M |ù0 `1 q

i� p`0, 1.7q PM or p p`0, 1.7q PM and p`1, 0q PM q.

So, tp`0, 1.7qu and tp`0, 1.7q, p`1, 0qu are two models of δp`0, aq with respect to 1.7,

but as tp`0, 1.7qu � tp`0, 1.7q, p`1, 0qu, tp`0, 1.7qu is the unique minimal model of

δp`0, aq with respect to 1.7.

Example 2.95. Let us consider the OCATA of Figure 2.16. A minimal model

M of δp`0, aq with respect to 0.2 must be such that: M |ù0.2 p`0 ^ x.`1q _ p`0 ^

48 Chapter 2. Preliminaries

`0 `1 `2

`3 `4

a,

x 1
a

b a, b

a

b, x � 1a x :� 0

a

x :�
0

Figure 2.16: The OCATA A

x.`4q _ p`3 ^ x 1q. As 0.2 1 we have:

M |ù0.2 p `0 ^ x.`1 q _ p `0 ^ x.`4 q

_ p `3 ^ x 1 q

i� pM |ù0.2 `0 and M |ù0.2 x.`1 q or pM |ù0.2 `0 and M |ù0.2 x.`4 q

or pM |ù0.2 `3 q

i� p p`0, 0.2q PM and M |ù0 `1 q or p p`0, 0.2q PM and M |ù0 `4 q

or p p`3, 0.2q PM q

i� p p`0, 0.2q PM and p`1, 0q PM q or p p`0, 0.2q PM and p`4, 0q PM q

or p p`3, 0.2q PM q

So, tp`0, 0.2q, p`1, 0qu, tp`0, 0.2q, p`4, 0qu and tp`3, 0.2qu are three minimal models

of δp`0, aq with respect to 0.2.

We now de�ne some notations enabling to simply express what are the pos-

sible successors of a given con�guration of an OCATA.

De�nition 2.96. Let A be an OCATA A and p`, vq be one of its states. We let

Succpp`, vq, σq :� tM | M is a minimal model of δp`, σq with respect to vu. We

lift the de�nition of Succ to con�gurations C as follows: SuccpC, σq is the set of

all con�gurations C 1 of the form YsPCMs, where, for all s P C: Ms P Succps, σq.

That is, each C 1 P SuccpC, σq is obtained by choosing one minimal model Ms in

Succps, σq for each s P C, and taking the union of all those Ms.

2.7 Alternating timed automata 49

Example 2.97. Let us consider the state p`0, 0.2q of the OCATA of Figure 2.15.

Succpp`0, 0.2q, aq � tM | M is a minimal model of δp`0, aq with respect to 0.2u.

A minimal model M of δp`0, aq with respect to 0.2 must be such that: M |ù0.2

p`0 ^ x ¡ 1q _ p`0 ^ x.`1 ^ x ¤ 2q. As 0.2 £ 1 and 0.2 ¤ 2, we have:

M |ù0.2 p `0 ^ x ¡ 1 q _ p `0 ^ x.`1 ^ x ¤ 2 q

i� M |ù0.2 p `0 ^ x.`1 ^ x ¤ 2 q

i� M |ù0.2 `0 and M |ù0.2 x.`1

i� p`0, 0.2q PM and M |ù0 `1

i� p`0, 0.2q PM and p`1, 0q PM.

Hence, C � tp`0, 0.2q, p`1, 0qu is the unique minimal model of δp`0, aq with respect

to 0.2: Succpp`0, 0.2q, aq � tCu.

In a similar way, let us determine SuccpC, aq. We know that the unique minimal

models of δp`0, aq with respect to 0.2 is C, and need those of δp`1, aq with respect

to 0. A minimal model M of δp`1, aq with respect to 0 must be such that:

M |ù0 p`1 ^ x � 1q _ `2. As 0 � 1, we have:

M |ù0 p `1 ^ x � 1 q _ `2

i� M |ù0 `1 or M |ù0 `2

i� p`1, 0q PM or p`2, 0q PM.

So, tp`1, 0qu and tp`2, 0qu are two minimal models of δp`1, aq with respect to 0.

Hence, SuccpC, aq has two elements: CYtp`1, 0qu and CYtp`2, 0qu: SuccpC, aq �

ttp`0, 0.2q, p`1, 0qu, tp`0, 0.2q, p`1, 0q, p`2, 0quu.

Runs of OCATA. We can now formally de�ne the notion of run of an OCATA

in the classical semantics. Each new con�guration in the run is obtained in two

steps: letting time elapse and performing a discrete step. These steps characterize

the semantics of an OCATA, on which is based the de�nition of run.

De�nition 2.98. Let A be an OCATA. The semantics of A is the transition sys-

tem TTS pAq � pConfig pAq ,ù,ÝÑq on con�gurations of A de�ned as follows:

50 Chapter 2. Preliminaries

� the transition relation ù takes care of the elapsing of time: @t P R�,
C

t
ù C 1 i� C 1 � C � t. We let ù �

�
tPR�

t
ù.

� the transition relation ÝÑ takes care of discrete transitions between loca-

tions: C
σ
ÝÑ C 1 i� C 1 P SuccpC, σq. We let ÝÑ�

�
σPΣ

σ
ÝÑ.

De�nition 2.99. Let A be an OCATA of state space S. Let θ � pσ, τq be a

(�nite or in�nite) timed word and let us note ti � τi � τi�1 for all 1 ¤ i ¤ |θ|,

assuming τ0 � 0. A run of A on θ is a �nite or in�nite sequence of discrete

and continuous transitions in TTS pAq that is labelled by θ, i.e. a sequence of the

form: C0
t1ù C1

σ1ÝÑ C2
t2ù C3

σ2ÝÑ . . .
tnù C2n�1

σnÝÑ C2n

In the rest of this thesis, we (sometimes) use the abbreviation Ci
t,σ
ÝÝÑ Ci�2

for Ci
t
ù Ci�1 � Ci � t

σ
ÝÑ Ci�2.

As in the untimed setting, for all pairs of con�gurations C, C 1 such that

C 1 P SuccpC � t, σq for some t and σ, each s P C can be associated with a unique

set destpC,C 1, sq � C 1 containing all the `successors' of s in C 1 and obtained

as follows. By de�nition, C 1 �
�
sPCMs, where each Ms P Succps, σq is the

minimal model that has been chosen for s when computing SuccpC� t, σq. Then,

destpC,C 1, sq �Ms.

The function dest allows to de�ne a DAG representation of runs, as is usual

with alternating automata. We regard a run π as a rooted DAG Gπ � pV,Ñq,

whose vertices V correspond to the states of the OCATA (vertices at depth i

correspond to C2i), and whose set of edges Ñ expresses the OCATA transitions.

Here is its formal de�nition.

De�nition 2.100. Let A be an OCATA and π � C0
t1ù C1

σ1ÝÑ C2
t2ù C3

σ2ÝÑ

. . .
tnù C2n�1

σnÝÑ C2n . . . be a run of A. We de�ne the rooted DAG Gπ � pV,Ñq

with:

� V �
�

0¤i¤|θ| Vi, where for all 0 ¤ i ¤ |θ|: Vi � tps, iq | s P C2iu is the set

of all vertices of depth i ;

2.7 Alternating timed automata 51

`0 `1 `2

a, x � 1 a

a, x � 1a x :� 0

Figure 2.17: OCATA A

� the root of Gπ is pp`0, 0q, 0q ; and

� ps1, i1q Ñ ps2, i2q i� i2 � i1 � 1 and s2 P destpC2i1 , C2i2 , s1q.

Example 2.101. Let us consider the OCATA A of Figure 2.17. Figure 2.18

displays the two possible representations of the run pre�x π of A on the word

pa, 0.1qpa, 0.2qpa, 0.9qpa, 1.2q . . .: grey boxes highlight the successive con�gura-

tions. π shows why the number of clock copies cannot be bounded in general: if

A reads a word containing n a's between instants 0 and 1, n copies of the clock

are created in location `1.

The edges of the DAG of the run are obtained thanks to function dest. For

instance, the edges from states of C2 to states in C4 are obtained thanks to

destpC2, C4, p`0, 0.1qq and destpC2, C4, p`1, 0qq. As C4 is computed from C2 �

0.1 � tp`0, 0.2q, p`1, 0.1qu reading an a, it consists in the minimal models of

δp`0, aq with respect to 0.2, and of δp`1, aq with respect to 0.1. In fact, C4 ��
sPC2

Ms, for Mp`0,0.1q � tp`0, 0.2q, p`1, 0qu and Mp`1,0q � tp`1, 0.1qu. Hence,

destpC2, C4, p`0, 0.1qq � Mp`0,0.1q � tp`0, 0.2q, p`1, 0qu and there is an edge from

state p`0, 0.1q in C2 to states p`0, 0.2q and p`1, 0q in C4. In a similar way,

destpC2, C4, p`1, 0qq � Mp`1,0q � tp`1, 0.1qu: there is an edge from state p`1, 0q

in C2 to state p`1, 0.1q in C4.

Language of OCATA.We can now de�ne the accepted language of an OCATA,

over �nite and in�nite timed words. We will see that OCATA de�ne timed

languages.

For �nite timed words, the characterisation of runs given by De�nition 2.99

is more convenient:

52 Chapter 2. Preliminaries

π

C0

p`0,0q

�
C2

0.1
,a

p`0,0.1q

p`1,0q

�

C4

0.1,a

p`0,0.2q

p`1,0q

p`1,0.1q

�

C6

0.7,a

p`0,0.9q

p`1,0q

p`1,0.7q

p`1,0.8q

�

C8

0.3,a

p`0,1.2q

p`1,0q

p`1,0.3q

p`2,1q

p`1,1.1q

�

Figure 2.18: Two views on a �nite run of the OCATA in Figure 2.17.

De�nition 2.102. A �nite run is accepting i� its last con�guration C2n is ac-

cepting and we say that a �nite timed word is accepted by A i� there exists an

accepting �nite run of A on this word.

We note LpAq the language of all �nite timed words accepted by A.

Nevertheless, as in the untimed case, to de�ne when an in�nite timed word

is accepted by A, we need to use the DAG characterisation of runs.

De�nition 2.103. We call branch of a run represented by a DAG Gπ a (�nite

or in�nite) path in Gπ. We note BranωpGπq the set of all in�nite branches of Gπ

and, for β P BranωpGπq, we note Inf pβq the set of locations occurring in�nitely

often along β.

A run represented by a DAG Gπ is accepting i� @β P BranωpGπq, Inf pβqXF �

H (i.e. we consider a Büchi acceptance condition). We say that an in�nite timed

word θ is accepted by A i� there exists an accepting run of A on θ.

We note LωpAq the language of all in�nite timed words accepted by A.

Example 2.104. The run π of the OCATA A of Figure 2.17, on the in�nite

word θ � pa, 0.1qpa, 0.2qpa, 0.9qpa, 1.2q . . . will not be accepting, for any su�x

of θ, because of the branch of π leading to p`2, 1q: it is easy to see that there

is no possible way to leave the non-accepting location `2 of A. In the same

way, the run π on the �nite word pa, 0.1qpa, 0.2qpa, 0.9qpa, 1.2q is not accepting

because C8 is not accepting. In contrary, the run of A on pa, 0.1qpa, 0.2qpa, 0.9q

2.7 Alternating timed automata 53

is C0
0.1,a
ÝÝÝÑ C2

0.1,a
ÝÝÝÑ C4

0.7,a
ÝÝÝÑ C6. It is accepting because C6 is accepting. It is

not di�cult to see that:

LpAq � tθ � pσ, τq | @1 ¤ i ¤ |θ|, @i j ¤ |θ|, τj � τi � 1u, and

LωpAq � tθ � pσ, τq | @i ¥ 1, @j ¡ i, τj � τi � 1u.

Classical results on OCATA.We here present decidability results for classical

problems on OCATA studied in the literature.

Let us �rst consider the emptiness problem. Remark that the emptiness

problem is complementary to the universality problem. We will deduce from

Theorem 2.85 (claiming that the universality problem is undecidable for timed

automata) that the emptiness problem is undecidable for alternating timed au-

tomata, over �nite words. Indeed, the complement of the language (over �nite

words !) of a timed automaton can easily be represented by an alternating timed

automaton in which we `dualised' the transition relation (as formally de�ned be-

low) and exchange accepting and non-accepting locations. Its exact de�nition is

given hereunder.

We �rst de�ne the dual of a formula Φ P ΓpLq.

De�nition 2.105. The dual of a formula Φ P ΓpLq is the formula Φ de�ned

inductively as follows.

� false � true and true � false ;

� @` P L, ` � ` ;

� Φ1 _ Φ2 � Φ1 ^ Φ2 ;

� Φ1 ^ Φ2 � Φ1 _ Φ2 ;

� x.Φ � x.Φ ;

54 Chapter 2. Preliminaries

`0 `1 `2

a a a

a, x :� 0 a, x � 1

Figure 2.19: The timed automaton B.

`0 `1 `2

a, x � 1 a

a a

Figure 2.20: The alternating timed automaton BC .

� the dual of a clock constraint is its negation (for example: x ¤ c � x ¡ c).

De�nition 2.106. Let B � pΣ, L, `0, F, δq be a timed automaton over �nite

words. We de�ne BC to be the alternating timed automaton given by the tuple

pΣ, L, `0, LzF, δq, where δp`, aq � δp`, aq, for all ` P L and a P Σ.

Theorem 2.107. Let B � pΣ, L, `0, F, δq be a timed automaton over �nite words.

Then, LpBCq � TΣ�zLpBq.

Example 2.108. Let us observe the timed automaton B � pΣ, L, `0, F, δq of

Figure 2.19. We have already seen that the complement of its language, i.e. the

set of timed words such that there is no pair of a's at a distance of 1 time unit,

cannot be represented by any timed automaton (see Example 2.83). However,

the alternating timed automaton BC is such that LpBCq � TΣ�zLpBq. It is

represented in Figure 2.20. Its transition function is obtained as follows :

� δp`0, aq � `0 _ x.`1 � `0 ^ x.`1,

� δp`1, aq � `1 _ px � 1^ `2q � `1 ^ px � 1_ `2q � p`1 ^ x � 1q _ p`1 ^ `2q,

� δp`2, aq � `2 � `2.

Hence, as a direct consequence of Theorem 2.85, we obtain the following one:

2.7 Alternating timed automata 55

Theorem 2.109. Over �nite words, the emptiness problem is undecidable for

alternating timed automata (with more than one clock).

Now, let us consider an alternating timed automaton over �nite words. It is

possible to algorithmically complete it into an alternating timed automaton over

in�nite words accepting a word θpσqω i� θ was accepted by this automaton over

�nite words. As the language of the basis automaton is empty i� that of the

deformed automaton is empty, we obtain the following theorem:

Theorem 2.110. Over in�nite words, the emptiness problem is undecidable for

alternating timed automata (with more than one clock).

The following theorem states that the decidability of emptiness is recovered

for OCATA (that only own one clock), over �nite words. In part 4.2, we present

techniques to perform model-checking over �nite words using OCATA. Then, we

extend these techniques and results to the setting of in�nite words. Observing

the previous and following theorems, one can imagine that this passage from

�nite to in�nite words is not trivial: working on in�nite words, we approach the

decidability frontier of OCATA.

Theorem 2.111 ([51]). Over �nite words, the emptiness problem is decidable

for OCATA.

In [52], Parys and Walukiewicz de�ned a weak version of OCATA, in the

sense that the acceptance condition is a weak parity condition. For this kind of

OCATA, interpreted over in�nite words, they show that the emptiness problem

is decidable.

Their OCATA are de�ned as tuples A � pΣ, L, `0,Ω, δq where Ω : L Ñ N de-

termines the weak parity acceptance condition. A run Gπ of A is accepted if,

for all branches β P BranωpGπq, with β � pp`0, v0q, 0qpp`1, v1q, 1qpp`2, v2q, 2q . . .

pp`n, vnq, nq . . . , we have that: mintΩp`iq | i P Nu is even.
In their work, they consider timed words whose time sequences are strictly in-

creasing and unbounded, i.e. timed words of the form θ � pσ, τq such that @i ¥ 1,

56 Chapter 2. Preliminaries

τi τi�1 and @t P R�, Di ¥ 1 such that τi ¥ t: they call such words non Zeno

timed words. In [52], they prove the following theorem:

Theorem 2.112 ([52]). It is decidable whether a given OCATA A � pΣ, L, `0,Ω, δq,
with Ω : L Ñ t0, 1u, accepts some non Zeno timed word. The complexity of the

problem is non-primitive recursive.

Let us now discuss the complementation of OCATA. In general, the com-

plement of an alternating timed automaton with a Büchi acceptance condition

(such as those considered in this thesis) is an alternating timed automaton with

a co-Büchi acceptance condition.

An alternating timed automaton with co-Büchi acceptance condition C � pΣ, L,
`0, F, δq has an acceptance condition which is complementary to that of a Büchi

alternating timed automaton: it is the unique di�erence between these two kind

of automata. In fact, a run of C (over an in�nite word) is now accepting if it

visits only a �nite number of times the locations of F .

The complement of a Büchi alternating timed automaton A � pΣ, L, `0, F, δq

is a co-Büchi alternating timed automaton in which we dualised the transition

relation of A: its exact de�nition is given hereunder. Intuitively, we obtain the

complement of the original language dualizing the transition function and com-

plementing the acceptance condition. Nevertheless, the complement of a Büchi

acceptance condition is not a Büchi acceptance condition. If we only exchange ac-

cepting and non-accepting locations of A and keep a Büchi acceptance condition,

it means we want that LzF is visited in�nitely often, which is not complementary

to the fact that F is visited in�nitely often: a run might visit both F and LzF

in�nitely often. The right complementary of a Büchi acceptance condition on F

is to visit F only �nitely often: it is a co-Büchi acceptance condition on F .

As far as we know, no simple method enables to complement an alternating

timed automaton with Büchi acceptance condition by giving an automaton of

this same class.

De�nition 2.113. Let A � pΣ, L, `0, F, δq be a Büchi alternating timed automa-

2.8 Metric Temporal Logic 57

ton. We de�ne AC to be the co-Büchi alternating timed automaton given by the

tuple pΣ, L, `0, F, δq, where δp`, aq � δp`, aq, for all ` P L and a P Σ.

In the sequel, for an alternating timed automaton A, we use the notation

Lωco�BpAq to denote its language when considering a co-Büchi acceptance condi-

tion.

Theorem 2.114. Let A � pΣ, L, `0, F, δq be a Büchi alternating timed automa-

ton. Then, Lωco�BpACq � TΣωzLωpAq.

Example 2.115. Let us observe the Büchi alternating timed automaton A �
pΣ, L, `0, F, δq of Figure 2.21. Its language is the set of timed words in which

each a is followed by a b from 1 to 2 units of time later. The co-Büchi alternating

timed automaton AC is such that Lωco�BpACq � TΣωzLωpAq. It is represented

in Figure 2.22. Its transition function is obtained as follows :

� δp`0, aq � `0 ^ x.`1 � `0 _ x.`1,

� δp`0, bq � `0 � `0,

� δp`1, aq � `1 � `1,

� δp`1, bq � `1 _ p`2 ^ x P r1, 2sq � `1^p`2_x R r1, 2sq � p`1^ `2q_p`1^x R

r1, 2sq,

� δp`2, aq � `2 � `2,

� δp`2, bq � `2 � `2.

2.8 Metric Temporal Logic

In this section, we recall the de�nition of Metric Temporal Logic (MTL): it

is a real-time extension of LTL, that has been proposed by Koymans ([39]), in

58 Chapter 2. Preliminaries

`0 `1 `2

b a, b a, b

a x :� 0 b, x P r1, 2s

Figure 2.21: The Büchi alternating timed automaton A.

`0 `1 `2

a, b a

b, x R r1, 2s

a, b

ba, x :� 0

Figure 2.22: The co-Büchi alternating timed automaton AC .

which the until modality is labelled by an interval. We begin by de�ning its

syntax and its semantics. We then de�ne di�erent problems using this logic we

are interested in.

2.8.1 MTL syntax and pointwise semantics

First, let us formally de�ne the syntax of MTL.

De�nition 2.116 (MTL syntax). Given a �nite alphabet Σ, the formulas of

MTL are de�ned by the following syntax, where σ P Σ, I P IpN8q:

Φ := J | σ | Φ1 ^ Φ2 | Φ | Φ1UIΦ2.

In the sequel, we rely on the following usual shortcuts. The `eventually'

operator: ♦IΦ stands for JUIΦ. The `always' operator: 2IΦ stands for ♦I Φ.

We will also use 2Φ for 2r0,8rΦ, ♦Φ for ♦r0,8rΦ, and Φ1ŨIΦ2 for p Φ1UI Φ2q.

De�nition 2.117. Let Φ be an MTL formula, we note SubpΦq the set of all

subformulas of Φ, i.e.:

2.8 Metric Temporal Logic 59

� Sub pΦq � tΦu when Φ P tJu Y Σ,

� Sub p Φq � t Φu Y Sub pΦq and

� Sub pΦq � tΦu Y Sub pΦ1q Y Sub pΦ2q when Φ � Φ1UIΦ2 or Φ � Φ1 ^ Φ2.

We de�ne the size of an MTL formula as follows:

De�nition 2.118. Let Φ be an MTL formula. We let |Φ| denote the size of Φ,

de�ned as the number of U or Ũ modalities it contains.

We are now able to de�ne the pointwise semantics of MTL. We will see that

this semantics is adapted for the setting of �nite words as well as for that of

in�nite words.

De�nition 2.119. Given a timed word θ � pσ, τq over Σ, a position 1 ¤ i ¤ |θ|

and an MTL formula Φ, we de�ne that θ satis�es Φ from position i, written

pθ, iq |ù Φ, using the following rules:

1. pθ, iq |ù J,

2. pθ, iq |ù σ i� σi � σ,

3. pθ, iq |ù Φ1 ^ Φ2 i� pθ, iq |ù Φ1 and pθ, iq |ù Φ2,

4. pθ, iq |ù Φ i� pθ, iq * Φ,

5. pθ, iq |ù Φ1UIΦ2 i� Di¤j ¤ |θ|, such that pθ, jq |ù Φ2, τj � τi P I and

@i¤k j, pθ, kq |ù Φ1.

We say that θ satis�es Φ, written θ |ù Φ, i� pθ, 1q |ù Φ. We note JΦK � tθ | |θ|
8 and θ |ù Φu the �nite timed language of Φ and JΦKω � tθ | |θ| � �8 and θ |ù

Φu the in�nite timed language of Φ.

60 Chapter 2. Preliminaries

The semantics for the U operator we have just given is known as the unstrict

semantics. Although we mostly use this semantics in this thesis, in the literature,

a strict semantics is also often used for the U operator:

6. pθ, iq |ù Φ1UIΦ2 i� Di j ¤ |θ|, such that pθ, jq |ù Φ2, τj � τi P I and

@i k j, pθ, kq |ù Φ1.

We will sometimes use the strict semantics and then specify it.

Example 2.120. MTL enables to express quantitative properties, on the se-

quence of events. For instance, we can express the fact that `every occurrence of

p is followed by an occurrence of q between 2 and 3 time units later ' by the MTL

formula: 2ppñ ♦r2,3sqq.

2.8.2 The problems

In this section, we de�ne the problems on MTL we are interested in. We also

recall classical results concerning them.

Satis�ability. The �rst main problem on the MTL logic consists in verifying

that there exists a timed word satisfying a given MTL formula.

De�nition 2.121. Let Φ be an MTL formula. We say that Φ is satis�able

over �nite (respectively in�nite) timed words if there exists a �nite (respectively

in�nite) timed word σ such that σ satis�es Φ.

The satis�ability problem over �nite (respectively in�nite) timed words is the

problem of deciding if a given MTL formula Φ is satis�able over �nite (respectively

in�nite) timed words.

Model-Checking. The second main problem on the MTL logic we are interested

in is the `MTL Model-Checking problem'. Being given an automaton or a Büchi

automaton B and an MTL formula Φ, it consists in verifying whether the language

2.8 Metric Temporal Logic 61

of B is included in the language of Φ. In other words, it enables to verify if all

accepting runs of B satisfy the property described by Φ.

De�nition 2.122. Let B be an automaton and Φ be an MTL formula. The

MTL model-checking problem over �nite timed words is to decide if the following

inclusion holds: LpAq � JΦK.
Identically, let C be a Büchi automaton and Φ be an MTL formula. The MTL

model-checking problem over in�nite timed words is to decide if the following

inclusion holds: LωpAq � JΦKω.

A �rst paper of Henzinger [7] stated the undecidability of these two versions

of the MTL model-checking problem. Indeed, the proof of [7] also stated that two

other versions of the MTL model-checking problem were undecidable: the MTL

model-checking over �nite and in�nite words for the continuous semantics (which

will be de�ned in a following section). However, in [51], Ouaknine and Worrell

proved that the MTL model-checking problem is decidable on the pointwise se-

mantics, over �nite words. This created a need for new irreproachable proofs for

the decidability or undecidability of all other versions of the MTL model-checking

problem. In the following, we review the key ideas of these reviewed proofs on

the pointwise semantics. They led to the following result:

Theorem 2.123 ([50, 51]). On the pointwise semantics, the MTL model-checking

problem over �nite words is non primitive recursive, while the MTL model-checking

problem over in�nite words is undecidable.

To simplify the key intuitions presented in the sequel, we will consider the

strict semantics of the U operator, as a reminder:

pθ, iq |ù Φ1UIΦ2 i� Di j ¤ |θ|, such that pθ, jq |ù Φ2, τj � τi P I and

@i k j, pθ, kq |ù Φ1

The proof may be adapted for the unstrict semantics of the U operator, using

62 Chapter 2. Preliminaries

atomic propositions instead of simple letters1.

The ideas of proof presented in this section are also explained in [16], while

the original proofs can be found in [50] and [51].

The decidability result over �nite words comes from the fact that, with an

MTL formula, we cannot capture the behaviours of a perfect channel machine

but only of a channel machine with insertion errors.

Let us consider a perfect channel machine C � pS, s0,M,C,∆q, where S

is a �nite set of locations, s0 P S is the initial location, M is a �nite set of

messages, C is a �nite set of FIFO channels and ∆ � S �A�S is the transition

relation over the set of actions A � tc!m, c?m | c P C and m P Mu. Let us note

C � tc1, . . . , c|C|u. A con�guration of C is a tuple ps, w1, . . . , w|C|q where s P S

and, for all 1 ¤ i ¤ |C|, wi is a word representing the content of channel ci. A

run of C in a sequence of steps consisting in the reading of an action of A: for all

ci P C and m PM , we have a step

� ps, w1, . . . , w|C|q
ci!mÝÝÝÑ ps1, w11, . . . , w

1
|C|q i� ps, ci!m, s

1q P ∆, w1i � wim and

for all j � i, w1j � wj ;

� ps, w1, . . . , w|C|q
ci?mÝÝÝÑ ps1, w11, . . . , w

1
|C|q i� ps, ci?m, s

1q P ∆, wi � mw1i and

for all j � i, w1j � wj .

For a channel machine with insertion errors, this last kind of steps is replaced by

the following one:

� ps, w1, . . . , w|C|q
ci?mÝÝÝÑ ps1, w11, . . . , w

1
|C|q i� ps, ci?m, s

1q P ∆, wi � mw1i or

wi � w1i, and for all j � i, w1j � wj .

1The use of atomic propositions instead of simple letters is not really important as we are

considering an undecidable problem.

2.8 Metric Temporal Logic 63

In the case wi � w1i, we implicitely assume that m has been inserted on the

channel ci, so that it can be read from it.

We �rst show an idea of why we cannot encode runs of a perfect channel ma-

chine by an MTL formula, following the ideas of [16]. Then, we show that we can

however encode by MTL formulas the runs of a channel machine with insertion

error. Let us recall that the halting problem of a channel machine with insertion

errors is non primitive recursive over �nite words. As it is straightforward, thanks

to this encoding, to reduce this problem to the MTL model-checking problem over

�nite words, we will conclude that the MTL model-checking problem over �nite

words is at least non primitive recursive.

A run of the machine could be encoded by a timed word, described by an

MTL formula, in the following way.

1. The �rst letter of the timed word is the initial location of the machine:

Φinit � s0.

2. To represent the evolution between locations of the machine when it is read-

ing a word, the letters forming the timed word alternate between locations

of S and actions of A:

Φalt � 2

�©
sPS

�
sñ

�
KU

ª
aPA

a

��
^
©
aPA

�
añ

�
KU

ª
sPS

s

���
.

3. Each triple ps, a, s1q of consecutive letters of the timed word starting with

a location s P S must be a triple of ∆:

Φ∆ � 2

�
�©
sPS

�
�sñ

�
� ª
ps,a,s1qP∆

�
KU

�
a^

�
KUs1

����
�

�
.

4. To force the channels to be FIFO, we furthermore require piq that each ac-

tion of type c!m is followed exactly one time unit later by the corresponding

64 Chapter 2. Preliminaries

= 1 time unit
= 1 time unit

s0

0

c!a

0.1

s0

0.5

c!b

0.7

s1

0.85

c?a

1.1

s1

1.25

c?b

1.7

s1

1.9

c?d

2

...

ps0, 0q pc!a, 0.1q ps0, 0.5q pc!b, 0.7q ps1, 0.85q pc?a, 1.1q ps1, 1.25q pc?b, 1.7q ps1, 1.9q pc?d, 2q ...

Figure 2.23: Encoding of a run presenting an insertion error of C

action c?m and piiq that each action of type c?m is preceded exactly one

time unit earlier by the corresponding action c!m. Unfortunately, only the

piq part of this requirement can be express by an MTL formula:

ΦFIFO1 � 2

� ©
c!mPA

�
c!mñ ♦r1,1sc?m

��
.

One could think that we can express piiq by the MTL formula

ΦFIFO2 � 2

� ©
c?mPA

��
♦r1,1sc?m

�
ñ c!m

��
.

However, the timed word `pc!m, 0.1qpc!m, 0.3qpc?m, 3q' satis�es ΦFIFO2 because

no letter is read one time unit before the c?m. Indeed, observing the semantics

of MTL, we see we have no condition to check what occurs at time 2 since there

is no event occuring at this time. So, the meaning of ΦFIFO2 would be that `each

c?m is preceded one time earlier, either by a c!m or by no letter'. In fact, no MTL

formula (on the pointwise semantics) enables to express the desired property: we

cannot prevent a channel machine to make insertion errors.

Example 2.124. Figure 2.23 gives the encoding of a run of C (presented in

Figure 2.24), presenting an insertion error, as a timed word.

The halting problem of a channel machine with insertion errors is non prim-

itive recursive over �nite words, and it is straightforward to reduce this problem

2.8 Metric Temporal Logic 65

s0 s1 s2

c!a c?a

c?b

c!b c?d

Figure 2.24: Channel machine C

to the MTL model-checking problem (on the pointwise semantics) over �nite

words. Hence, we can only conclude that this problem is at least non primitive

recursive. In [51], Ouaknine and Worrell present a non primitive recursive al-

gorithm to decide this MTL model-checking problem. Their technique is based

on the construction, for a given MTL formula Φ, of an OCATA AΦ recognizing

JΦK (this construction will be detailed in a following section and then used in

our contributions). However, they prove in [50] that the MTL model-checking

problem (on the pointwise semantics) is undecidable over in�nite words. They

obtain this result studying a special type of channel machine called `insertion

channel machines with emptiness testing'. They �rst prove that the recurrent-

state problem is undecidable for such machines. Then, they show this problem

can be reduced to the MTL model-checking problem over in�nite words (on the

pointwise semantics).

Reactive synthesis. As for the LTL case, the MTL reactive synthesis aims to

�nd how a system satisfying a given MTL property may be designed, against

the constraints of the reality. The MTL reactive synthesis problem considers

a property, given by an MTL formula, and an environment, representing the

constraints of the reality in the conception of the desired system. This problem

may be seen as a game in which a controller competes against an environment.

At each round, the controller and the environment suggest an action and a delay:

the player that proposes the smaller delay is authorized to play its action at the

proposed delay. Hence, starting from the empty timed word and adding at each

round the pair pσ, tq played, for a certain action σ and a certain delay t, a timed

66 Chapter 2. Preliminaries

word is created. The aim of the controller is to play following a strategy such

that, however the environment plays, the produced timed words satisfy the MTL

property.

Let us formally de�ne this problem. We consider an alphabet Σ � ΣC Y ΣE

partitioned into a set of controllable actions ΣC and a set of environment actions

ΣE . Let us �rst de�ne what is a strategy for the controller.

De�nition 2.125. A strategy for the controller is a mapping f : TΣ� Ñ pΣC �

R�q Z tKu. From the �nite timed word θ already created, fpθq proposes a pair

pσ, tq, consisting in an action an a delay, or the special action K, denoting the

fact that the controller does not want to perform any action.

We may imagine that the environment proposes also such a strategy, though

it is not authorized to perform K. The combination of both strategies produces

a set of timed words as follows:

� we start with the empty timed word, and then,

� at each round, the controller and the environment propose (respectively)

pairs pσC , dCq and pσE , dEq based on their strategies: the one with the

smallest delay is performed, or the one of the environment if the controller

proposes K ;

� this pair is concatenated to the current play and a next round starts.

When both the controller and the environment propose the same delay, we con-

sider both possibilities, so that this scheme produces a set of �nite timed words,

not a unique one. Instead of considering a strategy for the environment, in the

sequel, we de�ne the set of �nite timed words consistent with the strategy f of

the controller.

De�nition 2.126. The set of �nite timed words consistent with the strategy f of

the controller is the smallest set of timed words TΣ�f containing the empty timed

word ε, and closed by the following operations. For all θ P TΣ�f :

2.8 Metric Temporal Logic 67

� if fpθq � pa, tq P ΣC � R�:
we let θ � pa, T � tq P TΣ�f and θ � pb, T � t1q P TΣ�f for all t1 ¤ t and b P ΣE,

� if fpθq � K:

we let θ � pb, T � t1q P TΣ�f for all t1 P R� and b P ΣE,

where T � 0 if θ � ε and pc, T q P Σ� R� is the last letter of θ otherwise.

We are now able to de�ne the reactive synthesis problem.

De�nition 2.127. The MTL reactive synthesis problem (RS) is to decide, given

an MTL formula Φ, whether there exists a strategy f of the controller such that

every non-empty timed word consistent with strategy f satis�es the formula Φ,

i.e. TΣ�f � JΦKY tεu2.
A formula Φ such that there exists such a strategy is said realizable for RS.

If a formula is realizable, computing a strategy for this formula is called the syn-

thesis problem.

Example 2.128. Let us consider the partitioned alphabet Σ � ΣC YΣE , where

ΣC � tbu and ΣE � tau. We also consider the MTL formula:

Φ � 2
�
pa^ ♦¡0a^2s0,1s aq ñ p♦�1bq

�
.

We de�ne the following strategy f of the controller: for all θ P TΣ�, fpθq � pb, 1q.

TΣ�f contains the timed words θf such that, for each a in θf :

� either this is the last letter of θf ,

� or there is another a at a distance smaller than 1 time unit from this,

� or there is another a at a distance strictly bigger than 1 time unit, but

then, there is also a b exactly one time unit after this a.

2The empty word ε is only added for techical reasons: it is easier to recursively de�ne TΣ�f

when starting from ε

68 Chapter 2. Preliminaries

So, TΣ�f � JΦKY tεu and Φ is realizable for RS.

We notice that, for this �rst example, the strategy of the controller may be easily

implemented. This could not be the case as witnesses the following instance. Let

us now consider the MTL formula:

Φ1 � 2
�
pa^ ♦¡1aq ñ p♦�1bq

�
.

Φ1 is also realizable for RS but the strategy f of the controller is more complex.

This strategy must consist in treating all the a's played by the environment, by

chronological order, as follows. When, in a certain instant t, an a played in time

stamp τa is the one to treat, the controller must propose a pair pb, τa � 1 � tq.

However, the environment may play an unbounded number of a's between time

stamps τa and τa � 1 so that this strategy requires a unbounded memory, which

is not implementable in practice.

Implementable and bounded reactive synthesis problems We here intro-

duce a second concept of synthesis, more relevant for practical interests. Indeed,

let Φ be an MTL formula: if Φ is realizable for RS, it is possible that the strategy

for the synthesis is overly complex. Sometimes, it could not be implementable

in practice, because it must record too much information about time, with an

in�nite precision for instance. In contrary, we would like to constrain the problem

to only look into a subset of strategies presenting more regularity. We choose to

opt for strategies representable by symbolic transition systems.

Let us �rst de�ne what is a symbolic alphabet and a symbolic transition system.

De�nition 2.129. Let Σ be an alphabet and X be a set of clocks. A symbolic

alphabet Γ based on pΣ, Xq is a �nite subset of Σ� GpXq � 2X .

A symbolic word γ � pσ1, g1, R1q � � � pσn, gn, Rnq over Γ generates a set of

timed words over Σ, denoted by twpγq. Symbolic action pσ, g,Rq denotes the

fact that action σ is performed when constraint g is satis�ed, in which case

clocks in R are reset. Here is the formal de�nition of twpγq.

2.8 Metric Temporal Logic 69

De�nition 2.130. Let Γ be a symbolic alphabet based on pΣ, Xq and γ � pσ1, g1, R1q

� � � pσn, gn, Rnq be an element of Γ�. θ P twpγq i� θ � pσ1, τ1q � � � pσn, τnq and

there is a sequence pviq
n
i�0 of valuations over X such that:

� v0 is the valuation such that v0pxq � 0, @x P X, and

� @1 ¤ i ¤ n, pvi�1 � τi � τi�1q |ù gi and vi � pvi�1 � τi � τi�1qrRi :� 0s

(assuming τ0 � 0).

Example 2.131. Let us consider the alphabet Σ � ta, bu and the set of clocks

X � txu. Here is an example of a symbolic alphabet Γ based on pΣ, Xq:

Γ :� t pa, x � 0,Hq, pa, x � 0, txuq, pb, x � 0,Hq, pb, x � 0, txuq,

pa, x � 1,Hq, pb, x ¡ 1, txuq, pa, x ¥ 1,Hq, pa, x 2, txuq u

Here is a symbolic word γ over Γ:

γ :� pa, x � 1,Hq pa, x 2, txuq pb, x � 0,Hq pa, x ¥ 1,Hq.

Let us consider the following timed word over Σ:

θ :� pa, 1q pa, 1.3q pb, 1.3q pa, 2.4q.

We claim that θ P twpγq. Indeed, we consider the sequence pviq
4
i�0 of valuations

over X � txu such that: v0pxq � 0, v1pxq � 1, v2 � 0, v3 � 0 and v4 � 1.1. We

have:

� v0 is the valuation such that v0pxq � 0, and

� v0 � 1 � 0 � 1 |ù x � 1, v1 � 1.3 � 1 � 1.3 |ù x 2, v2 � 1.3 � 1.3 �

0 |ù x � 0 and v3 � 2.4 � 1.3 � 1.1 |ù x ¥ 1. Moreover v1 � pv0 � 1 � 0q,

v2 � pv1�1.3�1qrtxu :� 0s, v3 � pv2�1.3�1.3q and v4 � pv3�2.4�1.3q.

It is easy to see that, in fact:

twpγq :� t pa, 1qpa, v1pxqqpb, v1pxqqpa, v2pxqq | 1 ¤ v1pxq 2 and v2pxq ¥ v1pxq�1 u

70 Chapter 2. Preliminaries

De�nition 2.132. A symbolic transition system (STS) over a symbolic alphabet

Γ based on pΣ, Xq is a tuple ST � pS, s0,∆, F q where:

� S is possibly in�nite set of locations,

� s0 P S is the initial location,

� ∆ � S � Γ� S is the transition relation, and

� F � S is a set of accepting locations

In the sequel, when all the locations of an STS are accepting, we omit its

last component, noting ST � pS, s0,∆q. An STS with �nitely many locations

may be seen as a simple timed automaton (see De�nition 2.65). We so de�ne a

con�guration of an STS in a same way as a con�guration of a TA:

De�nition 2.133. Let ST � pS, s0,∆, F q be an STS over a symbolic alphabet Γ

based on pΣ, Xq. A con�guration of ST is a pair ps, vq, where s P S and v is a

valuation of the clocks in X. A con�guration ps, vq is accepting i� s P F .

Example 2.134. Let us consider the alphabet Σ � ta, bu, the set of clocks

X � txu and the symbolic alphabet Γ based on pΣ, Xq.

The STS ST � pS, s0,∆, F q (over Γ) of Figure 2.25 (left) is such that: S �

ts0, s1u, ∆ � tps0, pa,J, txuq, s1q, ps0, pb,J,Hq, s0q, ps1, pb, x � 1,Hq, s0qu and

F � ts0u. It has a �nite set of locations and may be seen has the timed automa-

ton of Figure 2.25 (right).

Now, let us consider the STS ST 1 � pS1, s10,∆
1, F 1q (over Γ) of Figure 2.26.

It is such that: S1 � ts10, s
1
1, s

1
2, s

1
3, s

1
4, . . . u is its in�nite set of locations, ∆ �

tps10, pa,J, txuq, s
1
1q, ps

1
0, pb,J,Hq, s

1
0q, ps

1
1, pb, x � 1,Hq, s10q, ps

1
1, pb, x ¥ 1, txuq, s12q,

ps12, pb, x ¥ 1, txuq, s13q, ps
1
3, pb, x ¥ 1, txuq, s14q, . . . u and F � ts10, s

1
2, s

1
3, s

1
4, . . . u.

It cannot be considered as a timed automaton because of its in�nite set of loca-

tions.

We now de�ne the possible languages recognized by an STS. We start by

de�ning what is a path of an STS.

2.8 Metric Temporal Logic 71

s0 s1

pb,J,Hq

pb, x�1,Hq

pa,J, txuq

s0 s1

b

b, x�1

a, x:�0

Figure 2.25: The STS ST � pS, s0,∆, F q (left) and its corresponding timed

automaton (right).

s10 s11 s12 s13 s14

pb,J,Hq

pb, x�1,Hq

pa,J, txuq

pb, x¥1, txuq pb, x¥1, txuq pb, x¥1, txuq
...

Figure 2.26: The STS ST 1 � pS1, s10,∆1, F 1q.

De�nition 2.135. Let ST be an STS. π � s1
b1Ñ s2

b2Ñ � � �
bnÑ sn�1 is a path of

ST i�, @1 ¤ i ¤ n, psi, bi, si�1q P ∆.

Such a �nite path is accepting i� it ends in an accepting location.

We call the symbolic word b1b2 � � � bn (over Γ) the trace of π.

At �rst sight, an STS is an acceptor of symbolic words over Γ.

De�nition 2.136. Let ST be an STS. The symbolic language of ST , denoted
by LsymbpST q, is the set of �nite symbolic words over Γ that are traces of �nite

accepting paths starting from the initial location s0.

However, an STS is also an acceptor of timed words over Σ.

De�nition 2.137. Let ST be an STS. The timed language accepted by ST is

de�ned by LpST q � twpLsymbpST qq.

Example 2.138. Let us consider again the alphabet Σ � ta, bu, the set of clocks

X � txu and the symbolic alphabet Γ based on pΣ, Xq. We observe again the

72 Chapter 2. Preliminaries

STS ST of Figure 2.25 (left). The symbolic language of ST is:

LsymbpST q � tγ � γ1γ2 . . . γn |
�
γn � pb, x � 1,Hq or γn � pb,J,Hq

�
and�

@1 ¤ i ¤ n : γi � pa,J, txuq ñ γi�1 � pb, x � 1,Hq
�
u.

The timed language accepted by ST is also the language of the corresponding

timed automaton. It is:

LpST q :� twpLsymbpST qq � tθ � pσ, τq | σ|θ| � b and @1 ¤ i ¤ |θ| :

ppσi � aq ñ pσi�1 � b^ τi�1 � τi � 1qqu

As for a classical timed automaton, we say that a STS ST is deterministic

if there are no distinct transitions ps, pa, g1, R1q, s1q and ps, pa, g2, R2q, s2q in ∆

with a valuation v verifying both g1 and g2. However, we can also de�ne the

interesting notion of symbol-determinism as follows.

De�nition 2.139. Let ST be a STS. ST is symbol-deterministic i� ps, b, s1q P ∆

and ps, b, s2q P ∆ imply s1 � s2.

A symbol-deterministic STS associates to every symbolic word γ P Γ� at

most one path starting from s0 whose trace is γ. Whereas determinism implies

symbol-determinism, the reverse implication is false.

Example 2.140. The STS ST of Figure 2.25 (left) is deterministic: all pairs of

arcs from the same location are labelled by symbolic letters whose letter of Σ are

di�erent. In particular, it is also symbol-deterministic.

The STS ST 1 of Figure 2.26 is symbol-deterministic: all pairs of arcs from the

same location are labelled by di�erent symbolic letters. However, it is not a

deterministic STS because of the two arcs ps11, pb, x � 1,Hq, s10q and ps
1
1, pb, x ¥

1, txuq, s12q. Indeed, the valuation v over txu such that vpxq � 1 is such that

v |ù x � 1 and v |ù x ¥ 1.

Remark 2.141. In a deterministic STS ST � pS, s0,∆, Sf q, every timed word

θ can be read by at most one path. More formally, there exists at most one

path π whose trace γ veri�es θ P twpγq. In that case, we denote by ∆ps0, θq the

2.8 Metric Temporal Logic 73

unique (if it exists) pair ps, vq with s the last location of the path π, and v the

valuation of clocks in X obtained by reading θ P twpγq from valuation v0 (as

de�ned above).

To de�ne a notion of reactive synthesis where the controller is characterized

by an STS, we will lift the de�nition of TΣ�f (see De�nition 2.126) for a strategy

given as an STS. To do this, we still need to de�ne what is an enabled timed

action.

De�nition 2.142. Let ST � pS, s0,∆, Sf q be an STS, s P S and v a valuation

over the clocks of ST . We say that a timed action pa, tq P Σ� R� is enabled in

ST at a con�guration ps, vq if there exists a transition ps, pa, g,Rq, s1q in ∆ such

that v � t |ù g.

We note Enabled timedST pps, vqq the set of timed actions enabled in ST at the con-

�guration ps, vq.

Example 2.143. Let us consider again the STS ST of Figure 2.25 (left). Let

us observe the pair ps1, v1q with v1pxq � 0.2. We have: Enabled timedST ps1, v1q �

tpb, 0.8qu. Indeed the unique transition from s1 is ps1, pb, x � 1,Hq, s0q and the

unique t such that v � t |ù x � 1 is t � 0.8.

If we consider the pair ps0, v2q with v2pxq � 0.7, we have that, for all t P R�,
pa, tq P Enabled timedST ps0, v2q and pb, tq P Enabled timedST ps0, v2q, thanks to the

arcs ps0, pb,J,Hq, s0q and ps0, pa,J, txuq, s1q and the fact that we always have

v � t |ù J.

Thanks to those de�nitions, we can lift the de�nition of TΣ�f (see De�ni-

tion 2.126) for a strategy given as a deterministic STS whose locations are all

accepting.

De�nition 2.144. For a deterministic STS ST � pS, s0,∆q, we let TΣ�ST be the

set of timed words consistent with ST . It is de�ned as the smallest set of timed

words containing the empty timed word, and closed by the following operations.

For all θ P TΣ�ST :

74 Chapter 2. Preliminaries

� if ∆ps0, θq � ps, vq is de�ned, and Enabled timedST ps, vq X pΣC � R�q � H:

for all pa, tq P Enabled timedST ps, vqX pΣC �R�q, we let θ � pa, T � tq P TΣ�ST

and θ � pb, T � t1q P TΣ�ST for all t1 ¤ t and b P ΣE;

� if ∆ps0, θq � ps, vq is de�ned, and Enabled timedST ps, vq X pΣC � R�q � H
(i.e. the controller does not want to play at this step):

we let θ � pb, T � t1q P TΣ�ST for all pb, T � t1q P ΣE � R�;

� if ∆ps0, θq is not de�ned (i.e. the controller lost track of a move of the

environment during the past):

we let θ � θ1 P TΣ�ST for all θ1 P TΣ� (i.e. we declare that every possible

future is valid);

where T � 0 if θ � ε, and pc, T q P Σ� R� is the last letter of θ otherwise.

We are now able to de�ne the implementable reactive synthesis problem.

De�nition 2.145. The MTL implementable reactive synthesis problem (IRS)

is to decide, given an MTL formula Φ, whether there exists a set of clocks X, a

symbolic alphabet Γ based on pΣ, Xq, and a deterministic STS ST � pS, s0,∆q

over Γ whose locations are all accepting and such that every non-empty timed

word consistent with ST satis�es formula Φ, i.e.:

TΣ�ST � JΦKY tεu.

Example 2.146. Let us consider again the partitioned alphabet Σ � ΣC YΣE ,

with ΣC � tbu and ΣE � tau, and the MTL formula:

Φ � 2
�
pa^ ♦¡0a^2s0,1s aq ñ p♦�1bq

�
.

This formula is realizable for IRS thanks to the set of clocks X � txu, the

symbolic alphabet Γ based of pΣ, Xq and the STS STΦ of Figure 2.27. Indeed,

on the one hand, for a valuation v over X such that vpxq � t ¤ 1:

Enabled timedSTΦ
ps0, vq X pΣC � R�q � tpb, 1� tqu.

2.8 Metric Temporal Logic 75

s0

pb, x�1,Hq

pa,J, txuq

Figure 2.27: The STS STΦ.

So, a timed word θ P TΣ�STΦ
such that ∆ps0, θq � ps0, vq can only be extended

by pb, T � 1 � tq and by all pa, T � t1q for 0 ¤ t1 ¤ 1 � t, where T � 0 if θ � ε

and pc, T q P Σ � R� is the last letter of θ otherwise. On the other hand, for a

valuation v1 over X such that vpxq � t ¡ 1:

Enabled timedSTΦ
ps0, vq X pΣC � R�q � H.

So, a timed word θ P TΣ�STΦ
such that ∆ps0, θq � ps0, v

1q can be extended by all

pa, T � t1q for t1 ¡ 0, where T � 0 if θ � ε and pc, T q P Σ� R� is the last letter

of θ otherwise.

Here are three examples of words of TΣ�STΦ
. They represent possible plays (ac-

cording to the STS STΦ of Figure 2.27) between the controller and the environ-

ment:
pa, 0q pa, 0.2q pa, 1.1q

pa, 0q pa, 0.2q pb, 1.2q

pa, 0.3q pb, 1.3q pa, 9q pb, 10q pa, 10.1q.

In fact, it is easy to see that:

TΣ�STΦ
� t θ � pσ, τq |�

@1 ¤ i ¤ |θ| : pσi � aq ñ p pi � |θ|q _ pσi�1 � b^ τi�1 � τi � 1q q
	

or
�
D1 ¤ i ¤ |θ| : pσi � a^ σi�1 � a^ τi�1 ¤ τi � 1q

	
u .

Hence, TΣ�STΦ
� JΦKY tεu.

A further re�ned problem consists in allowing the controller to use only a

�nite amount of resources, represented by the symbolic alphabet Γ. Indeed, we

76 Chapter 2. Preliminaries

may want to restrict the set X of clocks that the controller is allowed to use, as

well as the set of constants c appearing in the clock constraints of the STS ST .
To this extent, as proposed by [17, 31], we �rst de�ne the notion of granularity.

De�nition 2.147. A granularity is a triple µ � pX,m,Kq where X is a �nite

set of clocks, m P Nzt0u, and K P N.
A constraint g is µ-granular if g P GpXq and each constant c occurring in g is

of the form α
m with an integer α ¤ K. By extension, a symbolic alphabet Γ is

µ-granular if it is based on pΣ, Xq for an alphabet Σ, and the constraint of each

symbolic letter in Γ is µ-regular.

De�nition 2.148. The MTL bounded reactive synthesis problem (BRS) is to

decide, given an MTL formula Φ and a granularity µ � pX,m,Kq, whether there

exists a µ-granular symbolic alphabet Γ based on pΣ, Xq, and a deterministic STS

ST over Γ such that every non-empty timed word consistent with ST satis�es

formula Φ, i.e.:

TΣ�ST � JΦKY tεu.

Example 2.149. Let us consider the granularity µ � ptxu, 1, 1q. We observe

again the partitioned alphabet Σ � ΣC YΣE , with ΣC � tbu and ΣE � tau, and

the MTL formula:

Φ � 2
�
pa^ ♦¡0a^2s0,1s aq ñ p♦�1bq

�
.

This formula is realizable for BRS with µ, thanks to the µ-granular symbolic al-

phabet Γ � tpa,J, txuq, pb,J,Hq, pb, x � 1,Hq, pa,J,Hqu and the deterministic

STS STΦ over Γ (see Figure 2.27 and Example 2.146 for details).

Let us now consider µ1 � pH, 1, 1q. Intuitively, Φ is not realizable for BRS with

µ1 because the controller is not able to remember the elapsing of exactly 1 time

unit after the environment played an a.

Reactive synthesis problems with plants. D'Souza and Madhusudan [31],

as well as Bouyer, Bozzelli and Chevalier [17], proposed an extension of the IRS

and BRS problems de�ned above. Their aim was to restrain the evolution of runs

2.8 Metric Temporal Logic 77

by a deterministic timed automaton, generally called a plant in this context. This

plant will represent all the possible sequences of events over Σ � ΣC Y ΣE that

may happen. Hence, it will limit, at each instant, the possible actions of the

controller as well as those of the environment. Another interest of the plant is

that, thanks to its non-accepting locations, it enables to limit the �nite words

on which the speci�cation must be satis�ed, which may relax constrains for the

controller.

A notable di�erence with our previous de�nitions is that, in [31] and [17],

the environment is allowed to play an enabled timed action even if its delay is

higher than that in which the controller would like to play. We found this part

of the de�nitions of [31] and [17] rather counter intuitive. Indeed, using those

de�nitions and supposing that the controller would like to play a controllable

action a in one time unit, the environment might `pre-empt' the controller by

playing an uncontrollable action b in two time units.

In the sequel, we adapt the de�nitions of [31] and [17] in way the environment

is only allowed to play a timed action if its delay is smaller than that in which

the controller would like to play. Other authors used this kind of concurrency

between the controller and the environment (for instance, [28]). Such a de�nition

seems more convenient to enable to simply and intuitively model plants in way

to perform reactive synthesis with plant.

To be complete regarding the previous de�nitions of RS, IRS and BRS, we

start by de�ning a general problem of reactive synthesis with plant (RSPlant)

before to de�ne the implementable reactive synthesis with plant (IRSPlant) and

�nally the bounded reactive synthesis with plant (BRSPlant). However, only the

IRSPlant and BRSPlant were investigated in [31] and [17].

We start by formally de�ning a plant, which is a deterministic STS with

�nitely many locations and without deadlock. As we have already seen, such an

STS corresponds exactly to a timed automaton.

De�nition 2.150. A plant is a deterministic STS P � pP, p0, δ, F
Pq, over a

78 Chapter 2. Preliminaries

s0 s1

pb,J,Hq

pb, x�1,Hq

pa,J, txuq

s0 s1 s2

pb,J,Hq

pb, x�1,Hq

pa,J, txuq

pa,J,Hq
pb,J,Hq

Figure 2.28: The STS ST (left) and the plant P (right).

symbolic alphabet Γ based on pΣ, Xq, such that, for each state p P P and each

valuation v over X, there exists a timed action pa, tq P Σ � R� and a transition

pp, pa, g,Rq, p1q P δ such that v � t |ù g.

Example 2.151. The STS ST of Figure 2.28 (left) is not a plant. Indeed, when

considering its location s1 and the valuation v over txu such that vpxq � 1.2

there exists no timed action enabling to take the unique arc ps1, pb, x � 1,Hq, s0q

starting from s1.

However, the STS P of Figure 2.28 (right) is indeed a plant.

As we did for RS, we can de�ne the set of �nite timed words consistent with

the strategy f of the controller (see De�nition 2.125) and the plant P.

De�nition 2.152. The set of �nite timed words consistent with the strategy f

of the controller is the smallest set of timed words TΣ�f,P containing the empty

timed word ε, and closed by the following operations. For all θ P TΣ�f,P , letting

pp, vPq � δpp0, θq (see Remark 2.141 ; it will always be de�ned, by induction):

� if fpθq � pa, tq P Enabled timedP pp, vPq:

we let θ � pa, T � tq P TΣ�f,P and θ � pb, T � t1q P TΣ�f,P for all t1 ¤ t and

b P ΣE such that pb, t1q P Enabled timedP pp, vPq;

� if fpθq � K and Enabled timedP pp, vPq X pΣE �R�q � H (i.e. the controller

does not want to play, but the environment has some enabled actions):

we let θ �pb, T�t1q P TΣ�f,P for all pb, t1q P Enabled timedP pp, vPqXpΣE�R�q;

2.8 Metric Temporal Logic 79

� otherwise, (either the controller proposed a non-enabled actions, or it pro-

posed K whereas the environment had no enabled actions):

we let θ � θ1 P TΣ�f,P for all θ � θ1 P LpPq (i.e. we declare that every possible

future of the plant is valid);

where T � 0 if θ � ε, and pc, T q P Σ� R� is the last letter of θ otherwise.

We are now able to de�ne the reactive synthesis problem with plant.

De�nition 2.153. The MTL reactive synthesis problem with plant (RSPlant) is

to decide, given an MTL formula Φ and a plant P, whether there exists a strategy
f of the controller such that every non-empty timed word that is piq consistent

with strategy f and the plant P and piiq accepted by the plant3, satis�es the

formula Φ, i.e.:

TΣ�f,P X LpPq � JΦKY tεu.

Example 2.154. Let us consider again the partitioned alphabet Σ � ΣC YΣE ,

where ΣC � tbu and ΣE � tau, and the MTL formula:

Φ � 2
�
pa^ ♦¡0a^2s0,1s aq ñ p♦�1bq

�
.

We furthermore consider the plant P � pP, p0, δ, F
Pq of Figure 2.29. We de�ne

the following strategy f of the controller: for all θ P TΣ�, fpθq � pb, 1q. Remark

that pb, 1q is in Enabled timedP pp0, vPq and in Enabled timedP pp1, vPq for all θ P

TΣ� such that δpp0, θq is equal to pp0, vPq or pp1, vPq. So, in both cases, θ�pb, T�1q

is added to TΣ�f,P , as well as θ � pa, T � t1q for all t1 ¤ 1, where T � 0 if θ � ε

and pc, T q P Σ � R� is the last letter of θ otherwise. Such words of the form

θ � pa, T � t1q prevent the left-hand side of the implication of Φ to be veri�ed. So,

all their extensions satisfy Φ (it is important because starting from location p2,

pb, T � 1q is not an enabled action for the controller and the de�nition of TΣ�f,P
hence allows every possible future of the plant). Hence, TΣ�f,PXLpPq � JΦKYtεu

3not all the states of P are accepting.

80 Chapter 2. Preliminaries

p0 p1 p2

pb,J,Hq

pb,J,Hq

pa,J,Hq

pa,J,Hq
pa,J,Hq

Figure 2.29: A plant P.

and Φ is realizable for RSPlant.

The MTL formula

Φ1 � 2
�
pa^ ♦¡1aq ñ p♦�1bq

�
,

is also realizable for RSPlant with P, using the strategy f presented above. This

contrasts with the result of Example 2.128 in which a more complex strategy was

required.

In the following, in way to de�ne the IRSPlant and BRSPlant problems, we

rewrite the de�nitions of [31] and [17], adding however a new kind of concur-

rency between the controller and the environment. Indeed, in our de�nitions,

the environment is only allowed to play an enabled timed action if its delay is

smaller than that in which the controller would like to play. This concurrency

aims to avoid the counter intuitive situations in which the controller would like

to play a controllable action a in one time unit, but the environment `pre-empts'

the controller by playing an uncontrollable action b in two time units (which was

allowed by the de�nitions of [31] and [17]).

From RSPlant, we de�ne IRSPlant considering that controllers are described

by STS (as in the de�nition of IRS: De�nition 2.145) whose locations are all

accepting. IRSPlant is simply de�ned adapting the de�nition of consistent timed

words. One can remark, reading the following de�nition, that a consistent time

word is a word present in the parallel composition of the plant and the STS

representation of the controller. This parallel composition is formally de�ned in

[31] and [17], but avoided here to simplify the de�nition.

2.8 Metric Temporal Logic 81

De�nition 2.155. For a deterministic STS ST � pS, s0,∆q and a plant P �
pP, p0, δ, F

Pq, we let TΣ�ST ,P be the set of timed words consistent with ST and P.
It is de�ned as the smallest set of timed words containing the empty timed word,

and closed by the following operations. For all θ P TΣ�ST ,P , letting pp, vPq �

δpp0, θq (see Remark 2.141 ; it will always be de�ned, by induction),

� if ∆ps0, θq � ps, vq is de�ned and Enabled
timed
ST ps, vqXEnabled timedP pp, vPqX

pΣC � R�q � H:

for all pa, tq P Enabled timedST ps, vq X Enabled timedP pp, vPq X pΣC � R�q, we
let θ � pa, T � tq P TΣ�f,P and θ � pb, T � t1q P TΣ�f,P for all t1 ¤ t and b P ΣE

such that pb, t1q P Enabled timedP pp, vPq;

� if ∆ps0, θq � ps, vq is de�ned and Enabled
timed
ST ps, vqXEnabled timedP pp, vPqX

pΣC �R�q � H and Enabled timedP pp, vPq X pΣE �R�q � H (i.e. the con-

troller does not want to play, but the environment has some enabled ac-

tions):

we let θ � pb, T � t1q P TΣ�ST ,P for all pb, t1q P Enabled timedP pp, vPq X pΣE �

R�q;

� otherwise (i.e. either the controller proposed only non-enabled actions while

the environment had no enabled actions, or the controller lost track of a

move of the environment during the past):

we let θ �θ1 P TΣ�ST ,P for all θ �θ1 P LpPq (i.e. we declare that every possible
future of the plant is valid);

where T � 0 if θ � ε, and pc, T q P Σ� R� is the last letter of θ otherwise.

We are now ready to de�ne the implementable reactive synthesis problem

with plant.

De�nition 2.156. The MTL implementable reactive synthesis problem with

plant (IRSPlant) is to decide, given an MTL formula Φ and a plant P whose

set of clocks is XP , whether there exists a set of clocks XC , a symbolic alphabet

82 Chapter 2. Preliminaries

Γ based on pΣ, XP YXCq, and a deterministic STS ST over Γ such that every

non-empty timed word consistent with ST and P satis�es formula Φ, i.e.:

TΣ�ST ,P X LpPq � JΦKY tεu.

Example 2.157. Once again, we consider the partitioned alphabet Σ � ΣCYΣE ,

where ΣC � tbu and ΣE � tau, the MTL formula

Φ � 2
�
pa^ ♦¡0a^2s0,1s aq ñ p♦�1bq

�
and the plant P � pP, p0, δ, F

Pq of Figure 2.30 (left). Φ is realizable for IRSPlant

thanks to the empty set of clocks X � H, the symbolic alphabet Γ based of

pΣ, txuq and the STS STΦ � pS, s0,∆q of Figure 2.31 (left).

Indeed, on the one hand, for a valuation v over X such that vpxq � t ¤ 1:

Enabled timedSTΦ
ps0, vq XEnabled timedP pp0, vPq X pΣC � R�q

� Enabled timedSTΦ
ps0, vq XEnabled timedP pp1, vPq X pΣC � R�q

� tpb, 1� tqu.

So, a timed word θ P TΣ�STΦ
such that δps0, θq � pp0, vq can be extended by

all pa, T � tq and by pb, T � 1 � tq, while a timed word θ P TΣ�STΦ
such that

δps0, θq � pp1, vq can only be extended by pb, T � 1 � tq, where T � 0 if θ � ε

and pc, T q P Σ� R� is the last letter of θ otherwise.

On the other hand, for a valuation v1 over X such that vpxq � t ¡ 1:

Enabled timedSTΦ
ps0, vq XEnabled timedP pp0, vPq X pΣC � R�q

� Enabled timedSTΦ
ps0, vq XEnabled timedP pp1, vPq X pΣC � R�q

� H.

So, a timed word θ P TΣ�STΦ
such that δps0, θq � pp0, vq can be extended by

all pa, T � tq, where T � 0 if θ � ε and pc, T q P Σ � R� is the last letter of θ

otherwise.4

It is so easy to see that

TΣ�STΦ,P � t θ � pσ, τq | @1 ¤ i ¤ |θ| :

pσi � aq ñ
�
pi � |θ|q _ pσi�1 � b^ τi�1 � τi � 1q

�
u

4Remark that the case of a timed word θ P TΣ�STΦ
such that δps0, θq � pp1, vq never happens

by what precedes.

2.8 Metric Temporal Logic 83

p0 p1

pb,J,Hq

pb,J,Hq

pa,J, txuq

p10 p11

pb,J,Hq

pb,J,Hq

pa,J,Hq

Figure 2.30: A plant P (left) and a plant P 1 (right).

s0

pb, x�1,Hq

pa,J, txuq

s10

pb, y�1,Hq

pa,J, tyuq

Figure 2.31: The deterministic STS STΦ (left) and ST 1Φ (right).

So that TΣ�STΦ,P X LpPq � JΦKY tεu.
Let us notice that Φ is realizable for this IRSPlant problem thanks to the fact

that, even if the controller has no proper clock, it is allowed to observe the values

taken by the clock x of the environment at any time.

Considering the IRSPlant problem from formula Φ and the plant P 1 of Figure 2.30
(right), Φ is also realizable for IRSPlant. Neveretheless, it is now necessary to

use the set of clocks X � tyu, the symbolic alphabet Γ based of pΣ, tyuq and the

STS ST 1Φ of Figure 2.31 (right).

Finally, the bounded reactive synthesis problem with plant (BRSPlant) is ob-

tained from IRSPlant, by a priori �xing a granularity µ, representing the �nite

amount of resources the controller is only allowed to use. This adaptation is

similar to that from the de�niton of IRS to that of BRS (see De�nitions 2.145

and 2.148).

De�nition 2.158. The MTL bounded reactive synthesis problem (BRSPlant)

is to decide, given an MTL formula Φ, a plant P of set of clocks XP and a

granularity µ � pXP Y XC ,m,Kq, whether there exists a µ-granular symbolic

84 Chapter 2. Preliminaries

alphabet Γ based on pΣ, Xq, and a deterministic STS ST over Γ such that every

non-empty timed word consistent with ST and P satis�es formula Φ, i.e.:

TΣ�ST ,P X LpPq � JΦKY tεu.

Example 2.159. We observe again the partitioned alphabet Σ � ΣCYΣE , with

ΣC � tbu and ΣE � tau, the MTL formula

Φ � 2
�
pa^ ♦¡0a^2s0,1s aq ñ p♦�1bq

�
and the plant P � pP, p0, δ, F

Pq of Figure 2.30 (left). Let us consider the gran-

ularity µ � ptxu, 1, 1q, i.e. the controller has no proper clock. Φ is realizable for

BRSPlant with µ, thanks to the µ-granular symbolic alphabet Γ � tpa,J, txuq,

pb,J,Hq, pb, x � 1,Hqu and the deterministic STS STΦ over Γ (see Figure 2.31

(left) and Example 2.157 for details).

Let us now consider the plant P 1 of Figure 2.30 (right) and the granularity

µ � ptyu, 1, 1q, i.e. the controller has one proper clock y. Φ is realizable for

BRSPlant with µ1, thanks to the µ1-granular symbolic alphabet Γ � tpa,J, tyuq,

pb,J,Hq, pb, y � 1,Hqu and the deterministic STS ST 1Φ over Γ (see Figure 2.31

(right) and Example 2.157 for details).

Remark 2.160. When considering any real-time logic L, the L RS, IRS, BRS,

RSPlant, IRSPlant and BRSPlant problems are de�ned similarly as the MTL

corresponding problems, for a formula Φ of L.

Here are some decidability results about the MTL IRSPlant and BRSPlant

problems: they are the same as those presented in [17], even if the de�nitions

of these problems were slightly di�erent from ours. Indeed, our de�nitions are

simpli�ed because we avoided the construction of the actual parallel composition

between the plant and the controller: if the presentation is di�erent, from this

point of view, our de�nitions are equivalent to that of [17]. The unique real di�er-

ence is the new kind of concurrency between the controller and the environment:

we only allow the environment to play an action with a delay smaller than that

of the strategy of the controller, while the environment is allowed to play with

2.9 From MTL to OCATA 85

any time delay in [17]. It is not di�cult to see that this slight modi�cation of

the de�nitions of [17] do not a�ect the following decidabillity results5.

Theorem 2.161. The MTL IRSPlant problem is undecidable.

Theorem 2.162. The MTL BRSPlant problem is decidable.

2.9 From MTL to OCATA

In this section, we come back to the unique decidable version of the MTL

model-checking problem: on the pointwise semantics, over �nite words. Let us

consider a system represented by a timed automaton B and a property given

by an MTL formula Φ. We want to verify if LpBq X J ΦK � H. Ouaknine

and Worrell presented in [51] a non primitive recursive algorithm to decide this

version of the MTL model-checking problem. Their technique is based on the

construction, from Φ, of an OCATA A Φ recognizing J ΦK. They then de�ne

a timed transition system representing the parallel execution of B and A Φ.

Their MTL model-checking algorithm then relies on a region construction and a

well quasi order enabling to stop the branches of this (in�nite) timed transition

system.

In the present section, we explain the method of Ouaknine and Worrell ([51])

to build, from any MTL formula Φ (in negative normal form), an OCATA AΦ

whose language on �nite timed words is exactly the �nite word language of Φ,

i.e.: LpAΦq � JΦK.

To formally de�ne AΦ, observe that we can transform any MTL formula in

an equivalent MTL formula in negative normal form (in which negation can only

be present on letters σ P Σ) using the operators: ^,_, , UI and ŨI .

5only the function valid de�ned in [17], and the notion of valid set of successors of [31], must

be adapted, which does not a�ect the proofs of these papers.

86 Chapter 2. Preliminaries

Example 2.163. For instance, the MTL formula Φ � 2ppñ ♦r2,3sqq is equiva-

lent to the formula KŨr0,�8rp p _ JUr2,3sqq, which is in negative normal form.

Its negation,
�
2pp ñ ♦r2,3sqq

�
, is equivalent to the following negative normal

form MTL formula: JUr0,�8rpp^KŨr2,3s qq.

De�nition 2.164. For an MTL formula Φ in negative normal form, we let

AΦ � pΣ, L, `0, F, δq where: L is the set containing the initial copy of Φ, noted

`Φinit', and all the formulas of SubpΦq whose outermost connective is `U ' or `Ũ ';

`0 � Φinit; F is the set of the elements of L of the form Φ1ŨIΦ2. Finally δ is

de�ned6 by induction on the structure of Φ:

� δpΦinit, σq � x.δpΦ, σq

� δpΦ1 _ Φ2, σq � δpΦ1, σq _ δpΦ2, σq

� δpΦ1 ^ Φ2, σq � δpΦ1, σq ^ δpΦ2, σq

� δpΦ1UIΦ2, σq � px.δpΦ2, σq ^ x P Iq _ px.δpΦ1, σq ^Φ1UIΦ2 ^ x ¤ suppIqq

� δpΦ1ŨIΦ2, σq � px.δpΦ2, σq _ x R Iq ^ px.δpΦ1, σq _Φ1ŨIΦ2 _ x ¡ suppIqq

� @σ1, σ2 P Σ:

δpσ1, σ2q �

#
true if σ1=σ2

false if σ1 � σ2

and δp σ1, σ2q �

#
false if σ1=σ2

true if σ1 � σ2

� @σ P Σ: δpJ, σq � J and δpK, σq � K.

Example 2.165. As an example, consider the formula Φ � 2pa ñ ♦r1,2sbq,

which is a shorthand for KŨr0,�8r
�
a ñ pJUr1,2sbq

�
. The OCATA AΦ is given

in Figure 2.32, where the location `2 corresponds to Φ and the location `♦

corresponds to JUr1,2sb. One can check that this automaton follows strictly

the above de�nition, after simpli�cation of the formulas. Observe the edge la-

belled by `b, x P r1, 2s' from `♦, without target location: it depicts the fact that

6Remark that the x ¤ suppIq and x ¡ suppIq conditions in the respective de�nitions of

δpΦ1UIΦ2, σq and δpΦ1ŨIΦ2, σq have been added here for technical reasons. This does not

modify the accepted language. Indeed, in [51], these conditions are given in the in�nite word

semantics of OCATA.

2.9 From MTL to OCATA 87

Φinit `2 `♦
a x:�0

x:�0

b, x:�0 b a, b

b, xPr1,2s

a x:�0

Figure 2.32: OCATA AΦ with Φ � 2pañ ♦r1,2sbq.

`2 `♦

b a, b

b, x P r1, 2s

a x :� 0

Figure 2.33: OCATA A with LpAq �
q
2pañ ♦r1,2sbq

y
.

δpJUr1,2sb, bq � px P r1, 2sq _ pJUr1,2sbq. Intuitively, when the automaton has a

copy in location `♦' with a clock valuation in r1, 2s, the copy can be removed,

because a minimal model of x P r1, 2s with respect to a valuation v with v P r1, 2s

is H.

The OCATA AΦ may be simpli�ed, without modifying the accepted language

(in the present case), removing the location `Φinit' and using the location ``2' as

initial location instead. We so obtain the OCATA A of Figure 2.33. This OCATA

will be often used in the sequel to represent JΦK, in way to enhance readability

of the examples: it will be called AΦ by abuse of language.

With this de�nition, we have:

Theorem 2.166 ([51]). For all MTL formula Φ interpreted over �nite words:

LpAΦq � JΦK.

In Section 5.1.2, we extend this result to the setting of in�nite words, showing

that LωpAΦq � JΦKω.

88 Chapter 2. Preliminaries

2.10 The continuous semantics

The de�nitions of timed automata, alternating timed automata and MTL se-

mantics presented in the previous subsections are in fact de�ned in the setting of

the pointwise semantics. Indeed, the contributions presented in this thesis only

concern this pointwise semantics. Nevertheless, there exists an alternative seman-

tics for these objects, called the continuous semantics, which is also frequently

used in the literature. While the pointwise semantics is useful to characterize the

events happening in precise instants, the continuous semantics is opportune to

represent the state changings of a system. For the sake of completeness, we here

present the continuous semantics of automata and MTL. We furthermore exhibit

classical decidability and complexity results about the problems linked to MTL,

on the continuous semantics.

2.10.1 Timed state sequences

In the continuous semantics, instead of observing timed words, with their

letters read on precise instants, we consider timed state sequences that associate

a letter with each instant t P R� (or to each instant in r0, t�s, for a certain

t� P R�, in the case of �nite timed state sequences). Here is the formal de�nition

of timed state sequence, based on the de�nition of interval sequence.

De�nition 2.167. An interval sequence I � I1I2I3 . . . is a �nite or in�nite

word over IpRq such that:

� initiality: I1 is left-closed and infpI1q � 0,

� adjacency: for all i ¥ 1, the intervals Ii and Ii�1 are adjacent7,

� progress: if I is in�nite, for all t P R�, there is i ¥ 1 such that t P Ii.

7We recall that, for J1, J2 P R, with J1 � x1 a, b y1, J2 � x2 c, d y2 and J1 J2, we say that

J1 and J2 are adjacent i� b � c and J1 Y J2 � x1 a, d y2.

2.10 The continuous semantics 89

De�nition 2.168. A timed state sequence is a pair Θ � pσ, Iq where σ is a

word over Σ, I is an interval sequence and |σ| � |I|.

We also note Θ as pσ1, I1qpσ2, I2qpσ3, I3q . . ., and let |Θ| � |σ|.

We denote by TSΣ the set of all �nite timed state sequences and by TSΣω the

set of all in�nite timed state sequences over Σ.

Let I P IpRq and t P R�, we note t� I for tt� i P R | i P I and t ¥ iu.

For a (�nite or in�nite) timed state sequence Θ � pσ, Iq, where σ � σ1σ2σ3 . . .

and I � I1I2I3 . . . , and for t P Ii the su�x Θt of Θ at time t is the timed state

sequence consisting in σiσi�1σi�2 . . . and Ii � t Ii�1 � t Ii�2 � t

De�nition 2.169. A continuous timed language is a (possibly in�nite) set of

timed state sequences.

Example 2.170. Let us consider the alphabet Σ � ta, bu. Let us note σ �

aaabab and I � r0, 0.2r r0.2, 1s s1, 3.2s s3.2, 3.35r r3.35, 4.1r r4.1, 6r. Θ � pσ, Iq is

an element of TΣ�: it is a �nite timed state sequence over Σ. We can also denote

Θ as

pa, r0, 0.2rqpa, r0.2, 1sqpa, s1, 3.2sqpb, s3.2, 3.35rqpa, r3.35, 4.1rqpb, r4.1, 6rq.

The length of Θ is equal to 6: |Θ| � 6. The su�x Θ2.7 of Θ at time 2.7 Ps1, 3.2s

is

Θ2.7 � pa, r0, 0.5sqpb, s0.5, 0.65rqpa, r0.65, 1.4rqpb, r1.4, 3.3rq.

Let us note σ1 � ababab . . . and I
1
� r0, 1r r1, 2r r2, 3r r3, 4r r4, 5r r5, 6r. . . .

Θ1 � pσ1, I
1
q is an element of TΣω: it is an in�nite timed state sequence over Σ.

Θ1 can also be denoted

Θ1 � pa, r0, 1rqpb, r1, 2rqpa, r2, 3rqpb, r3, 4rqpa, r4, 5rqpb, r5, 6rq . . .

and |Θ1| � �8. The su�x Θ3 of Θ at time 3 P r3, 4r is

Θ3 � pb, r0, 1rqpa, r1, 2rqpb, r2, 3rq

90 Chapter 2. Preliminaries

Let us note L1 � tΘu: it is a continuous timed language (of �nite timed state

sequences) over Σ. The set L2 of in�nite timed state sequences over Σ whose �rst

letter is a is also a continuous timed language (of in�nite timed state sequences):

L2 � tΘ � pσ, Iq | σ1 � a ^ |Θ| � �8u.

2.10.2 Timed automata and alternating timed automata

While timed automata are acceptors of timed words, they are not able to

accept timed state sequences. In [5], an alternative de�nition of timed automata,

for the continuous semantics, is given in way they accept timed state sequences.

Another object, called timed signal transducer ([44]) is also able to recognize

timed state sequences. We do not present their formal de�nition here and en-

courage the interested reader to consult these papers for further details.

In a similar way, alternating timed automata recognize timed words but not timed

state sequences. As far as we know, no de�nition of alternating timed automata

for the continuous semantics has ever been investigated.

2.10.3 Metric Temporal Logic

We present here the continuous semantics of MTL and investigate the MTL

model-checking problems in this setting.

MTL continuous semantics. As well as for the MTL pointwise semantics (of

De�nition 2.119), the de�nition of the continuous semantics of MTL is based on

the syntax of MTL presented in De�nition 2.116. This semantics is adapted for

the setting of �nite words as well as for that of in�nite words.

De�nition 2.171 (Continuous semantics of MTL). Given a timed state sequence

Θ � pσ, Iq over Σ and an MTL formula Φ, we say that Θ satis�es Φ, written

Θ |ù Φ, i� the following holds:

2.10 The continuous semantics 91

1. Θ |ù J,

2. Θ |ù σ i� σ1 � σ,

3. Θ |ù Φ1 ^ Φ2 i� Θ |ù Φ1 and Θ |ù Φ2,

4. Θ |ù Φ i� Θ * Φ,

5. Θ |ù Φ1UJΦ2 i� Dt P J and Ii P I such that t P Ii, Θt |ù Φ2 and @t1 P

r0, tr,Θt1 |ù Φ1.

We note JΦKcont � tθ | |θ| 8 and θ |ù Φu the �nite continuous timed language

of Φ and JΦKωcont � tθ | |θ| � �8 and θ |ù Φu the in�nite continuous timed

language of Φ.

As for the pointwise semantics, the previously given semantics for the U oper-

ator is known as the unstrict continuous semantics. Here is the strict continuous

semantics for the U operator:

6. Θ |ù Φ1UJΦ2 i� Dt P J and Ii in the sequence I such that t P Ii, Θt |ù

Φ2 and @t1 P s0, tr,Θt1 |ù Φ1.

In the sequel, when we do not specify the semantics used for the U , it means we

consider the unstrict one.

While the pointwise and continuous semantics seem to be very close to each

other, there exists subtle di�erences such that a same formula may have di�erent

meanings when interpreted over the pointwise semantics or the continuous one.

Example 2.172. The formula Φ � 2pp♦r1,1saq ñ bq, interpreted over the con-

tinuous semantics, means that `each a is preceded by a b one time unit earlier'.

When interpreted over the pointwise semantics, its meaning changes. For exam-

ple, the �nite timed word `pa, 3q' satis�es Φ because no letter is read one time

92 Chapter 2. Preliminaries

unit before the a: hence, there is no position in the word that veri�es ♦r1,1sa.

Interpreting the formula over the pointwise semantics, we so have no condition

to verify in instant 2, contrary to the continuous semantics. So, in the pointwise

semantics, the meaning of Φ would be that `each a is preceded one time earlier,

either by a b or by no letter'.

We recall that the de�nition of the continuous semantics of MTL is given here

for the sake of completeness, but that all the contributions presented in this thesis

only concern the pointwise semantics: their extension to the continuous setting

is not clear. Indeed, the translation from an MTL formula Φ to an OCATA AΦ

exhibited in De�nition 2.164, which is starting point of our contributions, only

works for MTL formulas interpreted over the pointwise semantics. As far as we

know, no de�nition of alternating timed automata for the continuous semantics

has ever been investigated.

The problems over MTL on the continuous semantics. We here consider

the MTL satis�ability and model-checking problems on the continuous semantics.

We �rst present the result from [5] stating that the MTL satis�ability is unde-

cidable. We then discuss about the possible versions of the MTL model-checking

problem.

De�nition 2.173 ([5]). Over the continuous semantics, the MTL satis�ability

problem is undecidable.

With the de�nition of the MTL continuous semantics, two new versions of the

MTL model-checking should be investigated: the MTL model-checking problem

with the continuous semantics over �nite and in�nite words. We here present

the key ideas of proofs given in [16]8 to convince the reader that these problems

are undecidable:

Theorem 2.174. [7] The MTL model-checking problem over �nite and in�nite

words with the continuous semantics are undecidable.
8The original proof can be found in [7]

2.10 The continuous semantics 93

To simplify the key intuitions presented in the sequel, we will consider the

strict (continuous) semantics of the U operator in this paragraph.9.

Let us consider a perfect channel machine C � pS, s0,M,C,∆q, where S is a

�nite set of locations, s0 P S is the initial location, M is a �nite set of messages,

C is a �nite set of FIFO channels and ∆ � S � A � S is the transition relation

over the set of actions A � tc!m, c?m | c P C and m PMu.

We �rst show how we can encode runs of a perfect channel machine by an MTL

formula, following the ideas of [16]. Let us recall that the halting problem of a

channel machine is undecidable over �nite words. As it is straightforward, thanks

to this encoding, to reduce this problem to the MTL model-checking problem over

�nite words, we will conclude that the MTL model-checking problem over �nite

words is undecidable.

A run of the machine is encoded by a timed state sequence, represented by an

MTL formula, in the following way:

1. The �rst letter of the timed state sequence is the initial location of the

machine:

Φinit � s0.

2. To represent the evolution between locations of the machine when it is read-

ing a word, the letters forming the timed state sequence alternate between

locations of S and actions of A. Nevertheless, we need these actions to

appear instantaneously (to enforce the channels to be FIFO, as we will see

in condition 4.), so that we make a supplementary letter n (for `Nothing')

appear in an open interval after each s P S and a P A:

Φalt � 2

�©
sPS

�
sñ

�
nU

ª
aPA

a

��
^
©
aPA

�
añ

�
nU

ª
sPS

s

���
.

3. Omitting the n's present in the timed state sequence, each triple ps, a, s1q

of consecutive letters of the timed state sequence starting with a location

9As on the pointwise semantics, it is easy to adapt this proof for the unstrict semantics of

the U operator, using atomic propositions instead of simple letters.

94 Chapter 2. Preliminaries

s0 s1 s2

c!a c?a

c?b

c!b c?d

Figure 2.34: Channel machine C

s P S must be a triple of ∆:

Φ∆ � 2

�
�©
sPS

�
�sñ

�
� ª
ps,a,s1qP∆

�
nU

�
a^

�
nUs1

����
�

�
.

4. To force the channels to be FIFO, we furthermore require that each action

of type c!m is followed exactly one time unit later by the corresponding

action c?m and that each action of type c?m is preceded exactly one time

unit earlier by the corresponding action c!m:

ΦFIFO � 2

�� ©
c!mPA

�
c!mñ ♦r1,1sc?m

��
^

� ©
c?mPA

��
♦r1,1sc?m

�
ñ c!m

���
.

Example 2.175. Figure 2.34 gives a perfect channel machine C � pS, s0,M,C,∆q

with a unique channel c and M � ta, b, du. Figure 2.35 gives the encoding of a

run of C as a timed state sequence: for the sake of readability, we do not represent

the occurrences of letter `n' on the picture.

Using this encoding, it is straightforward to reduce the halting problem (for

�nite runs) of a channel machine to the MTL satis�ability problem on �nite

timed state sequences, with the continuous semantics. Moreover, this satis�a-

bility problem can be easily reduced to the corresponding MTL model-checking

problem, giving the excepted result.

Table 2.1 summarizes the decidability results for the MTL model-checking

problems with the pointwise as well as the continuous semantics. It shows that,

2.11 Alternative real-time logics 95

= 1 time unit
= 1 time unit

s0

0

c!a

0.1

s0

0.5

c!b

0.7

s1

0.85

c?a

1.1

s1

1.25

c?b

1.7

s1

1.9

...

ps0, r0, 0sq pn, s0, 0.1rq pc!a, r0.1, 0.1sq pn, s0.1, 0.5rq ps0, r0.5, 0.5sq pn, s0.5, 0.7rq pc!b, r0.7, 0.7sq

pn, s0.7, 0.85rq ps1, r0.85, 0.85sq pn, s0.85, 1.1rq pc?a, r1.1, 1.1sq pn, s1.1, 1.25rq ps1, r1.25, 1.25sq

pn, s1.25, 1.7rq pc?b, r1.7, 1.7sq pn, s1.7, 1.9rq ps1, r1.9, 1.9sq ...

Figure 2.35: Encoding of a run of C

Pointwise Semantics Continuous semantics

Finite words In�nite words Finite words In�nite Words

Undecidable Undecidable Decidable Undecidable

(non prim. rec.)

[7] [7] [51] [50]

Table 2.1: Summary of the decidability results for the MTL model-checking

problems

in its unique decidable version, the MTL model-checking problem has a non-

primitive recursive complexity. This is an obstacle to the creation of an MTL

model-checking algorithm e�cient in practice. In the following subsection, we

hence consider some alternative real-time logics to MTL whose model-checking

theoretical complexity is more engaging.

2.11 Alternative real-time logics

Because of the undecidability results about the MTL model-checking prob-

lems, several alternative real-time logics have been considered. The aim was

to recover a model-checking problem decidable with a complexity low enough

96 Chapter 2. Preliminaries

to consider the elaboration of an algorithm applicable in practice. We start

by presenting the syntactic fragment of MTL called Metric Interval Temporal

Logic (MITL), that has been proposed by Alur and al. [5]. We then consider

its fragment MITL0,8. Finally, we de�ne the Event-Clock Logic (ECL), and the

fragment LTL� of this logic.

2.11.1 MITL

MITL is a syntactic fragment of MTL where singular intervals are disal-

lowed on the modalities. Thanks to this restriction, MITL model-checking is

EXPSPACE-complete, even on in�nite words: MITL thus seems a good com-

promise between expressiveness and complexity. Here is the formal de�nition of

MITL ; we also recall the result from [5] giving the class of complexity of the

MITL model-checking problem.

De�nition 2.176. MITL is the syntactic fragment of MTL that consists of all

formulas Φ such that each interval I appearing in Φ is non-singular.

Example 2.177. The MTL formula Φ1 � 2pp ñ ♦r2,3sqq is also an MITL

formula because the intervals r0,�8r (associated with operator 2) and r2, 3s are

not singular.

In contrary, Φ2 � 2pp ñ ♦r2,2sqq is still an MTL formula but not an MITL

formula because of the singular interval r2, 2s.

One can check in [50] that the proof of undecidability of the MTL model-

checking problem is strongly linked to the use of singular intervals. In fact, Alur

and al. proved that the MITL satis�ability and model-checking problems are

decidable.

Theorem 2.178 ([5]). On the continuous semantics, over in�nite words, the

MITL satis�ability and model-checking problems are EXPSPACE-complete.

To the best of our knowledge, there exists no self-contained proof that the

2.11 Alternative real-time logics 97

MITL satis�ability and model-checking problems are EXPSPACE-complete over

the pointwise semantics (for �nite as well as in�nite words).

In their seminal work, Alur and al. provide a construction to translate an

MITL formula Φ into a timed automaton BΦ, from which the automaton-based

model checking procedure can be applied. Although this procedure is founda-

tional from the theoretical point of view, it does not seem easily amenable to

e�cient implementation: the construction is quite involved, and requests that

BΦ be completely built before the synchronous product with the system's model

can be explored. Among the contributions of this thesis, we provide a transla-

tion, from each MITL formula Φ to a timed automaton BpwΦ recognizing JΦK over
the pointwise semantics. This construction is more intuitive than that presented

in [5]. Moreover, we will present algorithms enabling to solve the MITL model-

checking problems over �nite and in�nite words without construting a priori the

entire automaton BpwΦ .

2.11.2 MITL0,8

MITL0,8 has been pointed out in [5] as a `PSPACE fragment' of MITL,

according to its model-checking problem on the continuous semantics. Later, an

attractive result of [38, 60], showed that MITL0,8 has the same expressiveness

as MITL on the continuous semantics. However, on the pointwise semantics,

MITL0,8 is strictly less expressive than MITL.

De�nition 2.179. MITL0,8 is the syntactic fragment of MITL that consists of

all formulas Φ such that, for each interval I appearing in Φ, either infpIq � 0 or

suppIq � �8.

Theorem 2.180 ([5]). On in�nite words, over the continuous semantics, the

MITL0,8 model-checking problem is PSPACE-complete.

Theorem 2.181 ([38, 56, 60]). On the continuous semantics, over in�nite words,

MITL0,8 has the same expressive power as MITL.

98 Chapter 2. Preliminaries

Theorem 2.182 ([56]). On the pointwise semantics, over in�nite words, MITL0,8

is strictly less expressive than MITL.

2.11.3 ECL

The Event-Clock Logic (ECL) has been introduced in [57]. In this subsection,

we recall the pointwise semantics of ECL. For the sake of completeness, we also

explain the continuous semantics of ECL, while we do not have any contribution

using it. Finally, we present some results about the relative expressiveness of

ECL, MITL and MITL0,8, according to the considered semantics. Remark that

the de�nitions of ECL is based on atomic propositions instead of on an alphabet.

De�nition 2.183 (Pointwise syntax of ECL). Given a set AP of atomic propo-

sitions, the formulas of ECL over the pointwise semantics are de�ned by the

following syntax, where p P AP , c P N and � P t ,¤,�,¡,¥u:

Φ := p | Φ1 _ Φ2 | Φ | © Φ | a Φ | Φ1UΦ2 | Φ1SΦ2 | ��c Φ | ��c Φ.

This syntax uses the operators until (U), since (S), a prophecy operator (�)

and a history operator (�).

De�nition 2.184 (Pointwise semantics of ECL). Given a timed word θ � pσ, τq

over the set AP of atomic propositions, a position 1 ¤ i ¤ |θ| and an ECL

formula Φ, we say that θ satis�es Φ from position i, written pθ, iq |ù Φ i� the

following holds:

� pθ, iq |ù σ i� p P σi,

� pθ, iq |ù Φ1 _ Φ2 i� pθ, iq |ù Φ1 or pθ, iq |ù Φ2,

� pθ, iq |ù Φ i� pθ, iq * Φ,

� pθ, iq |ù©Φ i� pθ, i� 1q |ù Φ,

2.11 Alternative real-time logics 99

� pθ, iq |ù aΦ i� i ¡ 0 and pθ, i� 1q |ù Φ,

� pθ, iq |ù Φ1UΦ2 i� Di¤j ¤ |θ|, such that pθ, jq |ù Φ2 and @i¤k j, pθ, kq |ù

Φ1,

� pθ, iq |ù Φ1SΦ2 i� D0¤j ¤ i, such that pθ, jq |ù Φ2 and @j k¤i, pθ, kq |ù

Φ1,

� pθ, iq |ù ��cΦ i� Di j ¤ |θ|, such that pθ, jq |ù Φ and @i k j, pθ, kq *

Φ and τj � τi � c,

� pθ, iq |ù ��cΦ i� D0 ¤ j i, such that pθ, jq |ù Φ and @j k i, pθ, kq *

Φ and τi � τj � c.

We say that θ satis�es Φ, written θ |ù Φ, i� pθ, 1q |ù Φ. We note JΦK � tθ | |θ|
8 and θ |ù Φu the �nite timed language of Φ and JΦKω � tθ | |θ| � �8 and θ |ù

Φu the in�nite timed language of Φ.

Example 2.185. The ECL formula 2pañ �¤5bq means that each a is followed

by a b within 5 time units.

a^2pañ pp�¤1aq ^ p�¥1aqqq is also an ECL formula and means that a is read

exactly in every integer time unit.

The ECL formula 2ppp�¤3aq ^ p�¥3aqq ñ bq means that, if the last a was read

exactly 3 time units ago, then a b must be read now.

Remark that the MTL formula ΦMTL � 2pa ñ ♦r1,1sbq and the ECL formula

ΦECL � 2pa ñ pp�¤1bq ^ p�¥1bqqq have di�erent meanings. ΦMTL says that

each a is followed by a b exactly one time unit later, while ΦECL is stronger and

furthermore requires that the �rst following b is at exactly 1 time unit.

For the sake of completeness, we also present the continuous syntax and

semantics of ECL.

De�nition 2.186 (Continuous syntax of ECL). Given a set AP of atomic propo-

sitions, the formulas of ECL over the continuous semantics are de�ned by the

following syntax, where p P AP and I P IpN8qq:

100 Chapter 2. Preliminaries

Φ := p | Φ1 _ Φ2 | Φ | Φ1UΦ2 | Φ1SΦ2 | �I Φ | �I Φ.

De�nition 2.187 (Continuous semantics of ECL). Given a timed state sequence

Θ � pσ, Iq over the set AP of atomic propositions and an ECL formula Φ, we

say that Θ satis�es Φ at time t P R�, written pΘ, tq |ù Φ, i� the following holds:

� pΘ, tq |ù σ i� there exists i ¥ 1 and Ii P I such that t P Ii and p P σi,

� pΘ, tq |ù Φ1 _ Φ2 i� pΘ, tq |ù Φ1 or pΘ, tq |ù Φ2,

� pΘ, tq |ù Φ i� pΘ, tq * Φ,

� pΘ, tq |ù Φ1UΦ2 i� Dt1 ¡ t with pΘ, t1q |ù Φ2 and @t2 Pst, t1r, pΘ, t2q |ù Φ1_

Φ2,

� pΘ, tq |ù Φ1SΦ2 i� Dt1 t with pΘ, t1q |ù Φ2 and @t2 Pst1, tr, pΘ, t2q |ù Φ1_

Φ2,

� pΘ, tq |ù �JΦ i� Dt1 ¡ t with t1 P pJ � tq, pΘ, t1q |ù Φ and @t2 ¡ t with t2

pJ � tq, pΘ, t2q * Φ,

� pΘ, tq |ù �JΦ i� Dt1 t with t1 P pt�Jq, pΘ, t1q |ù Φ and @t2 t with t2 ¡

pt� Jq, pΘ, t2q * Φ.

We say that Θ satis�es Φ, written Θ |ù Φ, i� pΘ, 0q |ù Φ. We note JΦKcont �
tΘ | |Θ| 8 and Θ |ù Φu the �nite timed state sequence language of Φ and

JΦKωcont � tΘ | |Θ| � �8 and Θ |ù Φu the in�nite timed state sequence language

of Φ.

Remark 2.188. We notice that the de�nition of the U operator di�ers from the

one given on the pointwise semantics. This choice was made (in [57]) to keep a

de�nition of formulas satisfaction close to intuition. For instance, let us consider

formulas Φ1 and Φ2 such that: (i) on the interval r0, 1s, Φ1 is satis�ed and Φ2

is not satis�ed, and (ii) on the interval s1,�8r, Φ1 is not satis�ed and Φ2 is

satis�ed. The intuition we have of the de�nition of Φ1UΦ2 makes us think that

2.11 Alternative real-time logics 101

this formula should be satis�ed. With the present de�nition, it is indeed the case.

If we consider a de�nition imitating that of the pointwise semantics, as

pΘ, tq |ù Φ1UΦ2 i� Dt1 ¡ t with pΘ, t1q |ù Φ2 and @t2 Pst, t1r, pΘ, t2q |ù Φ1,

then, Φ1UΦ2 is not satis�ed anymore. Indeed, this de�nition requires there is a

�rst instant t1 in which formula Φ2 is satis�ed. Such an instant does not exists

in this example.

Here are some results about the expressiveness of ECL, according to the

semantics we consider. These results are proven in the given references, for MITL

and MITL0,8 using the strict semantics of the U operator and an additional

operator `since' (S): we will respectively note them MITLS and MITLS0,8.

Theorem 2.189. [56, 57] On the pointwise semantics, over in�nite words, ECL

and MITLS0,8 are equally expressive, and MITLS0,8 is strictly less expressive than

MITLS.

Theorem 2.190. [56, 57] On the continuous semantics over in�nite words, ECL,

MITLS0,8 and MITLS are equally expressive.

As for MTL and its fragments, the satis�ability problem of ECL was inves-

tigated. It was proved to be PSPACE-complete. The proof relies on the use of

another kind of automata, called Event-clock automata, in way to represent the

ECL timed languages. These automata have good properties, in particular, they

are seen as a `determinizable class of timed automata' ([6, 56]).

Theorem 2.191. [56, 57] The ECL satis�ability problem is PSPACE-complete,

on the pointwise and the continuous semantics, over in�nite words.

Finally, the ECL reactive synthesis problem (RS, see De�nition 2.127) has

been examined in [28], over in�nite words with the pointwise semantics. The

authors proved that this problem is undecidable. One can see that we rewrote

the de�nition given in [28]. However, it is easy to see that our version of the

de�nition of reactive synthesis is equivalent to the one presented in this paper.

102 Chapter 2. Preliminaries

Theorem 2.192 ([28]). The ECL RS problem is undecidable, when ECL is in-

terpreted over in�nite words, with the pointwise semantics.

As MITLS is more expressive than ECL, the next corollary directly follows

this theorem.

Corollary 2.193. The MITLS RS problem is undecidable, when MITLS is in-

terpreted over in�nite words, with the pointwise semantics.

2.11.4 LTL�

The fragment LTL� of ECL has been pointed out in [28], treating of the

reactive synthesis problem. We only de�ne and use it on the pointwise semantics.

De�nition 2.194. LTL� is the (pointwise) syntactic fragment of ECL that con-

sists of all formulas Φ that do not contain any operator a nor �I .

The LTL� reactive synthesis problem (RS, see De�nition 2.127) was also

examined in [28]. The authors proved that this problem is decidable, over in�nite

words with the pointwise semantics:

Theorem 2.195 ([28]). The LTL� RS problem is 2EXPTIME-complete, when

LTL� is interpreted over in�nite words, with the pointwise semantics.

Figure 2.11.4 summarizes the results about the relative expressiveness of the

logics de�ned in the previous subsections over in�nite words. The left picture

concerns the pointwise semantics and the right one concerns the continuous se-

mantics.

2.11 Alternative real-time logics 103

MITLS

MITLS0,8

ECL

pointwise

pointwise

MITLS

MITLS0,8

ECL

continuous

continuous

Figure 2.36: Relative expressiveness over in�nite words for the pointwise seman-

tics (left) and the continuous semantics (right).

Part I

MITL Satis�ability and

Model-Checking

105

. .CHAPTER 3

An interval semantics for OCATA

In Chapter 2, we �xed notations and recalled the notions of timed automata

(over �nite words), Büchi timed automata (over in�nite words) and one-clock

alternating timed automata (OCATA). We also exhibited the syntax and seman-

tics of several logics and displayed well-known results about the (un)decidability

and/or complexity of their satis�ability and model-checking problems.

The aim of the present part of the thesis is to present a new approach of theMITL

model-checking problem, over the pointwise semantics, using OCATA. Henzinger

and al. proved that the MITL model-checking problem is EXPSPACE-complete

[5]. They provide an MITL model-checking algorithm based on a very com-

plex and unintuitive construction (5 pages) of Büchi timed automata for MITL

formulas. Our goal is to revisit the MITL model-checking and provide new algo-

rithms on �nite and in�nite words with the pointwise semantics: we hope these

algorithms are rather intuitive. These algorithms are inspired by one of the most

e�cient techniques, to a practical point of view, for the LTL model-checking prob-

lem. It consists in translating the LTL formula into an alternating automaton

before to change it into a Büchi automaton [45]. We follow the same steps using

107

108 Chapter 3. An interval semantics for OCATA

one clock alternating timed automata (OCATA) and (Büchi) timed automata.

Nevertheless, to simplify the translation of the constructed OCATA to (Büchi)

timed automata, we begin by de�ning a new semantics of these OCATA. This

is the object of the present chapter. The contributions present in this chapter

constitute a part of our publication [19] (arXiv reference: [20]).

The standard semantics for OCATA [42, 49] is de�ned as an in�nite transition

system whose con�gurations are �nite sets of pairs p`, vq, where ` is a location

and v is the valuation of the (unique) clock (see Section 2.7 for details). In this

chapter, we introduce a novel semantics for OCATA, in which con�gurations are

sets of states p`, Iq, where ` is a location of the OCATA and I is an interval,

instead of a single point in R�. Intuitively, a state p`, Iq is an abstraction of

all the states p`, vq with v P I, in the standard semantics. We further introduce

the notion of approximation function. Roughly speaking, an approximation func-

tion associates with each con�guration C (in the interval semantics), a set of

con�gurations that approximates C (in a sense that will be made precise later),

and contains less states than C. In Section 5.1, we will show that the inter-

val semantics, combined to a proper approximation function, allows us to build,

from all MITL formula Φ, an OCATA AΦ accepting JΦK, and whose reachable

con�gurations contain a bounded number of intervals. This will be the basis of

our algorithm to build a timed automaton recognising Φ (and hence performing

automata-based model-checking of MITL).

Our de�nition of the interval semantics for OCATA follows the de�nition of

the classical semantics as given by Ouaknine and Worrell [49] (see Section 2.7),

adapted to cope with intervals. Hence, we will abusively use the same vocabulary

for our new semantics than for the classical one. For example, despite we will now

use `interval states' of the form p`, Iq, instead of the states p`, vq of the classical

semantics, we will abusively simply call p`, Iq a state.

Interval semantics. We will now de�ne the interval semantics of OCATA. We

start by de�ning what is a state and a con�guration for this novel semantics.

Then, we show how an OCATA can pass from one con�guration to another using

109

a new notion of minimal model.

De�nition 3.1. We call state of an OCATA A � pΣ, L, `0, F, δq a couple p`, Iq

where ` P L and I P IpR�q. A state p`, Iq is accepting i� ` P F .

We note S � L� IpR�q the state space of A.

When I � rv, vs (sometimes denoted I � tvu), we shorten p`, Iq by p`, vq.

De�nition 3.2. A con�guration of an OCATA A is a (possibly empty) �nite

set of states of A whose intervals associated with a same location are disjoint.

The initial con�guration of A is tp`0, r0, 0squ. A con�guration is accepting i�

all the states it contains are accepting (in particular, the empty con�guration is

accepting).

For a con�guration C and a delay t P R�, we note C � t the con�guration

tp`, I � tq|p`, Iq P Cu.

We note Config pAq the set of all con�gurations of A.

In the rest of this thesis, we sometimes see a con�guration C as a function

from L to 2IpR
�q such that for all ` P L: Cp`q � tI | p`, Iq P Cu. From now on,

we assume that, for all con�gurations C and all locations `: when writing Cp`q

as tI1, . . . , Imu we have Ii Ii�1 for all 1 ¤ i m.

Remark 3.3. When considering two con�gurations of an OCATA A, their union
might not be a con�guration of A. For instance, consider the OCATA of Fig-

ure 3.1 and its con�gurations C � tp`0, r0, 1.5squ and D � tp`0, r0.5, 1.8squ,

C Y D � tp`0, r0, 1.5sq, p`0, r0.5, 1.8squ is not a con�guration because the two

intervals associated with location `0 are not disjoint. Intuitively, we would like

that C YD � tp`0, r0, 1.8squ.

To get round this problem, from a �nite set of states S, we use the following

procedure to construct a well de�ned con�guration, denoted S�, representing S:

1. A0 � S,

110 Chapter 3. An interval semantics for OCATA

2. for i ¥ 0, while, for a certain ` P L, there are p`, Iq and p`, Jq such that

I X J � H in Ai, Ai�1 �
�
Aiztp`, Iq, p`, Jqu

�
Y tp`, I Y Jqu.

As A0 is �nite, there is a smallest i� ¥ 0 such that @j ¥ i�, Aj � Ai
�
. We note

A� � Ai
�
. A� is the con�guration S� we are looking for.

Thanks to this procedure, we can represent the union of con�gurations C and D

by the con�guration pC YDq�.

We now present the notion of number of clock copies present in a con�gura-

tion. It will play a key role in the main results of this thesis. Intuitively, being

given a �nite set of intervals E, the number of clock copies of E is the number

of individual clocks we need to encode all the information present in E, using

one clock to track singular intervals, and two clocks to retain infpIq and suppIq

respectively for non-singular intervals I.

De�nition 3.4. Let E be a �nite set of intervals from IpR�q. We let

}E} � |tra, as P Eu| � 2� |tI P E | infpIq � suppIqu|

denote the number of clock copies of E.

For a con�guration C, we let:

}C} �
¸
`PL

}Cp`q} .

Example 3.5. Let us consider the OCATA A of Figure 3.1. p`1, r0.3, 2sq is a

state of A, as well as p`0, r2, 2sq, which could be shortly denoted p`0, 2q. C �

tp`1, r0.3, 2sq, p`1, r0.1, 0.2sq, p`0, r2, 2squ is a con�guration of A. We can see C

as a function from t`0, `1, `2u to 2IpR
�q in the following way: Cp`0q � tr2, 2su,

Cp`1q � tr0.1, 0.2s, r0.3, 2su and Cp`2q � H. The number of clock copies of C is:

}C} � }Cp`0q} � }Cp`1q} � }Cp`2q} � 1� 4� 0 � 5.

We now de�ne the satisfaction relation `|ùI ' enabling to express the notion of

minimal model.

111

De�nition 3.6. Let A � pΣ, L, `0, F, δq be an OCATA. We consider a set of

states M of A and I P IpR�q. We de�ne the satisfaction relation `|ùI ' on ΓpLq

as:

� M |ùI J,

� M |ùI γ1 ^ γ2 i� M |ùI γ1 and M |ùI γ2,

� M |ùI γ1 _ γ2 i� M |ùI γ1 or M |ùI γ2,

� M |ùI ` i� p`, Iq PM ,

� M |ùI x ' c i� @x P I, x ' c,

� M |ùI x.γ i� M |ùr0,0s γ.

De�nition 3.7. Let A � pΣ, L, `0, F, δq be an OCATA. We say that M� P

Config pAq (see Remark 3.3) is a minimal model of the formula γ P ΓpLq with

respect to the interval I P IpR�q i� M |ùI γ and for all M 1 P Config pAq such
that M 1 �M , M 1 *I γ.

Remark that a formula γ can admit several minimal models (at most one for

each disjunct in the case of a formula of the form γ �
�
j

�
k

Aj,k, see Example 3.8).

Intuitively, for ` P L, σ P Σ and I P IpR�q, a minimal model of δp`, σq with

respect to I represents a con�guration the automaton can reach from state p`, Iq

by reading σ. The de�nition of M |ùI x ' c only allows to take a transition

δp`, σq from state p`, Iq if all the values in I satisfy the clock constraint x ' c of

δp`, σq.

Example 3.8. Let us consider again the OCATA of Figure 3.1. First, let us

look for the minimal models of δp`1, aq with respect to r0, 0.3s. They are obtained

thanks to a set of statesM such that: M |ùr0,0.3s p`1^x � 1q_`2. As @x P r0, 0.3s,

112 Chapter 3. An interval semantics for OCATA

`0 `1 `2

a, x ¡ 1 a, x � 1 a

aa, x ¤ 2 x :� 0

Figure 3.1: OCATA A

x � 1, we have:

M |ùr0,0.3s p `1 ^ x � 1 q _ `2

i� M |ùr0,0.3s `1 or M |ùr0,0.3s `2

i� p`1, r0, 0.3sq PM or p`2, r0, 0.3sq PM.

So, ptp`1, r0, 0.3squq
� � tp`1, r0, 0.3squ and ptp`2, r0, 0.3squq

� � tp`2, r0, 0.3squ are

the two minimal models of δp`1, aq with respect to r0, 0.3s.

Now, we will look for the minimal models of δp`0, aq with respect to r0, 0.5s.

They are obtained thanks to a set of states M such that: M |ùr0,0.5s p`0 ^ x ¡

1q _ p`0 ^ x.`1 ^ x ¤ 2q. Remark that, for instance, 0 P r0, 0.5s and is such that

0 £ 1, while @x P r0, 0.5s, x ¤ 2, we so have:

M |ùr0,0.5s p `0 ^ x ¡ 1 q _ p `0 ^ x.`1 ^ x ¤ 2 q

i� M |ùr0,0.5s p `0 ^ x.`1 ^ x ¤ 2 q

i� M |ùr0,0.5s `0 and M |ùr0,0.5s x.`1

i� p`0, r0, 0.5sq PM and M |ùr0,0s `1

i� p`0, r0, 0.5sq PM and p`1, r0, 0sq PM.

So, ptp`0, r0, 0.5sq, p`1, 0quq
� � tp`0, r0, 0.5sq, p`1, 0qu is the unique minimal model

of δp`0, aq with respect to r0, 0.5s.

Finally, let us look for the minimal models of δp`0, aq with respect to r1.7, 1.9s.

They are obtained thanks to a set of states M such that: M |ùr1.7,1.9s p`0 ^ x ¡

1q _ p`0 ^ x.`1 ^ x ¤ 2q. As @x P r1.7, 1.9s, x ¡ 1 and @x P r1.7, 1.9s, x ¤ 2, we

113

have:

M |ùr1.7,1.9s p `0 ^ x ¡ 1 q _ p `0 ^ x.`1 ^ x ¤ 2 q

i� M |ùr1.7,1.9s `0 or pM |ùr1.7,1.9s `0 and M |ùr1.7,1.9s x.`1 q

i� p`0, r1.7, 1.9sq PM or

p p`0, r1.7, 1.9sq PM and M |ùr0,0s `1 q

i� p`0, r1.7, 1.9sq PM or

p p`0, r1.7, 1.9sq PM and p`1, r0, 0sq PM q.

So, ptp`0, r1.7, 1.9squq
� and ptp`0, r1.7, 1.9sq, p`1, 0quq

� are two models of δp`0, aq

with respect to r1.7, 1.9s, but as tp`0, r1.7, 1.9squ � tp`0, r1.7, 1.9sq, p`1, 0qu,

ptp`0, r1.7, 1.9squq
� � tp`0, r1.7, 1.9squ is the unique minimal model of δp`0, aq

with respect to r1.7, 1.9s.

The following example shows that the set of states M satisfying δp`, σq with

respect to I, in the sense of De�nition 3.6, might not be a con�guration. This

explains why we de�ned a minimal model to be M� instead of M .

Example 3.9. Let us consider the OCATA of Figure 3.2. Let us look for the

minimal models of δp`, aq with respect to r0, 0.5s. They are obtained thanks to a

set of states M such that: M |ùr0,0.5s p`^ x.`q. We so have:

M |ùr0,0.5s p `^ x.` q

i� M |ùr0,0.5s ` and M |ùr0,0.5s x.`

i� p`, r0, 0.5sq PM and M |ùr0,0s `

i� p`, r0, 0.5sq PM and p`, r0, 0sq PM.

tp`, r0, 0.5sq, p`, r0, 0squ is a set of states that is not a con�guration, while

ptp`, r0, 0.5sq, p`, r0, 0squq� � tp`, r0, 0.5squ is a con�guration and the unique min-

imal model of δp`, aq with respect to r0, 0.5s.

We now de�ne some notations enabling to simply express what are the pos-

sible successors of a given con�guration of an OCATA.

114 Chapter 3. An interval semantics for OCATA

`
a

x :� 0

Figure 3.2: An OCATA A on Σ � tau.

De�nition 3.10. Let A � pΣ, L, `0, F, δq be an OCATA and p`, Iq be a state of

A. We let Succpp`, Iq, σq � tM | M is a minimal model of δp`, σq with respect

to Iu. We lift the de�nition of Succ to con�gurations C as follows: SuccpC, σq

is the set of all con�gurations C 1 of the form pYsPCMsq
�, where, for all s P C:

Ms P Succps, σq. That is, each C 1 P SuccpC, σq is obtained by choosing one

minimal model Ms in Succps, σq for each s P C, taking the union of all those Ms,

and transform the obtained set of states of A in a real con�guration (managing

non-disjoint intervals).

Example 3.11. Let us consider the con�guration C � tp`0, r0, 0.5sq, p`1, r0, 0.3squ

of the OCATA of Figure 3.1. We saw in the Example 3.8 that the unique min-

imal model of δp`0, aq with respect to r0, 0.5s is C1 � tp`0, r0, 0.5sq, p`1, 0qu,

and that the two minimal models of δp`1, aq with respect to r0, 0.3s are C2 �

tp`1, r0, 0.3squ and C3 � tp`2, r0, 0.3squ. So, Succpp`0, r0, 0.5sq, aq � tC1u and

Succpp`1, r0, 0.3sq, aq � tC2, C3u. Hence, SuccpC, aq � tpC1 YC2q
�, pC1 YC3q

�u.

The procedure of Remark 3.3 gives

pC1 Y C2q
� � ptp`0, r0, 0.5sq, p`1, 0q, p`1, r0, 0.3squq

�

� tp`0, r0, 0.5sq, p`1, r0, 0.3squ.

Similarly,

pC1 Y C3q
� � ptp`0, r0, 0.5sq, p`1, 0q, p`2, r0, 0.3squq

�

� tp`0, r0, 0.5sq, p`1, 0q, p`2, r0, 0.3squ.

So, SuccpC, aq � ttp`0, r0, 0.5sq, p`1, r0, 0.3squ, tp`0, r0, 0.5sq, p`1, 0q, p`2, r0, 0.3squu.

Approximation functions. As stated before, our goal is to de�ne a seman-

tics for OCATA that enables to bound the number of clock copies. To this end,

115

we de�ne the notion of approximation function: we will use such functions to

reduce the number of clock copies associated with each location in a con�gura-

tion. An approximation function associates with each con�guration C a set of

con�gurations C 1 such that }C 1p`q} ¤ }Cp`q} and such that the intervals in C 1p`q,

cover those of Cp`q, for all `. Then, we de�ne the semantics of an OCATA A by

means of a transition system TTS pA, fq whose de�nition is parametrised by an

approximation function f .

De�nition 3.12. Let A be an OCATA. An approximation function is a function

f : Config pAq ÞÑ 2ConfigpAq such that for all con�gurations C, for all C 1 P fpCq,

for all locations ` P L:

� }C 1p`q} ¤ }Cp`q},

� for all I P Cp`q, there exists J P C 1p`q such that I � J ,

� for all J P C 1p`q, there are I1, I2 P Cp`q such that infpJq � infpI1q and

suppJq � suppI2q.

We note APPA the set of approximation functions for A.
We lift all approximation functions f to sets C of con�gurations in the usual way:

fpCq � YCPCfpCq.

In the sequel, we will often use the particular approximation function Id :

Config pAq ÞÑ 2ConfigpAq such that IdpCq � tCu for all C.

Example 3.13. Let us consider an OCATA A � pΣ, L, `0, F, δq. For all C P

Config pAq and all ` P L, let us note Cp`q � tI`1, . . . , I
`
m`
u. Then, the func-

tion f� : Config pAq ÞÑ 2ConfigpAq such that, for all C P Config pAq, f�pCq ��
`PLp`, rinfpI

`
1q, suppI

`
m`
qsq is an approximation function.

In the rest of this thesis we will rely mainly on approximation functions that

enable to bound the number of clock copies in all con�gurations along all runs of

an OCATA A:

116 Chapter 3. An interval semantics for OCATA

De�nition 3.14. Let k P N, we say that f P APPA is a k-bounded approxima-

tion function i� for all C P Config pAq, for all C 1 P fpCq: }C 1} ¤ k.

In particular, the function Id is not a k-bounded approximation function.

Example 3.15. Let us consider an OCATA A � pΣ, L, `0, F, δq and the approx-

imation function f� of Example 3.13. f� is a k-bounded approximation function

for all natural number k ¥ 2.|L| and is not k-bounded for natural numbers

0 ¤ k 2.|L|.

f-runs of OCATA.We can now de�ne formally the notion of run of an OCATA

in the interval semantics. This notion will be parametrised by an approximation

function f , that will be used to reduce the number of states present in each

con�guration along the run. Each new con�guration in the run is thus obtained

in three steps: letting time elapse, performing a discrete step, and applying the

approximation function. These steps characterize the f -semantics of A on which

is based the de�nition of f -run of A

De�nition 3.16. Let A be an OCATA and let f P APPA be an approxima-

tion function. The f -semantics of A is the transition system TTS pA, fq �
pConfig pAq ,ù,ÝÑf q on con�gurations of A de�ned as follows:

� the transition relation ù takes care of the elapsing of time: @t P R�,
C

t
ù C 1 i� C 1 � C � t. We let ù �

�
tPR�

t
ù.

� the transition relation ÝÑf takes care of discrete transitions between loca-

tions and of the approximation: C
σ
ÝÑf C

1 i� C 1 P fpSuccpC, σqq. We let

ÝÑf�
�
σPΣ

σ
ÝÑf .

De�nition 3.17. Let A be an OCATA of state space S and let f P APPA be

an approximation function. Let θ � pσ, τq be a (�nite or in�nite) timed word

and let us note ti � τi � τi�1 for all 1 ¤ i ¤ |θ|, assuming τ0 � 0. An f -run

of A on θ is a (�nite or in�nite) sequence of discrete and continuous transitions

117

in TTS pA, fq that is labelled by θ, i.e. a sequence of the form: C0
t1ù C1

σ1ÝÑf

C2
t2ù C3

σ2ÝÑf C4

In the rest of this thesis, we (sometimes) use the abbreviation Ci
t,σ
ÝÑf Ci�2

for Ci
t
ù Ci�1 � Ci � t

σ
ÝÑf Ci�2.

Observe that for all pairs of con�gurations C, C 1 such that C 1 P fpSuccpC �

t, σqq for some f , t and σ, each s P C can be associated with a unique set

destpC,C 1, sq � C 1 containing all the `successors' of s in C 1 and obtained as

follows. Let C P SuccpC � t, σq be such that C 1 P fpCq. Thus, by de�nition,

C � p
�
sPCMsq

�, where eachMs P Succps, σq is the minimal model that has been

chosen for s when computing SuccpC� t, σq. Then, destpC,C 1, sq � tp`1, Jq P C 1 |

p`1, Iq P Ms and I � Ju. Remark that destpC,C 1, sq is correctly de�ned because

intervals are assumed to be disjoint in con�gurations.

The function dest allows to de�ne a DAG representation of runs, as is usual

with alternating automata. We regard a run π as a rooted DAG Gπ � pV,Ñq,

whose vertices V correspond to the states of the OCATA (vertices at depth i

correspond to C2i), and whose set of edges Ñ expresses the OCATA transitions.

Here is its formal de�nition.

De�nition 3.18. Let A be an OCATA and π � C0
t1ù C1

σ1ÝÑf C2
t2ù C3

σ2ÝÑf

. . .
tnù C2n�1

σnÝÑf C2n . . . be a run of A. We de�ne the rooted DAG Gπ � pV,Ñq

with:

� V �
�

0¤i¤|θ| Vi, where for all 0 ¤ i ¤ |θ|: Vi � tps, iq | s P C2iu is the set

of all vertices of depth i ;

� the root of Gπ is pp`0, 0q, 0q ; and

� ps1, i1q Ñ ps2, i2q i� i2 � i1 � 1 and s2 P destpC2i1 , C2i2 , s1q.

Example 3.19. Figure 3.4 displays three DAG representation of run pre�xes of

AΦ, the OCATA of Figure 3.3, on the timed word

θ � pa, 0.1qpa, 0.2qpa, 1.9qpb, 2qpb, 3q . . . ,

118 Chapter 3. An interval semantics for OCATA

`2 `♦

b a, b

b, x P r1, 2s

a x :� 0

Figure 3.3: OCATA AΦ with Φ � 2pañ ♦r1,2sbq.

gray boxes highlight the successive con�gurations. π is the Id-run pre�x. It is

exactly the run pre�x of AΦ on θ obtained using the classical semantics.

The branches of these DAGs of the run De�nition 3.18 are obtained observing

function dest. For instance, let us observe the third con�guration of π1, say

C � tp`2, 0.2q, p`♦, r0, 0.1squ and its fourth con�guration, say D � tp`2, 1.9q,

p`♦, r0, 1.8squ. Let us furthermore call f the approximation function used in π1,

which will be so called an `f -run'. The branches linking locations of C to locations

of D are obtained thanks to destpC,D, p`2, 0.2qq and destpC,D, p`♦, r0, 0.1sqq. As

D is computed from C � 1.7 � tp`2, 1.9q, p`♦, r1.7, 1.8squ reading an a, it con-

sists in the minimal models of δp`2, aq with respect to 1.9, and of δp`♦, aq with

respect to r1.7, 1.8s. In fact, D � f
�
p
�
sPCMsq

��, with Mp`2,0.2q � tp`2, 1.9q,

p`♦, r0, 0squ and Mp`♦,r0,0.1sq � tp`♦, r1.7, 1.8squ. Then, the approximation func-

tion f `merges' the intervals r0, 0s and r1.7, 1.8s associated with location `♦, in

way D is tp`2, 1.9q, p`♦, r0, 1.8squ. As r1.7, 1.8s � r0, 1.8s, destpC,D, p`2, 0.2qq �

tp`2, 1.9q, p`♦, r0, 1.8squ: state p`2, 0.2q of C is linked to states p`2, 1.9q and

p`♦, r0, 1.8sq of D. In a similar way, r0, 0s � r0, 1.8s and hence

destpC,D, p`♦, r0, 0.1sqq � tp`♦, r0, 1.8squ: state p`♦, r0, 0.1sq of C is linked to

state p`♦, r0, 1.8sq of D.

f-language of OCATA.We can now de�ne the accepted language, parametrised

by an approximation function f , of an OCATA, over �nite and in�nite timed

words.

For �nite timed words, the characterisation of f -runs given by De�nition 3.17

is more convenient:

119

π

C0

p`2,0q

�

C2
0.1
,a

Id

p`2,0.1q

p`♦,0q

�

C4

0.1,a

Id

p`2,0.2q

p`♦,0q

p`♦,0.1q

�

C6

1.7,a

Id

p`2,1.9q

p`♦,0q

p`♦,1.7q

p`♦,1.8q

�

C8

0.1,b

Id

p`2,2q

p`♦,0.1q

�

C10

1,b

Id

p`2,3q

�

π1 p`2,0q
p`2,0.1q

p`♦,0q

p`2,0.2q

p`♦,r0,0.1sq

p`2,1.9q

p`♦,r0,1.8sq

p`2,2q

p`♦,r0.1,1.9sq

p`2,3q

p`♦,r2.1,2.9sq

π2 p`2,0q

p`2,0.1q

p`♦,0q

p`2,0.2q

p`♦,r0,0.1sq

p`2,1.9q

p`♦,0q

p`♦,r1.7,1.8sq

p`2,2q

p`♦,0.1q

p`2,3q

Figure 3.4: Several OCATA runs.

De�nition 3.20. A �nite f -run is accepting i� its last con�guration C2n is

accepting and we say that a �nite timed word is f -accepted by A i� there exists

an accepting �nite f -run of A on this word.

We note Lf pAq the language of all �nite timed words f -accepted by A.

Nevertheless, to de�ne when an in�nite timed word is accepted by A, we need
to use the DAG characterisation of f -runs.

De�nition 3.21. We call branch of an f -run represented by a DAG G a (�nite

or) in�nite path in Gπ. We note BranωpGπq the set of all in�nite branches of Gπ

and, for β P BranωpGπq, we note Inf pβq the set of locations occurring in�nitely

often along β. Such an f -run is accepting i� @β P BranωpGπq, Inf pβqXF � H

(i.e. we consider Büchi acceptance condition). We say that an in�nite timed word

θ is f -accepted by A i� there exists an accepting f -run of A on θ.

We note Lωf pAq the language of all in�nite timed words f -accepted by A.

Let us observe that the standard semantics for OCATA (where clock valua-

120 Chapter 3. An interval semantics for OCATA

tions are punctual values instead of intervals) is a particular case of the interval

semantics, obtained by using the approximation function Id. For the sake of

simplicity, we will use the following terms to mention the Id-semantics: we will

simply call run an Id-run and accepting run an Id-accepting run ; we will simply

note
σ
ÝÑ instead of

σ
ÝÑId and

t,σ
ÝÝÑ instead of

t,σ
ÝÝÑId.

Example 3.22. Let us observe again the three runs of OCATA AΦ (see Fig-

ure 3.3) represented in Figure 3.4: they are runs on the �nite timed word

θ � pa, 0.1qpa, 0.2qpa, 1.9qpb, 2qpb, 3q. π1 is not accepting because its last con-

�guration is not accepting: it contains the state p`♦, r2.1, 2.9sq. In contrary, π

and π2 are accepting. Let us call f the approximation function used in π1 and g

that used in π2. We so have: θ P LIdpAΦq (thanks to π) and θ P LgpAΦq (thanks

to π2). This example does not enable to verify if θ is in Lf pAΦq: π
1 is not an

accepting g-run, but there could exist an accepting g-run of AΦ on θ.

These runs are also run pre�xes for the in�nite timed word

θ1 � pa, 0.1qpa, 0.2qpa, 1.9qpb, 2qpb, 3qpb, 4qpb, 5q

It is easy to see that π is an accepting run of AΦ on θ1, and that π2 is an accepting

g-run of AΦ on θ1: this is because the reading of the following b's will only extend

the unique branch of each of these runs by con�gurations containing one state

whose location will be `2. In contrary, π1 will not be an accepting f -run of AΦ

on θ1: it is easy to see that there is no possible way to leave the non-accepting

location `♦ of AΦ when extending the branch of π1 leading to p`♦, r2.1, 2.9sq. We

so have: θ P LωIdpAΦq and θ P L
ω
g pAΦq, but this example does not enable to verify

if θ is in Lωf pAΦq.

We close this section by a proposition showing the impact of approximation

functions on the accepted language of OCATA: they can only lead to under-

approximations of LpAq and LωpAq. To simplify the proof, we �rst make some

remarks about the form of a minimal model of δp`, σq.

Remark 3.23. Let δ be the transition function of some OCATA, ` be a location

and σ be a letter. We assume δp`, σq �
�
k ak, where each ak is a conjunction

121

of atoms of the form: `1, x.`1, x ' c, 0 ' c, J or K. Then, we observe that each

minimal model of δp`, σq with respect to some interval I corresponds to �ring one

of the arcs p`, σ, akq from p`, Iq. That is, each minimal model can be obtained

by choosing an ak from δp`, σq, and applying the following procedure. Assume

ak � `1 ^ � � � ^ `n ^ x.p`n�1 ^ � � � ^ `mq ^ ϕ, where ϕ is a conjunction of clock

constraints. Then, ak is �rable from a minimal model p`, σq i� I |ù ϕ (otherwise,

no minimal model can be obtained from ak). In this case, the minimal model

is A Y BA, with A � tp`i, Iq|1 ¤ i ¤ nu and BA � tp`i, r0, 0sq | n � 1 ¤ i ¤

m and there is no p`i, Iq P A with 0 P Iu.

Remark 3.24. Now, let us observe the particular case of an OCATA

AΦ � pΣ, LΦ, `Φ0 , F
Φ, δΦq for an MTL formula Φ (see De�nition 2.164). In its

de�nition, we can see that there is no arc in AΦ containing both ` and x.` for a

certain ` P LΦ. In fact, for each location ` P LΦ, for each σ P Σ, all arcs in δΦ

are either of the form p`, σ, trueq, or p`, σ, falseq, or
�
`, σ, `^x.p`1^� � �^ `kq^g

�
,

or of the form
�
`, σ, x.p`1 ^ � � � ^ `kq ^ g

�
, where g is a guard on x. Hence,

the minimal model of δp`, σq �
�
k ak �ring ak is simply tp`i, Iq | 1 ¤ i ¤

nu Y tp`i, r0, 0sq | n� 1 ¤ i ¤ mu.

From now on, we consider that δp`, σq is always written in disjunctive normal

form, i.e. δp`, σq �
�
kPK

ak, for certain arcs ak, atoms as described in the previous

remark. Then, when considering an automaton AΦ for an MTL formula Φ, each

minimal model M of δp`, σq with respect to I has the form akrIs, for some k P K,

where

akrIs � tp`, Jq | ` is a conjunct of aku Y tp`, t0uq | x.` is a conjunct of aku

and I satis�es the guard of ak.

The following proposition states that Lf pAq � LpAq and Lωf pAq � LωpAq.
The idea of the proof is the following. Let C0 � tp`0, r0, 0squ

t1ù C1
σ1ÝÑf C2

t2ù

C3
σ2ÝÑf . . .

tnù C2n�1
σnÝÑf C2n . . . be an accepting f -run of A on θ. We will

inductively build, an accepting run D0 � tp`0, 0qu
t0ù D1

σ0ÝÑ D2
t1ù D3

σ1ÝÑ

. . .
tnù D2n�1

σnÝÑ D2n . . . on θ such that the following invariant holds:

122 Chapter 3. An interval semantics for OCATA

for all 1 ¤ i ¤ 2n, for all p`, rv, vsq P Di, there is p`, Iq P Ci such that v P I.

The basis case is trivial since C0 � D0. For the inductive case, we �rst observe

that the elapsing of time maintains the invariant. Then, we show that each

discrete step in the f -run can be simulated by a discrete step in the run that

maintains the invariant. Indeed, if a σ-labelled transition is �rable from p`, Iq,

it is also �rable from all p`, vq with v P I. Remark that the converse is not true:

there might be a set of σ-labelled transitions that are �rable from each p`, vq with

v P I, but no σ-labelled transition �rable from p`, Iq, because all clock values in I

must satisfy the guard of a unique transition. This is why to use approximation

functions only leads to under-approximations of LpAq and LωpAq.

Proposition 3.25. For all OCATA A, for all f P APPA: Lf pAq � LpAq and
Lωf pAq � LωpAq.

Proof. Let f P APPA and θ � pσ, τq P Lf pAq such that |θ| P tn,�8u. There

is an accepting f -run of A on θ, say π : C0 � tp`0, r0, 0squ
t1ù C1

σ0ÝÑf C2
t2ù

C3
σ2ÝÑf . . .

tiù C2i�1
σnÝÑf C2i We are looking for an accepting run π' of A

on θ, it must be on the form D0 � tp`0, 0qu
t0ù D1

σ0ÝÑ D2
t1ù D3

σ1ÝÑ . . .
tiù

D2i�1
σiÝÑ D2i

We construct π' by induction, the induction hypothesis is the following. We have

constructed π' until con�guration D2j and the following property is satis�ed:

@p`, vq P D2j , Dp`, Iq P C2j : v P I p�jq.

Basis: pj � 0q We must construct D0 :� tp`0, 0qu. As C0 � D0, p�jq is satis�ed

for j � 0.

Induction: pj � k � 1q suppose that for all j ¤ k, we have constructed π1 until

con�guration D2j and the property p�jq is satis�ed. We can construct π1 until

con�guration D2.pk�1q and the property p�k � 1q is still satis�ed.

123

� We construct D2k�1 :� D2k � tk�1 what corresponds to the transition

D2k
tk�1
ù D2k�1 of π1. In π, C2k

tk�1
ù C2k�1, and so C2k�1 :� C2k � tk�1.

Thanks to induction hypothesis (for i � k), it is straightforward to see that:

@p`, vq P D2k�1, Dp`, Iq P C2k�1 : v P I. (3.1)

� We must construct D2k�2 corresponding to the transition D2k�1
σk�1
ÝÝÝÑ

D2k�2. By de�nition of ÝÑ, we know that, noting D2k�1 � tp`j , vjqjPJu,

D2k�2 must be written as
�
lPL

Ml, whereMl is a minimal model of δp`l, σk�1q

with respect to vl. Let p`l, vlq P D2k�1, we will construct Ml.

In π, C2k�1
σk�1
ÝÝÝÑf C2k�2. So, noting C2k�1 � tp`l1 , Il1ql1PL1u, C2k�2 P fpEq,

where E is the union (where non-disjoint interval have been managed) of

minimal models, say El1 , of δp`l1 , σk�1q with respect to Il1 . Each min-

imal model corresponds to taking one possible arc al1 starting from `l1

whose clock constraint is satis�ed by Il1 . Thanks to (3.1), we know that

Dp`l, Ilq P C2k�1 such that vl P Il. We can take the arc al from p`l, vlq

because as Il satisfy its clock constraint, in particular vl P Il satis�es it.

This way, we �nd Ml, a minimal model of δp`l, σk�1q with respect to vl.

We let D2k�2 �
�
lPL

Ml and δp`l, σk�1q �
�
hPH

ah. We know that for all l P L,

Ml � ahrvls and El � ahrIls, for a certain h P H. Thanks to (3.1), we so

have:

@p`, vq P D2k�2, Dp`, Iq P E : v P I. (3.2)

It remains to prove that @p`, vq P D2.pk�1q, Dp`, Iq P C2.pk�1q such that v P I.

This follows from (3.2) and the fact that C2pk�1q P fpEq, what ensure in

particular that:

@p`,Hq P E, Dp`, Iq P C2pk�1q : H � I.

To conclude that Lf pAq � LpAq, suppose that |θ| � n. As π is accepting, C2n is

accepting and we must show that so is D2n. The previous induction constructs

the run π1 and shows that, in particular, @p`, vq P D2n, Dp`, Iq P C2n such that

124 Chapter 3. An interval semantics for OCATA

v P I (property p�nq). As C2n is accepting, all the states it contains are accepting,

i.e. @p`, Iq P C2n, ` is an accepting location. We deduce from this that D2n is an

accepting con�guration, so that π1 is an accepting run.

To conclude that Lωf pAq � LωpAq, suppose that |θ| � �8 and let us consider an

in�nite branch β1 � pp`0, v0q, 0qpp`1, v1q, 1q . . . pp`i, viq, iq . . . of π
1. We must show

that there are in�nitely many j ¥ 0 such that `j P F . Thanks to the previous

induction, it is not di�cult to see that there is a corresponding in�nite branch

β � pp`0, I0q, 0qpp`1, I1q, 1q . . . pp`i, Iiq, iq . . . in π, containing the same suite of

locations (such that @j ¥ 0, vj P Ij). As π is accepting, there are in�nitely many

j ¥ 0 such that `j P F , what we wanted to show.

Our following aim is to �nd a k-bounded approximation function f such that

Lf pAq � LpAq and Lωf pAq � LωpAq. However, for a general A, these equalities
are not veri�ed.

For instance, let us observe the OCATA A of Figure 3.5. The run π of A on the

timed word θ � pa, 0.1qpa, 0.2qpa, 0.9qpa, 1.2q is represented in Figure 3.6 (top).

If an approximation function merges two clock copies, of values smaller than 1,

present in location `1, this should lead to a `blocking' situation from which no

run could result (see Figure 3.6 (bottom), for instance). Indeed, we could reach a

state p`1, Iq for an interval I containing both 1 and a certain n � 1: no arc can be

taken from this state. Now, let us consider a k-bounded approximation function

f . We recall that there could be an unbounded number of clock copies associated

with location `1 of values smaller than 1 (see Example 2.101 for details). Hence,

because of the blocking situations produced by the merging of clock copies of

values smaller than 1 (such groupings are unavoidable for timed words containing

more than k a's within 1 time unit), we easily admit that Lf pAq � LpAq.
In the following chapter, we will show that, if we consider an MITL formula Φ and

the associated OCATA AΦ, there always exists a bound kΦ and a kΦ-bounded

approximation function f�Φ such that: Lf�ΦpAΦq � LpAΦq.

In chapter 5, we will establish the twin result in the setting of in�nite words: for

the same kΦ-bounded approximation function f�Φ than used over �nite words, we

125

`0 `1 `2

a, x � 1 a

a, x � 1a x :� 0

Figure 3.5: OCATA A

π

C0

p`0,0q

�

C2
0.1
,a

p`0,0.1q

p`1,0q

�

C4

0.1,a

p`0,0.2q

p`1,0q

p`1,0.1q

�

C6

0.7,a

p`0,0.9q

p`1,0q

p`1,0.7q

p`1,0.8q
�

C8

0.3,a

p`0,1.2q

p`1,0q

p`1,0.3q

p`2,1q

p`1,1.1q

�

π1 p`0,0q

p`0,0.1q

p`1,0q

p`0,0.2q

p`1,r0,0.1sq

p`0,0.9q

p`1,0q

p`1,r0.7,0.8sq = blocking state

Figure 3.6: Run and f -run of A.

will show that Lωf�Φ
pAΦq � LωpAΦq.

. .CHAPTER 4

MITL satis�ability and

model-checking over �nite words

In this chapter, we focus on the �nite words setting. Thanks to the novel

semantics for OCATA presented in the previous chapter, we can now present our

new translation, from any MITL formula Φ, to a timed automaton that accepts

JΦK. This is the object of Section 4.1. The advantage of our construction is

that we build this timed automaton from the alternating timed automaton AΦ

in a very intuitive way, by opposition to the intricate construction presented

in [5]. In section 4.2, we display our technique to perform `on the �y' MITL

satis�ability and model-checking over �nite words, using directly AΦ (whose size

is linear in the size of Φ) and so avoiding, in general, to construct the whole timed

automaton accepting JΦK (whose size is exponential in the size of Φ). These basic

algorithms use a region abstraction. We then show, in Section 4.3, how we can

use antichains in way to improve those algorithms. Section 4.4 is dedicated to

the presentation of other algorithms, based on a zone abstraction, to solve the

MITL satis�ability and model-checking problems over �nite words. As for the

127

128 Chapter 4. MITL satis�ability and model-checking over �nite words

`2 `♦

b a, b

b, x P r1, 2sa x :� 0

Figure 4.1: OCATA AΦ with Φ � 2pañ ♦r1,2sbq.

region-based algorithm, we show how we can exploit antichains to try to improve

the practical results obtained thanks to those algorithms: this is the object of

Section 4.5.

The results displayed in this chapter are a part of our publication: [19] (arXiv

reference: [20]).

4.1 From MITL to timed automata

In this section, we present our new technique to build, from any MITL formula

Φ, a timed automaton that accepts JΦK, i.e. the set of timed words satisfying Φ.

We proceeds starting from the OCATA AΦ (see Section 2.2). However, in general,

it is not possible to translate an OCATA into a timed automaton recognizing

the same language. Indeed, all along its runs, an OCATA creates clock copies.

In general, the number of clock copies created this way is unbounded and it is

not possible to simulate them by a timed automaton with �nitely many clocks.

Our technique then relies on the de�nition of a family of bounded approximation

functions f�Φ, such that, for all MITL formula Φ, Lωf�Φ
pAΦq � LωpAΦq. Since

each f�Φ is a bounded approximation function, the number of clock copies in the

f�Φ-semantics of AΦ is bounded. This allows us to build a timed automaton BΦ

accepting JΦK.

Example 4.1. Let us illustrate the idea behind the approximation function f�Φ,

for Φ � 2pañ ♦r1,2sbq, by considering the run pre�xes on

θ � pa, 0.1qpa, 0.2qpa, 1.9qpb, 2qpb, 3qpb, 4q . . .

4.1 From MITL to timed automata 129

0 1 2 3 time

aa ab b

Figure 4.2: The grouping of clocks.

π

C0

p`2,0q

�

C2
0.1
,a

Id

p`2,0.1q

p`♦,0q

�

C4

0.1,a

Id

p`2,0.2q

p`♦,0q

p`♦,0.1q

�

C6

1.7,a

Id

p`2,1.9q

p`♦,0q

p`♦,1.7q

p`♦,1.8q

�

C8

0.1,b

Id

p`2,2q

p`♦,0.1q

�

C10

1,b

Id

p`2,3q

�

π1 p`2,0q
p`2,0.1q

p`♦,0q

p`2,0.2q

p`♦,r0,0.1sq

p`2,1.9q

p`♦,r0,1.8sq

p`2,2q

p`♦,r0.1,1.9sq

p`2,3q

p`♦,r2.1,2.9sq

π2 p`2,0q

p`2,0.1q

p`♦,0q

p`2,0.2q

p`♦,r0,0.1sq

p`2,1.9q

p`♦,0q

p`♦,r1.7,1.8sq

p`2,2q

p`♦,0.1q

p`2,3q

Figure 4.3: Several OCATA runs.

in Figure 4.3. The two �rst positions (with σ1 � σ2 � a) of θ satisfy ♦r1,2sb,

thanks to the b in position 4 (with τ4 � 2), while position 3 (with σ3 � a)

satis�es ♦r1,2sb thanks to the b in position 5 (with τ5 � 3), see Figure 4.2. Hence,

f�Φ groups the two clock copies created in `♦ when reading the two �rst a's, but

keeps the third one apart. This yields the f�Φ-run π
2 in Figure 4.3. On the other

hand, the strategy of grouping all the clock copies present in each location, which

yields π1, is not a good solution. This pre�x cannot be extended to an accepting

run because of the copy in state p`♦, r2.1, 2.9sq in the rightmost con�guration,

that will never be able to visit an accepting location.

130 Chapter 4. MITL satis�ability and model-checking over �nite words

4.1.1 The approximation functions f �Φ

Let us now formally de�ne the family of bounded approximation functions

that will form the basis of our translation from MITL to timed automata.

Throughout this description, we assume an OCATA A with set of locations

L. Let S � tp`, I0q, p`, I1q, . . . , p`, Imqu be a set of states of A, all in the same

location `, with I0 I1 � � � Im. Then, we let

Merge pSq � tp`, r0, suppI1qsq, p`, I2q, . . . , p`, Imqu if I0 � r0, 0s and

Merge pSq � S otherwise,

i.e. Merge pSq is obtained from S by grouping I0 and I1 i� I0 � r0, 0s, otherwise

Merge pSq does not modify S. Observe that, in the former case, if I1 is not a

singleton, then }Merge pSq} � }S}�1. Now, we can lift the de�nition of Merge to

con�gurations, with the addition of a bound k representing the maximal size we

want our con�gurations to have. The function Merge de�nes a simple manner to

group the clock copies associated with a same location. We will see that, grouping

the clock copies this way is su�cient to obtain a bound on their number.

De�nition 4.2. Let C be a con�guration of A and let k P N. We let:

Merge pC, kq �

C 1 |

��C 1�� ¤ k and @` P L : C 1p`q P tMerge pCp`qq , Cp`qu
(

Observe that Merge pC, kq is a (possibly empty) set of con�gurations, where

each con�guration piq has at most k clock copies, and piiq can be obtained by

applying or not the Merge function to each Cp`q.

Example 4.3. Let us consider the OCATA A of Figure 4.1 and its con�gu-

ration C � tp`2, r7.6, 7.6sq, p`♦, r0, 0sq, p`♦, r0.3, 0.7sq, p`♦, r0.8, 0.9squ. We have:

Cp`2q � tp`2, r7.6, 7.6squ and Cp`♦q � tp`♦, r0, 0sq, p`♦, r0.3, 0.7sq, p`♦, r0.8, 0.9squ.

Merge pCp`2qq � tp`2, r7.6, 7.6squ andMerge pCp`♦qq � tp`♦, r0, 0.7sq, p`♦, r0.8, 0.9squ.

If we want to bound the number of clock copies at 6, we can use Merge pC, 6q �

ttp`2, r7.6, 7.6sq, p`♦, r0, 0.7sq, p`♦, r0.8, 0.9squu. If we admit a bound of 8 clock

4.1 From MITL to timed automata 131

copies, we can use Merge pC, 8q � ttp`2, r7.6, 7.6sq, p`♦, r0, 0.7sq, p`♦, r0.8, 0.9squ,

tp`2, r7.6, 7.6sq, p`♦, r0, 0sq, p`♦, r0.3, 0.7sq, p`♦, r0.8, 0.9squu.

Let us now de�ne a family of k-bounded approximation functions, based on

Merge.

De�nition 4.4. Let k ¥ 2|L| be a bound and let C be a con�guration, assuming

that Cp`q � tI`1, . . . , I
`
m`
u for all ` P L. Then:

F kpCq �

#
Merge pC, kq if Merge pC, kq � H
p`, rinfpI`1q, suppI

`
m`
qsq | ` P L

(
otherwise.

Roughly speaking, the F kpCq function tries to obtain con�gurations C 1 that

approximate C and such that }C 1} ¤ k, using the Merge function. If it fails to,

i.e., when Merge pC, kq � H, F kpCq returns a single con�guration, obtained from

C by grouping all the intervals in each location. The latter case only occurs in

the de�nition of F k for the sake of completeness.

When the OCATA A has been obtained from an MITL formula Φ, and for k

big enough (see hereunder) each θ P JΦK will be recognised by at least one F k-run

of A that traverses only con�gurations obtained thanks to Merge. We can now

�nally de�ne f�Φ for every MITL formula Φ. This de�nition is based on a bound

MpΦq which will be given by the proof of Theorem 4.7. Its (quite intricate) value

will be given later, in De�nition 4.10.

De�nition 4.5. Let Φ be an MITL formula. We let f�Φ � FK , where K �

maxt2|L|,MpΦqu and MpΦq is a bound given by Theorem 4.7 and formally de-

�ned in De�nition 4.10.

Example 4.6. Let us observe the OCATA A of Figure 4.4, corresponding to

the MITL formula Φ � 2
�
añ

�
♦r0,1sb^ ♦r0,1sc

��
. It is an OCATA on the

alphabet Σ � ta, b, cu and its set of locations is L � t`2, `♦b, `♦cu. Reading

the beginning of timed word θ � pa, 0qpa, 0.1qpa, 0.2qpa, 0.5q, we may reach the

following con�guration:

C � tp`2, 0.5q, p`♦b, 0q, p`♦b, 0.3q, p`♦b, r0.4, 0.5sq, p`♦c, 0q, p`♦c, 0.3q, p`♦c, r0.4, 0.5squ.

132 Chapter 4. MITL satis�ability and model-checking over �nite words

`2

`♦b

`♦c

b, c

a, c

a, b

b, x P r0, 1s

c, x P r0, 1s

a x :�
0

x :� 0

Figure 4.4: An OCATA A for formula Φ � 2
�
añ

�
♦r0,1sb^ ♦r0,1sc

��
.

Let us consider a bound k � 6 (¥ 2|L|) on the number of clock copies. Observe

thatMerge pCp`2qq � tp`2, 0.5qu,Merge pCp`♦bqq � tp`♦b, r0, 0.3sq, p`♦b, r0.4, 0.5squ

and Merge pCp`♦cqq � tp`♦c, r0, 0.3sq, p`♦c, r0.4, 0.5squ. So, }Merge pCp`2qq} � 1,

}Merge pCp`♦bqq} � 4 and }Merge pCp`♦cqq} � 4 ; and hence Merge pC, 6q � H.

In this case, F 6pCq � tp`2, 0.5q, p`♦b, r0, 0.5sq, p`♦c, r0, 0.5squ. When MpΦq will

be formally de�ned, we will see that MpΦq � 5, so that f�Φ � F 6. The intuition

is that this case Merge pC, 6q � H was reached because, previously in the run,

`wrong' grouping have been done. Indeed, the proof of Theorem 4.7 gives a cri-

terion characterizing the situations in which clock copies should be grouped. If

the groupings are made as stipulated by this proof, the case Merge pC, 6q � H is

never reached.

For an MITL formula Φ, it is easy to see that f�Φ is indeed a bounded approx-

imation function. Then, we can show the main theorem of this section, which

says that, for all MITL formula Φ, the f�Φ-semantics of AΦ accepts exactly JΦK:

Theorem 4.7. For all MITL formula Φ, f�Φ is a bounded approximation func-

tion and Lf�ΦpAΦq � LpAΦq � JΦK.

To simplify the following proofs, we deviate slightly from the de�nition of

AΦ (De�nition 2.164), and assume that if a formula of type Φ1UIΦ2 or Φ1ŨIΦ2

appears more than once as a sub-formula of Φ, the occurrences of this formula

are supposed di�erent and are encoded as di�erent locations.

4.1 From MITL to timed automata 133

To prove Theorem 4.7, we rely on two propositions, concerning respectively

the U and Ũ operators. The properties given by Propositions 4.8 and 4.9 are

crucial to determine, given an accepting run, whether we can group several inter-

vals and retain an accepting run or not. This observation will be central in the

proof of our main theorem.

To simplify their statement and the proof of Theorem 4.7, we will use the fol-

lowing notations. Assume we observe a timed word θ � pσ, τq, where σ �

σ1σ2 . . . σn and τ � τ1τ2 . . . τn. For all 0 ¤ k ¤ n, we denote by θk � pσk, τkq,

where σk � σkσk�1 . . . σn and τk � τ 11τ
1
2 . . . τ

1
n�k the in�nite timed word such

that @1 ¤ i ¤ n� k, τ 1i � τi�k � τk.

Let us also note:

0pk, i, I, Jq :�

pθk, iq |ù Φ2 ^ τ
k
i P I � infpJq ^ τki P I � suppJq ^ @1 ¤ m1 i : pθk,m1q |ù Φ1.

Proposition 4.8. Let Φ be an MITL formula, let K be a set of indices and,

@k P K, let Φk � Φ1,kUIkΦ2,k be subformulas of Φ. For all k P K, let `Φk

be their associated locations in AΦ. Let θ � pσ, τq be a timed word and let

Jk P IpR�q be closed intervals.

The automaton AΦ accepts θ from con�guration tp`Φk , JkqkPKu

i�

@k P K, Dmk ¥ 1 : 0p0,mk, I, Jq.

Proposition 4.9. Let Φ be an MITL formula, let K be a set of indices and,

@k P K, let Φk :� Φ1,kŨIkΦ2,k be sub-formulas of Φ. For all k P K, let `Φk be

their associated locations in AΦ. Let θ � pσ, τq be a timed word and Jk P IpR�q.

The automaton AΦ accepts θ from con�guration tp`Φk , JkqkPKu

i�

@k P K,@v P Jk, the automaton AΨ accepts θ from con�guration tp`Φk , rv, vsqu

(i.e.: @k P K,@v P Jk, pθ, 1q |ù Φ1,kŨIk�vkΦ2,k).

134 Chapter 4. MITL satis�ability and model-checking over �nite words

The proofs of these two Propositions can be found in the appendix. They are

identical in the settings of �nite and in�nite words.

We can now explain the proof of Theorem 4.7. The de�nition of f�Φ guarantees

it is a K-bounded approximation function, for K � maxt2|L|,MpΦqu. The

equality LpAΦq � JΦK have already been established ([51]) and Theorem 3.25

proves the inclusion Lf�ΦpAΦq � LpAΦq. Hence, the proof of Theorem 4.7 consists

in establishing the last needed inclusion: Lf�ΦpAΦq � LpAΦq. The process of the

proof is the following: from an accepting run of AΦ on a given timed word, we

construct inductively an accepting f�Φ-run: step k � 1 constructs the (2k � 1)th

and (2pk�1q)th con�gurations of this f�Φ-run. In a same time, we prove that the

number of clock copies associated with each location of AΦ stays bounded in the

(2k� 1)th and (2pk� 1q)th con�gurations of this f�Φ-run. This enables to deduce

the exact value of the bound MpΦq on the number of clock copies needed.

Proof of Theorem 4.7. Let θ � pσ, τq P LpAΦq, where σ � σ1σ2 . . . σn and τ �

τ1τ2 . . . τn. There is an accepting run π of AΦ on θ, say C0 � tp`0, 0qu
t1ù

C1
σ1ÝÑ C2

t2ù C3
σ2ÝÑ . . .

tnù C2n�1
σnÝÑ C2n. We must �nd an accepting f�Φ-run

π1 of AΦ on θ, for a certain bound MpΦq on the number of clock copies. Our

proof consists in constructing π1 grouping clock copies in a unique interval when

the criteria of Propositions 4.8 and 4.9 are respected, so that we still have an

accepting run from the interval formed. Our method is to group the last clock

copy associated with a location `i with the previous interval associated with

this location (as done with the Merge pq function) if Propositions 4.8 and 4.9

ensure there is still an accepting run from the formed interval. π1 will be denoted

D0 � tp`0, Jqu
t1ù D1

σ1ÝÑf�Φ
D2

t2ù D3
σ2ÝÑf�Φ

. . .
tnù D2n�1

σnÝÑf�Φ
D2n. We

will construct it inductively: at step k � 1 we construct D2k�1 and D2pk�1q and

prove there is an accepting run D0
t1ù D1

σ1ÝÑf�Φ
D2

t2ù D3
σ2ÝÑf�Φ

. . .
tk�1
ù

D2k�1
σk�1
ÝÝÝÑf�Φ

D2pk�1q
tk�2
ù Ek2k�3

σk�2
ÝÝÝÑf�Φ

Ek2pk�2q . . .
tnù Ek2n�1

σnÝÑf�Φ
Ek2n,

thanks to Propositions 4.8 and 4.9 ; at step k � 2, we construct D2k�3 and

4.1 From MITL to timed automata 135

D2pk�2q from Ek2k�3 and Ek2pk�2q.
1 In the same time, we will prove that, in

each con�guration D �
�
`PL

Dp`q reached by π1, if ` corresponds to a formula

ϕU � Φ1UIΦ2, }Dp`iq} ¤ 4.r infpIq
|I| s � 2; and, if `i corresponds to a formula

ϕŨ � Φ1ŨIΦ2, }Dp`q} ¤ 2.r suppIq
|I| s� 2. These properties on the number of clock

copies will enable us to deduce the value of MpΦq needed in the de�nition of f�Φ.

In the sequel, we denote MpϕU,Iq :� 4.r infpIq
|I| s� 2 and MpϕŨ ,Iq :� 2.r suppIq

|I| s� 2.

The induction hypothesis (at step k+1) is that we have the following accepting

run on θ:

D0
t1ù D1 � � �D2k�1

σkÝÑf�Φ
D2k

tk�1
ù Ek2k�1

σk�1
ÝÝÝÑ Ek2pk�1q � � �E

k
2n�1

σnÝÑ Ek2n.

It is not yet an f�Φ-run because we have no bound on the number of clock copies

for con�gurations Eki , for 2k�1 ¤ i ¤ 2n. Its beginning, until con�guration D2k,

is an f�Φ-run while its end is a simple run. It is such that @0 ¤ j ¤ 2k,@` P L

corresponding to a formula Φ1UIΦ2, we have that }Djp`q} ¤MpϕU,Iq and @` P L

corresponding to a formula Φ1ŨIΦ2, we have that }Djp`q} ¤ MpϕŨ ,Iq. Thanks

to this hypothesis, we will show how to build D2k�1 and D2k�2 in way:

(i) π� � D0
t1ù D1

σ1ÝÑ D2 � � �D2k
tk�1
ù D2k�1

σk�1
ÝÝÝÑ D2k�2 is the beginning of

an accepting f�Φ-run of AΦ on θ ;

(ii) D2k�2
tk�2
ù Ek�1

2k�3 � � �E
k�1
2n�1

σnÝÑ Ek�1
2n is an accepting end of run, for the

beginning of f�Φ-run π
� of AΦ on θ ;

(ii) @` P L corresponding to a formula Φ1UIΦ2: }D2k�2p`q} ¤ MpϕU,Iq, and

@`i P L corresponding to a formula Φ1ŨIΦ2: }D2k�2p`q} ¤MpϕŨ ,Iq.

Basis: (k=0) we de�ne D0 � C0 � tp`0, r0, 0squ. We still have an accepting

run of AΦ on θ: π.

1To construct D2k�3 and D2pk�2q from Ek2k�3 and Ek2pk�2q enables to simplify the proof and

to simply de�ne f�Φ, although they could be directly constructed from C2k�3 and C2pk�2q

136 Chapter 4. MITL satis�ability and model-checking over �nite words

Induction: We know there is an accepting run of AΦ from D2k on θk�1 and

observe the two �rst steps of this run: D2k
tk�1
ù Ek2k�1

σk�1
ÝÝÝÑ Ek2pk�1q. We

de�ne con�guration D2k�1 of π' as D2k�1 :� Ek2k�1. As @` P L correspond-

ing to a formula Φ1UIΦ2, }D2kp`q} ¤ MpϕU,Iq (induction hypothesis), we also

have }D2k�1p`q} ¤ MpϕU,Iq. In the same way, as @` P L corresponding to

a formula Φ1ŨIΦ2, }D2kp`q} ¤ MpϕŨ ,Iq (induction hypothesis), we also have

}D2k�1p`q} ¤ MpϕŨ ,Iq. Assume that Ek2k�2p`q � tJ1, ..., Jmu. We de�ne D2k�2

of π' as f�ΦpE
k
2k�2q �

�
`PL

f�ΦpE
k
2k�2p`qq, where @` P L, f

�
ΦpE

k
2k�2p`qq is de�ned as

follows:

f�ΦpE
k
2k�2p`qq �

$'''''''&
'''''''%

Merge
�
Ek2k�2p`q

�
if ` is of type Φ1UIΦ2 and

Dm ¥ 1 such that: 0pk � 2,m, I, J2q

or ` is of type Φ1ŨIΦ2 and

@v P r0, suppJ2qs, pθ, 1q |ù Φ1ŨI�vΦ2

Ek2k�2p`q otherwise

with, as de�ned above,

Merge
�
Ek2k�2p`q

	
� tp`, r0, suppJ2qsq, p`, J3q, p`, J4q, . . . , p`, Jnqu.

We must prove there is an accepting run of AΦ from D2.pk�1q � f�ΦpE
k
2k�2q ��

`PL

fpEk2k�2p`iqq on θk�2. Let ` P L, we will prove that there is an accepting

run of AΦ on θk�2 from D2.pk�1qp`q :� f�ΦpE
k
2k�2p`qq (which is su�cient). If

f�ΦpE
k
2k�2p`qq � Ek2k�2p`q, the accepting run given by induction hypothesis on

Ek2k�2p`q can always be used. Else,

f�ΦpE
k
2k�2p`qq � tp`, r0, suppJ2qsq, p`, J3q, p`, J4q, . . . , p`, Jnqu

As in this case Ek2k�2p`q was tp`, r0, 0sq, p`, J2q, p`, J3q, p`, J4q, . . . ,

p`, Jnqu, the accepting run given by induction hypothesis can be used from

tp`, J3q, p`, J4q, . . . , p`, Jnqu � f�ΦpE
k
2k�2p`qq and we only need to prove there

is an accepting run of AΦ on θk�2 from tp`, r0, suppJ2qsu.

On the one hand, suppose that ` is of type Φ1UIΦ2, in this case Dm ¥ 1

such that 0pk � 2,m, I, J2q is satis�ed: we can conclude thanks to Proposi-

tion 4.8. On the other hand, suppose that ` is of type Φ1ŨIΦ2, in this case

4.1 From MITL to timed automata 137

@v P r0, suppJ2qs, pθ, 1q |ù Φ1ŨI�vΦ2, and we can conclude thanks to Proposi-

tion 4.9.

We must now show that, the way we grouped clock copies with f�Φ, @` P L

corresponding to a formula Φ1UIΦ2, }D2k�2p`q} ¤ MpϕU,Iq and @` P L corre-

sponding to a formula Φ1ŨIΦ2, }D2k�2p`q} ¤ MpϕŨ ,Iq. We prove it by contra-

diction.

For the U case, let us suppose that }D2k�2p`q} ¡ MpϕU,Iq, for a certain

location ` corresponding to formula Φ1UIΦ2. We so have more than 2.r infpIq
|I| s� 1

intervals associated with ` in D2k�2, i.e: D2k�2p`q � tp`, J1q, p`, J2q, . . . , p`, Jnqu,

for a certain n ¡ 2.r infpIq
|I| s � 1. The way we grouped clock copies with f�Φ, we

know that each interval Jj , for 1 ¤ j ¤ n, satis�es the following property:

Dkj ¥ 1 such that: 0pk � 1, kj , I, Jjq. (4.1)

Indeed, if it is not the case anymore, π' would not be an accepting run. Moreover,

@1 j ¤ n, we have the following property:

@km ¥ 1 : pθk�1, kmq * Φ2 _ τk�1
km

R I � suppJjq _ τk�1
km

R I � suppJj�1q

_ D1 ¤ k1 km, pθ
k�1, k1q * Φ1. (4.2)

Indeed, if it is not the case, suppJj�1q would have been grouped with Jj .

We �rst claim that @3 ¤ j ¤ n, suppJjq � suppJj�2q ¥ |I|. We will prove it

by contradiction. Let j� be such that 3 ¤ j� ¤ n and suppose that suppJj�q �

138 Chapter 4. MITL satis�ability and model-checking over �nite words

suppJj��2q |I|, i.e.: suppJj�q |I| � suppJj��2q.

Then: pI � suppJj�qq X pI � suppJj��2qq � H

(because these intervals have the same size).

Moreover, infpI � suppJj�qqq infppI � suppJj��2qq

(because suppJj�q ¡ suppJj��2q),

Finally:

suppI � suppJj�qq � suppIq � suppJj�q

¡ suppIq � p|I| � suppJj��2qq

� suppIq � suppIq � infpIq � suppJj��2q

� infpIq � suppJj��2q

� infpI � suppJj��2qq.

So, as suppJj��2q suppJj��1q suppJj�q:

I � suppJj��1q � pI � suppJj�qq Y pI � suppJj��2qq.

Considering (4.1) with j � j�, we have that τ 1kj��1
P I � suppJj��1q, and so

τ 1kj��1
P pI � suppJj�qq Y pI � suppJj��2qq.

Though, if τ 1kj��1
P pI � suppJj�qq, we contradict (4.2) for j � j� taking km �

kj��1 (for the kj��1 given by (4.1)) ; and if τ
1
kj��1

P pI�suppJj��2qq, we contradict

(4.2) for j � j� � 1 taking again km � kj��1.

We now know that @3 ¤ j ¤ n, suppJjq � suppJj�2q ¥ |I|. So,

suppJnq � suppJ1q ¥ r
pn� 2q

2
s.|I|.

As n ¡ 2.r suppIq
|I| s� 1, we have that:

suppJnq � suppJ1q ¡

�
���
p2.

Q
suppIq
|I|

U
� 1� 2q

2

�
��� .|I|

�

RR
suppIq

|I|

V
�

1

2

V
.|I| �

R
suppIq

|I|

V
.|I| ¥ suppIq.

4.1 From MITL to timed automata 139

It means that suppJnq � suppJ1q ¡ suppIq, and hence suppJnq ¡ suppIq. It is

a contradiction because if suppJnq ¡ suppIq, we cannot have an accepting run

from tp`, suppJnqqu and therefore neither from D2k�2, while we have just proved

it is the case.

For the Ũ case, let us suppose that }D2k�2p`q} ¡ MpϕŨ ,Iq, for a certain

location ` corresponding to formula Φ1ŨIΦ2. We so have more than r infpIq
|I| s � 1

intervals associated with ` in D2k�2, i.e.: D2k�2p`q � tp`, J1q, p`, J2q, . . . , p`, Jnqu,

for a certain n ¡ r infpIq
|I| s � 1. The way we grouped clock copies by intervals, we

know that each interval Jj , for 1 ¤ j ¤ n, satis�es the following property:

@v P Jj , pθ, 1q |ù Φ1ŨI�vΦ2. (4.3)

Indeed, if it is not the case anymore, π' could not be an accepting run. Moreover,

@1 j ¤ n, we have the following property:

Dv P rsuppJj�1q, infpJjqs, pθ, 1q * Φ1ŨI�vΦ2. (4.4)

Indeed, if it is not the case, suppJj�1q would have been grouped with Jj .)

We �rst claim that @2 ¤ j ¤ n, infpJjq � infpJj�1q ¥ |I|. We will prove it by

contradiction. Let 2 ¤ j ¤ n and suppose that infpJjq � infpJj�1q |I|, i.e.:

infpJjq |I| � infpJj�1q.

Then: pI � Jjq X pI � Jj�1q � H, because:

suppI � Jjq � suppIq � infpJjq ¡ suppIq � p|I| � infpJj�1qq

� suppIq � suppIq � infpIq � infpJj�1q

� infpIq � infpJj�1q

¥ infpIq � suppJj�1q

� infpI � Jj�1q.

However, considering 4.3 with j and j � 1, we have that:

@v P Jj , pθ, 1q |ù Φ1ŨI�vΦ2 and @v P Jj�1, pθ, 1q |ù Φ1ŨI�vΦ2

It means that

140 Chapter 4. MITL satis�ability and model-checking over �nite words

1. @v P Jj ,@k ¥ 0 such that τk P I � v:

either pθ, kq |ù Φ2, or D0 ¤ k1 ¤ k such that pθ, k1q |ù Φ1

2. @v P Jj�1,@k ¥ 0 such that τk P I � v:

either pθ, kq |ù Φ2, or D0 ¤ k1 ¤ k such that pθ, k1q |ù Φ1.

As pI � Jjq X pI � Jj�1q � H,

@v P rsuppJj�1q, infpJjqs, pI � vq � pI � Jjq Y pI � Jj�1q,

and so, @v P rsuppJj�1q, infpJjqs and @k ¥ 0 such that τk P I � v:

either pθ, kq |ù Φ2, or D0 ¤ k1 ¤ k such that pθ, k1q |ù Φ1,

which means:

@v P rsuppJj�1q, infpJjqs, pθ, 1q |ù Φ1ŨI�vΦ2.

It is in contradiction with 4.4.

We now know that @2 ¤ j ¤ n, infpJjq � infpJj�1q ¥ |I|. So,

infpJnq � infpJ1q ¥ pn� 1q.|I|.

As n ¡ r suppIq
|I| s� 1, we have that

infpJnq � infpJ1q ¡ pr
suppIq

|I|
s� 1� 1q . |I| ¥ suppIq.

It means that infpJnq � infpJ1q ¡ suppIq, and hence infpJnq ¡ suppIq. It is

impossible because the intervals Jj can never entirely exceed suppIq, because in

this case the arc p`, σ, x R I ^ x ¡ suppIqq can (and must) be taken from p`, Jjq

(in way to reach a minimal model of the transition function).

It remains to de�ne MpΦq, using MpϕU,Iq and MpϕŨ ,Iq. Here is an intu-

ition of how we can do this. By de�nition of the transitions starting from the

initial location Φinit,Φ, at most one clock copy will be associated with this lo-

cation (because the initial state is tp`0, r0, 0squ) and it will have no clock copy

4.1 From MITL to timed automata 141

associated with this location anymore as soon as clock copies are sent towards

other locations. Moreover, all other locations of AΦ are locations associated

with subformulas of Φ of type Φ1UIiΦ2 or Φ1ŨIΦ2. Let us consider a loca-

tion of type Φ1UIiΦ2, a same reasoning hold for a location of type Φ1ŨIΦ2.

We know such a location contains at most MpϕU,Iq clock copies all along π'.

Remark that the transition starting from the location of a formula Φ1UIΦ2 is

px.δpΦ2, σq^x P Iq_px.δpΦ1, σq^Φ1UIΦ2^x ¤ suppIqq: it means that δpΦ1, σq

is taken a lot of times while δpΦ2, σq is only taken once. It is why we must distin-

guish, in the de�nition of MpΦq, the maximal number of clock copies present in

con�gurations reached by π1: (1) to verify a subformula ϕ of Φ that receives a lot

of clock copies (denoted M1pϕq) (2) to verify a subformula ϕ of Φ that receives

at most one clock copy (denoted M8pϕq) (3) to verify ϕ � Φ, with the complete

automaton AΦ (simply Mpϕq).

De�nition 4.10 formally de�nes MpΦq. It is not di�cult to be convinced that a

proof by induction on the structure of Φ enables to show that each con�guration

of AΦ reached by π' contains at most MpΦq clock copies. The only interesting

cases of the induction consider subformula of Φ of type Φ1UIΦ2 and Φ1ŨIΦ2.

We here only develop the case of a subformula ϕ of Φ of type Φ1UIΦ2, the case

of a subformula Φ1ŨIΦ2 is similar.

Case ϕ � Φ1UIΦ2:

� if ϕ � Φ1UIΦ2 can only be reached once, the transition x.δpΦ1UIΦ2, σq �

px.δpΦ2, σq ^ x.px P Iqq _ px.δpΦ1, σq ^ x.Φ1UJΦ2 ^ x ¤ suppIqq must be

taken, what creates a loop on Φ1UIΦ2. One clock copy is so needed in the

location of ϕ. Moreover, it means that transition x.δpΦ1, σq can be taken

an unbounded number of times, until transition x.δpΦ2, σq is taken (this

will happen a unique time, because it breaks the loop). These transitions

correspond to transitions taken (in the same times) when formula Φ1 is

veri�ed an unbounded number of times and to the transition taken when

formula Φ2 is only veri�ed once. The maximal number of clock copies

used in this case is so the sum of the maximal numbers of clock copies

142 Chapter 4. MITL satis�ability and model-checking over �nite words

needed to verify an unbounded number of times Φ1 and to verify only once

Φ2, increased by 1: that is M1pϕq � M8pΦ1q �M1pΦ2q � 1 (induction

hypothesis).

� if Φ � ϕ � Φ1UIΦ2, the maximal number of clock copies used by AΦ is the

maximum between 1 (the clock copy used by ϕinit,Φ) and the sum of the

maximal numbers of clock copies needed to verify an unbounded number

of times Φ1 and to verify only once Φ2, increased by 1 (because transition

`x.δpΦ1UIΦ2, σq' can only be taken once from ϕinit,Φ, as in the previous

case). That is Mpϕq �M8pΦ1q �M
1pΦ2q � 1 (induction hypothesis).

� if Φ � Φ1UIΦ2 can be veri�ed an unbounded number of times, transition

x.δpΦ1UIΦ2, σq � px.δpΦ2, σq ^ x.px P Iqq _ px.δpΦ1, σq ^ x.Φ1UIΦ2 ^ x ¤

suppIq) can also be taken an unbounded number of times. It means that

transitions x.δpΦ1, σq and x.δpΦ2, σq can be both taken an unbounded num-

ber of times. These transitions correspond to transitions taken (in the same

times) when formulas Φ1 and Φ2 are veri�ed an unbounded number of times.

Moreover, a lot of clock copies can be associated with location Φ1UIΦ2, due

to the transition `x.δpΦ1, σq ^ x.Φ1UIΦ2 ^ x ¤ suppIq' of x.δpΦ1UIΦ2, σq

(which can be taken an unbounded number of times). Nevertheless, we

know the number of clock copies simultaneously present in any location

Φ1UIΦ2 will never exceed 4.r infpIq
|I| s�2 thanks to the beginning of the proof

of this theorem. We can conclude that the maximal number of clock copies

used in this case is the sum of the maximal numbers of clock needed to ver-

ify an unbounded number of times Φ1 and Φ2, increased by 4.r infpIq
|I| s � 2.

That isM8pϕq �M8pΦ1q�M
8pΦ2q�4.r infpIq

|I| s�2 (induction hypothesis).

De�nition 4.10. Let Φ be an MITL formula in negative normal form. We

de�ne MpΦq, thanks to M8pΦq and M1pΦq (intuitively, M8pΦq is a bound used

for subformulas that can be veri�ed an unbounded number of times while M1pΦq

4.1 From MITL to timed automata 143

is a bound used for subformulas that must be veri�ed a unique time) de�ned as

follows:

� if Φ � J or Φ � K, then MpΦq � 1 and M8pΦq �M1pΦq � 0.

� if Φ � σ or Φ � σ, for σ P Σ, then MpΦq � 1 and M8pΦq �M1pΦq � 0.

� if Φ � Φ1 ^ Φ2, then MpΦq � maxt1,M1pΦ1q � M1pΦ2qu, M
8pΦq �

M8pΦ1q �M
8pΦ2q and M

1pΦq �M1pΦ1q �M
1pΦ2q.

� if Φ � Φ1 _ Φ2, then MpΦq � maxt1,M1pΦ1q,M
1pΦ2qu, M

8pΦq �

maxtM8pΦ1q,M
8pΦ2qu and M

1pΦq � maxtM1pΦ1q,M
1pΦ2qu.

� if Φ � Φ1UIΦ2, then MpΦq � M8pΦ1q � M1pΦ2q � 1,

M8pΦq �
�

4�
Q
infpIq
|I|

U
� 2

	
�M8pΦ1q�M

8pΦ2q andM
1pΦq �M8pΦ1q�

M1pΦ2q � 1.

� if Φ � Φ1ŨIΦ2, then MpΦq � M1pΦ1q � M8pΦ2q � 1,

M8pΦq �
�

2�
Q
suppIq
|I|

U
� 2

	
�M8pΦ1q�M

8pΦ2q andM
1pΦq �M1pΦ1q�

M8pΦ2q � 1.

We suppose by convention that infpIq
|I| � 0 and suppIq

|I| � 0 when I �sa,�8r or

ra,�8r for a certain a P R.

Example 4.11. Let us observe again the OCATA A of Figure 4.4, corresponding

144 Chapter 4. MITL satis�ability and model-checking over �nite words

to the MITL formula Φ � 2
�
añ

�
♦r0,1sb^ ♦r0,1sc

��
. We have that:

MpΦq �M
�
2
�
añ

�
♦r0,1sb^ ♦r0,1sc

���
�M

�
KŨ

�
 a_

�
JUr0,1sb^JUr0,1sc

��	
�M1pKq �M8

�
 a_

�
JUr0,1sb^JUr0,1sc

��
� 1

� 0�maxpM8p aq,M8pJUr0,1sb^JUr0,1scqq � 1

� maxp0,M8pJUr0,1sbq �M
8pJUr0,1scqq � 1

�

��
4�

R
0

1

V
� 2

�M8pJq �M8pbq

�

��
4�

R
0

1

V
� 2

�M8pJq �M8pcq

� 1

� 2� 2� 1 � 5

As the state space L of A contains 3 states f�Φ � Fmaxp2.|L|,5q � F 6. It means

that the F 6-semantics of A accepts exactly JΦK: LF 6pAq � LpAq � JΦK.

4.1.2 Towards a timed automaton

In what precedes, we de�ned a new semantics for OCATA, called the interval

semantics. In this semantics, a state of an OCATA A is a pair p`, Iq, where

` is a location of the OCATA and I P IpR�q. Such intervals are formed using

approximation functions: they give the possibility of merging intervals associated

with a same location in the smaller interval containing them. In general, to use

an approximation function f only enables to keep an under-approximation of the

language of A, i.e. Lf pAq � LpAq and Lωf pAq � LωpAq (see Proposition 3.25).

Nevertheless, Theorem 4.7 proves that, when we observe an MITL formula Φ

and the associated OCATA AΦ, there is a approximation function f�Φ such that

Lf�ΦpAΦq � LpAΦq. Furthermore, this approximation function f�Φ is bounded : it

means that we only need to use a bounded number of clock copies, all along the

runs of AΦ, in way to verify if a timed word is in LpAΦq (� JΦK). Thanks to this
bound, the number of states present in a con�guration of AΦ is bounded, which

4.1 From MITL to timed automata 145

enables to construct a timed automaton for any MITL formula: this is the object

of this subsection.

Let Φ be an MITL formula, and assume AΦ � pΣ, LΦ, `Φ0 , F
Φ, δΦq is its

associated OCATA (see De�nition 2.164). Let us show how to build a TA

BΦ � pΣ, L, λ0, X, F, δq such that LpBΦq � Lf�ΦpAΦq. Our construction follows

the ideas of the subset construction used in the untimed setting, over �nite words,

to translate an alternating automaton into an automaton (see De�nition 2.46).

For the sake of simplicity, in the de�nition of BΦ, we consider that all the inter-

vals used by AΦ, even the singular ones, are represented by two di�erent clock

copies.

As in the classical subset construction, we could think a location of BΦ is simply a

subset of locations of AΦ: L � 2L
Φ
. However, we must now take into account the

clocks of BΦ. As expected, considering Theorem 4.7, BΦ will have MpΦq clocks.

Each of the MpΦq clock copies used by AΦ is present in a particular location of

AΦ and this information must also be retained in way to simulate the runs of

AΦ in BΦ. Hence, a second idea would be to de�ne each location λ of L as a

function from λ : LΦ Ñ 2X . Nevertheless, in a con�guration of AΦ, each of the

MpΦq clock copies needed is either associated to one particular location or not

used at all. So, such a location λ P L should be a function satisfying the following

property: @x P X, either @` P LΦ, x R λp`q, or there exists a unique ` P LΦ such

that x P λp`q. Finally, to be precise, there are not clock copies but intervals,

represented by pairs of clock copies, associated to locations in con�gurations of

AΦ. The good way to de�ne a location λ of L is so as a function λ : LΦ Ñ 2pX
2q

satisfying the property that each clock is at most present one time among those

in
�
`PLΦ λp`q.

Hereunder, we formally de�ne the set of functions enabling to represent loca-

tions of BΦ. Then, we present the de�nition of the �rst components of BΦ: its

transition function, more complex to de�ne, will be detailed right after. In those

de�nitions, we will often use pairs of clocks to represent the beginning and the

end of an interval present in a location of AΦ. By convention, we will use letter x

to represent the �rst component of those pairs and so the beginnings of intervals,

146 Chapter 4. MITL satis�ability and model-checking over �nite words

while we will use letter y for the second component and, so, the ends of intervals.

De�nition 4.12. We de�ne locpXq to be set of functions λ : LΦ Ñ 2pX
2q such

that, for all px, yq P
�
`PLΦ λp`q, we have that x � y and, for all px1, y1q P

p
�
`PLΦ λp`qq ztpx, yqu, we have that x � x1, x � y1, y � x1 and y � y1.

Thanks to the bound MpΦq of clock copies needed in the OCATA AΦ (given

by Theorem 4.7), we will only need a set X of MpΦq clocks in BΦ. This way,

locpXq is a �nite set of functions, which will play the role of locations of BΦ.

Without the bound given by Theorem 4.7, BΦ would have had an in�nite number

of locations and would not have been a timed automaton. Later, we will mitigate

the number of useful locations of BΦ among locpXq, using the maximal number

of intervals that might be associated to each location of AΦ (see the proof of

Theorem 4.7).

De�nition 4.13. We de�ne BΦ � pΣ, L, λ0, X, F, δq, where:

� X is a set of clocks such that |X| �MpΦq,

� L � locpXq,

� λ0 P locpXq is such that λ0p`
Φ
0 q � tpx, yqu, where x and y are two clocks

arbitrarily chosen from X, and λ0p`q � H for all ` P LΦzt`Φ0 u.

� F is the set of all locations λ P L such that t` | λp`q � Hu � FΦ.

Intuitively, a con�guration pλ, vq of BΦ encodes the con�guration C of AΦ

such that for all ` P LΦ: Cp`q � trvpxq, vpyqs | px, yq P λp`qu, i.e. the intervals

associated to location ` of C are given by the values (according to v) of pairs of

clocks in λp`q.

Finally, we must de�ne the set of transitions δ to let BΦ simulate the executions

of AΦ. We recall (see Remark 3.24) that for each location ` P LΦ, for each σ P Σ,

all arcs in δΦ are either of the form p`, σ, trueq, or p`, σ, falseq, or
�
`, σ, `^x.p`1^

� � � ^ `kq ^ g
�
or of the form

�
`, σ, x.p`1 ^ � � � ^ `kq ^ g

�
, where g is a guard on

4.1 From MITL to timed automata 147

x. Let λ P L be a location of BΦ, ` P L
Φ and σ P Σ. Let px, yq be a pair of

clocks occurring in λp`q and let us associate to this pair an arc a of δΦ of the

form p`, σ, γq. Then, we associate to a a guard guard paq, and two sets reset paq

and loop paq, de�ned as follows:

� if γ P ttrue, falseu, then, guard paq � γ and reset paq � loop paq � H.

� if γ is of the form x.p`1 ^ � � � ^ `kq ^ g, then guard paq � g, reset paq �

t`1, . . . , `ku and loop paq � H.

� if γ is of the form ` ^ x.p`1 ^ � � � ^ `kq ^ g, then guard paq � g, reset paq �

t`1, . . . , `ku and loop paq � tpx, yqu.

Thanks to those de�nitions, we can now de�ne δ. Let λ be a location of L, and

assume the set of trios p`, x, yq such that px, yq P λp`q (for ` P LΦ) is denoted:

tp`1, x1, y1q, . . . , p`k, xk, ykqu.

Remark that several `i, for 1 ¤ i ¤ k might be the same location ` P LΦ. Then

pλ, σ, g, r, λ1q P δ i� there is a set A � ta1, . . . , aku of arcs such that:

� for all 1 ¤ i ¤ k: ai is an arc of δΦ of the form p`i, σ, γkq, associated with

pxi, yiq.

� For each ` P LΦ, we let λ` � tpx
1
1, y

1
1qpx

1
2, y

1
2q � � � px

1
m, y

1
mqu be obtained from

λp`q by deleting all pairs px, yq R
�

1¤i¤k loop paiq. We furthermore suppose

that px11, y
1
1q is the last pair of clock that have been associated to location

`. Then, for all ` P LΦ:

λ1p`q P

tpx, yqu Y λ` , tpx, y

1
1qpx

1
2, y

1
2q � � � px

1
m, y

1
mqu

(
if ` P

¤
1¤i¤k

reset paiq

λ1p`q � λ` otherwise

When λ1p`q � tpx, yquYλ`, we letR` � tx, yu; when λ
1p`q � tpx, y11qpx

1
2, y

1
2q � � �

px1m, y
1
mqu, we let R` � txu; and we let R` � H otherwise.

148 Chapter 4. MITL satis�ability and model-checking over �nite words

� g �
�

1¤i¤kpguard paiq rx{xis ^ guard paiq rx{yisq.

� r � Y`PLΦR`.

In what precedes, we denoted by guard paiq rx{x
1s the guard guard paiq in which

x is replaced by x1. In the sequel, such a notation will sometimes be used again.

The following theorem shows that, for all MITL formula Φ, BΦ is a timed

automaton recognizing JΦK, as we wanted.

Theorem 4.14. For each MITL formula Φ, LpBΦq � JΦK.

Proof. We prove that BΦ recognizes JΦK by mapping each con�guration of BΦ to

a con�guration of AΦ and conversely and showing that this mapping is consistent

with all runs.

First, let pλ, vq be a con�guration of BΦ, we map it to the following con-

�guration of AΦ. We know that @` P L, λp`q is a set tpx1, y1q, . . . , pxn, ynqu

of pairs of clocks from X. It corresponds to the (unique) con�guration of AΦ,

C �
�
`PLCp`q where Cp`q � trvpxq, vpyqs | px, yq P λp`qu. It is straightfor-

ward to see that, if pλ, vq
t
ù pλ1, v1q and pλ, vq is mapped to C, there exists C 1

such that C
t
ù C 1 and C 1 is mapped to pλ1, v1q. Moreover, we claim that, if

pλ, vq
σ
ÝÑ pλ1, v1q and pλ, vq is mapped to C, there exists C 1 such that C

σ
ÝÑf�Φ

C 1

and C 1 is mapped to pλ1, v1q. This holds because, if pλ, vq
σ
ÝÑ pλ1, v1q, we can

use the arc a P δΦp`, σq associated with px, yq P λp`q to �nd a minimal model

of the state p`, rvpxq, vpyqsq of C, this way, we reach a con�guration C 1 of AΦ

that is mapped to pλ1, v1q thanks to the de�nition of δ: corresponding clocks are

reset in the same time ; we verify the same guards on corresponding clocks ;

the con�guration we can reach in BΦ corresponds, for each location ` P L whose

smallest associated interval is [0,0], to group or not this interval with the second

associated with `, what corresponds to the con�gurations of the f�Φ-semantics of

AΦ we can reach from C.

Second, let C be a con�guration of AΦ, we map it to the set of all pλ, vq

4.1 From MITL to timed automata 149

such that for all ` P L: Cp`q � tI`1, I
`
2, . . . , Inu i� vpx1q � infpI1q, vpy1q �

suppI1q, . . . , vpxnq � infpInq, vpynq � suppInq. Observe that there are indeed

several con�gurations pλ, vq of BΦ that satisfy this de�nition: they can all be

obtained up to clock renaming. To keep a consistence in our runs, we must only

choose the corresponding con�guration of BΦ such that: once a pair of clocks is

associated with an interval Ij of Cp`q, if Ij is still in C
1p`q, the same clocks repre-

sent its bounds. In the same way, when an interval I 1j of the form r0, suppIjqs is

in C 1p`q, the same clocks represents its bounds. In contrary, when a new interval

Ij (=r0, 0s) is associated with Cp`q, we can arbitrary choose which unused pair of

clocks pxi, yiq will represent it (such an unused pair of clocks always exists thanks

to Theorem 4.7). Thanks to this trick, we can prove properties similar to those

of the �rst step.

The following theorem gives an upper bound on the number of locations of

BΦ.

Proposition 4.15. Let Φ be an MITL formula and IΦ be the set of all the

intervals that occur in Φ. BΦ has MpΦq clocks and Opp|Φ|qpm.|Φ|qq locations,

where m � maxIPIΦ

!
2�

Q
infpIq
|I|

U
� 1,

Q
suppIq
|I|

U
� 1

)
.

Proof. By de�nition of BΦ, |X| �MpΦq. Moreover, a location of this automaton

is an association, to each location ` of AΦ, of a �nite set tpx1, y1q, . . . , pxn, ynqu

of pairs of clocks from X such that each pair is associated with a unique `. In

other words, each couple of clocks pxi, yiq can be associated with: either one and

only one of the ` P L or to no ` P L. We so have |L|�1 possibilities of association

of each pair pxi, yiq and we have MpΦq
2 such pairs. So, BΦ has p|L| � 1q

MpΦq
2

locations, i.e.: O
�
p|Φ|qm.|Φ|

�
� O

�
2m.|Φ|.log2p|Φ|q

�
(because |L| � Op|Φ|q and

MpΦq � Op2.m.|Φ|q).

Example 4.16. Let us consider again the OCATA AΦ of Figure 4.5, for the

MITL formula Φ � 2pa ñ ♦r1,2sbq. We recall that the initial location Φinit has

been removed to enhance readability of the example (this does not modify the

150 Chapter 4. MITL satis�ability and model-checking over �nite words

`2 `♦

b a, b

b, x P r1, 2s

a x :� 0

Figure 4.5: OCATA AΦ with Φ � 2pañ ♦r1,2sbq.

accepted language, in the present case). We will show how to construct BΦ.

The proof of Theorem 4.7 shows that the number of clock copies given by MpΦq

is the addition of the number of clock copies needed for each location of AΦ

(i.e. subformula of Φ): a location whose outermost operator is UI will need

at most 4.r infpIq
|I| s � 2 clock copies, while a location whose outermost opera-

tor is ŨI will need at most 2.r suppIq
|I| s � 2 clock copies. For the present for-

mula, location `2, corresponding to the subformula (in disjunctive normal form)

KŨr0,�8r
�
 a_

�
JUr1,2sb

��
, needs 2.r0s� 2 � 2 clock copies (i.e. 1 interval) and

location `♦, corresponding to the subformula JUr1,2sb, needs 4.r1
1 s� 2 � 6 clock

copies (i.e. 3 intervals). Hence, BΦ has 8 clocks, say tx1, x2, x3, x4, y1, y2, y3, y4u.

Moreover, we will only consider the locations of the form λ : LΦ Ñ 2pX
2q such

that: 0 or 1 pair of clocks is associated to `2, and from 0 to 3 pairs of clocks are

associated to `♦. The initial location of BΦ is λ0 such that λ0p`2q � tpx1, y1qu

and λ0p`♦q � H. Figure 4.6 represents the automaton BΦ. To enhance readabil-

ity of the example, we do not represent locations of BΦ that could be obtained

from a location of the �gure by renaming of clocks. For example, location λ4 such

that λ4p`2q � tpx1, y1qu and λ0p`♦q � tpx3, y3qu is not represented because it is

obtained from λ1 by renaming x2 in x3 and y2 in y3. When an arc must go from a

location present in the �gure to a location λ1 that is not represented, because it is

the renaming of the represented location λ, this arc is drawn as a dotted arrow go-

ing to λ. For example, the arc from λ2 to λ1 labelled by `b, x2 P r1, 2s, y2 P r1, 2s'

is represented by a dotted line because it should go to λ4.

4.2 MITL model-checking: the techniques 151

λ0 λ1

λ2λ3

b b

a, x2:�0

b

a, x3:�0

b

a, x4:�0

a, x2,y2:�0

a

x3, y3:�0

a, x4,y4:�0

b

x2, y2,

x3, y3, x4,

y4Pr1,2s

b,
x 3
,y 3
,x

4
,y 4
Pr

1,
2s

b,
x 2
,y 2
,x

3
,y 3
Pr

1,
2s

b,
x 2
,y 2
,x

4
,y 4
Pr

1,
2s

b, x4,y4Pr1,2s

b, x3,y3Pr1,2s

b, x2,y2Pr1,2s

b, x2,y2Pr1,2s

b,

x3,y3

Pr1,2s

b,

x2,y2

Pr1,2s

λ0p`2q�tpx1,y1qu

λ0p`♦q�H

λ1p`2q�tpx1,y1qu

λ1p`♦q�tpx2,y2qu

λ2p`2q�tpx1,y1qu

λ2p`♦q�tpx2,y2q,px3,y3qu

λ3p`2q�tpx1,y1qu

λ3p`♦q�tpx2,y2q,px3,y3q,px4,y4qu

Figure 4.6: The timed automaton BΦ.

4.2 MITL model-checking: the techniques

From now on, we �x an MITL formula Φ and assume that the OCATA

representing the negation of Φ is A Φ � pΣ, L, `0, F, δq. We also �x a TA

B � pΣ, B, b0, X, δ
B, FBq, and we consider the MITL model-checking problem

(see De�nition 2.122) and the MITL satis�ability problem (see De�nition 2.121)

over �nite words. The construction of the TA B Φ from Φ of the previous section

allows to solve those problems using classical algorithms [4] (see subsection 2.4.2).

Unfortunately, building B Φ can be prohibitive in practice: Proposition 4.15

shows the size of B Φ is exponential in the size of Φ (i.e. in the size of Φ). To

mitigate this di�culty, we present an e�cient on the �y algorithm to perform

MITL model-checking, which has as input the TA B and the OCATA A Φ (whose

size is linear in the size of Φ).

Our approach follows the steps of [51]. In this paper, Ouaknine and Worrell

elaborates techniques to solve the MTL model-checking problem over �nite words

152 Chapter 4. MITL satis�ability and model-checking over �nite words

(with the pointwise semantics). They construct a timed transition system SB, Φ

that executes B and A Φ in parallel. The aim is then to verify if LpBq � JΦK ver-
ifying if SB, Φ has an accepting run. However, facing SB, Φ, they are confronted

to two type of in�nity. First, this timed transition system is in�nitely branching

because of the timed successors. Secondly, the number of con�gurations of A Φ

is in�nite because of the unbounded number of clock copies that can run in par-

allel in its executions: this induces the in�nite depth of SB, Φ. In their paper,

they present appropriate techniques to cope with these two kind of in�nity. On

the one hand, they use a region abstraction to remove the `in�nitely branching'

aspect of SB, Φ. They proceed representing symbolically each region by a unique

word. On the second hand, they have recourse to well quasi order techniques in

way we only have to explore a �nite depth of SB, Φ.

We here present our adaptation of their techniques to perform MITL model-

checking. We �rst construct a timed transition system SB, Φ that executes B
and A Φ in parallel: the di�erence with the work of Ouaknine and Worrell is

that we must cope with the interval semantics of A Φ. Then, the aim will be to

verify that SB, Φ has no accepting run. We can symmetrically solve the MITL

satis�ability problem by looking for an accepting run in the timed transition sys-

tem SA Φ,f
�
 Φ

(see De�nition 3.16). Since the techniques are similar for model-

checking and satis�ability (see Section 2.4.2), we will only detail the former in

this section. While our timed transition system SB, Φ is still in�nitely branching

because of the timed successors, we can consider it has a �nite depth (stopping

each of its branches when arriving on a con�guration already seen on the same

branch). Indeed, thanks to the bound on the number of clock copies needed in

A Φ (see Theorem 4.7), there exists only �nitely many di�erent con�gurations

of A Φ. To remove the `in�nitely branching' aspect of SB, Φ, we use a region

abstraction in the same spirit as that used in [51]. Our de�nition of region, as

well as the symbolic representation of each region by a unique word, is adapted

from that of [51] in way to cope with the intervals.

We start by formally de�ning SB, Φ, representing the parallel execution of B
and A Φ.

4.2 MITL model-checking: the techniques 153

De�nition 4.17. Let Φ be an MITL formula and B � pΣ, B, b0, X, δB, FBq be

a timed automaton. We de�ne the timed transition system SB, Φ � pΣ, S, s0,

ù,Ñ, αq where:

� S is the set of pairs of the form pB,Cq, for con�gurations B � pb, vq of B
and C of A Φ,

� s0 � ppb0, v0q, tp`0, r0, 0squq, where v0 is the valuation such that v0pxq � 0,

@x P X,

� α contains all the elements pB,Cq of S such that B is accepting for B and

C is accepting for A Φ,

� the transition relation ù takes care of the elapsing of time: @t P R�,
pB,Cq

t
ù pB1, C 1q i� pB1, C 1q � pB � t, C � tq and ù =

�
tPR�

t
ù,

� the transition relationÑ takes care of discrete transitions between locations:

pB,Cq
σ
ÝÑ pB1, C 1q i� B

σ
ÝÑ B1 in B and C

σ
ÝÑf� Φ

C 1 in A Φ. We have Ñ

=
�
σPΣ

σ
ÝÑ.

Example 4.18. Let us consider the TA B of Figure 4.8 and the OCATA A Φ

of Figure 4.7, for the MITL formula Φ � 2pa ñ ♦r1,3sbq. Figure 4.9 gives a

part of the timed transition system SB, Φ. The elements of α are represented

with a double border. We are not able to represent all the transitions
t
ù for

t P R, so that we represent most of them by a unique arc indexed by a part of R.
Nevertheless, one must keep in mind that SB, Φ is in fact in�nitely branching.

The transitions leading to the states underneath the �gure come from the fact

that, in A Φ, the image of con�guration C � tp`2, 1q, p`♦, 0q, p`♦, 1qu by f
�
 Φ is

ttp`2, 1q, p`♦, 0q, p`♦, 1qu, tp`2, 1q, p`♦, r0, 1squu.

The following proposition holds by construction of SB, Φ:

Proposition 4.19. For every MITL formula Φ, the associated OCATA A Φ and

function f� Φ, and for every timed automaton B: LpSB, Φq � Lf� Φ
pA ΦqXLpBq.

154 Chapter 4. MITL satis�ability and model-checking over �nite words

`2 `♦

b a, b

b, x P r1, 3s

a x :� 0

Figure 4.7: OCATA A Φ with Φ � 2pañ ♦r1,3sbq.

b0 b1

a, y :� 0

a, y � 1
b

Figure 4.8: A timed automaton B.

From SB, Φ, we de�ne a region abstraction coping with the intervals. In the

sequel, we note cmax the maximal constant of automata B and A Φ.

De�nition 4.20. We de�ne the equivalence relation � on R� by:

u � v i� either u ¡ cmax and v ¡ cmax,

or u ¤ cmax and v ¤ cmax, rus � rvs and tuu � tvu.

The set of classes of �, called regions, is REG � tt0u, s0, 1r, t1u, s1, 2r, . . . , scmax�

1, cmaxr, tcmaxu, scmax,�8ru
2. We will note Regpvq the class of v P R�.

In the sequel, @v P R�, we note fracpvq the fractional part of v. Moreover,

for technical reasons, we suppose that @v ¡ cmax, fracpvq � 0: intuitively, we are

not interested in the fractional part values beyond cmax.

We can now de�ne an equivalence relation � on S. In its formal de�nition

hereunder, the states of the two con�gurations of A Φ are indexed on a same

set K in aim to make `correspond' the states of same index. For the two states

pB,Cq and pB1, C 1q of S, we only want that pB,Cq � pB1, C 1q if all the clock

2These are classical regions used for a timed automaton with one clock.

4.2 MITL model-checking: the techniques 155

p`2, 0q, pb0, 0q

p`2, 0q, p`♦, 0q, pb1, 0q p`2, 0q, pb0, 0q p`2, t1q, pb0, t1q

p`2, t2q, p`♦, t2q, pb1, t2q p`2, 1q, p`♦, 1q, pb1, 1q

... ...

...

p`2, 1q, p`♦, 0q, p`♦, 1q, pb1, 1q p`2, 1q, p`♦, r0, 1sq, pb1, 1q p`2, 1� t3q, p`♦, 1� t3q, pb1, 1� t3q

...

a
b

ù t1 P R

ù
t2 P Rzt1u ù

1

a
a

ù
t3 P R

Figure 4.9: Representation of a part of SB, Φ.

values present in pB,Cq (values of in�ma and suprema of intervals, values of

clocks of B) present the same fractional part order as the clock values present in

pB1, C 1q, according to indices. The length of the following de�nition is due to this

condition which is divided in 6 items (conditions 3. to 8.) comparing: (i) values

of clocks of B, (ii) values of in�ma (of intervals of A Φ), (iii) values of suprema,

(iv) a value of an in�mum with a value of a supremum, (v) a value of an in�mum

with a value of a clock of B, (vi) a value of a supremum with a value of a clock

of B.

De�nition 4.21. Let Φ be an MITL formula, B � pΣ, B, b0, X, δ
B, FBq be a

timed automaton and SB, Φ, of state space S, be the transition system given

by De�nition 4.17. Let K be a set of indices and pB,Cq, pB1, C 1q P S, with

B � pb, vq, B1 � pb1, v1q, C � tp`k, IkqkPKu and C
1 � tp`1k, I

1
kqkPKu.

Then, we de�ne pB,Cq � pB1, C 1q i�:

1. b � b1 and @k P K, `k � `1k,

2. @1 ¤ p ¤ n : vpxpq � v1pxpq and @k P K : pinfpIkq � infpI 1kq ^ suppIkq �

suppI 1kqq,

3. @1 ¤ p, q ¤ n : fracpvpxpqq ' fracpvpxqqq i� fracpv1pxpqq ' fracpv1pxqqq,

156 Chapter 4. MITL satis�ability and model-checking over �nite words

4. @k, k1 P K : fracpinfpIkqq ' fracpinfpIk1qq i� fracpinfpI 1k1qq ' fracpinfpI 1k1qq,

5. @k, k1 P K : fracpsuppIkqq ' fracpsuppIk1qq i� fracpsuppI 1kqq ' fracpsuppI 1k1qq,

6. @k, k1 P K : fracpinfpIkqq ' fracpsuppIk1qq i� fracpinfpI 1kqq ' fracpsuppI 1k1qq,

7. @k P K,@1 ¤ p ¤ n : fracpinfpIkqq ' fracpvpxpqq i� fracpinfpI 1kqq '

fracpv1pxpqq,

8. @k P K,@1 ¤ p ¤ n : fracpsuppIkqq ' fracpvpxpqq i� fracpsuppI 1kqq '

fracpv1pxpqq,

where ' P t ,�,¡u.

Condition 1. forces corresponding p`k, Ikq and p`
1
k, I

1
kq, as well as the two con-

�gurations of B, to have (respectively) the same locations. Condition 2. forces

intervals of corresponding p`k, Ikq and p`
1
k, I

1
kq to have their in�ma and suprema

in the same regions (i.e. classes of �), and values of the same clocks of the two

con�gurations of B to be in the same region. The other conditions forces all the

clock values present in pB,Cq (values of in�mum and supremum of intervals, val-

ues of clocks of B) to present the same fractional part order as the corresponding

clock values present in pB1, C 1q.

Example 4.22. We consider again the TA B of Figure 4.8 and the OCATA A Φ

of Figure 4.7, for the MITL formula Φ � 2pa ñ ♦r1,3sbq. We consider the

following states of SB, Φ:

s1 :� tp`2, 1.4q, p`♦, r0, 0.2sq, pb1, 0.7qu

s2 :� tp`2, 1.6q, p`♦, r0, 0.5sq, pb1, 0.65qu

s3 :� tp`2, 1.8q, p`♦, r0, 0.5sq, pb1, 0.7qu.

On the one hand, we have s1 � s2. Indeed, we make correspond p`2, 1.4q with

p`2, 1.6q, p`♦, r0, 0.2sq with p`♦, r0, 0.5sq and pb1, 0.7q with pb1, 0.65q in way condi-

tion 1. is satis�ed. Condition 2. is satis�ed because 1.4 � 1.6 (class s1, 2r), 0 � 0

4.2 MITL model-checking: the techniques 157

(class t0u), 0.2 � 0.5 (class s0, 1r) and 0.7 � 0.65 (class s0, 1r). Sorting the clock

values of s1 following the increasing order of their fractional parts, we obtain:

fracp0q fracp0.2q fracp1.4q fracp0.7q.

In s2, we obtain:

fracp0q fracp0.5q fracp1.6q fracp0.65q.

As corresponding clocks values are in the same place in these orderings, one can

verify that conditions 3. to 8. are indeed satis�ed. For instance, condition 7.

holds because, for each ' P t ,�,¡u:

fracp1.4q � 0.4 ' fracp0.7q � 0.7 i� fracp1.6q � 0.6 ' fracp0.65q � 0.65, and

fracp0q � 0 ' fracp0.7q � 0.7 i� fracp0q � 0 ' fracp0.65q � 0.65.

On the second hand, s1 � s3. Indeed, we must make correspond p`2, 1.4q with

p`2, 1.8q, p`♦, r0, 0.2sq with p`♦, r0, 0.5sq and pb1, 0.7q with pb1, 0.7q to satisfy con-

dition 1.. This way, condition 2. is also satis�ed. Nevertheless, sorting the clock

values of s1 following the increasing order of their fractional parts, we obtain

fracp0q fracp0.2q fracp1.4q fracp0.7q;

while, in s3, we have

fracp0q fracp0.5q fracp0.7q fracp1.8q.

Corresponding clocks values are not in the same place in these orderings, so that

conditions among 3. to 8. will not be satis�ed. For instance, condition 7. is not

satis�ed because fracp1.4q � 0.4 fracp0.7q � 0.7 while fracp1.8q � 0.8 ¡

fracp0.7q � 0.7.

We now present a proposition stating that the equivalence relation � induces

a time-abstract bisimulation on the states of SB, Φ. This bisimulation will enable

us to elaborate an MITL model-checking algorithm only observing the classes of

� (we will see they are in �nite number) instead of exploring all the states of

SB, Φ (in in�nite number). The proof of this proposition can be found in the

appendix.

158 Chapter 4. MITL satis�ability and model-checking over �nite words

Proposition 4.23 (Time-abstract bisimulation). Let Φ be an MITL formula,

B � pΣ, B, b0, X, δB, FBq be a timed automaton and SB, Φ, of state space S, be

the transition system given by De�nition 4.17. Let pB1, C1q, pB2, C2q P S such

that pB1, C1q � pB2, C2q. Then:

1. for each transition

pB1, C1q
t
ù pA1, D1q with t P R� and pA1, D1q P S,

there exists t1 P R� and pA2, D2q P S such that:

pB2, C2q
t1
ù pA2, D2q and pA1, D1q � pA2, D2q ;

2. for each transition

pB1, C1q
σ
ÝÑ pA1, D1q, with σ P Σ and pA1, D1q P S,

there exists pA2, D2q P S such that:

pB2, C2q
σ
ÝÑ pA2, D2q and pA1, D1q � pA2, D2q.

Remark that the size of the con�gurations of A Φ we can encounter in SB, Φ

is bounded byMp Φq, thanks to the use of f� Φ. So, there is only a �nite number

of such con�gurations. As a consequence, the number of con�gurations of A Φ

we can encounter in SB, Φ is �nite. As the number of regions is also �nite, the

quotient of SB, Φ by � is �nite and we can elaborate a model-checking algorithm

using it. In the sequel, we will de�ne a symbolic representation of each of these

regions by a unique word. Before giving the formal de�nition, let us explain how

we proceed on an example.

Example 4.24. Let us consider the TA B of Figure 4.8 and the OCATA A Φ

of Figure 4.7. To make this example interesting, we consider the following un-

reachable state of SB, Φ:

s1 :� tpb1, 1.5q, p`♦, r0, 0.5sq, p`♦, r1.7, 3.3squ.

To represent the region of s1 according to �, we are interested in each of the

values of clocks and clock copies 1.5, 0, 0.5, 1.7 and 3.3, as well as in the order

of their fractional parts. Furthermore, it is important to remember that values 0

4.2 MITL model-checking: the techniques 159

and 0.5 form an interval, as well as values 1.7 and 3.3.

We �rst construct a 3-tuple to represent each value of the clock copies of A Φ.

A 3-tuple contains the location to which the clock copy is associated, the value

of the clock copy, and a number to remember which couples of clock copies form

intervals. For s1, we have:

value 0 is represented by p`♦, 0, 1q,

value 0.5 is represented by p`♦, 0.5, 1q,

value 1.7 is represented by p`♦, 1.7, 2q,

value 3.3 is represented by p`♦, 3.3, 2q.

The value of clocks of B are also represented by a 3-tuple containing the location

in which B is, the value of the nth clock of B and a marker n to remember to

which clock of B the value corresponds. For s1, we have:

value 1.5 is represented by pb1, 1.5, 1q.

Secondly, we sort all the obtained 3-tuples in di�erent sets: we create a set for

each value of the fractional parts of the clock values. We recall that the fractional

part of clock (copies) values beyond cmax (� 3, here) is considered to be 0. For

our example, we have:

tpb1, 1.5, 1q, p`♦, 0.5, 1qu

tp`♦, 0, 1q, p`♦, 3.3, 2qu

tp`♦, 1.7, 2qu

When the values of clocks and clock copies will be replaced by the region of

REG they are in, each of these sets will be a letter of the word symbolically

representing the region of s1 according to �. Nevertheless, before replacing the

values by the good regions of REG, we must sort the letters of this word. In

fact, we sort these letters according to the order of the fractional part of clock

values they represent. We here obtain:

tp`♦, 0, 1q, p`♦, 3.3, 2qu tpb1, 1.5, 1q, p`♦, 0.5, 1qu tp`♦, 1.7, 2qu

The region of s1 is so symbolically represented by:

tp`♦, t0u, 1q, p`♦, s3,�8r, 2qu tpb1, s1, 2r, 1q, p`♦, s0, 1r, 1qu tp`♦, s1, 2r, 2qu

160 Chapter 4. MITL satis�ability and model-checking over �nite words

Let us note max` the maximal number of intervals that can be present in

location ` P L of A Φ (given by the proof of Theorem 4.7), and n :� |X| the

number of clocks of B. Then, the alphabet on which are written the words

symbolically representing the region of each s P S is denoted Λ and consists in

the subsets of:

pB Y Lq �REG� t1, 2, . . . ,maxpmax
`PL

pmax`q, nqu.

We now formally de�ne the function H : S Ñ Λ� that associates with each s P S

the region it is in.

De�nition 4.25. For s � tp`k, IkqkPKuYtpb, vqu, Hpsq � H1H2 � � �Hp is de�ned

as follows:

1. For each location `, let Cp`q � tp`1, Iq P C | `1 � `u. Assume Cp`q �

tp`1, I1q, . . . , p`k, Ikqu, with I1 ¤ � � � ¤ Ik. Then, we �rst build E` �

tp`i, infpIiq, iq, p`i, suppIiq, iq | 1 ¤ i ¤ ku.

2. We treat p`B, vq symmetrically, and let EB � tp`B, vpx1q, 1q, . . . ,

p`B, vpxnq,m, nqu. We let E � EB Y`PL E`. That is, all elements in E
are tuples p`, v, iq, where ` is a location (of AΦ or B), v is a real value (in-

terval endpoint or clock value) and i is bookkeeping information that links

v to an interval (if ` is a location of AΦ), or to a clock (if ` is a location

of B).

3. We partition E into E1, . . . , Ep such that each Ei contains all elements from

E with the same fractional part of their second component (recall that we as-

sume fracpuq � 0 for all u ¡ cmax). We assume the ordering E1, E2, . . . , Ep
re�ects the increasing ordering of the fractional parts.

4. For all 1 ¤ i ¤ p, we obtain Hi from Ei by replacing the second component

of all elements in Ei by the region from REG they belong to.

4.2 MITL model-checking: the techniques 161

The following proposition shows that the words obtained from states of S

using function H give a correct representation of classes of �.

Proposition 4.26. Let s, s1 P S. We have: s � s1 i� Hpsq � Hps1q.

Proof. (ñ) Suppose that s � s1, then the order of the fractional parts of all the

clock values that s contains is the same than those of all the corresponding clock

values that s1 contains (see � conditions 3. to 8.). Moreover, their corresponding

states have their in�ma (respectively their suprema, respectively clocks values)

in the same region (see � condition 2.) and their locations are the same. The

way Hpsq and Hps1q are constructed, their will be no di�erence between these

two words.

(ð) Suppose Hpsq � Hps1q, then we associate each interval of the con�guration

s of A Φ, clearly de�ned by two 3-tuples in Hpsq, to the interval of s1 that is

represented by the two corresponding 3-tuples of Hps1q. Moreover, for 1 ¤ i ¤ n,

we associate each value vi of the clock xi of B, clearly de�ned by a certain 3-tuple

in Hpsq, with the value of v1i of the clock xi of B represented in the corresponding

3-tuple ofHps1q. AsHpsq � Hps1q, conditions 1. and 2. of � are of course veri�ed.

The other conditions are also respected thanks to the groupings executed on the

elements of Hpsq and Hps1q to re�ect the increasing order of the fractional parts

of the second components (i.e. clock) values.

Thanks to the bisimulation lemma, instead of considering all the states of

SB, Φ, in the following, we will be only interested in the classes of � in the states

of SB, Φ (which are the words given by function H). We here de�ne the set

of classes of SB, Φ we are interested in and the (timed and discrete) transitions

between those classes.

De�nition 4.27. We de�ne:

H � SB, Φ

L
� � tHpsq | s P Su.

162 Chapter 4. MITL satis�ability and model-checking over �nite words

For all W 1,W 2 P H and σ P Σ we de�ne W 1 σ
ÝÑ W 2 i� @s1 P H�1pW 1q,

Ds2 P H�1pW 2q such that s1 σ
ÝÑ s2.

For all W 1,W 2 P H, we de�ne W 1 ÝÑT W 2 i� @s1 P H�1pW 1q, Dt P R and

Ds2 P H�1pW 2q such that s1 t
ù s2.

Example 4.28. Once again, we consider again the TA B of Figure 4.8 and the

OCATAA Φ of Figure 4.7. Let us consider the state tp`2, 2.2q, p`♦, r1, 2sq, pb0, 2qu

of SB, Φ. Its class in H is the word:

W 1 :� tp`♦, t1u, 1q, p`♦, t2u, 1q, pb0, t2u, 1qutp`2, s2, 3r, 1qu.

Let us note:

W 2 :� tpb0, t2u, 1qutp`2, s2, 3r, 1qu.

We have W 1 b
ÝÑ W 2. Indeed, let s1 P H�1pW 1q: s1 will be of the form

tp`2, tq, p`♦, r1, 2sq, pb0, 2qu, for a certain t Ps2, 3r. Let us consider s
2 � tp`2, tq, pb0, 2qu,

we have that s2 P H�1pW 2q and s1 b
ÝÑ s2.

Now, let us note:

W 3 :� tp`♦, s1, 2r, 1q, p`♦, s2, 3r, 1q, pb0, s2, 3r, 1qutp`2, s2, 3r, 1qu.

We have W 1 ÝÑT W 3. Indeed, let s1 P H�1pW 1q: s1 will be of the form

tp`2, tq, p`♦, r1, 2sq, pb0, 2qu, for a certain t Ps2, 3r. Let us consider t1 Ps0, 1r and

s3 � tp`2, t� t
1q, p`♦, r1� t

1, 2� t1sq, pb0, 2� t
1qu such that t� t1 Ps2, 3r (such a t1

always exists as we are using open intervals of R). Hence, we have s3 P H�1pW 3q

and s1 t1
ù s3.

We de�ned that W 1 σ
ÝÑW 2 i� for all s1 P H�1pW 1q:

Ds2 P H�1pW 2q such that s1 σ
ÝÑ s2. (4.5)

The following proposition shows that no matter the choice of s1 P H�1pW 1q:

indeed, if property 4.5 is true for one such s1, it will consequently be true for all

such s1.

4.2 MITL model-checking: the techniques 163

Proposition 4.29. Let W 1,W 2 P H, σ P Σ and t P R�.
W 1 σ

ÝÑW 2 i� Ds1 P H�1pW 1q and s2 P H�1pW 2q : s1 σ
ÝÑ s2.

Proof. (ñ) Follows directly from De�nition 4.27.

(ð) Suppose that s1 P H�1pW 1q, s2 P H�1pW 2q, and that s1 σ
ÝÑ s2. Let s3 P

H�1pW 1q, we must prove that Ds4 P H�1pW 2q : s3 σ
ÝÑ s4. As s3 P H�1pW 1q

and s1 P H�1pW 1q, by Proposition 4.26, s3 � s1. As s1 σ
ÝÑ s2, Proposition 4.23

ensures that Ds4 P H�1pW 2q : s3 σ
ÝÑ s4.

As previously explained, our model-checking algorithm will consist in looking

for a path to an accepting state of H (corresponding to a class of accepting states

of SB, Φ). We will conclude that B * Φ if and only if such a path exists. We

so de�ne PostpWq, for W � H: this operator will be used in our algorithm to

compute the successors of the set of states of H we have already reached.

De�nition 4.30. Let W � H, we de�ne:

PostpWq :� tW 1 P H | Dσ P Σ, W PW and W 2 P H : W ÝÑT W
2 σ
ÝÑW 1u.

To ensure the termination of our following algorithm, we need PostpW q to

be �nite and e�ectively computable, for any word W P H. This is what claims

the following proposition. In the same time, the proof of this proposition gives a

procedure to compute PostpW q from W .

Proposition 4.31. For each word W P H, PostpW q is �nite and e�ectively

computable.

Proof. Let W P H. The set of all W 2 such that W ÝÑT W 2 is a �nite set of

words with the same number of 3-tuples than W . We form this set accumulating

the words computed recursively as follows, using at each time the last Wnext

obtained (and starting from W):

164 Chapter 4. MITL satis�ability and model-checking over �nite words

� if the �rst letter of Wnext contains 3-tuples whose second component is t0u

or t1u or . . . or tcmaxu, the following Wnext is the word created as follows:

1. the 3-tuples of this �rst letter whose second component is tcmaxu are re-

placed by the same 3-tuples in which tcmaxu is replaced by scmax,�8r,

2. the other 3-tuples of this �rst letter are deleted from it (if it then

becomes empty, it is omitted). A new set of 3-tuples is created as a

new second letter: it will contain these same 3-tuples in which the

second component is replaced by the immediately following region

(s0, 1r instead of t0u, s1, 2r instead of t1u, . . . , scmax � 1, cmaxr instead

of tcmax � 1u). The end of the word does not change.

� else, the following Wnext is the word created as follows. The last letter of

Wnext is deleted. Its 3-tuples are modi�ed to create a new set that will

contain these same 3-tuples in which the second component is replaced

by the immediately following region (t1u instead of s0, 1r, t2u instead of

s1, 2r, . . . , tcmaxu instead of scmax � 1, cmaxr). This new set is either joined

with the �rst letter of the modi�ed Wnext, if it contains 3-tuples having

scmax,�8r as second components, or added as a new �rst letter of the

modi�ed Wnext otherwise. The rest of the word does not change.

We stop when we encounter a Wnext that has a unique letter whose 3-tuples have

scmax,�8r as second components.

Then, for each possible W 2 such that W ÝÑT W 2, we easily �nd a s P S

such that Hpsq � W 2 (note that the choice of s does not matter thanks to

Proposition 4.29). For all σ P Σ, it is easy to compute the set of elements s1 of S

such that s
σ
ÝÑ s1. This set is �nite and, from each of its elements s1, we can get

back Hps1q.

Once we have examined each letter σ P Σ, for each possible W 2, the (�nite !) set

of all the Hps1q found form PostpW q.

Example 4.32. Once again, we consider again the TA B of Figure 4.8 and the

4.2 MITL model-checking: the techniques 165

OCATA A Φ of Figure 4.7. Let us consider the following word of H � SB, Φ

L
�:

W :� tp`2, s3,�8r, 1q, p`♦, t2u, 1q, p`♦, t3u, 1q, pb0, t3u, 1qu.

We will look for PostpW q. The procedure of the proof of Proposition 4.31 recur-

sively gives the following timed successors of W :

W :� tp`2, s3,�8r, 1q, p`♦, t2u, 1q, p`♦, t3u, 1q, pb0, t3u, 1qu,

W 1 :� tp`2, s3,�8r, 1q, p`♦, s3,�8r, 1q, pb0, s3,�8r, 1qutp`♦, s2, 3r, 1qu,

W 2 :� tp`2, s3,�8r, 1q, p`♦, s3,�8r, 1q, pb0, s3,�8r, 1q, p`♦, t3u, 1qu,

W 3 :� tp`2, s3,�8r, 1q, p`♦, s3,�8r, 1q, pb0, s3,�8r, 1q, p`♦, s3,�8r, 1qu.

In way to compute the discrete successors of W , we might consider

s � tp`2, 3.1q, p`♦, r2, 3sq, pb0, 3qu, as Hpsq �W . Let us note:

s1 :� tp`2, 3.1q, p`♦, 0q, p`♦, r2, 3sq, pb1, 0qu,

s2 :� tp`2, 3.1q, p`♦, r0, 3sq, pb1, 0qu,

s3 :� tp`2, 3.1q, p`♦, r2, 3sq, pb0, 3qu,

s4 :� tp`2, 3.1q, pb0, 3qu.

We have that s
a
ÝÑ s1, s

a
ÝÑ s2, s

b
ÝÑ s3 and s

b
ÝÑ s4. This gives the following

elements of PostpW q:

W 1
post :� tp`2, s3,�8r, 1q, p`♦, t0u, 1q, p`♦, t2u, 2q, p`♦, t3u, 2q, pb1, t0u, 1qu,

W 2
post :� tp`2, s3,�8r, 1q, p`♦, t0u, 1q, p`♦, t3u, 1q, pb1, t0u, 1qu,

W 3
post :� tp`2, s3,�8r, 1q, p`♦, t2u, 1q, p`♦, t3u, 1q, pb0, t3u, 1qu,

W 4
post :� tp`2, s3,�8r, 1q, pb0, t3u, 1qu.

A similar procedure enables to compute the others elements of PostpW q from

W 1, W 2 and W 3.

The two following de�nitions present some notations and vocabulary used in

the presentation of our algorithm.

De�nition 4.33. We note H0 :� Hps0q the word of H corresponding to the

initial state of SB, Φ.

166 Chapter 4. MITL satis�ability and model-checking over �nite words

De�nition 4.34. We say that a word W P H is accepting i� all the locations (of

A Φ or B) present in the �rst components of the 3-tuples it contains are accepting

(such words correspond to accepting states of SB, Φ).

We note F � H the set of accepting words of H.

Algorithm 3 presents an (classical) algorithm for the model-checking of MITL

in which the reachable words of H � SB, Φ

L
� are computed `on the �y'. It is

a classical algorithm to explore the (�nite) state space of H. It works `on the

�y' stopping as soon as an accepting state (i.e. word) of H is reached. Indeed,

reaching an accepting state of H means there is a path from the initial state to an

accepting state in H, so that B * Φ. If there exists no such state, the algorithm

ends when all the states of H were explored, answering that B |ù Φ. Depending

on the data structure used to represent the set ToExplore, this algorithm uses

a classical breadth-�rst or depth-�rst graph traversal. Remark that the frontier

ToExplore is maintained in an e�cient manner. Indeed, the Algorithm 4 would

give the same result as Algorithm 3.

Algorithm 3 MITLModelChecking

Input: A TA B and the ATA A Φ, for Φ P MITL.

Output: `true' i� B |ù Φ.

1: ToExplore Ð H0

2: Explored Ð H

3: while ToExplore � H do

4: Remove some element W from ToExplore

5: if W is accepting then

6: return `false'

7: end if

8: Explored = Explored YtW u

9: ToExplore = ToExplore Y (PostpW q z Explored)

10: end while

11: return `true'

4.3 Antichain-based heuristic 167

Algorithm 4 NaiveMITLModelChecking

Input: A TA B and the ATA A Φ, for Φ P MITL.

Output: `true' i� B |ù Φ.

1: S Ð H0

2: Spre Ð H

3: while S � Spre do

4: if there is an accepting W P S then

5: return `false'

6: end if

7: Spre Ð S

8: S Ð S Y PostpSq

9: end while

10: return `true'

4.3 Antichain-based heuristic

The aim of this section is to elaborate a heuristic to improve the practi-

cal e�ciency of Algorithm 3. Many recent works praise the improvement of

algorithms thanks to the use of antichains [18, 30, 64]. In particular, e�cient

algorithms using antichains have been produced for the LTL satis�ability and

model-checking [66], as well as for the LTL reactive synthesis problem [32]. We

follow the footsteps of these authors showing how antichains can be used to im-

prove the Algorithm 3 of the previous section.

We start by formally de�ning the notion of antichain, based on the notion of

partial order.

De�nition 4.35. A partial order over a �nite set S is a binary relation ¨ �

S � S which is re�exive, transitive and antisymmetric. For s1, s2 P S, if s1 ¨ s2,

we say that s1 is smaller than s2 (or s2 is greater than s1). If s1 ª s2 and

s2 ª s1, we say that s1 and s2 are incomparable.

De�nition 4.36. Let S be a �nite set and ¨ � S � S be a partial order. An

168 Chapter 4. MITL satis�ability and model-checking over �nite words

antichain over S is a set of pairwise incomparable elements.

For instance, when considering a partial order over a �nite set S, the set of

its minimal elements is an antichain over S, as well as the set of its maximal

elements.

De�nition 4.37. Let S be a �nite set and ¨ � S � S be a partial order. We

de�ne the set of the minimal elements of S by:

minpSq � ts P S | @s1 P S, ps1 ¨ sñ s1 � squ.

Similarly, we de�ne the set of the maximal elements of S by:

maxpSq � ts P S | @s1 P S, ps ¨ s1 ñ s1 � squ.

For the rest of this section, we still �x an MITL formula Φ and assume that

the OCATA representing the negation of Φ is A Φ � pΣ, L, `0, F, δq. We also

�x a TA B � pΣ, B, b0, X, δ
B, FBq and the timed transition system SB, Φ �

pΣ, S, s0,ù,Ñ, αq (see De�nition 4.17). We also observe H � SB, Φ

L
� (see

De�nition 4.27), whose elements are words over the alphabet

Λ � pB Y Lq �REG� t1, 2, . . . ,maxpmax
`PL

pmax`q, nqu,

where max` is the maximal number of intervals that can be present in location

` P L of A Φ, and n :� |X| is the number of clocks of B.

In the sequel, we de�ne an order on the elements of S and show how we can

exploit it to improve the Algorithm 3 of the previous section. Let s, s1 P S such

that s � s1 (in particular, they contain the same con�guration of B). If we have
no accepting run from s1, it is not interesting to observe it in the algorithm. If

we have an accepting run from s1, we must have an accepting run from s (see the

de�nition of the transition function of OCATAs). So, in Algorithm 3, it is not

necessary to observe s1 if we have already observed s because the �rst accepting

4.3 Antichain-based heuristic 169

run we will �nd will su�ce to prove that B * Φ. In fact, we can extend this

remark to con�gurations whose clock values are in the same regions and whose

order of the fractional parts (of their clock values) is the same. We will de�ne

a partial order � on the words of H that enable to verify such an `inclusion' on

the sets of con�gurations they give. Our improved algorithm will then consists in

only observing the antichain of the minimal elements of H for this partial order.

De�nition 4.38. We de�ne the partial order � on H as follows. Let W 1, W 2 P

H and suppose that W 1 � w1
1w

1
2 . . . w

1
n and W 2 � w2

1w
2
2 . . . w

2
m. W

1 �W 2 i�:

� n ¤ m, and

� there exists a strictly increasing function f : t1, 2, . . . , nu ÝÑ t1, 2, . . . ,mu

such that:

1. @1 ¤ i ¤ n,@` P B : p`, r, kq P w1
i ñ p`, r, kq P w2

fpiq, and

2. @` P L, there exists a strictly increasing function f` : N ÝÑ N such

that: @1 ¤ i ¤ n, p`, r, kq P w1
i ñ p`, r, f`pkqq P w

2
fpiq.

Remark 4.39. Remark that we asked the existence of strictly increasing func-

tions f`, for all ` P A. In fact, only functions f` for an ` P L present in an

element of a letter of W 1 are relevant. Moreover, those functions f` are de�ned

from N to N. In fact, we only need each f` to be de�ned from t1, 2, . . . ,max`u

(where max` is the maximal number of intervals that can be present in location

`) to itself, as there will never be more than those number of intervals associated

to location `.

Remark 4.40. Hps1q � W 1 � W 2 � Hps2q i� there exists s2
0 � s2 such that

Hps1q � Hps2
0q, i.e. (Proposition 4.26) s1 � s2

0. (s2
0 can be found only keeping

the 3-tuples of W 2 matched with a trio of W 1 thanks to the functions f and f`.)

Example 4.41. Let `B be a location of B and ` be a location of A Φ. Suppose

that B has 1 clock and cmax � 3. Let us note:

W :� tp`, t0u, 1q, p`, t3u, 2qu tp`, s0, 1r, 1qu tp`, s2, 3r, 2q, p`B, s1, 2r, 1qu, and

W 1 :� tp`, t0u, 1q, p`, t3u, 3qu tp`, s0, 1r, 1qu tp`, s2, 3r, 2qu

tp`, s0, 1r, 2q, p`, s2, 3r, 3q, p`B, s1, 2r, 1qu.

170 Chapter 4. MITL satis�ability and model-checking over �nite words

We have that W �W 1, considering:

� f : t1, 2, 3u ÝÑ t1, 2, 3, 4u de�ned by fp1q � 1, fp2q � 2, fp3q � 4 ;

� f`2 : N ÝÑ N de�ned by fp1q � 1, fp2q � 3 and @n P Nzt1, 2u, fpnq � n�1;

Let us now give an example to support Remark 4.40. For instance, W � Hps1q

and W 1 � Hps2q, for:

s1 :� tp`, r0, 0.2sq, p`, r2.4, 3sq, p`B, 1.4qu, and

s2 :� tp`, r0, 0.4sq, p`, r0.9, 2.5sq, p`, r2.9, 3sq, p`B, 1.9qu

Considering

s2
0 :� tp`, r0, 0.4sq, p`, r2.9, 3sq, p`B, 1.9qu, we have

Hps2
0q :� tp`, t0u, 1q, p`, t3u, 2qu tp`, s0, 1r, 1qutp`, s2, 3r, 2q, p`B, s1, 2r, 1qu,

and hence Hps2
0q � Hps1q (�W).

Our following aim is to prove that � induces a forward simulation on the

words of H. We prove this claim after having formally de�ned the notion of

forward simulation, concerning the transitions
σ
ÝÑ and ÝÑT de�ned on the words

of H.

De�nition 4.42. Let ¤ be an order on the word of H. We say that ¤ induces a

forward simulation on H i�:

for all W,W 1, V 1 words of H and σ P Σ such that W ¤W 1 and W 1 σÝÑ V 1,

there exists V a word of H such that V ¤ V 1 and W
σ
ÝÑ V ;

and

for all W,W 1, V 1 words of H and σ P Σ such that W ¤W 1 and W 1 ÝÑT V
1,

there exists V a word of H such that V ¤ V 1 and W ÝÑT V.

Proposition 4.43. � induces a forward simulation on the words of H.

4.3 Antichain-based heuristic 171

W 1

W

�

�

V 1
σ

V
σ

�

�

σ

Hps1q

Hpsq

Hps�q

�

�

Hpr1q

Hprq

Hpr�q

�

�

s1

s

s�

�
�

r1
σ

r
σ

r�

�
�

σ

Figure 4.10: (above) Summarize on H. (below) Summarize on con�gurations.

Proof. Discrete transition: Let W,W 1, V 1 be three words of H and σ P Σ such

that W � W 1 and W 1 σ
ÝÑ V 1. We must prove that there exists a word V P H

such that W
σ
ÝÑ V and V � V 1.

Figure 4.3 summarizes the situation and the notations.

Let us suppose that W � Hpsq and W 1 � Hps1q for certain s, s1 P S. Thanks

to Remark 4.40, we know that there exists s� � s1 such that Hpsq � Hps�q.

As W 1 σ
ÝÑ V 1, there exists r1 P H�1pV 1q such that s1

σ
ÝÑ r1. As s� � s1 and by

de�nition of
σ
ÝÑ on S, there is a con�guration r� � r1 such that s�

σ
ÝÑ r� and

so Hps�q
σ
ÝÑ Hpr�q. Now, as Hpsq � Hps�q (i.e. s � s� by Proposition 4.26)

and s�
σ
ÝÑ r�, by Proposition 4.23, there exists r P S such that s

σ
ÝÑ r (and

so W � Hpsq
σ
ÝÑ Hprq) and r � r�. Now, as r � r� � r1, by Remark 4.40,

Hprq � Hpr1q � V 1: Hprq is the V we were looking for.

Timed transition: We can conclude thanks to a proof similar to that of the `dis-

crete transition' case, thanks to Remark 4.40, and Propositions 4.23 and 4.26.

Thanks to the forward simulation induced by �, we are now able to set up

an algorithm to solve the MITL model-checking problem. We recall that we are

172 Chapter 4. MITL satis�ability and model-checking over �nite words

looking for a path from the initial word of H, H0, to an accepting word of H:
B |ù Φ i� there is no such path. Our �rst aim is so to compute the reachable words

of H: in the following, we elaborate algorithms to compute them. When we will

have obtained an e�cient algorithm for this (thanks to the forward simulation

induced by �), we will elaborate a complete algorithm to perform on the �y

MITL model-checking.

In following lemmas, we show that, in way to verify that B |ù Φ, it is equiv-

alent to compute:

1. the reachable words of H,

2. the upward closure of the reachable words of H,

3. the antichain of the minimal elements of the reachable words of H.

We present these lemmas after having de�ned what is the upward closure of an

ordered set and �x notations for the reachable and accepting words of H.

De�nition 4.44. Let E be a set and ¤ a partial order on the elements of E. Let

X � E. We note Ò X the upward closure of X de�ned as follows:

Ò X :� te P E | Dx P X such that x ¤ eu.

De�nition 4.45. We note ReachpHq the reachable words of H. We note

AcceptpHq the accepting words of H.

Thanks to these notations, we can rewrite the aim of an MITL model-checking

algorithm has follows:

B |ù Φ i� ReachpHq XAcceptpHq � H.

In way to prove the desired lemmas, we �rst de�ne what is a downward closed

set, and prove that AcceptpHq owns this property.

4.3 Antichain-based heuristic 173

De�nition 4.46. Let E be a set and ¤ a partial order on the elements of E. Let

X � E. We say that X is downward closed if:

@x P X, @y P E: py ¤ xq ñ py P Xq.

Lemma 4.47. AcceptpHq is downward closed.

Proof. Let W P AcceptpHq and W 1 P H such that W 1 �W . We must show that

W 1 P AcceptpHq. Indeed, as W 1 � W , each 3-tuple of W 1 as a corresponding

3� tuple inW carrying the same location of A Φ or B. Now, asW P AcceptpHq,
all the locations present in each of its 3-tuples is accepting, so that this is also

the case for W 1. This proves that W 1 P AcceptpHq.

The following lemmas once again rewrite, in two new manners, the aim of an

MITL model-checking algorithm.

Lemma 4.48.

ReachpHq XAcceptpHq � H i� Ò ReachpHq XAcceptpHq � H.

Proof. (ñ) Let x PÒ ReachpHq. There is y P ReachpHq such that y � x.

Let us suppose by contradiction that x P AcceptpHq. Then, as AcceptpHq is
downward-closed and y � x, y P AcceptpHq what is impossible as, by hypothesis,

ReachpHq XAcceptpHq � H.

(ð) Let x P ReachpHq, we must show x R AcceptpHq. Indeed, as x P ReachpHq,
in particular x PÒ ReachpHq and so x R AcceptpHq because, by hypothesis,

Ò ReachpHq XAcceptpHq � H.

Lemma 4.49.

Ò ReachpHq XAcceptpHq � H i� minpReachpHqq XAcceptpHq � H.

Proof. (ñ) Let us suppose that Ò ReachpHq X AcceptpHq � H. Let x P

minpReachpHqq. We suppose by contradiction that x P AcceptpHq. In par-

ticular x PÒ ReachpHq, which contradicts our hypothesis.

174 Chapter 4. MITL satis�ability and model-checking over �nite words

(ð) Let us suppose that minpReachpHqqXAcceptpHq � H. Let x PÒ ReachpHq.
We suppose by contradiction that x P AcceptpHq. As x PÒ ReachpHq, there exists
x1 P minpReachpHqq such that x1 � x. Then, as x P AcceptpHq and AcceptpHq
is downward closed, x1 P AcceptpHq: this contradicts our hypothesis.

We start by presenting Algorithm 5. It is a theoretical algorithm that enables

to compute Ò pReachpHqq. We prove that this algorithm is correct. Nevertheless,

this theoretical algorithm cannot be really implemented because Ò pReachpHqq
is an in�nite set. Fortunately, Ò pReachpHqq can easily be represented by the

antichain of its minimal elements. In the sequel, we will so present an e�ective

algorithm to compute minpÒ pReachpHqqq.

Algorithm 5 UpwardClosureReach

Input: H0

Output: Ò ReachpHq.

1: Rpre Ð H

2: R Ð Ò pH0q

3: S Ð Ò pH0q

4: while Rpre � R do

5: S Ð Ò PostpSq

6: Rpre Ð R

7: R Ð RY S

8: end while

9: return R

The proof of correctness of this algorithm is based on the two following lem-

mas.

Lemma 4.50. Let A � H. Then:

Ò PostpÒ Aq � Ò PostpAq.

Proof. (�) Let W P Ò PostpÒ Aq, we must prove that W P Ò PostpAq. As W P

4.3 Antichain-based heuristic 175

Ò PostpÒ Aq, there exists W1 P PostpÒ Aq such that W1 � W . Moreover, there

exists Wpre P Ò A, σ P Σ and Wp P H such that:

Wpre ÝÑT Wp
σ
ÝÑW1.

AsWpre P Ò A, there existsW
1
pre P A such thatW 1

pre �Wpre. By Proposition 4.26

and Proposition 4.23, there exists W 1
p and W2 P H such that:

W 1
pre ÝÑT W

1
p
σ
ÝÑW2 and W2 �W1.

So, W2 P PostpW
1
preq and, as W

1
pre P A, we have: W2 P PostpAq. Hence, as

W2 �W1 �W , we have that W P Ò PostpAq.

(�) We must show that Ò PostpAq � Ò PostpÒ Aq. Indeed, we have A � Ò A,

so that PostpAq � PostpÒ Aq (it is not di�cult to see that function Post is

monotonic), and hence Ò PostpAq � Ò PostpÒ Aq.

Lemma 4.51. Let n P N and pEiq
n
i�1 a family of sets. Then:

�n
i�1 Ò pEiq � Ò

�n
i�1Ei.

Proof. We have:

x P
�n
i�1 Ò pEiq

i� x P Ò pE1q or x P Ò pE2q or . . . or x P Ò pEnq

i� Dy in E1 or E2 or . . . or En such that y � x

i� Dy P
�n
i�1Ei such that y � x

i� x P Ò
�n
i�1Ei.

We can now prove the correctness of Algorithm 5.

Theorem 4.52. Algorithm 5 returns Ò ReachpHq.

176 Chapter 4. MITL satis�ability and model-checking over �nite words

Proof. We �rst remark that this algorithm terminates because H is �nite. Let

us note k the number of passing in the while loop performed before Algorithm 5

terminates. We also note Rend and Rendpre the respective values of variables R and

Rpre after the while loop. We remark that Rend �
�k
i�0 pÒ Postq

ipÒ H0q. We

must show that:
k¤
i�0

pÒ PostqipÒ H0q � Ò ReachpHq.

(�) On the one hand, to recursively use Lemma 4.50 gives the following equalities,

for all n P N:

pÒ PostqnpÒ H0q

:� pÒ Postqn�1pÒ PostpÒ H0qq

� pÒ Postqn�2pÒ PostpÒ PostpH0qqq

� pÒ Postqn�3pÒ PostpÒ PostpPostpH0qqqq

� ...

� Ò PostpÒ PostpPostn�2pH0qqq

� Ò PostnpH0q.

We so have: �k
i�0 pÒ Postq

ipÒ H0q

�
�k
i�0 Ò pPost

ipH0qq

� Ò p
�k
i�0 Post

ipH0qq (by Lemma 4.51)

� Ò p
�
nPN Post

npH0qq

� Ò ReachpHq.

(�) We �rst claim that:

Ò PostpRendq � Rend. (4.6)

To prove this, we note Si the value of variable S after the ith passing in the while

loop. We have: S0 �Ò pH0q and S
i�1 �Ò PostpSiq for all i ¥ 0 ; Rend �

�k
i�0 S

i

and Rendpre �
�k�1
i�0 S

i. Moreover, as the algorithm only performed k passing in

the loop, we have that: Rendpre � Rend, i.e.
�k�1
i�0 S

i �
�k
i�0 S

i, and, in particular,

Sk �
�k�1
i�0 S

i.

4.3 Antichain-based heuristic 177

Let x PÒ PostpRendq. In way to prove 4.6, we will show that x P Rend.

x P Ò PostpRendq

� Ò Postp
�k
i�0 S

iq

� Ò
�k
i�0 PostpS

iq (by de�nition of Post)

�
�k
i�0 Ò PostpS

iq (by Lemma 4.51)

We distinguish two cases:

(i) If x P Ò PostpSiq, for 0 ¤ i k, then, x P Si�1 (by de�nition of Si�1) and

so x P Rend.

(ii) Else, x P Ò PostpSkq. Then, as Sk �
�k�1
i�0 S

i, x P Ò Postp
�k�1
i�0 S

iq ��k�1
i�0 Ò PostpS

iq. We can conclude that x P Rend thanks to case (i).

We are now able to prove that Rend � Ò ReachpHq.
Let W P Ò ReachpHq � Ò p

�
nPN Post

npH0qq. We suppose by contradiction that

W R Rend. As Rend � Ò p
�k
i�0 Post

ipH0qq, it is only possible if there is a path

W0 ÝÑT W
1
0
σ1ÝÑW1 ÝÑT W

1
1
σ2ÝÑW2 . . .

σkÝÑWk

ÝÑT W
1
k

σk�1
ÝÝÝÑWk�1 . . .

σk�1
ÝÝÝÑWk�l

inH, for a certain l ¥ 1, withW0 � H0 andWk�l �W . By de�nition of Rend, we

have that, for 0 ¤ i ¤ k: Wi P R
end and W 1

i P R
end. Moreover, as Wk P R

end and

Ò PostpRendq � Rend, we have that Wk�1 P R
end. Following the same reasoning,

we recursively obtain that Wk�2 P R
end, Wk�3 P R

end, . . . , Wk�l P R
end. Now,

we know that Rend � Ò p
�k
i�0 Post

ipH0qq, Wk�l P R
end and Wk�l � W , so that

W P Rend.

While Algorithm 5 is correct, it is unexploitable in practice because it manipu-

lates potentially in�nite objects (Ò PostipÒ H0q, . . .). To overcome this problem,

we present Algorithm 6. Based on the results of Lemmas 4.48 and 4.49, the

aim of this algorithm is to only compute the antichain of the minimal elements

178 Chapter 4. MITL satis�ability and model-checking over �nite words

Algorithm 6 MinReach

Input: H0

Output: minpReachpHqq.

1: R̃pre Ð H

2: R̃ Ð minpH0q

3: S̃ Ð minpH0q

4: while R̃pre � R̃ do

5: S̃ Ð minpPostpS̃qq

6: R̃pre Ð R̃

7: R̃ Ð minpR̃Y S̃q

8: end while

9: return R̃

of ReachpHq. To do this, it proceeds as Algorithm 5 but only maintains the

minimal elements of PostpSq, which �nitely represent Ò PostpSq.

The proof of correctness of Algorithm 6 is based on the two following lemmas.

Lemma 4.53. Let E � H. We have that:

minpPostpminpEqqq � minpPostpEqq.

Proof. (�) Let x P minpPostpminpEqqq, i.e. x P PostpminpEqq and for all y P

PostpminpEqq, y � x. In particular, x P PostpEq. We must still show that, for

all y P PostpEq, y � x. Let y P PostpEq: there exists σ P Σ, z, z1 P E and

zm P minpEq such that:

z ÝÑT z
1 σÝÑ y and zm � z.

By Propositions 4.26 and 4.23, there exists z1m, ym P H such that:

zm ÝÑT z
1
m

σ
ÝÑ ym and ym � y.

So, ym P Postpzmq and, as zm P minpEq, we have: ym P PostpminpEqq, so

that ym � x. As ym � y, we also have that y � x (else, we would have that

4.3 Antichain-based heuristic 179

ym � y � x and so ym � x).

(�) Let x P minpPostpEqq, i.e. x P PostpEq and for all y P PostpEq, y � x.

Then, there exists σ P Σ, z, z1 P E and zm P minpEq such that:

z ÝÑT z
1 σÝÑ x and zm � z.

By Propositions 4.26 and 4.23, there exists z1m, xm P H such that:

zm ÝÑT z
1
m

σ
ÝÑ xm and xm � x.

So, xm P Postpzmq and, as zm P minpEq, we have: xm P PostpminpEqq. In

particular, xm P PostpEq and so, xm � x implies that xm � x. Hence, x P

PostpminpEqq. As we know that, for all y P PostpEq, y � x, in particular, for

all y P PostpminpEqq, y � x and so: x P minpPostpminpEqqq.

Lemma 4.54. Let A,B � H. We have that:

minpminpAq YminpBqq � minpAYBq.

Proof. (�) Let x P minpminpAq YminpBqq. In particular, x P AY B and for all

y P minpAq YminpBq, y � x. It remains to prove that for all y P AY B, y � x.

Let y P AYB. Let us suppose that y P A, the same reasoning holds if y P B.

Then, there exists ym P minpAq such that ym � y. But we know that for such an

ym P minpAq, we have that ym � x. Then, ym � y induces that y � x.

(�) Let x P minpA Y Bq, then x P AYB and, for all y P AYB, we have

that y � x. Let us suppose that x P A, the same reasoning holds if x P B.

In particular, for all a P A, a � x, and so x P minpAq. Hence, as minpAq �

minpAq YminpBq, we have that x P minpAq YminpBq. It remains to prove that,

for all y P minpAq YminpBq, y � x: it is clear as we know that, for all y P AYB,

y � x.

The following theorem states that Algorithm 6 is correct.

Theorem 4.55. Algorithm 6 returns minpReachpHqq.

180 Chapter 4. MITL satis�ability and model-checking over �nite words

Proof. To prove this theorem, we will show that, at each passing in the while

loop, Algorithm 6 stores in its variables S̃ et R̃ the respective minimal elements

of what contains variables S and R of Algorithm 5, at the same passing in its

while loop. To do this, let us note Si, Ri, S̃i and R̃i the respective contents of

variables S, R, S̃ and R̃ at the end of the ith passing in the while loop, for i ¥ 0.

We must show that, @i ¥ 0, S̃i � minpSiq and R̃i � minpRiq.

Before to enter the loop: we have S0 � Ò pH0q and S̃0 � minpH0q � minpS0q.

Moreover, R0 � Ò pH0q and R̃
0 � minpH0q � minpR0q, what we wanted.

In the loop: suppose that, @0 ¤ i ¤ j, after the ith passing in the loop, we have

S̃i � minpSiq and R̃i � minpRiq. We now show that S̃j�1 � minpSj�1q and

R̃j�1 � minpRj�1q, after the pj � 1qth passing in the loop.

After this pj � 1qth passing, we have:

S̃j�1 � minpPostpS̃jqq

� minpPostpminpSjqq (by induction hypothesis)

� minpPostpSjqq (by Lemma 4.53)

� minpÒ PostpSjqq (by de�nition of Ò and min)

� minpSj�1q (see Algorithm 5).

Moreover:

R̃j�1 � minpR̃j Y S̃j�1q

� minpminpRjq YminpSj�1qq (by induction hypothesis

and because S̃j�1 � minpSj�1qq)

� minpRj Y Sj�1q (by Lemma 4.54)

� minpRj�1q (see Algorithm 5).

So, we have that @i ¥ 0, S̃i � minpSiq and R̃i � minpRiq. As we know Algo-

rithm 5 always stops, it is also always the case for Algorithm 6. Indeed, suppose

that Algorithm 5 stops after k passing in the while, it means Rk�1 � Rk (ob-

serving the content of Rpre at each passing in the while loop). But Rk�1 � Rk

i� minpRk�1q � minpRkq i� R̃k�1 � R̃k, which is the condition thanks to which

stops the while loop of Algorithm 6. Moreover, as we proved that, if Algo-

rithm 5 stops after k passing in the while loop, it returns Rk � Ò ReachpHq,

4.3 Antichain-based heuristic 181

we have that Algorithm 6 indeed returns R̃k � minpRkq � minpÒ ReachpHqq �
minpReachpHqq, what we wanted.

Algorithm 6 can still be improved. Algorithm 7 will only apply operator Post

on the elements x such that Post has not been applied on an element y � x yet.

In the sequel, we will show that, when computing the Post of such an element

x, the obtained elements are not minimal and are so useless.

Algorithm 7 uses the operator minRel de�ned as follows:

De�nition 4.56. Let S,R � H. We de�ne:

minRelpS,Rq :� ts P S | @s1 P S, s1 � s and @r P R, r � su.

Algorithm 7 OptimizedMinReach

Input: H0

Output: minpReachpHqq.

1: R�pre Ð H

2: R� Ð minpH0q

3: S� Ð minpH0q

4: while R�pre � R� do

5: S� Ð minRelpPostpS�q, R�q

6: R�pre Ð R�

7: R� Ð minpS� YR�q

8: end while

9: return R�

Let us prove that Algorithm 7 is correct.

Theorem 4.57. Algorithm 7 returns minpReachpHqq.

Proof. Let us note S�i and R�i the respective values of variables S� and R� of

Algorithm 7 after the ith passing in the while loop. We will prove by induction

that Ò PostpS�i q Y Ò R
�
i � Ò PostpR

�
i q Y Ò R

�
i .

182 Chapter 4. MITL satis�ability and model-checking over �nite words

Basis: Ò PostpS�0 qYÒ R
�
0 � Ò PostpminpH0qq Y Ò minpH0q � Ò PostpR

�
0q Y Ò R

�
0 .

Induction: let us suppose that, @0 ¤ i ¤ j, Ò PostpS�i qYÒ R
�
i � Ò PostpR

�
i q Y Ò R

�
i .

We will show that Ò PostpS�j�1q Y Ò R
�
j�1 � Ò PostpR

�
j�1q Y Ò R

�
j�1.

Let us �rst remark that, by de�nition of minRel:

Ò S�j�1 � Ò minRelpPostpS
�
j q, R

�
j q � Ò pPostpS

�
j qzÒ R

�
j q (4.7)

We so have:

Ò R�j�1

� Ò pminpÒ pPostpS�j qzÒ R
�
j qY Ò R

�
j qq (observing Algorithm 7)

� Ò pPostpS�j qzÒ R
�
j q Y Ò R

�
j q (by de�nition of Ò and min)

� Ò pPostpS�j qq Y Ò R
�
j

� Ò pPostpR�j qq Y Ò R
�
j (by induction hypothesis).

Hence:

Ò PostpS�j�1q Y Ò R
�
j�1

� Ò Post
�
Ò pPostpS�j qzÒ R

�
j q
�
Y Ò pPostpR�j qq Y Ò R

�
j

(thanks to 4.7 and the previous equality over Ò R�j�1)

� Ò Post
�
Ò pPostpS�j qq

�
Y Ò pPostpR�j qq Y Ò R

�
j

(see justi�cation � hereunder)

� Ò Post
�
Ò pPostpS�j q Y Ò R

�
j q
�
Y Ò pPostpR�j qq Y Ò R

�
j

(observing � , we only add elements present in Ò pPostpR�j qq yet)

� Ò Post
�
Ò pPostpR�j q Y Ò R

�
j q
�
Y Ò pPostpR�j qq Y Ò R

�
j

(by induction hypothesis)

� Ò PostpR�j�1q Y Ò R
�
j�1

(thanks to the previous equality over Ò R�j�1).

Justi�cation �:

it is clear that:

Ò Post
�
Ò pPostpS�j qzÒ R

�
j q
�
Y Ò pPostpR�j qq Y Ò R

�
j

� Ò Post
�
Ò pPostpS�j qq

�
Y Ò pPostpR�j qq Y Ò R

�
j .

4.3 Antichain-based heuristic 183

To show the other inclusion, let us consider x P Ò Post
�
Ò pPostpS�j qq

�
emanating

from an element y P PostpS�j q X Ò R
�
j (the only added elements). We have:

Ò PostpÒ yq

� Ò Postpyq (by Lemma 4.50)

� Ò PostpÒ R�j q

� Ò PostpR�j q (by Lemma 4.50),

and so, x P Ò PostpR�j q and hence x P Ò Post
�
Ò pPostpS�j qzÒ R

�
j q
�
Y Ò pPostpR�j qq

YÒ R�j .

Now, let us note R̃i the value of variable R̃ of Algorithm 6 after the ith passing

in this while loop. We show by induction that, @i ¥ 0: R�i � R̃i.

Basis: R�0 � minpH0q � R̃0.

Inductive case: suppose that @0 ¤ i ¤ j: R�i � R̃i. We will show that R�j�1 �

R̃j�1.

184 Chapter 4. MITL satis�ability and model-checking over �nite words

R�i�1 � minpR�i Y S
�
i�1q

(observing Algorithm 7)

� min
�
R�iY Ò pPostpS

�
i qzÒ R

�
i q
	

(by what we previously saw)

� min
�
Ò R�iY Ò pPostpS

�
i qzÒ R

�
i q
	

� min
�
Ò R�i Y Ò pPostpS

�
i qq

	
� min

�
Ò R�i Y Ò pPostpR

�
i qq

	
(by the result of the previous induction)

� min
�
Ò R̃i Y Ò pPostpR̃iqq

	
(by induction hypothesis)

� min
�
Ò min

�
Ò
�i
j�0 Post

jpH0q
�
Y Ò

�
Post

�
minpÒ

�i
j�0 Post

jpH0qq
�		

(see Algorithms 6 and 5)

� min
�
Ò min

�
Ò
�i
j�0 Post

jpH0q
�
Y Ò

�
min

�
Post

�
min

�
Ò
�i
j�0 Post

jpH0q
��			

� min
�
Ò min

�
Ò
�i
j�0 Post

jpH0q
�
Y Ò

�
min

�
Post

�
Ò
�i
j�0 Post

jpH0q
�			

(by Lemma 4.53)

� min
�
Ò
�i
j�0 Post

jpH0qY Ò Post
�
Ò
�i
j�0 Post

jpH0q
�	

� min
�
Ò
�i
j�0 Post

jpH0qY Ò
�i�1
j�1 Post

jpH0q
	

� min
�
Ò
�i�1
j�0 Post

jpH0q
	

� R̃i�1

(see Algorithms 5 and 6).

This ends the proof of our theorem. Indeed, Algorithm 7 will return the same

output as Algorithm 6, i.e. minpReachpHqq, in the same number of passing in

the while loop, thanks to the fact that, @i ¥ 0, R�i � R̃i.

Thanks to this improved algorithm to compute the minimal elements of

ReachpHq, we can easily produce an MITL model-checking algorithm. We present

Algorithm 8 that works on the �y, stopping as soon as an accepting word of H
is reached.

4.3 Antichain-based heuristic 185

Algorithm 8 ImprovedMITLModelChecking

Input: H0

Output: true i� B |ù Φ.

1: R�pre Ð H

2: R� Ð minpH0q

3: S� Ð minpH0q

4: while R�pre � R� do

5: Spost Ð H

6: for s P S� do

7: if s is accepting then

8: return false

9: else

10: Spost Ð Spost Y Postpsq

11: end if

12: end for

13: S� Ð minRelpSpost, R
�q

14: R�pre Ð R�

15: R� Ð minpS� YR�q

16: end while

17: return R�

186 Chapter 4. MITL satis�ability and model-checking over �nite words

4.4 Zone-based algorithm

In the case of TAs, zones have been advocated as a data structure which is

more e�cient in practice than regions [4, 8, 27]. This fact has been experimen-

tally veri�ed, especially by the multitude of tests provided by the tool UPPAAL

[41]. In this section, we will show how zones for OCATA [2] can be adapted

to represent set of states of SB, Φ. Let us recall we �xed an MITL formula

Φ, the OCATA A Φ � pΣ, L, `0, F, δq representing the negation of Φ and a TA

B � pΣ, B, b0, X, δB, FBq. Intuitively, a zone is a guard on the values of the clocks

and clock copies, with additional information to associate clock copies of A Φ

and clocks of B to the locations of these automata they are present in.

We start by de�ning some notations for the sequel of this section.

We note x the unique clock of A Φ and, for B, we note xB1 , xB2 , . . . , xBn the clocks

of X.

We note Copies the set of Mp Φq copies of x denoted x1, x2, . . . , xMp Φq{2,

y1, y2, . . . , yMp Φq{2. Intuitively, each pair of clock copies pxi, yiq will represent

an interval.

We also note:
Copiesbegin :� tx1, x2, . . . , xMp Φq{2u,

Copiesend :� ty1, y2, . . . , yMp Φq{2u,

for 1 ¤ m ¤Mp Φq{2:

Copiesm :� tx1, x2, . . . , xm, y1, y2, . . . , ymu,

Copiesmbegin :� tx1, x2, . . . , xmu,

and Copies0pxq � Copies0
begin � H.

Our de�nition of zone uses a supplementary clock x0 whose value is always 0.

Thanks to these notations, we are now able to formally de�ne a zone. Its

de�nition is based on the notion of extended guard.

De�nition 4.58. Let X be a set of clocks. De�ne the set of extended guards

over X, denoted GExtpXq, by the following grammar:

4.4 Zone-based algorithm 187

Φ := J | c1 � c2 ' k | Φ1 ^ Φ2,

where c1, c2 P X, k P N and ' P t ,¤,¡,¥u.

c1 � c2 ' k is simply called an extended clock constraint.

In the sequel, we will sometimes shorten c1�c2 ' 0 by c1 ' c2 and c1�x0 ' k

by c1 ' k. We will also use c1 � c2 as shorthand for pc1� c2 ¥ 0q^ pc1� c2 ¤ 0q.

When considering a classical zone, over a timed automaton, it is simply de-

�ned as an extended guard over the set of clock of this automaton. The satis�-

ability or model-checking algorithm then only need to maintain a zone and the

location of the timed automaton in which is present the system at each step.

Now, we are considering a timed automaton and an OCATA, to perform model-

checking. Hence, we must take care of several copies of the clock of our OCATA:

those copies may be present in di�erent locations of our OCATA in the same

time. We so need to maintain in a new component of our de�nition of zone a

function giving, for each clock copy of our OCATA, the location it is in. For the

sake of continuity in our de�nition, we also add a component giving the location

of the timed automaton we are present in.

De�nition 4.59. A zone Zm is a tuple plocA, locB, Zq where:

� m P N0,

� locA : Copiesmbegin Ñ L,

� locB P B is a location of B, and

� Z is an extended guard on Copiesm YX Y tx0u (it is a `classical zone' on

this set of clocks [27]).

In fact, a zone Zm is a symbolic representation of a particular set of states of

SB, Φ, as de�ned below.

188 Chapter 4. MITL satis�ability and model-checking over �nite words

De�nition 4.60. Let Zm � plocA, locB, Zq be a zone on set of clocks CopiesmY

X � tx1, x2, . . . , xm, y1, y2, . . . , ymu Y tx
B
1 , x

B
2 , . . . , x

B
nu, such that locB � loc.

Then, we let JZmK be the denotation of Zm de�ned as the following set of states

of SB, Φ:

t ploc, vpxB1 q, vpx
B
2 q, . . . , vpx

B
nqq, ploc

x1 , rvpx1q, vpy1qsq, . . . ,

plocxm , rvpxmq, vpymqsq u,

such that v is a valuation of Copiesm YX with v |ù Zm and locc � locApcq for

all c P Copiesmbegin.

For a set ζ of zones, we note JζK :�
�

ZmPζ JZmK.

By abuse of notation, we sometimes write s P Zm instead of s P JZmK.

Remark 4.61. We notice that, in the de�nition of zone Zm � plocA, locB, Zq,

there is no assumption about the constants to use in the extended guards of Z.

In particular, they may contain constants greater than the maximal constants of

A Φ and B.

De�nition 4.62. The initial zone is Z init1 � plocA, locB, Zq with Z � xB1 �

0^ � � � ^ xBn � 0^ x1 � 0^ y1 � 0, locApx1q � `0 and locB � b0.

A zone Zm � plocA, locB, Zq is accepting i� @1 ¤ i ¤ m, locApxiq P F and

locB P F
B.

Example 4.63. Let us consider again the TA B of Figure 4.12 and the OCATA

A Φ of Figure 4.11. The initial zone is Z init1 � plocA, locB, Zq with:

� locApx1q � `2,

� locB � b0, and

� Z � xB1 � 0^ x1 � 0^ y1 � 0.

The unique state of SB, Φ represented by Z init1 is:

tpb0, 0q, p`2, r0, 0squ,

4.4 Zone-based algorithm 189

`2 `♦

b a, b

b, x P r1, 3s

a x :� 0

Figure 4.11: OCATA A Φ with Φ � 2pañ ♦r1,3sbq.

b0 b1

a, xB1 :� 0

a, xB1 � 1
b

Figure 4.12: A timed automaton B.

it is the initial state of SB, Φ. Z init1 is accepting because locations b0 and `2 are

both accepting.

Here is an example of a zone using 2 pairs of clock copies: Z2 :� ploc1A, loc
1
B, Z

1q,

with:

� loc1Apx1q � `2 and loc1Apx2q � `♦

� loc1B � b1, and

� Z 1 � x1 ¥ 0^ y1 ¥ 0^ x1 � y1 ^ x2 � 0^ y2 � 0^ xB1 � 0.

Z2 represents the set of states:

tpb1, 0q, p`2, rt, tsq, p`♦, r0, 0sq | t P R�u.

Classical algorithms on zones (over �nite words) follows the same steps as

that over regions. We start from the initial zone and compute its successors. We

look for an accepting zone reachable from the initial zone. Let us now de�ne the

timed and discrete successors of a given zone.

190 Chapter 4. MITL satis�ability and model-checking over �nite words

De�nition 4.64. Let Zm be a zone. PostT pZmq denotes the zone such that:

JPostT pZmqK � ts1 P SB, Φ | Ds P Zm and t P R� such that s
t
ù s1u.

We can easily compute PostT pZmq from Zm. The classical technique consists
in, �rst, putting Zm in normal form, i.e. to add to Z all the extended clock

constraints induced by those it contains (this treatment does not change JZmK).
Then, it remains to delete all the clock constraints of the form c k or c ¤ k,

for all c P Copiesm Y txB1 , x
B
2 , . . . , x

B
nu and all k P N. (See [11] for details.)

Example 4.65. Let us consider again the TA B of Figure 4.12, the OCATA A Φ

of Figure 4.11 and the initial zone Z init1 � plocA, locB, Zq (given in Example 4.63)

with, once Z is put in normal form:

� locApx1q � `2,

� locB � b0, and

� Z � xB1 ¤ 0^xB1 ¥ 0^x1 ¤ 0^x1 ¥ 0^y1 ¤ 0^y1 ¥ 0^xB1 ¤ x1^x
B
1 ¥

x1 ^ x
B
1 ¤ y1 ^ x

B
1 ¥ y1 ^ x1 ¤ y1 ^ x1 ¥ y1.

Then, PostT pZmq is ploc1A, loc1B, Z 1q with:

� locApx1q � `2,

� locB � b0, and

� Z � xB1 ¥ 0 ^ x1 ¥ 0 ^ y1 ¥ 0 ^ xB1 ¤ x1 ^ xB1 ¥ x1 ^ xB1 ¤ y1 ^ xB1 ¥

y1 ^ x1 ¤ y1 ^ x1 ¥ y1.

De�nition 4.66. Let Zm be a zone. PostDpZmq denotes a set of zones Z such

that:

JPostT pZmqK � ts1 P SB, Φ | Ds P Zm and σ P Σ such that s
σ
ÝÑ s1u.

4.4 Zone-based algorithm 191

Remark 4.67. We notice that a discrete successor of a state s of SB, Φ does

not necessarily use the same number of clock copies as s. Hence, an element of

PostDpZmq may be a zone using less or more than m pairs of clock copies.

We now give two examples of computations of PostDpZmq. Then, we give an
intuition on the general way to determine it and �nally, we formally de�ne how

to compute PostDpZmq.

Example 4.68. Let us consider again the TA B of Figure 4.12 and the OCATA

A Φ of Figure 4.11. We consider the zone Z1 :� plocA, locB, Zq with:

� locApx1q � `2,

� locB � b0, and

� Z � xB1 ¥ 0^ x1 ¥ 0^ y1 ¥ 0^ x1 � y1 ^ x1 � xB1 .

We are looking for PostDpZ1q. Let s P Z1. s is of the form:

tpb0, tq, p`2, rt, tsqu, for some t P R�.

On the one hand, a discrete successor of such an s, reading b P Σ, will be a state

of the form:

tpb0, tq, p`2, rt, tsqu.

This set of states of SB, Φ is exactly represented by the zone Z1 itself. On the

other hand, a discrete successor of such an s, reading a P Σ, will be a state of

the form:

tpb1, 0q, p`2, rt, tsq, p`♦, r0, 0squ, for t P R�.

This set of states of SB, Φ is exactly represented by the zone Za2 :� ploc1A, loc
1
B, Z

1q,

with:

� loc1Apx1q � `2 and loc1Apx2q � `♦

192 Chapter 4. MITL satis�ability and model-checking over �nite words

� loc1B � b1, and

� Z 1 � x1 ¥ 0^ y1 ¥ 0^ x1 � y1 ^ x2 � 0^ y2 � 0^ xB1 � 0.

We conclude that PostDpZ1q :� tZ1,Za2 u. PostDpZ1q contains one zone using

1 pair of clock copies (i.e. as many as Z1) and one zone using 2 pairs of clock

copies (i.e. more than Z1).

Example 4.69. Let us still consider the TA B of Figure 4.12 and the OCATA

A Φ of Figure 4.11. We consider the zone Z2 :� plocA, locB, Zq with:

� locApx1q � `2 and locApx2q � `♦,

� locB � b1, and

� Z � x1 ¥ 1^ y1 ¥ 1^ x1 � y1 ^ x2 � 1^ y2 � 1^ xB1 � 1.

We are looking for PostDpZ2q. Let us consider s P Z2. s is of the form:

tpb1, 1q, p`2, rt, tsq, p`♦, r1, 1squ, for some t ¥ 1.

Remark that we can only read an a from such a state (see the unique arc starting

from b1 in B). A discrete successor of s can either be of the form:

piq tpb0, 1q, p`2, rt, tsq, p`♦, r0, 0sq, p`♦, r1, 1squ, or

piiq tpb0, 1q, p`2, rt, tsq, p`♦, r0, 1squ.

We note that case piq is only possible because Mp Φq is big enough. The set

of states of SB, Φ presented in piq is exactly represented by the zone Z3 :�

ploc3
A, loc

3
B, Z

3q with:

� loc3
Apx1q � `2, loc

3
Apx2q � `♦ and loc

3
Apx3q � `♦,

� loc3
B � b0, and

4.4 Zone-based algorithm 193

� Z3 � x1 ¥ 1^y1 ¥ 1^x1 � y1^x2 � 0^y2 � 0^x3 � 1^y3 � 1^xB1 � 1.

The set of states of SB, Φ presented in piiq is exactly represented by the zone

Zgroup2 :� plocgroupA , locgroupB , Zgroupq with:

� locgroupA px1q � `2 and locgroupA px2q � `♦,

� locgroupB � b0, and

� Zgroup � x1 ¥ 1^ y1 ¥ 1^ x1 � y1 ^ x2 � 0^ y2 � 1^ xB1 � 1.

We conclude that PostDpZ2q :� tZ3,Zgroup2 u. PostDpZ2q contains one zone

using 3 pairs of clock copies (Z3) and one zone using 2 pairs of clock copies

(Zgroup2).

In general, we compute PostDpZmq, where Zm � plocA, locB, Zq, as follows:

� for each label σ P Σ,

� for each possible transition tB labelled by σ of B, starting from location

locB,

� for each possible combination of transitions of A Φ pt1, . . . , tmq, all labelled

by σ, such that @1 ¤ i ¤ m, ti starts from locApxiq
3,

the possible successor zones are found following the arc tB from locB, t1 from

locApx1q, ..., and tm from locApxmq. First, to take tB implies to satisfy the clock

constraint it carries: these clock constraints must be added to those of Z on

txB1 , x
B
2 , . . . , x

B
nu (it can be easily done on Z using a well-known algorithm on

classical zones [11]). Location locB must also be modi�ed in the location tB goes

to and, potentially, certain clocks among txB1 , x
B
2 , . . . , x

B
nu need to be reset (once

again, it can be easily done using a well-known algorithm on classical zones [11]).

3they associate to each interval pxi, yiq a transition ti to take

194 Chapter 4. MITL satis�ability and model-checking over �nite words

Second, to take transitions ti (for 1 ¤ i ¤ m) implies that pxi, yiq must satisfy

the clock constraints it carries: these clock constraints must be added to those

of Zm on Copies. Moreover, to take transitions t1, . . . , tm can create new clock

copies of value 0 in certain locations or/and letting clock copies with the same

zone constraints in the same locations. The new copies with value 0 that have

just been created in certain locations can either:

� be grouped with the previous smallest interval associated to this location

(see Example 4.69: the states of point piiq and the associated zone Zgroup2)

; let us call ` this location: it corresponds to reset the clock xi such

that, in Zm, locApxiq � ` and ti loops on ` for a clock copy xi with a

minimum value.

(We can only do this if there were such an interval associated to this

location.)

� create a new interval [0,0] associated to this location in the zone (see Exam-

ple 4.68 for the creation of the zone Za2 ; and see Example 4.69: the states

of point piq and the associated zone Z3)

; let us call ` this location: it corresponds to use two new unused

clock copies of x, xm�1 and ym�1, and extend function locA in way

locApxm�1q � `. Clock copies xm�1 and ym�1 must be reset.

(We can only do this if the new number of intervals associated to the

locations of A Φ does not exceed Mp Φq{2, see Theorem 4.7.)

In the sequel, we formally de�ne what we have just intuitively explained. Let

us �x a zone Zm � plocA, locB, Zq. We will use the following formal notations.

� For an arc t of A Φ of the form p`, σ,
�
k Aj,kq such that

�
k Aj,k is a

disjunct in δp`, σq, we let destptq � t` | Dk : Aj,k � `_Aj,k � x.`u to be the

set of destinations of t.

4.4 Zone-based algorithm 195

� We �rst collect the arcs labelled by σ that start in the current locations of

both automata and combine them:

1. @c P Copiesm, @σ P Σ:

Epc, σq :� t arcs labelled by σ and whose starting location is locApcqu,

2. @σ P Σ:

EpB, σq :� tarcs starting from locB and labelled by σu,

3. @σ P Σ:

Z d σ :� EpB, σq �
±m
i�1Epxi, σq.

� Then, we introduce de�nitions that will allow us to select from the zone

the valuations that satisfy the guards of selected arcs from A Φ and B. To
do this, we collect the guards of all these arcs and combine them:

1. for every arc t:

Constrptq :� tc | c is a clock constraint in the guard of tu,

2. for tB � pbstart, σ, g, r, barrivalq an arc of B, and for a sequence t1, . . . , tm
of arcs of A Φ, we let:

gtB,t1,...,tm :� g ^
©

1¤i¤m
ciPConstrptiq

�
ci|x�xi ^ ci|x�yi

	
.

� Now, we �x an arc tB � pbstart, σ, g, r, barrivalq of B, and a sequence t1, . . . , tm
of arcs of A Φ to be �red simultaneously. We introduce de�nitions that al-

low us to compute the locations (and the clock copies present in them) that

will be active after �ring these arcs. We need to distinguish between loca-

tions on which we loop from others. Indeed, when we do not loop, we must

reset one (see Example 4.69, point piiq and zone Z3) or two (see Example

4.69, point piq and zone Zgroup2) clock(s) in the destination location.

1. We �rst de�ne the following set keeping the destination location of tB

and of each clock copy of A Φ that changes of location:

LOCptB, t1, . . . , tmq :� tbarrivaluY

t loc | D1 ¤ i ¤ m : loc P destptiqzlocApxiqu.

196 Chapter 4. MITL satis�ability and model-checking over �nite words

2. We de�ne a set containing the clock copies that loop on their location:

Looppt1, . . . , tmq :� txi | locApxiq P destptiqu

Y tyi | locApxiq P destptiqu.

3. From Looppt1, . . . , tmq, we need to extract the clock copies with the

minimal value associated to each location ` on which some clock copies

loop. Indeed, in case of a merging of intervals in `, such a clock copy

will be reset (see Example 4.69, point piq and zone Zgroup2):

minLooppt1, . . . , tmq :�

. txi P Looppt1, . . . , tmq X Copiesbegin |

. @x1i P Looppt1, . . . , tmq with locApxiq � locApx
1
iq,

. x1i ¥ xi is implied by the extended guard of Zmu.

� Finally, to conclude the e�ect of the combined �ring of ptB, t1, . . . , tmq,

we need to compute which clocks and clock copies will be reset. By the

previous de�nitions, we only need to reset one or two clock copie(s) in the

locations ` P LOCptB, t1, . . . , tmq.

For each such location `, we note r` an element of the set ttx`u, tx, yuu such

that:

(a) r` � tx`u implies that x` P minLooppt1, . . . , tmq and locApx
`q � `,

and

(b) r` � tx, yu implies that x P CopiesbeginzLooppt1, . . . , tmq and

y P CopiesendzLooppt1, . . . , tmq.

we furthermore require that

(c) for all `i, `j P LOCptB, t1, . . . , tmq: r
`i X r`j � H.

Thanks to those notations, we are now able to de�ne the elements of PostDpZmq.

For Zm � plocA, locB, Zq,

4.4 Zone-based algorithm 197

Z 1m1 � ploc1A, loc1B, Z 1q P PostDpZmq
i�

there exists σ P Σ, ptB, t1, . . . , tmq P Z dσ and r`, for all ` P LOCptB, t1, . . . , tmq,

such that gtB,t1,...,tm X Z is satis�able, and:

� Z 1 � pgtB,t1,...,tm X Zq
��
r Y

�
r`
�

:� 0
�
,

� @xi P Looppt1, . . . , tmq, loc
1
Apxiq is locApxiq,

for all ` P LOCptB, t1, . . . , tmq, for all x` P r
` X Copiesbegin: loc

1
Apx`q � ` ;

� loc1B is the destination location of tB.

The following proposition ensures that the elements of PostDpZmq were cor-
rectly de�ned.

Proposition 4.70. Let Zm be a zone.

JPostDpZmqK � ts1 | Ds P Zm such that sÑ s1 in SB, Φu.

Proof. p�q Suppose that Zm � plocA, locB, Zq, where @1 ¤ k ¤ m, locApxkq �

`k. Let s1 P PostDpZmq. There exists a certain s1 P Z 1m1 for a certain Z 1m1 P
PostDpZmq constructed thanks to σ, tB, t1, . . . , tm, and (without loss of gen-

erality) thanks to r`1 , . . . , r`p , representing respectively the resets in locations

`1, . . . , `p. We note Z 1m1 � ploc1A, loc1B, Z 1q and tB � pbstart, σ, g, r, barrivalq. Let

us suppose that s1 � tp`1k1 , I
1
k1q

m1

k1�1u Y tpb
1, v1qu, with, @1 ¤ k1 ¤ m1, I 1k1 �

rv1pxk1q, v
1pyk1qs. We will construct a particular state s of Zm and then prove

that s
σ
ÝÑ s1 in SB, Φ. Let us construct s � tp`k, Ik, q

m
k�1u Y tpb, vqu, with,

@1 ¤ k ¤ m, Ik � rvpxkq, vpykqs, where:

1. Arc of B without reset: @1 ¤ i ¤ n: if xBi R r, we de�ne vpx
B
i q � v1pxBi q,

2. New complete interval: @1 ¤ k ¤ m: if there exists 1 ¤ j ¤ p such that r`j

is a doubloon and xk P r
`j , then xk and yk were not used in Zm and their

values must not be de�ned,

198 Chapter 4. MITL satis�ability and model-checking over �nite words

3. Loop without merge: @1 ¤ k ¤ m: if @1 ¤ j ¤ p, xk R r
`j but that loc1A is

de�ned on xk, we de�ne vpxkq � v1pxkq and vpykq � v1pykq,

4. Loop with merge: @1 ¤ k ¤ m1: if there exists 1 ¤ j ¤ p such that r`j is a

singleton and xk P r
`j , then we de�ne vpykq � v1pykq,

5. Arc going out or arc of B with reset: the values of vpxkq, vpykq and vpx
B
i q

that we still must de�ne are arbitrarily chosen in way they satisfy the

extended clock constraints of gtB,t1,...,tm X Z (which is possible because

gtB,t1,...,tm XZ is satis�able and we only chose values of clocks/clock copies

that have the same value in Z 1m1 , so that they cannot prevent gtB,t1,...,tmXZ
from being satis�able).

We must prove that s
σ
ÝÑ s1 in SB, Φ (see De�nition 4.17), i.e.: pb, vq

σ
ÝÑ pb1, v1q

in B and tp`k, Ikq
m
k�1u

σ
ÝÑf� Φ

tp`1k1 , I
1
k1q

m1

k1�1u in A Φ.

We �rst show that pb, vq
σ
ÝÑ pb1, v1q in B thanks to tB. Indeed, v |ù g because g is

contained in gtB,t1,...,tm XZ ; @x P r, v1pxq � 0 because it is reset by de�nition of

Z 1m1 P PostDpZmq and @x P txB1 , . . . , xB2 uzr, v1pxq � vpxq by previous point 1..

Now, let us show that tp`k, Ikq
m
k�1u

σ
ÝÑf� Φ

tp`1k1 , I
1
k1q

m1

k1�1u in A Φ. We must prove

there exists minimal models Mk, for 1 ¤ k ¤ m of δp`k, σq with respect to Ik

such that tp`1k1 , I
1
k1q

m1

k1�1u P f
�
 Φ

�
p
�m
k�1Mkq

�
	
. For each 1 ¤ k ¤ m, we take

Mk to be the minimal model of δp`k, σq with respect to Ik obtained following the

arc tk: it can be taken because its clock constraint is veri�ed on vpxkq and vpykq

(it is indeed present in gtB,t1,...,tm X Z) and as this clock constraint can only be

an interval (convex), it is also veri�ed on each i P Ik. We then take the element

E of f� Φ

�
p
�m
k�1Mkq

�
	
that merges the two more little intervals present in `j

(for 1 ¤ j ¤ p) i� r`j is a singleton. It remains to prove that the obtained

con�guration is exactly tp`1k1 , I
1
k1q

m1

k1�1u. It is based on the following facts:

a. each p`k, Ikq that does not loop disappear from tp`k, Ikq
m
k�1u to E and is

not present in tp`1k1 , I
1
k1q

m1

k1�1u: the clock copies representing such intervals

disappear from Zm to Z 1m1 (i.e. locA is not de�ned on them anymore),

4.4 Zone-based algorithm 199

b. for each location `j with 1 ¤ j ¤ p, destination of at least one tk for

1 ¤ k ¤ m, p`j , r0, 0sq is present in p
�m
k�1Mkq

� and

� if r`j is a doubloon: two new clock copies, say x`j and y`j are used by

Z 1m1 . They are de�ned and reset in way p`j , r0, 0sq is also present in

tp`1k1 , I
1
k1q

m1

k1�1u ;

� else: by de�nition of r`j and minLooppt1, . . . , tmq, the clock copy xj

representing the beginning of the more little interval in tp`k, Ikq
m
k�1u

that loops on `j , say Ij � rvpxjq, vpyjqs, is reset in Z 1m1 : tp`1k1 , I 1k1qm
1

k1�1u

contains p`j , r0, vpyjqsq ;

c. each p`k, Ikq that loops is still present in p
�m
k�1Mkq

�: the clock copies

representing Ik in Zm are still present in Z 1m1 but the clock copy representing
its beginning could have been reset, so that tp`1k1 , I

1
k1q

m1

k1�1u contains either

p`k, rvpxkq, vpykqsq or p`k, r0, vpykqsq,

d. when computing E from p
�m
k�1Mkq

�, we know the two more little intervals

present in `j , for 1 ¤ j ¤ p, are merged i� r`j is a singleton. So, p`j , r0, 0sq

and p`j , Ijq are merged into p`j , r0, vpyjqsq i� Ij is the more little interval

that loops on `j , r
`j is a singleton and so must contain the clock copy

representing its beginning: xj . In this case and only in this case, xj is then

reset by de�nition of Z 1m1 P PostDpZmq so that E contains p`j , r0, vpyjqsq

i� tp`1k1 , I
1
k1q

m1

k1�1u also contains p`j , r0, vpyjqsq.

p�q Let Zm � plocA, locB, Zq be a zone and s1 be such that Ds P Zm with

s Ñ s1 in SB, Φ. Let us show that s1 P JPostDpZmqK. Let us suppose that

s � tp`k, Ikq
m
k�1u Y tpb, vqu, with, @1 ¤ k ¤ m, Ik � rvpxkq, vpykqs and s1 �

tp`1k1 , I
1
k1q

m1

k1�1u Y tpb
1, v1qu, with, @1 ¤ k1 ¤ m1, I 1k1 � rv

1pxk1q, v
1pyk1qs. As sÑ s1,

there exists σ P Σ such that:

� pb, vq
σ
ÝÑ pb1, v1q in B, i.e.: there exists an arc tB � pb, σ, g, r, b

1q such that

v |ù g, @x P r, v1pxq � 0 and @x P txB1 , . . . , x
B
nuzr, v

1pxq � vpxq;

200 Chapter 4. MITL satis�ability and model-checking over �nite words

� tp`k, Ikq
m
k�1u

σ
ÝÑf� Φ

tp`1k1 , I
1
k1q

m1

k1�1u in A Φ, i.e.: tp`1k1 , I
1
k1q

m1

k1�1u � E P

f� Φ

�
p
�m
k�1Mkq

�
	
for certain minimal models Mk of δp`k, σq with respect

to Ik, which are themselves obtained by taking certain arcs tk from `k, for

1 ¤ k ¤ m.

Let us de�ne r`j , for 1 ¤ j ¤ p by:

� r`j contains two new clock copies i� D1 ¤ k ¤ m such that tk goes to `j

with a reset and no merge is applied by f� Φ on `j ,

� r`j contains the clock representing the beginning of the more little interval

present in `j that loops on `j taking one of the tk, for 1 ¤ k ¤ m, i�

D1 ¤ k ¤ m such that tk goes to `j with a reset and a merge is applied by

f� Φ on `j ,

� r`j is unde�ned in the other case, i.e. when none of the tk, for 1 ¤ k ¤ m,

goes to `j with a reset.

It is easy to prove that the Z 1m1 P PostDpZmq induced by σ, tB, t1, . . . , tm, r`1 , . . . , r`p

contains s1 thanks to the following facts:

� as s P Zm, the extended clock constraint Z is satis�ed by its clock values ;

moreover, having taken arcs tB, t1, . . . , tm ensure the bounds of the intervals

and the clock values of s satisfy gtB,t1,...,tm XZ (in particular gtB,t1,...,tm XZ

is satis�able and Z 1m1 really exists),

� a clock xBi , for 1 ¤ i ¤ n, is reset in the construction of Z 1m1 i� v1pxBi q � 0,

� the facts b., c. and d. of the proof of inclusion � are still true here.

As for the region-based algorithm, we de�ne the operators Post, Post� and

Post� over sets of zones.

4.4 Zone-based algorithm 201

De�nition 4.71. Let ζ be a set of zones, we de�ne:

Postpζq :� tZ 1m1 | Dσ P Σ, a zone Zm P ζ and a zone Z2m2 such that:

Z2m2 P PostT pZmq and Z 1m1 P PostDpZ2m2qu.

De�nition 4.72. Let ζ be a set of zones and n P N0, we de�ne: Postnpζq �

PostpPostn�1pζqq, with Post0pζq � ζ and Post1pζq � Postpζq.

We de�ne Post�pζq �
�
nPN

Postnpζq and Post�pζq �
�
nPN0

Postnpζq.

Let us recall what was the situation over regions of H. As H is �nite, when

considering W � H, we had the existence of an m P N such that: Post�pWq ��m
n�1 Post

npWq (see De�nition 5.34).

Unfortunately, as there is no maximal value bounding the constants present in

the extended guards of a zone (see Remark 4.61), the number of zones is in�nite

and hence, in general, so is Post�pζq, for a set of zones ζ. In the litterature,

several widening operators have been proposed in way to obtain a �nite number

of zones to use in algorithms. The correctness of the use of those operators has

been subject to debate in the early 2000's. This debate was closed by Patricia

Bouyer. In her paper [15], she considers several approximations: not all of them

enable to obtain a correct algorithm. In the sequel, we present an MITL model-

checking algorithm based on the approximation denoted Approxβ presented in

[15] and on which reachability algorithms are proved to be correct. When a

zone Z using constants greater than cmax is reached, it is approximated by the

smallest zone containing Z and no extended guard with a constant greater than

cmax, denoted ApproxβpZq (see [15] for further details). The number of such

`approximated' zones is then �nite and an algorithm in the spirit of Algorithm 3

(over regions), will thus terminate.

We can now present Algorithm 9, that uses approximationApproxβ and solves

the MITL model-checking problem using the same outline as Algorithm 3. This

algorithm terminates because there is only a �nite number of `approximated'

zones to explore. Its correctness relies on Theorem 2 of [15], proving that using

202 Chapter 4. MITL satis�ability and model-checking over �nite words

`approximated zones', according to the operator Approxβ , is su�cient to obtain

a correct reachability algorithm. The proof of this theorem must be slightly

adapted to cope with the components locA and locB present in our zones. How-

ever, the key elements of the proof only concern the extended guard of zones:

from this point of view, the proof of [15] stays correct without any adaptation.

Algorithm 9 MITLModelCheckingWithZones

Input: A TA B and the ATA A Φ, for Φ P MITL.

Output: `true' i� B |ù Φ.

1: ToExplore Ð ApproxβpZ init1 q

2: Explored Ð H

3: while ToExplore � H do

4: Remove some element Z from ToExplore

5: if Z is accepting then

6: return `false'

7: end if

8: Explored = Explored YtZu
9: ToExplore = ToExplore Y (ApproxβpPostpZqq z Explored)
10: end while

11: return `true'

4.5 Order-based heuristic for zones

As well as for the region setting, we can improve Algorithm 9 thanks to the

use of antichains. A simple inclusion order is usually used on classical zones (for

timed automata). Let us recall that a zone is a compact representation of a set

of states of an automaton. When considering two classical zones Z and Z 1, Z
is said included in Z 1 if the set of states it represents is included in that of Z 1.
In a reachability algorithm (as Algorithm 9), when we are considering a classical

zone Z, while a Z 1 in which Z is included has already been reached, it is not

necessary to compute the successors of Z. Indeed, the states they represent are

4.5 Order-based heuristic for zones 203

included in those of the successors of Z 1 (already computed).

Let us �x again an MITL formula Φ, the OCATA A Φ � pΣ, L, `0, F, δq rep-

resenting the negation of Φ and a TA B � pΣ, B, b0, X, δ
B, FBq. We consider

the timed transition system SB, Φ of De�nition 4.17 and recall that our zones

represent a set of states of SB, Φ.

The inclusion order on classical zones, introduced hereinabove, may be applied

to our de�nition of zone. While classical zones maintain information for a �xed

number of clocks, our zones may maintain information from |X| to |X|�Mp Φq

clocks. However, we can consider our zones as classical zones over |X| �Mp Φq

clocks, even if, in each of our zones, several clock copies are unused, inactive. We

can so easily adapt this inclusion order to our zones.

However, this inclusion order may be improved for our zones, using precisely

their particularity of having a variable size. The principle is the same as for the

order � de�ned on regions (see De�nition 4.38). A zone Z is considered smaller

than a zone Z 1 if each clock copy (among the Mp Φq dedicated to the clock

copies of A Φ) of Z can be simulated by a clock copy of Z 1. In particular, a

clock copy of Z can only be simulated by a clock copy of Z 1 present in the same

location of A Φ. Moreover, if x1 and x2 are clock copies of Z, associated to a

same location of A Φ, such that the possible values of x1 are smaller than that

of x2, then, they can only be (respectively) simulated by clock copies x11 and x12

of Z 1 satisfying the same property.

When such a simulation exists between Z and Z 1, the `inclusion order' introduced
hereinabove may be applied to the zone Z and the subzone of Z 1 only consisting

in the clock copies that simulate a clock copy of Z. In conclusion, we can de�ne

an order �zones such that Z �zones Z 1 if

� each clock copy of Z can be simulated by a clock copy of Z 1 and

� the subzone of Z 1, only consisting in the clock copies that simulate a clock

copy of Z, is included in Z (for the inclusion order of classical zones).

A heuristic of algorithm 9 consists in using this order on our zones and maintain-

204 Chapter 4. MITL satis�ability and model-checking over �nite words

ing the antichain of the minimal elements obtained this way.

Example 4.73. Let us consider a timed automaton B without any clock (for

the sake of simplicity), and an OCATA A whose unique clock is x. We moreover

consider the three following zones:

1) the zone Z2 � plocA, locB, Zq, where:

� locApx1q � locApx2q � `,

� locB � `B,

� Z � x1 � 1^ y1 � 1^ x2 � 2^ y2 � 3;

2) the zone Z 12 � ploc1A, loc1B, Z 1q, where:

� loc1Apx1q � loc1Apx2q � `,

� loc1B � `B,

� Z 1 � x2 � 1^ y2 � 1^ x1 � 2^ y1 � 3;

3) the zone Z1 � ploc”A, loc”B, Z”q, where:

� loc”Apx1q � `,

� loc”B � `B,

� Z” � x1 � 2^ y1 � 4.

On the one hand, we have that Z2 �zones Z 12. Indeed, the clock copies x1, y1, x2

and y2 of Z2 can be respectively simulated by the clock copies x2, y2, x1 and y1

of Z 12. In a similar way, Z 12 �zones Z2.
4

4Remark that these clock copies may be swapped because in our setting they are all copies

of a unique clock. When considering classical zones on timed automata, a clock cannot be

swapped with another (and so di�erent) clock.

4.5 Order-based heuristic for zones 205

On the second hand, we have that Z1 �zones Z2. Indeed, the clock copies x1

and y1 of Z1 can be respectively simulated by the clock copies x2 and y2 of Z2 ;

then, Z2 restricted to clock copies x2 and y2 is included (for the inclusion order

of classical zones) in Z1. Intuitively, when considering a reachability algorithm,

if we have already computed the successors of Z1 and we reach Z2, then, it is not

neccessary to compute the successors of Z2. Indeed, if we had an accepting run

from Z2, we necessarly also have an accepting run from Z1 (this is due to the fact

that we have an accepting run in an OCATA if all its branches are accepting,

while we have an accepting run from a given zone Z if there exists a state in JZK
from which we have an accepting run).

. .CHAPTER 5

MITL satis�ability and

model-checking over in�nite words

This chapter is dedicated to the setting of in�nite words. Its aim is similar

to that of the previous one: we are looking for algorithms to solve the MITL

satis�ability and model-checking problems over in�nite words. The contributions

introduced in this chapter were subject to a publication: [21] (arXiv reference:

[22]).

As in the �nite words setting, our �rst goal is to build, from any MITL

formula Φ, a Büchi timed automaton that accepts JΦKω. Our aim is to obtain

this Büchi timed automaton from an OCATA AΦ, accepting JΦKω. In fact, we

start by showing that, for every MTL formula Φ, the OCATA AΦ obtained by the

Ouaknine and Worrell construction ([51], see subsection 2.9) recognises JΦKω over

in�nite words (a property that had never been established in the case of in�nite

words, as far as we know1). To show that LpAΦq � JΦK (over �nite words, see

1Even in [51] where the authors consider a fragment of MTL over in�nite words, but consider

only safety properties that are reduced to questions on �nite words.

207

208 Chapter 5. MITL satis�ability and model-checking over in�nite words

[51]), Ouaknine and Worrell used the key fact that the automaton AΦ is easily

complementable (in a sense that will be precised later). We obtain this result

over in�nite words showing a similar property of the OCATA AΦ. In fact, the

automata AΦ obtained from MITL formulas are included in a class of OCATA

(we call it the class of TOCATA) that are easily complementable (in the same

sense as in [51]).

From this OCATAAΦ recognising JΦKω, we would like to obtain a Büchi timed

automaton BΦ, in a similar way as over �nite words. However, the construction

we gave over �nite words must be adapted for the in�nite words setting. Indeed,

a method close to that of Miyano and Hayashi [46], adapted to cope with timed

words, is required to translate an alternating automaton into a Büchi one (see

De�nition 2.46 and comments).

Following the same steps as in the �nite words case, we �nally present our

technique to perform `on the �y' MITL model-checking over in�nite words, us-

ing directly AΦ to avoid the construction of the whole Büchi timed automaton

accepting JΦKω. We present a region-based algorithm as well as a zone-based

one. Most of the results stated in this chapter have a twin proposition over �nite

words in the previous one. The unique di�culty to overtake all along this chapter

is the use of markers à la Miyano Hayashi, due to the necessary translation from

an alternating (timed) automaton to a Büchi (timed) automaton.

5.1 TOCATA: a class of OCATA for MITL

In this section, we are considering in�nite words. We start by introducing a

strict subclass of OCATA that we call the class of tree-like OCATA (TOCATA

for short). We are very interested in TOCATA because, as we will show, when

translating an MTL formula Φ into the OCATA AΦ (see Section 2.2), one indeed

obtains a TOCATA.

5.1 TOCATA: a class of OCATA for MITL 209

Moreover, TOCATA enjoy the useful property to be easily complementable.

Indeed, the complement of a TOCATA is another TOCATA, simply obtained

switching accepting and non-accepting locations and dualising (see De�nition 2.105)

the transition relation.

Thanks to this key property, we can adapt the proof of [51] showing that

LpAΦq � JΦK (over �nite words) to obtain the same property over in�nite words:

LωpAΦq � JΦKω.

5.1.1 Tree-like OCATA

We de�ne a strict subclass of OCATA that captures all the in�nite words

languages of MTL formulas. We call it the class of tree-like OCATA (TOCATA

for short): an appropriate name for OCATA looking like trees.

De�nition 5.1. An OCATA A � pΣ, L, `0, F, δq is a TOCATA i� there exists a

partition L1, L2, . . . , Lm of L satisfying:

� each Li contains either only accepting locations or no accepting location:

@1 ¤ i ¤ m either Li � F or Li X F � H, and

� there is a partial order ¤ on the sets L1, L2, . . . , Lm compatible with the

transition relation and that yields the `tree-like' structure of the automaton

in the following sense: ¤ is such that Lj ¤ Li i� Dσ P Σ, ` P Li and `
1 P Lj

such that `1 is present in δp`, σq.

Example 5.2. As an example, let us observe the OCATA of Figure 5.1, with

F � t`5, `6u. It is a TOCATA. In the �gure, we organized the locations in way

to bring out the tree aspect of this automaton. The locations of this OCATA

are partition in L1, L2, L3, L4, L5 (dashed rectangles): this partition satis�es the

property of De�nition 5.1, proving that this automaton is a TOCATA. Indeed,

we have:

210 Chapter 5. MITL satis�ability and model-checking over in�nite words

`0

L1

`2 `3`1

L2

`4

L3

`5 `6

L4

`7

L5

a

b

x:�0

a,
x�

1
a

x:�0
b b, x¥2a,b

b ab, x 1

a,b

Figure 5.1: A TOCATA example

� L1 X F � H, L2 X F � H, L3 X F � H, L4 � F and L5 X F � H ;

� L3 ¤ L2 ¤ L1, L5 ¤ L4 ¤ L2 and L5 ¤ L1.

In particular, OCATA built from MTL formulas, are TOCATA. Since MTL

is a superset of MITL, this proposition is still true for MITL formulas (in which

we are more particularly interested):

Proposition 5.3. For every MTL formula Φ, AΦ is a TOCATA.

Proof. Let L � t`1, `2, . . . , `mu be the locations of AΦ. We consider the partition

t`1u, t`2u, . . . , t`mu of L and the order ¤ such that t`ju ¤ t`iu i� `j is a subfor-

mula of `i. It is easy to check that they satisfy the de�nition of TOCATA.

Example 5.4. Let us observe the OCATA A of Figure 5.2, corresponding to

the MITL formula Φ � 2
�
añ

�
♦r0,1sb^2r0,4r

�
♦r0,1sc

���
. It is an TOCATA.

5.1 TOCATA: a class of OCATA for MITL 211

`2

`♦b

`2r0,4r `♦c

b,c

a,c

a,b

b, xPr0,1s

c, xPr0,1s

a,b,c,

x 4
x:�0

a
x:�

0

x:�0

Figure 5.2: An OCATA A for formula Φ � 2
�
añ

�
♦r0,1sb^2r0,4r

�
♦r0,1sc

���
.

Indeed, using the partition t`2u, t`♦bu, t`2r0,4ru and t`♦cu on its set of locations,

we have:

� t`2u X F � H, t`♦bu X F � H, t`2r0,4ru � F and t`♦cu X F � H ;

� ♦r0,1sb, 2r0,4r
�
♦r0,1sc

�
and ♦r0,1sc are subformulas of Φ, and their corre-

sponding locations are so `smaller than' the location of Φ (i.e. `2): t`♦bu ¤

t`2u, t`2r0,4ru ¤ t`2u and t`♦cu ¤ t`2u. In the same way, ♦r0,1sc is a sub-

formula of Φ1 � 2r0,4r
�
♦r0,1sc

�
, and its location is so `smaller than' that of

Φ1: t`♦cu ¤ t`2r0,4ru.

Our de�nition of TOCATA is close to several classes of automata studied in

previous works. In the sequel, we recall these classes of automata and their main

characteristics. We start by displaying three classes of untimed automata close

to our TOCATA. We then focus on one class of timed automata comparable to

our TOCATA.

Let us begin with the untimed setting. The class of untimed automata stud-

ied by Orna Kupferman and Moshe Y. Vardi in [40] (and �rst de�ned in [47]) is

the class of automata whose de�nition is the closest to our TOCATA. In [40], the

authors are looking at untimed automata they call weak alternating automata.

These are de�ned as our TOCATA, but they are untimed alternating automata.

The aim of their paper was to present a simple quadratic translation of Büchi

212 Chapter 5. MITL satis�ability and model-checking over in�nite words

and co-Büchi alternating automata into weak alternating automata.

Our de�nition of TOCATA can also be compared to a class of automata used by

Paul Gastin and Denis Oddoux in [34]. In this paper, they are looking at untimed

automata they call very weak alternating automata. Such automata are equipped

with a partial order over their set of locations L such that @` P L, all the states

appearing in δp`, σq, for a certain σ P Σ, are lower or equal to `. They use this

class of alternating automata to represent LTL formulas: for each LTL formula

Ψ, there exists a very weak alternating automaton AΨ such that LωpAΨq � JΨKω.
They use this representation of LTL formulas in way to elaborate a translation,

from an LTL formula Ψ to a Büchi automaton BΨ recognizing JΨKω, which is

e�cient in practice. Our procedure to �nd a timed Büchi automaton BΦ recog-

nizing JΦKω, for a given MITL formula Φ, can be seen as an extention of their

work to the timed setting.

In [43], Christof Löding and Wolfgang Thomas observe a class of untimed au-

tomata that can also be compared to our TOCATA. In this paper, they are

looking at untimed alternating automata with weak parity acceptance condition,

that they call weak parity automata. The �rst result of their paper consists in

showing the class of weak parity automata and the class of weak alternating au-

tomata of [47] (and [40]) have the same expressiveness. Then, they prove that

weak parity automata can easily be complemented dualising the transition rela-

tion (in an untimed way similar to our De�nition 2.105) and adding 1 to the color

of each location, in way to also `dualise' the acceptance condition. A parallel may

be done between this result and our method to complement TOCATA presented

in the following subsection.

Let us now focus on the timed setting. In [52], Parys and Walukiewicz uses

the terms of weak alternating timed automaton to designate OCATA with a weak

parity acceptance condition: they are a timed twins of the weak parity automata

of [43]. On the one hand, the �rst result of [43] can be easily adapted to the

timed setting in way to prove that the class of weak alternating timed automata

of [52] and our class of TOCATA have the same expressiveness. On the second

hand, a parallel might be done between our work and the results presented in

5.1 TOCATA: a class of OCATA for MITL 213

[52]. Indeed, the authors prove that the emptiness problem is decidable, with

a non-primitive recursive complexity, for their weak alternating timed automata

(see Theorem 2.112). For our part, in the sequel, we will elaborate an algorithm

working in 2EXPTIME to solve the MITL satis�ability problem: in fact, this

algorithm consists in checking the emptiness of TOCATA representing MITL

formulas. Hence, the complexity of the emptiness problem is reduced from the

entire class of weak alternating timed automata (or of TOCATA) to that of

TOCATA representing MITL formulas. In the same spirit, in [52], the authors

made a parallel between their results over weak alternating timed automata and

MITL. Indeed, we know that the satis�ability problem is decidable for MITL but

undecidable for MTL, so that one can think that to use or not equality in the

guards of automata might change decidability results for their emptiness problem.

In [52], the authors contradict this intuition showing that it is undecidable if a

given one-clock universal2 timed automatonA with weak condition Ω : LÑ t1, 2u

accepts some non Zeno word, even when A does not use tests for equality. In

[52], they argue `it is not only the lack of punctual constraints, but also the very

weak syntax of the logic that makes MITL decidable'.

5.1.2 Properties of TOCATA

TOCATA enjoy the peculiar property to be easily complementable. One can

simply swap accepting and non-accepting locations, and `dualise' (see De�ni-

tion 2.105) the transition relation, without changing the acceptance condition (as

in the case of OCATA over �nite words, see [51]). This property will enable us to

prove that, being given an MTL formula Φ, the OCATA AΦ of De�nition 2.164

(recognizing JΦK, over �nite words) is such that: LωpAΦq � JΦKω, over in�nite
words.

2While a timed word θ is accepted by a timed automaton B if there exists an accepting run

of B on θ, such a timed word is accepted by a universal timed automaton A if all the runs of

A on θ are accepting.

214 Chapter 5. MITL satis�ability and model-checking over in�nite words

To prove that TOCATA can be easily complemented, we �rst present another

interesting property of TOCATA which concerns their acceptance condition. In

the general case, a run of an OCATA is accepting i� all its branches visit accept-

ing states in�nitely often. Thanks to the partition characterising a TOCATA,

this condition can be made simpler: a run of a TOCATA is accepting i� each

branch eventually visits only accepting states (because it reaches a partition

whose locations are all accepting).

Proposition 5.5. An f -run Gπ of a TOCATA A � pΣ, L, `0, F, δq is accepting
i� @β � β0β1 . . . βi . . . P Bran

ωpGπq, Dnβ P N such that @i ¡ nβ : βi � pp`, Iq, iq

implies ` P F .

Proof. First, remark that the `if' case is trivial. In the following, we prove the

`only if' case. As A is a tree-like OCATA, there exists a partition of L into

disjoint subsets L1, L2, . . . , Lm satisfying:

1. @1 ¤ i ¤ m either Li � F or Li X F � H, and

2. there is a partial order ¤ on the sets L1, L2, . . . , Lm such that Lj ¤ Li i�

Dσ P Σ, ` P Li and `
1 P Lj such that `1 is present in δp`, σq.

Let π be an accepting f -run ofA andGπ its associated DAG. Let β � β0β1 . . . βi . . .

be a (�nite or in�nite) branch of Gπ, we must prove that either β is �nite, either

Dnβ P N such that @i ¡ nβ : βi � pp`, Iq, iq implies ` P F . As π is accepting,

either β is �nite, either there exists a smallest n0 such that βn0 has an accepting

location. If β is �nite, we are done. So, let us suppose that β is in�nite. In

this case, there exists a smallest n0 such that βn0 has an accepting location, say

˜̀ P Lk for a certain 1 ¤ k ¤ m. 1. implies that Lk � F . Thanks to 2., the

location of βn0�1 can only be:

a. a location of Lk, or

b. a location of Lj , for a certain 1 ¤ j ¤ m with Lj ¤ Lk and Lk � Lj .

5.1 TOCATA: a class of OCATA for MITL 215

Remark that case a. can be repeated in�nitely many times, while case b. can

happen at most m� 1 times. So, there exists n� ¥ n0 and 1 ¤ i� ¤ m such that

@i ¡ n�: βi � pp`, Iq, iq implies ` P Li� . As π is an accepting f -run, 1. implies

that Li� � F and n� is the nβ we were looking for.

We now de�ne, from a TOCATAA, the TOCATAAC and prove that LωpACq �
TΣωzLωpAq. The transition relation of AC is obtained `dualise' (see De�ni-

tion 2.105) the transition relation of A.

De�nition 5.6. For all TOCATA A � pΣ, L, `0, F, δq, we let AC � pΣ, L, `0, LzF, δq
where δp`, σq � δp`, σq.

Thanks to Proposition 5.5, we are able to prove that AC accepts the comple-

ment of A's language. We base our proof on a key lemma claiming that, when

considering a run Gπ of A and a run Gπ1 of AC on a same timed word θ, Gπ and

Gπ1 have a common in�nite branch. We start by presenting the basis intuition

of the proof in an example before to expose this lemma.

Example 5.7. Let A be a TOCATA and θ � pσ, τq be an in�nite timed word.

Suppose that there exists a run π of A on θ and a run π1 of AC on θ. We here

present an intuition of how a common beginning of branch of π and π1 might be

extended through one discrete transition. Let us so suppose that, after reading

the i �rst letters of θ, π and π1 reached con�gurations with a common state p`, Iq.

Let us furthermore suppose that:

δp`, σi�1q � px P I1 ^ `1q _ px P I2 ^ `1 ^ x.`2q.

Hence,

δp`, σi�1q � px R I1 _ `1q ^ px R I2 _ `1 _ x.`2q.

We here explain why, after reading σi�1, the con�gurations reached by π and π1

still contain a common state.

π is extended taking the transition x P I1^ `1 or the transition x P I2^ `1^x.`2.

Suppose for instance that π is constructed following the transition x P I2 ^ `1 ^

216 Chapter 5. MITL satis�ability and model-checking over in�nite words

x.`2: it will be extended in `1 and in `2 (with a reset of clock). π will so reach a

con�guration containing states p`1, Iq and p`2, r0, 0sq. Observing δp`0, σ1q, we see

we must choose an atom to satisfy among those of each transition of δp`0, σ1q.

As π is constructed following transition x P I2 ^ `1 ^ x.`2, the clock constraint

x P I2 is satis�ed by all j P I and so x R I2 will not be satis�ed by any j P I.

Hence, every runs of AC on θ will either be extended in `1 or in `2 (with a reset of

clock). It means all these runs will reach a con�guration containing either state

p`1, Iq or state p`2, r0, 0sq. These possibly reached con�gurations will all have a

common state with the con�guration reached by π.

Lemma 5.8. Let A be a TOCATA and θ be an in�nite timed word. Let Gπ be a

run of A on θ and Gπ1 be a run of AC on θ. Then, Gπ and Gπ1 have a common

in�nite branch.

Proof. Let A be a TOCATA and θ � pσ1, τ1qpσ2, τ2qpσ3, τ3q.... For all i ¥ 1, we

will note ti � τi � τi� 1, supposing τ0 � 0. Let π be a run of A, denoted

C0
t1ù C1

σ1ÝÑ C2
t2ù C3

σ2ÝÑ . . .
tnù C2n�1

σnÝÑ C2n . . . ,

whose DAG is Gπ � pV,Ñq and let π1 be a run of AC , denoted

C 10
t1ù C 11

σ1ÝÑ C 12
t2ù C 13

σ2ÝÑ . . .
tnù C 12n�1

σnÝÑ C 12n . . . ,

whose DAG is Gπ1 � pV 1, 99Kq. We recall that V �
�

0¤i¤|θ| Vi, where for all

0 ¤ i ¤ |θ|: Vi � tp`, iq | ` P Ciu is the set of all vertices of depth i. In the same

way, V 1 �
�

0¤i¤|θ| V
1
i , where for all 0 ¤ i ¤ |θ|: V 1i � tp`, iq | ` P C

1
iu.

We will recursively construct a common in�nite branch β � β0β1β2... of Gπ and

Gπ1 such that for all i ¥ 0, βi P Vi X V
1
i .

Basis: V0 � V 10 � tpp`0, 0q, 0qu, so, we take β0 � pp`0, 0q, 0q.

Induction: Suppose we constructed a common beginning of branch of Gπ and

Gπ1 : β0β1β2...βn�1. Let us show that we can extend this common beginning of

branch, constructing βn. We want that βn�1 Ñ βn and βn�1 99K βn.

Now, suppose that C2n�2 � tp`i, viqiPIu, then C2n�1 � tp`i, vi � tnqiPIu. Let

i� P I such that βn�1 � pp`i� , vi�q, n � 1q. C2n is obtained from C2n�1 thanks

5.1 TOCATA: a class of OCATA for MITL 217

to δp`i, σnq (for all i P I), which can be written as (in disjunctive normal form)�
kPK

ak where ak are atoms as described in Remarks 3.23 and 3.24. For a vi � tn

satisfying the guard present in ak, the minimal models of δp`i, σnq with respect

to vi � tn are

akrvi � tns � tp`, vi � tnq | ` is a conjunct of aku

Y tp`, 0q | x.` is a conjunct of aku,

k P K. On the one hand, there exists a k� P K such that vi� � tn satis�es

the guard present in ak� and ak�rvi� � tns � C2n: for each element p`, vq of

ak�rvi� � tns, βn�1 Ñ pp`, vq, nq. On the other hand, let us observe the transition

function δ of AC from `i� : δp`i� , σnq �
�
kPK

ak. Let k P K and suppose ak �

`1^� � �^`n^x.p`n�1^� � �^`mq^ϕ, where ϕ is a conjunction of clock constraints.

Then, ak � `1_� � �_`n_x.p`n�1_� � �_`mq_ϕk: each clock constraint of ϕ must

be negate to obtain ϕk. As vi� � tn satis�es all the clock constraints present in

ak� , it does not satisfy any clock constraint present in ak� . We know that βn�1 �

pp`i� , vi�q, n � 1q P V 1n�1, so that p`i� , vi�q P C
1
2n�2 and so p`i� , vi� � tnq P C

1
2n�1.

Each minimal model of δp`i� , σnq with respect to vi� � tn (which can be used to

obtain C 12n) must be such that, for each k P K:

� either vi� � tn satis�es a certain clock constraint present in ak,

� or this minimal model contains an element of akrvi� � tns.

We showed that vi� � tn does not satisfy any clock constraint present in ak� ,

so that the minimal model of δp`i� , σnq with respect to vi� � tn that is used in

π1 to construct C 12n contains in particular an element p`�, v�q of ak�rvi� � tns:

βn�1 Ñ pp`�, v�q, nq. As we previously showed that βn Ñ pp`, vq, nq for each

element p`, vq of ak�rvi� � tns, we can choose βn�1 � pp`
�, v�q, nq.

We now prove that AC accepts the complement of A's language, thanks to the
previous lemma. The link between the transition relations δ and δ highlighted in

Example 5.7 still plays an important role in this proof.

218 Chapter 5. MITL satis�ability and model-checking over in�nite words

Proposition 5.9. For all TOCATA A, LωpACq � TΣωzLωpAq.

Proof. We will �rst prove that LωpAq X LωpACq � H, and then that LωpAq Y
LωpACq � TΣω.

LωpAq X LωpACq � H. Suppose by contradiction that there exists a timed word

θ such that θ P LωpAq and θ P LωpACq. Then, there exists accepting runs Gπ and
Gπ1 (respectively) of A and AC on θ. By Lemma 5.8, π and π1 have a common

in�nite branch β0β1β2.... As Gπ is an accepting run of A, by Property 5.5:

Dn P N, @m ¡ n, the location of βm is in F . But Gπ1 is also an accepting run of

AC , so that Dn1 P N, @m ¡ n, the location of βm is in LzF : this is a contradiction.

LωpAq Y LωpACq � TΣω. Let θ � pσ1, τ1qpσ2, τ2qpσ3, τ3q... be a timed word such

that θ R LωpAq, we must prove that θ P LωpACq. Let us note, for all i ¥ 1,

ti � τi � τi�1, supposing τ0 � 0. We will inductively construct an accepting

run of AC on θ. To actually construct an accepting run, we will maintain an

additional property of the beginning of run we extend at each inductive step, say

π2n�2 denoted C0
t1ù C1

σ1ÝÑ C2
t2ù C3

σ2ÝÑ . . .
tn�1
ù C2n�3

σn�1
ÝÝÝÑ C2n�2, whose

DAG is Gπ2n�2 : `for each branch β of Gπ2n�2 , there exists a beginning of run π1

of A on θ such that:

� either β is a branch of Gπ1 and Gπ1 cannot be extended into a complete run

of A (it is `blocking'),

� or π1 can be extended into a complete run π1c of A such that β is the

beginning of a branch of Gπc on which each location of F only occurs a

�nite number of times.'

We note p�2n� 2q this property.

Basis. We construct C0 � tp`0, 0qu. As there is no accepting run of A on θ,

property p�0q is trivially veri�ed.

Induction. Suppose we constructed a beginning of run π2n�2 of AC on θ: C0
t1ù

C1
σ1ÝÑ C2

t2ù C3
σ2ÝÑ . . .

tn�1
ù C2n�3

σn�1
ÝÝÝÑ C2n�2 such that property p�2n� 2q

is veri�ed. We will extend π2n�2 to obtain a beginning of run C0
t1ù C1

σ1ÝÑ

5.1 TOCATA: a class of OCATA for MITL 219

C2
t2ù C3

σ2ÝÑ . . .
tn�1
ù C2n�3

σn�1
ÝÝÝÑ C2n�2

tnù C2n�1
σnÝÑ C2n such that property

p�2nq is veri�ed.

Suppose that C2n�2 � tp`i, viqiPIu, then C2n�1 � tp`i, vi � tnqiPIu. To form C2n,

each p`i, vi � tnq P C2n�1 must evolve towards a minimal model of δp`i, σnq with

respect to vi � tn. Let us note δp`i, σnq as
�
kPK

ak, as previously. As there is no

accepting run of A on θ, whatever is the minimal model

akrvi � tns � tp`, vi � tnq | ` is a conjunct of aku

Y tp`, 0q | x.` is a conjunct of aku,

for k P K, we decide to take as successor of p`i, vi � tnq in a beginning of run of

A on θ, and no matter how it is then extended, it will contain a branch on which

each location of F only occurs a �nite number of times or will be `blocking'. Let

us note p`ki , v
k
i qiPI,kPK the successors of p`i, vi�tnq on the branches on which each

location of F only occurs a �nite number of timed or are `blocking'3, considering

a certain run of A on θ going from p`i, vi� tnq to the minimal model akrvi� tns.

We construct C2n�2 � tp`ki , v
k
i qiPI,kPKu (it is actually the union, for i P I, of

minimal models of δp`i, σnq �
�
kPK

ak with respect to vi � tn). By construction,

p�2nq is veri�ed.

Thanks to this induction, we can construct an in�nite run π, C0
t1ù C1

σ1ÝÑ

C2
t2ù C3

σ2ÝÑ . . .
tnù C2n�1

σnÝÑ C2n . . . , such that for each branch β of Gπ,

there exists a run or a beginning of run π1 of A on θ such that:

� either β is a branch of Gπ1 and Gπ1 cannot be extended into a complete run

of A (it is `blocking'): it means that β is a �nite and non-blocking branch

of Gπ,

3Remark that a branch of a run of A is blocking reading σn i� ak contains a clock constraint

x ' c not satis�ed in vi � tn or there is no transition from `i reading σn. In the �rst case ak

contains the negation of x ' c, which is veri�ed by vi � tn, and in the second case δp`i, σnq is

false and so δp`i, σnq is true. In both cases (in particular) ak will be satis�ed in δp`i, σnq, even

if no successor is attributed to p`i, vi � tnq (the branch ending in p`i, vi � tnq in π2n�1 is �nite

but not blocking).

220 Chapter 5. MITL satis�ability and model-checking over in�nite words

� or π1 is a run of A containing the branch β, on which each location of F

only occurs a �nite number of times.

So, all the in�nite branches of π visit LzF in�nitely often and π is an accepting

run of AC on θ.

Equipped with those results, we can now set out the main result of this

section: the translation from MTL to OCATA introduced in [51] carries on to

in�nite words. To the best of our knowledge this had not been proved before

and does not seem completely trivial since our proof requires the machinery of

TOCATA developed in this thesis.

This is in way to prove this main result that we needed Proposition 5.9,

showing that TOCATA are easily complementable, contrary to general OCATA.

Theorem 5.10. For every MTL formula Φ: LωpAΦq � JΦKω.

Proof. This has been proved in the �nite words case in [51, Prop. 6.4]. This proof

relies crucially on the fact that OCATA can be complemented in this setting.

Thanks to Proposition 5.9, we can trivially adapt the proof of [51].

5.2 From MITL to Büchi Timed Automata

In this section, we present our new technique to build, from any MITL for-

mula Φ, a Büchi timed automaton that accepts JΦKω. Our construction relies on

two ingredients. The �rst one is still the bounded approximation functions f�Φ.

The second ingredient is the adaptation of the Miyano Hayashi construction (see

Example 2.48) in a timed context.

When considering an MITL formula Φ, interpreted over in�nite words, the

bounded approximation function f�Φ still enables to bound the number of clock

5.2 From MITL to Büchi Timed Automata 221

copies needed in the f�Φ-semantics of AΦ, as stated by the following theorem. Its

proof is based on Propositions 4.8 and 4.9, which are invariably true over �nite or

in�nite words: their proofs can be found in the appendix. The body of the proof

of this theorem is identical to that of Theorem 4.7 (its twin over �nite words).

Indeed, the bound on the number of clock copies needed in AΦ depends only on

the MITL formula Φ, not on the way the run propagates.

Theorem 5.11. For all MITL formula Φ, f�Φ is a bounded approximation func-

tion and Lωf�Φ
pAΦq � LωpAΦq � JΦKω.

As for the �nite words case, this bound will enable to construct a Büchi timed

automaton with a �nite number of locations and clocks.

When we presented the transition from the OCATA AΦ to the timed automa-

ton BΦ over �nite words, to manage the acceptance condition of the constructed

BΦ was not complex: it su�ced to choose the adapted accepting locations. In

the setting of in�nite words, to manage the acceptance condition will not be so

simple: it will require to use the Miyano-Hayashi method. Their approach con-

sists in associating a marker (J or K) to each state of each con�guration of the

OCATA. In way to overtake this di�culty, we start by de�ning, by means of such

markers, a timed transition system MHTS pA, fq (from an OCATA A and an ap-

procimation function f) with a Büchi acceptance condition, recognizing Lf pAq.
Once the di�culty linked to the introduction of Miyano-Hayashi markers over-

taken, we present the construction of a Büchi timed automaton BΦ accepting

JΦKω. Its construction will be similar to that presented over �nite words thanks

to the use of MHTS pAΦ, f
�
Φq.

5.2.1 A Büchi transition system for each OCATA

The translation from an OCATA to a Büchi timed automaton is not trivial.

For the untimed case yet, this translation is obtained by Miyano and Hayashi

using a trick consisting in associating a marker to each state of each con�guration

222 Chapter 5. MITL satis�ability and model-checking over in�nite words

of the alternating automaton. The use of such markers enable to get back a

Büchi acceptance condition. In this section, we adapt their approach to the

timed setting in way to obtain a timed transition system MHTS pA, fq with a

Büchi acceptance condition, recognizing Lf pAq.

As explained in Example 2.48, the Miyano-Hayashi method will associate a

marker, J or K, to each state of each con�guration of the OCATA A. Intuitively,
a state is marked by J if all the branches it belongs to have visited an accepting

location of A. When a con�guration C whose states are all marked by J is

reached, it means that all the branches leading to C saw F : such con�gurations

will be accepting states of MHTS pA, fq. When such an accepting con�guration

is reached, all its states are marked back to K and the marking to J starts

again. Hence, a state of a con�guration is marked by J i� all the branches

it belongs to have visited an accepting location of A since the last accepting

state of MHTS pA, fq was reached. We so recover a Büchi acceptance condition

in the following way: each branch of a run of A see F in�nitely often (i.e it

is an accepting run of A) i� we encounter in�nitely many accepting states of

MHTS pA, fq in the corresponding run of MHTS pA, fq.

Here is the formal de�nition of MHTS pA, fq � pΣ, SMH, sMH
0 ,ùMH,

ÑMH, αq. The states of MHTS pA, fq will be marked con�gurations of A, i.e. sets
of trios of the form p`, I,mq, where p`, Iq is a state of A and m P tJ,Ku. The

discrete transition relation, represented by `ÑMH', will be de�ned in way that

(i) a transition with ÑMH between two states of SMH corresponds to a discrete

transition between the con�gurations of the OCATA A they represent and (2)

the markers of the third components are kept updated. Actually, if s
σ
ÝÑ

MH
s1,

we want the last component of a trio of s1 to be K i� its �rst component is not

in F and it comes from the grouping of trios emanating from trios of s such that

at least one of them had K as last component. Moreover, if s P α, we want to

start again the marking: we put all the third components of the trios of s to K

before proceeding as previously.

De�nition 5.12. For an OCATA A � pΣ, L, `0, F, δq and an approximation

5.2 From MITL to Büchi Timed Automata 223

function f , we de�ne the timed transition system MHTS pA, fq � pΣ, SMH, sMH
0 ,

ùMH,ÑMH, αq where:

(i) SMH � tp`k, Ik,mkqkPK | tp`k, IkqkPK is a con�guration of A and @k P K,

mk P tJ,Kuu,

(ii) sMH
0 � tp`0, r0, 0s,mqu, with m � J i� `0 P F ,

(iii) α � tp`k, Ik,mkqkPK P S
MH | @k P K,mk � Ju,

(iv) for t P R and s, s1 P S, supposing s � tp`k, Ik,mkqkPKu, we have s
t
ù

MH
s1

i� s1 � tp`k, Ik � t,mkqkPKu ; ù
MH�

�
tPR

t
ù

MH
,

(v) for s P SMHzα and s1 P SMH, supposing s � tp`k, Ik,mkqkPKu and

s1 � tp`k1 , Ik1 ,mk1qk1PK1u, s
σ
ÝÑ

MH
s1 i�

(a) tp`k, IkqkPKu
σ
ÝÑf tp`k1 , Ik1qk1PK1u in A, i.e.

tp`k1 , Ik1qk1PK1u P fpSuccptp`k, IkqkPKu, σqq;

(b) @k1 P K 1: p`k1 P F ñ mk1 � Jq ;

(c) @k P K 1 with `k R F : if Dk� P K such that p`k� , Ik� ,Kq P s and

p`k, Ikq P destptp`k, IkqkPKu, tp`k1 , Ik1qk1PK1u, p`k� , Ik�qq, we have mk �

K ; otherwise, mk � J,

(vi) for s P α and s1 P SMH, supposing s � tp`k, Ik,JqkPKu, s
σ
ÝÑ

MH
s1 i�

tp`k, Ik,KqkPKu
σ
ÝÑ

MH
s1 according to the rules in (v) ;

ÑMH�
�
σPΣ

σ
ÝÑ

MH
,

We will now prove that, in general, the language of the Büchi transition sys-

temMHTS pA, fq is Lωf pAq. In particular, it will mean that LωpMHTS pAΦ, f
�
Φqq �

Lωf�Φ
pAΦq. This will enable us to de�ne a Büchi timed automaton BΦ recognizing

JΦKω (� Lωf�Φ
pAΦq) using MHTS pAΦ, f

�
Φq.

Proposition 5.13. Let A � pΣ, L, `0, F, δq be an OCATA and f be an approxi-

mation function: LωpMHTS pA, fqq � Lωf pAq.

224 Chapter 5. MITL satis�ability and model-checking over in�nite words

Proof. p�q Let θ � pσ, τq P Lωf pAq, with σ � σ1σ2 � � �σn . . . and τ � τ1τ2 � � � τn

We will prove that θ P LωpMHTS pA, fqq. Let us note ti � τi � τi�1 for all

1 ¤ i ¤ |θ|, assuming τ0 � 0. We have an accepting f -run of A on θ, say

π : C0
t1ù C1

σ1ÝÑf C2
t2ù C3

σ2ÝÑf . . .
tiù C2i�1

σiÝÑf C2i We must prove

that there is an accepting run of MHTS pA, fq on θ, say π1: s0
t1ù

MH
s1

σ1ÝÑ
MH

s2
t2ù

MH
s3

σ2ÝÑ
MH

. . .
tiù

MH
s2i�1

σiÝÑ
MH

si We construct π1 by induction,

proving additionally that the two following properties hold for j ¥ 0:

p�2jq C2j � tp`k, IkqkPKu i� s2j � tp`k, Ik,mkqkPK | mk P tJ,Kuu ;

p�2jq if a location of F occurs on all the branches of π between the last con�gu-

ration C2j1 such that s2j1 P α (or, failing that, between C0) and C2j , then,

s2j P α.

Basis: We know that C0 � p`0, r0, 0sq and s0 � tp`0, r0, 0s,Kqu. It is clear that

p�0q and p�0q are veri�ed because only `0 R F occurs on the (unique) branch of

π.

Induction: Suppose that we constructed π1 until s2i and that p�2jq and p�2jq are

veri�ed @0 ¤ j ¤ i. We will construct π1 until s2pi�1q in way p�2pi � 1qq and

p�2pi� 1qq will still be veri�ed.

First, we must construct s2i�1 such that s2i
ti�1
ù

MH
s2i�1. Suppose s2i �

tp`k, Ik,mkqkPKu, as p�2iq is veri�ed by hypothesis, it means that C2i can also

be written as tp`k, IkqkPKu. We must choose s2i�1 to be tp`k, Ik � ti�1,mkqkPKu.

As C2i
ti�1
ù C2i�1, C2i�1 � C2i � ti�1 � tp`k, Ik � ti�1qkPKu. Remark that the

following property holds:

p�2i� 1q C2i�1 � tp`k, IkqkPKu i� s2i�1 � tp`k, Ik,mkqkPK | mk P tJ,Kuu.

Secondly, we must construct s2pi�1q such that s2i�1
σi�1
ÝÝÝÑ sMH

2pi�1q. We know

that C2i�1
σi�1
ÝÝÝÑf C2pi�1q. Suppose s2i�1 � tp`k, Ik,mkqkPKu, as p�2i � 1q is

veri�ed, C2i�1 can be written as tp`k, IkqkPKu. Let us further suppose that

5.2 From MITL to Büchi Timed Automata 225

C2pi�1q � tp`k1 , Ik1qk1PK1u. We construct s2pi�1q :� tp`k1 , Ik1 ,mk1qk1PK1u to be the

unique state4 of SMH such that tp`k, IkqkPKu
σi�1
ÝÝÝÑf tp`k1 , Ik1qk1PK1u. p�2pi � 1qq

is trivially veri�ed. It remains to prove that p�2pi� 1qq is satis�ed. Suppose that

a location of F occurs on all the branches of π between the last con�guration

C2j1 such that s2j1 P α (or, failing that, between C0) and C2pi�1q. We must

prove that s2pi�1q P α, i.e. all the trios of s2pi�1q has J as last component. Let

β � β0β1β2 . . . β2j1 . . . β2j . . . β2pi�1q . . . be a branch of π. The hypothesis implies

there exists a transition
σj
ÝÑf , for j

1 ¤ j ¤ i � 1, such that β2j � p`, Iq for a

certain ` P F . By p�2jq, p`, I,mkq P s2j for a certain mk in tJ,Ku, but point

(v)-(b) of the de�nition of MHTS pA, fq (De�nition 5.12) obliges mk to be J. So,

the third components associated in π1 to the di�erent states of the branches of

π will gradually (between s2j1 and s2pi�1q) become J. We must still ensure they

will eventually never become K again. In fact, a pair p`, Iq of a certain state sj

(for 2j1 ¤ j ¤ 2pi� 1q) of π, corresponding to p`, I,Jq in π1, can have a succes-

sor p`1, I 1q in π and a corresponding successor p`1, I 1,Kq in π1 i� sj is accepting

and `1 R F (which is not possible under the present hypothesis) or p`1, I 1,Kq

comes from the grouping of trios (thanks to f) emanating from trios such that

at least one of them had K as last component (case (v)-(c) of the de�nition of

MHTS pA, fq: De�nition 5.12). It means that no location of F occurs on one of

the branches of π leading to p`1, I 1q, say β1 � β10β
1
1β
1
2 . . . β2j1 . . . β

1
2k1 . . . β

1
2pi�1q . . . ,

with β12k � p`1, I 1q, since β12j1 (else, we contradict case (v)-(c) of the de�nition

of MHTS pA, fq: De�nition 5.12). But, by hypothesis, a location of F occurs on

all the branches of π between steps 2j1 and 2pi� 1q, so there exists a transition
σ2j̃
ÝÝÑf , for k

1 j̃ ¤ i � 1, such that β1
2j̃

has its location in F : once again, point

(v)-(b) of the de�nition of MHTS pA, fq (De�nition 5.12) obliges m2j̃ to be J.

As a location of F occurs on all branches of π between steps 2j1 and 2pi � 1q

and there is only a �nite number of branches leading to a state of C2pi�1q, we

conclude that we can only encounter this last case a �nite number of times and

so s2pi�1q P α: p�2pi� 1qq is satis�ed.

4once the minimal models of the de�nition of
σi�1
ÝÝÝÑ are chosen, it is easy to see there exists

a unique possible choice for the values of the mk of s2pi�1q.

226 Chapter 5. MITL satis�ability and model-checking over in�nite words

To end this part of the proof, we must show that π1 is accepting. The previous

induction proves that p�2jq is veri�ed for all j ¥ 0. As π is accepting, a location

of F occurs on all the branches of π in�nitely often, and so there is an in�nite

number of j and j1 such that the antecedent of p�2jq is true. So, in this same

in�nite number of times, we know that s2j P α, what proves that π
1 is accepting.

p�q Let θ � pσ, τq P LωpMHTS pA, fqq, with σ � σ1σ2 � � �σn . . . and τ �

τ1τ2 � � � τn We will prove that θ P Lωf pAq. Let us note ti � τi � τi�1 for

all 1 ¤ i ¤ |θ|, assuming τ0 � 0. We have an accepting run of MHTS pA, fq on θ,
say π: s0

t1ù
MH

s1
σ1ÝÑ

MH
s2

t2ù
MH

s3
σ2ÝÑ

MH
. . .

tiù
MH

s2i�1
σiÝÑ

MH
si We

must prove that there is an accepting f -run of A on θ, say π1: C0
t1ù C1

σ1ÝÑf

C2
t2ù C3

σ2ÝÑf . . .
tiù C2i�1

σiÝÑf C2i We construct π1 by induction, proving

additionally that the two following properties hold for j ¥ 0:

(�2j) C2j � tp`k, IkqkPKu i� s2j � tp`k, Ik,mkqkPK | mk P tJ,Kuu ;

(�2j) if s2j P α, then, a location of F occurs on all the branches of π1 between

the last con�guration C2j1 such that s2j1 P α (or, failing that, between C0)

and C2j .

Basis: We know that s0 � tp`0, r0, 0s,Kqu and C0 � p`0, r0, 0sq. p�0q and p�0q are

trivially veri�ed.

Induction: Suppose that we constructed π1 until C2i and that p�2jq and p�2jq

are veri�ed @0 ¤ j ¤ i. We will construct π1 until C2pi�1q in way p�2pi� 1qq and

p�2pi� 1qq will still hold.

First, we must construct C2i�1 such that C2i
ti�1
ù C2i�1. We know that s2i

ti�1
ù

MH

s2i�1. Suppose s2i � tp`k, Ik,mkqkPKu, as p�2iq is veri�ed by hypothesis, C2i �

tp`k, IkqkPKu. We must choose C2i�1 to be C2i�1 � tp`k, Ik � ti�1qkPKu. As

s2i
ti�1
ù

MH
s2i�1, s2i�1 � tp`k, Ik � ti�1,mkqkPKu. Remark that the following

property holds:

p�2i� 1q C2i�1 � tp`k, IkqkPKu i� s2i�1 � tp`k, Ik,mkqkPK | mk P tJ,Kuu.

5.2 From MITL to Büchi Timed Automata 227

Secondly, we must construct C2pi�1q such that C2i�1
σi�1
ÝÝÝÑf C2pi�1q. We know

that s2i�1
σi�1
ÝÝÝÑ

MH
s2pi�1q. Suppose s2i�1 � tp`k, Ik,mkqkPKu, as p�2i�1q is veri-

�ed, C2i�1 � tp`k, IkqkPKu. Let us further suppose that s2i�1 � tp`k1 , Ik1 ,mk1qk1PK1u.

We construct C2pi�1q � tp`k1 , Ik1qk1PK1u, so that p�2pi� 1qq holds. Remark that,

by de�nition of ÑMH: s2i�1
σi�1
ÝÝÝÑ

MH
s2pi�1q and so we have C2i�1

σi�1
ÝÝÝÑf C2pi�1q

(what we needed). It remains to prove that p�2pi � 1qq is satis�ed. Sup-

pose that s2pi�1q P α (i.e. @k1 P K 1, mk1 � J). We must prove that, be-

tween the last con�guration C2j1 such that s2j1 P α (or, failing that, between

C0) and C2pi�1q, a location of F occurs on all the branches of π1. Let β �

β0β1β2 . . . β2j1 . . . β2j . . . β2pi�1q . . . be a branch of π1 and suppose by contradic-

tion that @j1 ¤ j ¤ i� 1, β2j has not its location in F . As s2j1 P α, all the third

components of s2j1 are replaced by K (likewise, by de�nition of s0, its unique trio

has K as last component) before evolving reading σj1�1, σj1�2, . . . , σi�1 thanks to

the rules in (v) in the de�nition of MHTS pA, fq (De�nition 5.12). But, observing

those rules in (v), when a trio has K as last component, it can only evolve to a

trio with J as last component if case (c) is satis�ed, what is impossible along β.

This contradicts the fact that s2pi�1q P α.

To end the proof, we must show that π1 is accepting. The previous induction

proves that p�2jq holds for all j ¥ 0. As π is accepting, we know that s2j P α for

in�nitely many j and so, between any two successive such j's all the branches of

π1 saw F . We conclude that all the branches of π1 saw F in�nitely often, what

proves that π1 is accepting.

5.2.2 Towards a Büchi timed automaton

The aim of this subsection is to de�ne a timed automaton with Büchi accep-

tance condition BΦ that simulates MHTS pAΦ, f
�
Φq, and thus accepting JΦKω, for

every MITL formula Φ. For the sake of simplicity, we uses the same notations

as for the �nite words case. We so note BΦ � pΣ, L, λ0, X, F, δq, and still denote

locpXq the set of functions representing the locations of BΦ over in�nite words,

although the de�nitions of locpXq and of the components of BΦ di�er from the

228 Chapter 5. MITL satis�ability and model-checking over in�nite words

�nite word case. We hope this will help the reader to make a parallel between

our de�nitions of (Büchi) timed automata BΦ, accepting JΦK over �nite words

and JΦKω over in�nite words.

Let Φ be an MITL formula, and assume AΦ � pΣ, LΦ, `Φ0 , F
Φ, δΦq is its

associated OCATA (see De�nition 2.164). Let us show how to build a TA

BΦ � pΣ, L, λ0, X, F, δq such that LωpBΦq � LωpMHTS pAΦ, f
�
Φqq. For the sake

of simplicity, in the de�nition of BΦ, we consider that all the intervals used by

AΦ, even the singular ones, are represented by two di�erent clock copies.

We recall that, in the �nite word settings, the locations of BΦ (see De�nition 4.13)

are functions λ : LΦ Ñ 2pX
2q satisfying the property that each clock is at most

present one time among those in
�
`PLΦ λp`q. For in�nite words, this de�nition

must be reviewed to contain Miyano-Hayashi markers, as in MHTS pAΦ, f
�
Φq. A

location of BΦ will now be a function λ : LΦ Ñ 2pX
2�tJ,Kuq, still satisfying the

property that each clock is at most present one time among those in
�
`PLΦ λp`q.

Hereunder, we formally de�ne the set of functions enabling to represent locations

of BΦ, over in�nite words. Then, we present the de�nition of the �rst components

of BΦ: its transition function, more complex to de�ne, will be detailed right after.

De�nition 5.14. We de�ne locpXq to be set of functions λ : LΦ Ñ 2pX
2�tJ,Kuq

such that, for all px, y,mq P
�
`PLΦ λp`q, we have that x � y and, for all px1, y1,m1q P

p
�
`PLΦ λp`qq ztpx, y,mqu, we have that x � x1, x � y1, y � x1 and y � y1.

As for the �nite words case, thanks to the boundMpΦq of clock copies needed

in the OCATA AΦ (given by Theorem 5.11), we will only need a set X of MpΦq

clocks in BΦ. This way, locpXq is a �nite set of functions, which will play the role

of locations of BΦ. Without the bound given by Theorem 5.11, BΦ would have

had an in�nite number of locations and would not have been a timed automaton.

De�nition 5.15. We de�ne BΦ � pΣ, L, λ0, X, F, δq, where:

� X is a set of clocks such that |X| �MpΦq,

� L � locpXq,

5.2 From MITL to Büchi Timed Automata 229

� λ0 P loc is such that λ0p`
Φ
0 q � tpx, y,Kqu, where x and y are two clocks

arbitrarily chosen from X, and λ0p`q � H for all ` P LΦzt`Φ0 u.

� F is the set of all locations λ P L such that: @` P LΦ, @px, y,mq P λp`q,

m � J.

Intuitively, a con�guration pλ, vq of BΦ encodes the state s of MHTS pAΦ, f
�
Φq

such that: s � tp`, rvpxq, vpyqs,mq | ` P LΦ and px, y,mq P λp`qu, i.e. the marked

intervals associated to location ` are given by the marker and values (according

to v) of pairs of clocks in λp`q.

Finally, we must de�ne the set of transitions δ to let BΦ simulate the executions

of AΦ. We recall (see Remark 3.24) that for each location ` P LΦ, for each σ P Σ,

all arcs in δΦ are either of the form p`, σ, trueq, or p`, σ, falseq, or
�
`, σ, `^x.p`1^

� � � ^ `kq ^ g
�
or of the form

�
`, σ, x.p`1 ^ � � � ^ `kq ^ g

�
, where g is a guard on x.

Let λ P L be a location of BΦ, ` P L
Φ, σ P Σ be a letter and px, y,mq be a trio

occurring in λp`q. Let us associate to this trio an arc a of δΦ of the form p`, σ, γq.

Then, as in the �nite words setting, we associate to a a guard guard paq, and two

sets reset paq and loop paq, de�ned as follows:

� if γ P ttrue, falseu, then, guard paq � γ and reset paq � loop paq � H.

� if γ is of the form x.p`1 ^ � � � ^ `kq ^ g, then guard paq � g, reset paq �

t`1, . . . , `ku and loop paq � H.

� if γ is of the form ` ^ x.p`1 ^ � � � ^ `kq ^ g, then guard paq � g, reset paq �

t`1, . . . , `ku and loop paq � tpx, yqu.

Thanks to those de�nitions, we can now de�ne δ. Let λM P L be a location of BΦ.

We want that, to encounter an accepting location of BΦ in a run, corresponds to

see a location of F on all the branches of the corresponding run of AΦ. When such

an accepting location of BΦ is encountered, we need to start again the marking.

The following de�nition of λ re�ects this need. If λM P FB, we let λ be such that:

@` P LΦ, λp`q � tpx, y,Kq | px, y,Jq P λMp`qu. If λM R FB, we let λ � λM. We

230 Chapter 5. MITL satis�ability and model-checking over in�nite words

assume the set of 4-tuples p`, x, y,mq such that px, y,mq P λp`q (for ` P LΦ) is

denoted:

tp`1, x1, y1,m1q, . . . , p`k, xk, yk,mkqu.

Remark that several `i, for 1 ¤ i ¤ k might be the same location ` P LΦ. Then,

pλM, σ, g, r, λ1q P δ i� there is a set A � tpaiq
k
i�1u such that:

� For all i P t1, . . . , ku: ai is an arc of δΦ of the form p`, σ, γiq associated with

pxi, yi,miq P λp`iq.

� For each ` P LzF , we let λ�p`q � tpx�1, y
�
1,m

�
1qpx

�
2, y

�
2,m

�
2q � � � px

�
n, y

�
n,m

�
nqu

be obtained from λp`q by deleting all the trios px, y,mq such that px, yq R�k
i�1 loop paiq. For each ` P LXF , we let λ

�p`q � tpx�1, y
�
1,Jqpx

�
2, y

�
2,Jq � � �

px�n, y
�
n,Jqu be obtained from λp`q by deleting all the trios px, y,mq such

that px, yq R
�k
i�1 loop paiq. We furthermore suppose that px�1, y

�
1q is the

last pair of clock that have been associated to location `. Then, for all

` P L:

1. if ` R
�k
i�1 reset paiq:

λ1p`q � λ�p`q

2. else, if ` P F (in particular, for 1 ¤ i ¤ n, m�i � J):

λ1p`q P

tpx, y,Jqu Y λ�p`q , tpx, y�1,m

�
1qpx

�
2, y

�
2,m

�
2q � � � px

�
n, y

�
n,m

�
nqu

(
3. else, if ` P

�
iPt1,...,ku
mi�K

reset paiq:

λ1p`q P

tpx, y,Kqu Y λ�p`q , tpx, y�1,Kqpx

�
2, y

�
2,m

�
2q � � � px

�
n, y

�
n,m

�
nqu

(
4. else (i.e. ` R

�
iPt1,...,ku
mi�K

reset paiq and ` P
�

iPt1,...,ku
mi�J

reset paiq)

λ1p`q P

tpx, y,Jqu Y λ�p`q , tpx, y�1,m

�
1qpx

�
2, y

�
2,m

�
2q � � � px

�
n, y

�
n,m

�
nqu

(

5.2 From MITL to Büchi Timed Automata 231

When λ1p`q � tpx, y,Kqu Y λ�p`q or tpx, y,Jqu Y λ�p`q, we let R` � tx, yu;

when λ1p`q � tpx, y�1,Kqpx
�
2, y

�
2,m

�
2q � � � px

�
n, y

�
n,m

�
nqu or tpx, y

�
1,m

�
1q px

�
2, y

�
2,m

�
2q

� � � px�n, y
�
n,m

�
nqu, we let R` � txu; and we let R` � H otherwise.

� g �
�

1¤i¤kpguard paiq rx{xis ^ guard paiq rx{yisq.

� r �
�
`PLR`.

The following theorem shows that, for all MITL formula Φ interpreted over

in�nite words, BΦ is a Büchi timed automaton recognizing JΦK, as we wanted.

Theorem 5.16. For each MITL formula Φ, LωpBΦq � Lωf�Φ
pAΦq.

Proof. To prove this, we will show that the transition system TTS pBΦq � pΣ,

STTS, sTTS0 ,ÑTTS,ùTTSq induced by BΦ in the classical semantics (see De�ni-

tion 2.72) is MHTS pAΦ, f
�
Φq in which pλ, vq P STTS corresponds to

tp`, rvpxq, vpyqs,mq | px, y,mq P λp`qu. It is easy to see that the initial con�g-

uration of BΦ, pλ0, v0q, where for all x P X, v0pxq � 0, corresponds to the

initial state s0 of MHTS pAΦ, f
�
Φq. Now, suppose that we reached a con�gu-

ration pλ, vq P STTS corresponding to the state µ of MHTS pAΦ, f
�
Φq, i.e. µ �

tp`, rvpxq, vpyqs,mq | px, y,mq P λp`qu.

Timed transition: let t P R: ppλ, vq, t, pλ, v � tqq P ùTTS while

µ �
�
`PLtp`, rvpxq, vpyqs,mq | px, y,mq P λp`qu

.
t
ù

MH �
`PLtp`, rvpxq, vpyqs � t,mq | px, y,mq P λp`qu,

the two images correspond.

Discrete transition:

From STTS to MHTS pAΦ, f
�
Φq: Suppose that ppλ

M, vq, σ, pλ1, v1qq PÑTTS and that

µM corresponds to pλM, vq, i.e. :

µM �
¤
`PL

tp`, rvpxq, vpyqs,mq | px, y,mq P λMp`qu.

We will show that there exists µ1 such that µM
σ
ÝÑ

MH
µ1 in MHTS pAΦ, f

�
Φq and

pλ1, v1q and µ1 correspond. As, ppλM, vq, σ, pλ1, v1qq PÑTTS, if λM P FB, according

232 Chapter 5. MITL satis�ability and model-checking over in�nite words

to the previous de�nition, λM is �rst turned to

λ � tpx, y,Kq | px, y,Jq P λpLqu.

In this case, µM P α and it is �rst turned to

µ �
¤
`PL

tp`, rvpxq, vpyqs,Kq | px, y,Jq P λp`qu

(see point (vi) of De�nition 5.12) which corresponds to pλ, vq. If λM R FB, µM R α

and we let λ � λM and µ � µM.

As ppλM, vq, σ, pλ1, v1qq PÑTTS, for all ` P L, an arc apx,yq must have been associ-

ated with each px, y,mq P λp`q. λ� is then de�ned in way each px, y,mq associated

with an arc that loop is still associated with the same location while the others

disappear. In the last 4 cases (1., 2., 3. and 4.) all the locations to which an arc

goes without looping (characterized by the fact that there is a reset through this

location in our automaton AΦ) are considered: either two new clocks are reset

and associated with these locations, or one new clock is reset and replaces the

clock x�1 of the �rst pair of clocks associated with this location (and so, to the

smallest represented interval). Whatever is the case thanks to which pλ1, v1q has

been formed, each of the pairs of clocks px, yq of λ must have satis�ed the clock

constraints guard
�
apx,yq

�
^guard

�
apx,yq

�
rx{ys, what corresponds to the fact that

the whole interval rvpxq, vpyqs satis�es guard
�
apx,yq

�
(because this guard is an

interval and is so convex).

Moreover, v1 is obtained from v by associating 0 to each clock reset in the case

1., 2., 3. or 4., used to create pλ1, v1q, and by associating vpxq to all other clock

x. This treatment of pλ, vq to obtain pλ1, v1q exactly correspond to the fact that

.
�
`PLtp`, rvpxq, vpyqsq | px, y,mq P λp`qu

.
σ
ÝÑf�Φ

�
`PLtp`, rv

1pxq, v1pyqsq | px, y,mq P λ1p`qu

in AΦ, thanks to the minimal models obtained following, for all px, yq, the arc

apx,yq from p`, rvpxq, vpyqsq. We so take:

µ1 �
¤
`PL

tp`, rv1pxq, v1pyqs,mq | px, y,mq P λ1p`qu.

It is not di�cult to see that, whatever is the case thanks to which pλ1, v1q has

been formed, the marking of pairs of clocks of λ1 enables µ1 to satisfy conditions

5.2 From MITL to Büchi Timed Automata 233

(b) and (c) of the de�nition of the transition ÑMH of MHTS pAΦ, f
�
Φq. We so

have µM
σ
ÝÑ

MH
µ1 in MHTS pAΦ, f

�
Φq and pλ

1, v1q and µ1 correspond.

From MHTS pAΦ, f
�
Φq to S

TTS: Suppose that µM
σ
ÝÑ

MH
µ1 in MHTS pAΦ, f

�
Φq

and that pλM, vq and µM correspond, i.e. :

µM �
¤
`PL

tp`, rvpxq, vpyqs,mq | px, y,mq P λMp`qu.

We will show that there exists pλ1, v1q such that ppλM, vq, σ, pλ1, v1qq PÑTTS. As

µM
σ
ÝÑ

MH
µ1, if µM P α, µM is �rst turned to

µ �
¤
`PL

tp`, rvpxq, vpyqs,Kq | px, y,Jq P λp`qu.

In this case, λM P FB and is �rst turned to

λ � tpx, y,Kq | px, y,Jq P λpLqu,

so that pλ, vq corresponds to µ. If µM R α, λM R FB and we let µ � µM and

λ � λM.

As µ
σ
ÝÑ

MH
µ1 and µ and pλ, vq correspond,

.
�
`PLtp`, rvpxq, vpyqsq | px, y,mq P λp`qu

.
σ
ÝÑf�Φ

tp`, Iq | p`, I,mq P µ1u

in AΦ (see De�nition 5.12). It means an arc apx,yq has been chosen for each px, yq

to create a minimal model of δp`, σq with respect to rvpxq, vpyqs. We take pλ1, v1q

to be the unique successor of pλ, vq in STTS obtained associating to each px, y,mq

the arc apx,yq and such that exactly one clock is reset and associated to location

` (i.e. R` is a singleton, in the previous de�nition of δ, the transition relation of

BΦ) i� the application of f�Φ merged the new interval created in location ` with

the previous smallest one (it is not di�cult to see that we indeed obtain a unique

successor this way, observing the de�nition of δ, transition relation of BΦ, see

De�nition 5.15).

µ1 and pλ1, v1q correspond, thanks to the fact that the (unique possible) marking

present on the third components of elements of µ1 will be the same than the

obtained marking of elements of pλ1, v1q (it is easy to see, observing all the cases

thanks to which µ1, and so pλ1, v1q, might be constructed).

234 Chapter 5. MITL satis�ability and model-checking over in�nite words

The following theorem gives an upper bound on the number of locations of

BΦ.

Theorem 5.17. For all MITL formula Φ, BΦ hasMpΦq clocks and Opp|Φ|qpm.|Φ|qq

locations, where m � maxIPIΦ

!
2�

Q
infpIq
|I|

U
� 1,

Q
suppIq
|I|

U
� 1

)
.

Proof. By de�nition of BΦ, |X| �MpΦq. Moreover, one location of this automa-

ton is an association, to each location ` of AΦ, of a �nite set tpx1, y1,m1q, . . . ,

pxn, yn,mnqu of trios consisting in a pair of clocks from X and a marker from

tJ,Ku, such that each pair of clock is associated with a unique location `. In

other words, for each couple of clocks pxi, yiq, either pxi, yi,Jq or pxi, yi,Kq is

associated with: one and only one ` P L or to no ` P L. For each couple of clocks

pxi, yiq, we so have 2.p|L|�1q possibilities of association of pxi, yi,Jq or pxi, yi,Kq

to a certain, or no, location ` P L. As there are MpΦq
2 such pairs of clocks, BΦ

has p2.p|L| � 1qq
MpΦq

2 locations, i.e.: O
�
p|Φ|qm.|Φ|

�
� O

�
2m.|Φ|.log2p|Φ|q

�
(because

|L| � Op|Φ|q and MpΦq � Op2.m.|Φ|q).

In what precedes, we de�ned, for all MITL formula Φ, a Büchi automa-

ton BΦ recognizing JΦKω on the pointwise semantics and discussed its size in

Proposition 5.17. We recall that in their paper [5], Alur and al. also provide a

construction to translate an MITL formula Φ into a timed automaton BcontΦ , over

the continuous semantics. Then, they give an algorithm using a space doubly ex-

ponential in the size of Φ to solve the MITL model-checking problem. The sizes

of BΦ and BcontΦ are similar, so that our construction of BΦ and Proposition 4.15

formally prove that there is an algorithm using a space doubly exponential in the

size of Φ enabling to solve the MITL model-checking problem over the pointwise

semantics.

5.3 MITL model-checking with TOCATA: the techniques 235

5.3 MITL model-checking with TOCATA: the techniques

From now on, we �x an MITL formula Φ and assume that the OCATA rep-

resenting the negation of Φ is A Φ � pΣ, L, `0, F, δq. We also �x a Büchi TA

B � pΣ, B, b0, X, δ
B, FBq, and we consider the MITL model-checking problem

(see De�nition 2.122) and the MITL satis�ability problem (see De�nition 2.121)

over in�nite words. It is of course possible to elaborate such algorithms using the

Büchi timed automaton B Φ, recognizing J ΦKω de�ned is the previous section.

Nevertheless, as for the �nite words case, we are looking for algorithms working

on the �y.

Our approach follows the steps of [51], as already discribed and followed in the

�nite words setting. We �rst construct a timed transition system SB, Φ repre-

senting the parallel execution of B and A Φ. It is obtained by �rst taking the

synchronous product of TTS pA Φ, f
�
 Φq and the transition system TTS pBq of

B (see De�nition 2.72), and then associating Miyano-Hayashi markers with its

states, by adapting the construction of MHTS pA, fq to cope with the con�gu-

rations of B. Then, the aim will be to verify that SB, Φ has no accepting run,

i.e. no reachable accepting state of SB, Φ is reachable from itself. We can sym-

metrically solve the MITL satis�ability problem by looking for accepting run in

the timed transition system SA Φ,f
�
 Φ

(see De�nition 3.16). Since the techniques

are similar for model-checking and satis�ability (see Section 2.4.2), we will only

detail the former in this section. As for �nite words, the timed transition system

SB, Φ is in�nitely branching and we must use a region abstraction. The one pre-

sented here only changes from that exhibited over �nite words by the addition of

Miyano-Hayashi markers. Each region will still be symbolically represented by a

unique word.

For the sake of simplicity, we keep the same name for the present timed transition

system SB, Φ than for that de�ned in Section 4.2, over �nite words.

Let us formally de�ne SB, Φ, representing the parallel execution of B and

A Φ.

236 Chapter 5. MITL satis�ability and model-checking over in�nite words

De�nition 5.18. Let Φ be an MITL formula and B � pΣ, B, b0, X, δ
B, FBq

be a Büchi timed automaton. We de�ne the timed transition system SB, Φ �

pΣ, S, s0,ù,Ñ, αq where:

(i) S is the set of elements of the form tp`k, Ik,mkqkPKu Y tpb, v,mBqu where

tp`k, IkqkPKu is a con�guration of A Φ, pb, vq is a state of B, mB P tJ,Ku

and @k P K,mk P tJ,Ku;

(ii) s0 � tp`0, r0, 0s,Kq, pb0, v0,mqu, where v0 is the valuation such that v0pxq �

0, @x P X, and m � J i� b0 P F
B;

(iii) α contains all the elements of S of the form tp`k, Ik,JqkPKu Y tpb, v,Jqu;

(iv) the transition relation ù takes care of the elapsing of time: @t P R and

s, s1 P S, supposing s � tp`k, Ik,mkqkPKu Y tpb, v,mBqu, we have s
t
ù s1

i� s1 � tp`k, Ik � t,mkqkPKu Y tpb, v � t,mBqu. ù�
�
tPR

t
ù;

(v) for s P Szα and s1 P S, supposing s � tp`k, Ik,mkqkPKu Y tpb, v,mBqu and

s1 � tp`k1 , Ik1 ,mk1qk1PK1u Y tpb
1, v1,m1Bqu, s

σ
ÝÑ s1 i�

(a) tp`k, IkqkPKu
σ
ÝÑf� Φ

tp`k1 , Ik1qk1PK1u in A Φ,

i.e. tp`k1 , Ik1qk1PK1u P f
�
 ΦpSuccptp`k, IkqkPKu, σqq,

and pb, vq
σ
ÝÑ pb1, v1q in B;

(b) @k1 P K 1: p`k1 P F ñ mk1 � Jq;

(c) @k P K 1 with `k R F : if Dk� P K such that p`k� , Ik� ,Kq P s and

p`k, Ikq P destptp`k, IkqkPKu, tp`k1 , Ik1qk1PK1u, p`k� , Ik�qq, we have mk �

K; otherwise, mk � J;

(d) m1B � J i� mB � J or b1 P FB.

(vi) For s P α and s1 P S, supposing s � tp`k, Ik,JqkPKuY tpb, v,Jqu, s
σ
ÝÑ s1 i�

tp`k, Ik,KqkPKu Y tpb, v,Kqu
σ
ÝÑ s1 according to the rules in (i) ;

Ñ �
�
σPΣ

σ
ÝÑ.

5.3 MITL model-checking with TOCATA: the techniques 237

`2 `♦

b a, b

b, x P r1, 3s

a x :� 0

Figure 5.3: OCATA A Φ with Φ � 2pañ ♦r1,3sbq.

b0 b1

a, y :� 0

a, y � 1
b

Figure 5.4: A timed automaton B.

The transition relation `Ñ' of SB, Φ is de�ned in way that (1) a discrete

transition between two states of SB, Φ corresponds to a discrete transition be-

tween the con�gurations of A Φ they contain, (2) a discrete transition between

the states of B they contain and (3) the markers of the third component are kept

updated.

Example 5.19. We consider the Büchi timed automaton B of Figure 5.4 and

the OCATA A Φ of Figure 5.3, for the MITL formula Φ � 2pa ñ ♦r1,3sbq.

Figure 5.5 gives a part of the timed transition system SB, Φ. Its construction

is similar to that given over �nite words (see Example 4.18 for details), but the

markers must be kept updated. For instance, as the overhead state is accepting,

the marking is started again reading a or b. As `2 is the unique accepting location

in the state reached from it reading an a, its trio is the unique marked by J.

The following proposition ensures SB, Φ correctly represents the parallel ex-

ecution of B and A Φ. The proof is similar to that of Proposition 5.13 and can

be found in the appendix.

Proposition 5.20. For every MITL formula Φ, the associated A Φ and f� Φ,

238 Chapter 5. MITL satis�ability and model-checking over in�nite words

p`2, 0,Jq, pb0, 0,Jq

p`2, 0,Jq, p`♦, 0,Kq,

pb1, 0,Kq

p`2, 0,Jq,

pb0, 0,Kq
p`2, t1,Jq, pb0, t1,Jq

p`2, t2,Jq, p`♦, t2,Kq,

pb1, t2,Kq

p`2, 1,Jq, p`♦, 1,Kq,

pb1, 1,Kq

...
...

p`2, 1,Jq, p`♦, 0,Kq,

p`♦, 1,Kq, pb1, 1,Kq

p`2, 1,Jq, p`♦, r0, 1s,Kq,

pb1, 1,Kq

p`2, 1� t3,Jq, p`♦, 1� t3,Kq,

pb1, 1� t3,Kq

...

...

a b
ù

t1 P R

ù
t2 P Rzt1u ù

1

a
a

ù
t3 P R

Figure 5.5: Representation of a part of SB, Φ.

and for every Büchi timed automaton B:

LωpSB, Φq � Lωf� Φ
pA Φq X LpBq.

5.4 Region-based algorithm

The aim of this section is to provide a region-based algorithm to solve the

MITL model-checking problem (see De�nition 2.122). Thanks to Proposition 5.20,

such an algorithm only need to check that SB, Φ has no accepting run. Neverthe-

less, the timed transition system SB, Φ is in�nitely branching and we must use

a region abstraction: we adapt the region abstraction presented on �nite words

in order to cope with the Miyano-Hayashi markers. Once again, the aim is to

symbolically represent each region by a unique word.

For the sake of simplicity, we keep the same names for the region equivalence �,

and the function H giving a symbolic representation of each of its classes, than

for those de�ned in Section 4.2, over �nite words.

Here is the de�nition of the equivalence relation � on S. It is similar to

5.4 Region-based algorithm 239

De�nition 4.21: once again the states of the two con�gurations ofA Φ are indexed

on a same set K in aim to make `correspond' the states of same index. The only

di�erence with De�nition 4.21 is the addition, in point 1., of a condition that

forces corresponding trios of the two states of S to hold the same markers.

De�nition 5.21. Let Φ be an MITL formula, B � pΣ, B, b0, X, δ
B, FBq be a

timed automaton and SB, Φ, of state space S, be the transition system given by

De�nition 5.18. Let K be a set of indices and let s and s1 be two states of S such

that the con�gurations of A Φ they contain have the same cardinality. We suppose

that s � tp`k, Ik,mkqkPKuYtpb, v,mBqu and s
1 � tp`1k, I

1
k,m

1
kqkPKuYtpb

1, v1,m1Bqu.

Then, we de�ne s � s1 i�:

1. b � b1 and @k P K : `k � `1k ; mB � m1B and @k P K : mk � m1k,

2. @1 ¤ p ¤ n : vpxpq � v1pxpq and @k P K : pinfpIkq � infpI 1kq ^ suppIkq �

suppI 1kqq,

3. @1 ¤ p, q ¤ n : fracpvpxpqq ' fracpvpxqqq i� fracpv1pxpqq ' fracpv1pxqqq,

4. @k, k1 P K : fracpinfpIkqq ' fracpinfpIk1qq i� fracpinfpI 1k1qq ' fracpinfpI 1k1qq,

5. @k, k1 P K : fracpsuppIkqq ' fracpsuppIk1qq i� fracpsuppI 1kqq ' fracpsuppI 1k1qq,

6. @k, k1 P K : fracpinfpIkqq ' fracpsuppIk1qq i� fracpinfpI 1kqq ' fracpsuppI 1k1qq,

7. @k P K,@1 ¤ p ¤ n : fracpinfpIkqq ' fracpvpxpqq i� fracpinfpI 1kqq '

fracpv1pxpqq,

8. @k P K,@1 ¤ p ¤ n : fracpsuppIkqq ' fracpvpxpqq i� fracpsuppI 1kqq '

fracpv1pxpqq,

where ' P t ,�,¡u.

Example 5.22. We consider again the TA B of Figure 5.4 and the OCATA A Φ

of Figure 5.3, for the MITL formula Φ � 2pa ñ ♦r1,3sbq. We consider the

240 Chapter 5. MITL satis�ability and model-checking over in�nite words

following states of SB, Φ:

s1 :� tp`2, 1.4,Jq, p`♦, r0, 0.2s,Kq, pb1, 0.7,Kqu

s2 :� tp`2, 1.6,Jq, p`♦, r0, 0.5s,Kq, pb1, 0.65,Kqu

s3 :� tp`2, 1.6,Jq, p`♦, r0, 0.5s,Kq, pb1, 0.65,Jqu.

On the one hand, we have s1 � s2. Indeed, we make correspond p`2, 1.4,Jq with

p`2, 1.6,Jq, p`♦, r0, 0.2s,Kq with p`♦, r0, 0.5s,Kq and pb1, 0.7,Kq with pb1, 0.65,Kq

in way condition 1. is satis�ed. Condition 2. is satis�ed because 1.4 � 1.6 (class

s1, 2r), 0 � 0 (class t0u), 0.2 � 0.5 (class s0, 1r) and 0.7 � 0.65 (class s0, 1r).

Sorting the clock values of s1 following the increasing order of their fractional

parts, we obtain:

fracp0q fracp0.2q fracp1.4q fracp0.7q.

In s2, we obtain:

fracp0q fracp0.5q fracp1.6q fracp0.65q.

As corresponding clocks values are in the same place in these orderings, one can

verify that conditions 3. to 8. are indeed satis�ed. For instance, condition 4.

holds because, for each ' P t ,�,¡u:

fracp1.4q � 0.4 ' fracp0q � 0 i� fracp1.6q � 0.6 ' fracp0q � 0,

fracp1.4q � 0.4 ' fracp0.7q � 0.7 i� fracp1.6q � 0.6 ' fracp0.65q � 0.65

and fracp0q � 0 ' fracp0.7q � 0.7 i� fracp0q � 0 ' fracp0.65q � 0.65.

On the second hand, s1 � s3. Indeed, we must make correspond p`2, 1.4,Jq with

p`2, 1.6,Jq, p`♦, r0, 0.2s,Kq with p`♦, r0, 0.5s,Kq and pb1, 0.7,Kq with pb1, 0.7,Jq

to satisfy the beginning of condition 1.. Nevertheless, this does not enable to

entirely satisfy condition 1. because the markers of pb1, 0.7,Kq and pb1, 0.7,Jq do

not match.

The equivalence relation � induces a time-abstract bisimulation on the states

of SB, Φ, as stated by the following proposition. Its proof is close to that of

Proposition 4.23, the unique supplementary di�culty is to handle the Miyano-

Hayashi markers: it can be found in the appendix.

5.4 Region-based algorithm 241

Proposition 5.23 (Time-abstract bisimulation). Let Φ be an MITL formula,

B � pΣ, B, b0, X, δB, FBq be a timed automaton and SB, Φ, of state space S, be

the transition system given by De�nition 5.18. Let s1, s2 P S such that s1 � s2.

Then:

1. for each transition

s1
t
ù z1 with t P R� and z1 P S,

there exists t1 P R� and z2 P S such that:

s2
t1
ù z2 and z1 � z2 ;

2. for each transition

s1
σ
ÝÑ z1, with σ P Σ and z1 P S,

there exists z2 P S such that:

z1
σ
ÝÑ z2 and z1 � z2.

As in the �nite words setting, we remark that the size of the con�gurations

of A Φ we can encounter in SB, Φ is bounded by Mp Φq, thanks to the use of

f� Φ. So, there is only a �nite number of such con�gurations. As a consequence,

the number of con�gurations of A Φ we can encounter in SB, Φ is �nite. As the

number of regions is also �nite, the quotient of SB, Φ by � is �nite and we can

elaborate a model-checking algorithm using it.

In the sequel, we de�ne a symbolic representation of each of these regions by a

unique word, in a similar way as for �nite words. Nevertheless, the de�nition

of these words must be adapted: an additional component must be added to

represent the Miyano-Hayashi markers. Before giving the formal de�nition, let

us explain how we proceed on an example.

Example 5.24. Let us consider the TA B of Figure 5.4 and the OCATA A Φ

of Figure 5.3. To make this example interesting, we consider the following un-

reachable state of SB, Φ:

s1 :� tpb1, 1.5,Jq, p`♦, r0, 0.5s,Kq, p`♦, r1.7, 3.3s,Kqu.

242 Chapter 5. MITL satis�ability and model-checking over in�nite words

To represent the region of s1 according to �, we are interested in each of the

values of clocks and clock copies 1.5, 0, 0.5, 1.7 and 3.3, as well as in the order

of their fractional parts. Furthermore, it is important to remember that state

pb1, 1.5q is marked by J, and that values 0 and 0.5 form an interval marked by

K, as well as values 1.7 and 3.3.

We �rst construct a 4-tuple to represent each value of the clock copies of A Φ. A

4-tuple contains the location to which the clock copy is associated, the value of

the clock copy, the associated Miyano-Hayashi marker and a number to remember

which couples of clock copies form intervals. For s1, we have:

value 0 is represented by p`♦, 0,K, 1q,

value 0.5 is represented by p`♦, 0.5,K, 1q,

value 1.7 is represented by p`♦, 1.7,K, 2q,

value 3.3 is represented by p`♦, 3.3,K, 2q.

The value of clocks of B are also represented by a 4-tuple containing the location

in which B is, the value of the nth clock of B, a marker n to remember to which

clock of B the value corresponds, and the associated Miyano-Hayashi marker.

For s1, we have:

value 1.5 is represented by pb1, 1.5,J, 1q.

Secondly, we sort all the obtained 4-tuples in di�erent sets: we create a set for

each value of the fractional parts of the clock values. We recall that the fractional

part of clock (copies) values beyond cmax (� 3, here) is considered to be 0. For

our example, we have:

tpb1, 1.5,J, 1q, p`♦, 0.5,K, 1qu

tp`♦, 0,K, 1q, p`♦, 3.3,K, 2qu

tp`♦, 1.7,K, 2qu

When the values of clocks and clock copies will be replaced by the region of

REG they are in, each of these sets will be a letter of the word symbolically

representing the region of s1 according to �. Nevertheless, before replacing the

values by the good regions of REG, we must sort the letters of this word. In

5.4 Region-based algorithm 243

fact, we sort these letters according to the order of the fractional part of clock

values they represent. We here obtain:

tp`♦, 0,K, 1q, p`♦, 3.3,K, 2qu tpb1, 1.5,J, 1q, p`♦, 0.5,K, 1qu tp`♦, 1.7,K, 2qu

The region of s1 is so symbolically represented by:

tp`♦, t0u,K, 1q, p`♦, s3,�8r,K, 2qu tpb1, s1, 2r,J, 1q, p`♦, s0, 1r,K, 1qu

tp`♦, s1, 2r,K, 2qu

Formally, we encode regions of SB, Φ by �nite words whose letters are �nite

sets of 4-tuples of the form p`, r,m, kq, where ` P L Y LB, r P REG, m P tJ,Ku

and 0 ¤ k ¤ Mp Φq{2. Here is the de�nition of the function H that associates

with each s P S the region it is in: it is similar to the de�nition given in the

setting of �nite words.

De�nition 5.25. For s � tp`k, Ik,mkqkPKu Y tpb, v,mqu, Hpsq � H1H2 � � �Hp

is de�ned as follows:

1. For each location `, let Cp`q � tp`1, I,mq P C | `1 � `u. Assume Cp`q �

tp`1, I1,m1q, . . . , p`k, Ik,mkqu, with I1 ¤ � � � ¤ Ik. Then, we �rst build

E` � tp`i, infpIiq,mi, iq, p`i, suppIiq,mi, iq | 1 ¤ i ¤ ku.

2. We treat p`B, v,mq symmetrically, and let EB � tp`B, vpx1q,m, 1q, . . . ,

p`B, vpxnq,m, nqu. We let E � EB Y`PL E`. That is, all elements in E
are tuples p`, v,m, iq, where ` is a location (of AΦ or B), v is a real value

(interval endpoint or clock value), m is a Miyano-Hayashi marker and i

is bookkeeping information that links v to an interval (if ` is a location of

AΦ), or to a clock (` is a location of B).

3. We partition E into E1, . . . , Ep such that each Ei contains all elements from

E with the same fractional part of their second component (recall that we

assume fracpuq � 0 for all u ¡ cmax). We assume the ordering E1, E2,. . . ,

Ep re�ects the increasing ordering of the fractional parts.

244 Chapter 5. MITL satis�ability and model-checking over in�nite words

4. For all 1 ¤ i ¤ p, we obtain Hi from Ei by replacing the second component

of all elements in Ei by the region from REG they belong to.

Thus, noting max` the maximal number of interval that can be present in

location ` P L of A Φ (given by the proof of Theorem 5.11), and noting n � |X|

the number of clocks of B, Hpsq will be a �nite word over the alphabet Λ �

pB Y Lq �REG� tJ,Ku � t1, 2, . . . ,maxpmax
`PL

pmax`q, nqu. We will also view H

as a function H : S Ñ Λ�.

Example 5.26. Consider a TA B with 1 clock, let cmax � 2, and let s �
tp`1, r0, 1.3s,Kq, p`1, r1.8, 2.7s,Jqu, p`

B, 0.3,Kq
(
. The �rst step of the construc-

tion yields the set E � t p`1, 0,K, 1q, p`1, 1.3,K, 1q, p`1, 1.8,J, 2q, p`1, 2.7,J, 2q,

p`B, 0.3,K, 1q u. Then, we have Hpsq �

p`1, t0u,K, 1q, p`1, s2,�8r,J, 2q

(

p`1, s1, 2r,K, 1q, p`

B, s0, 1r,K, 1q
(
p`1, s1, 2r,J, 2q

(
.

As we follows the same reasoning as for �nite words, the following de�ni-

tions and propositions have their twin in the previous chapter. The proofs of the

propositions are omitted here because they are similar to the proofs of the cor-

responding ones for the �nite words setting: they can be found in the appendix.

We �rst present a proposition stating that the words obtained from H give a

correct representation of classes of �.

Proposition 5.27. Let s, s1 P S. We have: s � s1 i� Hpsq � Hps1q.

The bisimulation lemma enables to only consider the classes of � (i.e. the

words given by function H) instead of all the states of SB, Φ. We here de�ne

the set of classes of SB, Φ we are interested in and the (timed and discrete)

transitions between those classes, in a similar way as for �nite words.

De�nition 5.28. We de�ne:

H � SB, Φ

L
� � tHpsq | s P Su.

5.4 Region-based algorithm 245

For all W 1,W 2 P H and σ P Σ we de�ne W 1 σ
ÝÑ W 2 i� @s1 P pHq�1pW 1q,

Ds2 P pHq�1pW 2q : s1 σ
ÝÑ s2.

For all W 1,W 2 P H, we de�ne W 1 ÝÑT W
2 i� @s1 P pHq�1pW 1q, Dt P R and

Ds2 P pHq�1pW 2q : s1 t
ù s2.

Example 5.29. Once again, we consider the TA B of Figure 5.4 and the OCATA

A Φ of Figure 5.3. Let us consider the state tp`2, 2.2,Jq, p`♦, r1, 2s,Kq,

pb0, 2,Jqu of SB, Φ. Its class in H is the word:

W 1 :� tp`♦, t1u,K, 1q, p`♦, t2u,K, 1q, pb0, t2u,J, 1qu tp`2, s2, 3r,J, 1qu.

Let us note:

W 2 :� tpb0, t2u,J, 1qu tp`2, s2, 3r,J, 1qu.

We have W 1 b
ÝÑ W 2. Indeed, let s1 P H�1pW 1q: s1 will be of the form

tp`2, t,Jq, p`♦, r1, 2s,Kq, pb0, 2,Jqu, for a certain t Ps2, 3r. Let us consider s2 �

tp`2, t,Jq, pb0, 2,Jqu, we have that s
2 P H�1pW 2q and s1 b

ÝÑ s2.

Now, let us note:

W 3 :� tp`♦, s1, 2r,K, 1q, p`♦, s2, 3r,K, 1q, pb0, s2, 3r,J, 1qu tp`2, s2, 3r,J, 1qu.

We have W 1 ÝÑT W 3. Indeed, let s1 P H�1pW 1q: s1 will be of the form

tp`2, t,Jq, p`♦, r1, 2s,Kq, pb0, 2,Jqu, for a certain t Ps2, 3r. Let us consider t
1 Ps0, 1r

and s3 � tp`2, t�t
1,Jq, p`♦, r1�t

1, 2�t1s,Kq, pb0, 2�t
1,Jqu such that t�t1 Ps2, 3r

(such a t1 always exists as we are using open intervals of R). Hence, we have

s3 P H�1pW 3q and s1 t1
ù s3.

We de�ned that W 1 σ
ÝÑW 2 i� for all s1 P H�1pW 1q:

Ds2 P H�1pW 2q such that s1 σ
ÝÑ s2. (5.1)

Indeed, no matter the choice of s1 P H�1pW 1q, the following proposition states

that, if property 5.1 is true for one such s1, it will consequently be true for all

such s1.

Proposition 5.30. Let W 1,W 2 P H, σ P Σ and t P R�.
W 1 σ

ÝÑW 2 i� Ds1 P pHq�1pW 1q and s2 P pHq�1pW 2q : s1 σ
ÝÑ s2.

246 Chapter 5. MITL satis�ability and model-checking over in�nite words

As previously explained, our model-checking algorithm will consist in looking

for a path to an accepting reachable state of H which is reachable from itself. We

will conclude that B * Φ if and only if such a path exists. We so de�ne PostpWq,
forW � H: this operator will be used in our algorithm to compute the successors

of the set of states of H we have already reached.

De�nition 5.31. Let W � H, we de�ne:

PostpWq :� tW 1 P H | Dσ P Σ, W PW and W 2 P H : W ÝÑT W
2 σ
ÝÑW 1u.

To ensure the termination of our following algorithm, we need PostpW q to

be �nite and e�ectively computable, for any word W P H. This is what claims

the following proposition. Its proof, presented in the appendix, is similar to that

of Proposition 4.31. The procedure to compute PostpW q from W is also similar

to that depicted in the proof of this Proposition 4.31.

Proposition 5.32. For each word W P H, PostpW q is �nite and e�ectively

computable.

Example 5.33. We consider again the TA B of Figure 5.4 and the OCATA A Φ

of Figure 5.3. Let us consider the following word of H � SB, Φ

L
�:

W :� tp`2, s3,�8r,J, 1q, p`♦, t2u,K, 1q, p`♦, t3u,K, 1q, pb0, t3u,J, 1qu.

We will look for PostpW q. The procedure of the proof of Proposition 4.31 recur-

sively gives the following timed successors of W :

W :� tp`2, s3,�8r,J, 1q, p`♦, t2u,K, 1q, p`♦, t3u,K, 1q, pb0, t3u,J, 1qu,

W 1 :� tp`2, s3,�8r,J, 1q, p`♦, s3,�8r,K, 1q, pb0, s3,�8r,J, 1qutp`♦, s2, 3r,K, 1qu,

W 2 :� tp`2, s3,�8r,J, 1q, p`♦, s3,�8r,K, 1q, pb0, s3,�8r,J, 1q, p`♦, t3u,K, 1qu,

W 3 :� tp`2, s3,�8r,J, 1q, p`♦, s3,�8r,K, 1q, pb0, s3,�8r,J, 1q, p`♦, s3,�8r,K, 1qu.

In way to compute the discrete successors of W , we might consider

s � tp`2, 3.1,Jq, p`♦, r2, 3s,Kq, pb0, 3,Jqu,

5.4 Region-based algorithm 247

as Hpsq �W . Let us note:

s1 :� tp`2, 3.1,Jq, p`♦, 0,Kq, p`♦, r2, 3s,Kq, pb1, 0,Kqu,

s2 :� tp`2, 3.1,Jq, p`♦, r0, 3s,Kq, pb1, 0,Kqu,

s3 :� tp`2, 3.1,Jq, p`♦, r2, 3s,Kq, pb0, 3,Jqu,

s4 :� tp`2, 3.1,Jq, pb0, 3,Jqu.

We have that s
a
ÝÑ s1, s

a
ÝÑ s2, s

b
ÝÑ s3 and s

b
ÝÑ s4. This gives the following

elements of PostpW q:

W 1
post :� tp`2, s3,�8r,J, 1q, p`♦, t0u,K, 1q, p`♦, t2u,K, 2q, p`♦, t3u,K, 2q, pb1, t0u,K, 1qu,

W 2
post :� tp`2, s3,�8r,J, 1q, p`♦, t0u,K, 1q, p`♦, t3u,K, 1q, pb1, t0u,K, 1qu,

W 3
post :� tp`2, s3,�8r,J, 1q, p`♦, t2u,K, 1q, p`♦, t3u,K, 1q, pb0, t3u,J, 1qu,

W 4
post :� tp`2, s3,�8r,J, 1q, pb0, t3u,J, 1qu.

A similar procedure enables to compute the others elements of PostpW q from

W 1, W 2 and W 3.

In our algorithm, we will be looking for a reachable state of H reachable from

itself. To algorithmically verify this, we need the following operators Post� and

Post�.

De�nition 5.34. LetW � H and n P N, we de�ne: PostnpWq � PostpPostn�1pWqq,
with Post0pWq �W and Post1pWq � PostpWq.
We de�ne Post�pWq �

�
nPN

PostnpWq and Post�pWq �
�
nPN0

PostnpWq.

Remark that, as H is �nite, Dm P N : Post�pWq �
�m
n�1 Post

npWq.

We still �x some notations and vocabulary used in the presentation of our

algorithm.

De�nition 5.35. We note H0 :� Hps0q the word of H corresponding to the

initial state of SB, Φ.

De�nition 5.36. We say that a wordW P H is accepting i� the third components

of all the 4-tuples it contains are J (such words correspond to accepting states of

248 Chapter 5. MITL satis�ability and model-checking over in�nite words

SB, Φ).

We note F � H the set of accepting words of H.

Algorithm 10 is an (classical) algorithm for the model-checking of MITL in

which the reachable words of H � SB, Φ

L
� reachable from themselves are com-

puted `on the �y'.

Algorithm 10 MITLModelCheckingOverIn�niteWords

Input: A TA B and the ATA A Φ, for Φ P MITL.

Output: `true' i� B |ù Φ.

1: C Ð H

2: D Ð Post�pH0q X F
3: while C � D do

4: C Ð D

5: D Ð Post�pDq X F
6: end while

7: if D � H then

8: return true

9: else

10: return false

11: end if

We use the following theorem to prove that this algorithm is correct.

Theorem 5.37 ([45] - Theorem 2.3.20). Let B � pΣ, L, `0, X, F, δq be a non-

deterministic Büchi automaton.

LpBq � H i� GFP pλX.Post�pXq X F X Post�p`0qq � H.

Remark that, noting E0 � Post�pH0qXF and Ei � Post�pEi�1qXF , at the
end of the i-st passage in the while loop of Algorithm 10, C � Ei.

Thanks to Theorem 5.37, we only need to prove the following lemma to ensure

the correctness of Algorithm 10.

5.4 Region-based algorithm 249

Lemma 5.38. Let i ¥ 1. Ei � Ei�1 i� Ei�1 � GFP pλX.Post�pXq X F X
Post�pH0qq.

Proof. pðq Suppose that Ei�1 � GFP pλX.Post�pXq X F X Post�pH0qq. In

particular, Ei�1 � Post�pEi�1q X F X Post�pH0q, i.e.:

Ei�1 � Ei X Post
�pH0q p�q.

We will show that, @j ¥ 1, Ej � Ej�1: in particular it means that Ei � E0 �

Post�pH0q X F � Post�pH0q. It enables to conclude from p�q that Ei�1 � Ei.

Basis: We prove that E1 � E0. We know that Post�pH0q X F � Post�pH0q. As

function Post� is monotonic: Post�pPost�pH0q X Fq � Post�pPost�pH0qq �

Post�pH0q. So, E1 � Post� pPost�pH0q X Fq X F � Post�pH0q X F � E0.

Induction: Suppose that @0 k i, Ek � Ek�1. We must prove that Ei � Ei�1.

By induction hypothesis, Ei�1 � Ei�2, and as function Post� is monotonic:

Post�pEi�1q � Post�pEi�2q. Hence, Ei � Post�pEi�1q X F � Post�pEi�2q X

F � Ei�1.

pñq Suppose that Ei � Ei�1. Let us �rst prove that Ei�1 is a �xed point of

λpXq � Post�pXqXFXPost�pH0q. λpEi�1q � Post�pEi�1qXFXPost�pH0q �

Ei X Post
�pH0q � Ei � Ei�1.

Now, let us prove that Ei�1 is a greatest �xed point of λ. Let Y � Ei�1 such that

Y � λpY q. We must prove that Y � Ei�1. As we already know that Ei�1 � Y ,

it remains to prove that Y � Ei�1. As Y � λpY q, we have Y � Post�pY q X

F X Post�pH0q � F X Post�pH0q � E0. As Y � E0 and function Post� is

monotonic, Post�pY q � Post�pE0q. So, Y � Post�pY q X F X Post�pH0q �

Post�pE0q X F X Post�pH0q � E1 X Post
�pH0q � E1. Applying inductively the

same reasoning, we obtain that, @k ¥ 0, Y � Ek. Hence, Y � Ei�1.

Here is a theorem giving a rough size of the number of words that Algorithm 10

must explore in the worst case.

250 Chapter 5. MITL satis�ability and model-checking over in�nite words

Theorem 5.39. For every MITL formula Φ, the associated OCATA A Φ �

pΣ, L, `0, F, δq, and every timed automaton B � pΣ, B, b0, X, FB, δBq with n clocks,

H (constructed thanks to SB, Φ) contains O p2mq elements, where

m � p|B| � |L|q . p2.cmax � 2q .2.max

�
n

max
i�1

pmaxi
2 q, n

. pMp Φq � nq.

Proof. Let us note m1 � p|B| � |L|q . p2.cmax � 2q .2.max

�
n

max
i�1

pmaxi
2 q, n

. There

is 2m
1
elements in Λ � pBYLq�REG�tJ,Ku�t1, 2, . . . ,maxp

n
max
i�1

pmaxi
2 q, nqu.

H is a set of words of Λ� having at most Mp Φq � n letters. There are: 1 word

of 0 letters over Λ ; 2m
1
words of 1 letters over Λ ; 22.m1 words of 2 letters over Λ

; 23.m1 words of 3 letters over Λ ; . . . ; 2pMp Φq�nq.m1 words of Mp Φq�n letters

over Λ. Globally, there are Σ
Mp Φq�n
j�0 2j.m

1
� O

�
2pMp Φq�nq.m1

	
� O p2mq words

in H.

5.5 Zone-based algorithm

As for the �nite word setting, the aim of this section is to provide a heuristic

of the previously presented algorithms, over in�nite words, using zones instead of

regions. We thus show how zones for OCATA [2] can be adapted to represent set

of states of SB, Φ. Let us recall we �xed an MITL formula Φ, the OCATA A Φ �

pΣ, L, `0, F, δq representing the negation of Φ and a TA B � pΣ, B, b0, X, δB, FBq.

As previously, a zone is an extended guard on the values of the clocks and clock

copies, with additional information. This supplementary information aims to

associate clock copies of A Φ and clocks of B to the locations they are in, and

to Miyano-Hayashi markers. All the results presented in this section are twins of

those of Section 4.4. The unique di�erence is the treatment needed to cope with

the Miyano-Hayashi markers.

In the sequel, we use again the following notations from Section 4.4:

5.5 Zone-based algorithm 251

� x is the unique clock of A Φ and xB1 , x
B
2 , . . . , x

B
n the clocks of B.

� Copies � tx1, x2, . . . , xMp Φq{2, y1, y2, . . . , yMp Φq{2u is the set of Mp Φq

copies of x: each pair of clock copies pxi, yiq will represent an interval.

� Copiesbegin :� tx1, x2, . . . , xMp Φq{2u, Copiesend :� ty1, y2, . . . , yMp Φq{2u

and for 1 ¤ m ¤ Mp Φq{2: Copiesm :� tx1, x2, . . . , xm, y1, y2, . . . , ymu

and Copiesmbegin :� tx1, x2, . . . , xmu, while Copies
0pxq � Copies0

begin � H.

Once again, the de�nition of zone presented below uses a supplementary clock

x0 whose value is always 0 and is based on the notion of extended guard (see

De�nition 4.58). It is very close to the de�nition of zone given in De�nition 4.59,

over �nite words. However, this de�nition not only takes care of giving, for each

clock copy of A Φ (and for the timed automaton B), the location it is in, but

it also precises the Miyano-Hayashi marker associated to each copy of clock of

A Φ (and associated to B). These informations are crucial in way to perform

model-checking over A Φ and B.

De�nition 5.40. A zone Zm is a tuple plocA, locB, Zq where:

� m P N0,

� locA : Copiesmbegin Ñ L� tJ,Ku,

� locB P B � tJ,Ku is a pair consisting in a location of B and a marker in

tJ,Ku, and

� Z is an extended guard on Copiesm YX Y tx0u (it is a `classical zone' on

this set of clocks [27]).

A zone Zm represents a particular set of states of SB, Φ given by the following

de�nition:

De�nition 5.41. Let Zm � plocA, locB, Zq be a zone on set of clocks CopiesmY

X � tx1, x2, . . . , xm, y1, y2, . . . , ymuYtx
B
1 , x

B
2 , . . . , x

B
nu, such that locB � ploc,markq.

252 Chapter 5. MITL satis�ability and model-checking over in�nite words

Then, we let JZmK be the denotation of Zm de�ned as the following set of states

of SB, Φ:

t ploc, vpxB1 q, vpx
B
2 q, . . . , vpx

B
nq,markq, ploc

x1 , rvpx1q, vpy1qs,mark
x1q, . . . ,

plocxm , rvpxmq, vpymqs,mark
xmq u,

such that v is a valuation of Copiesm Y X with v |ù Zm and plocc,markcq �

locApcq for all c P Copies
m
begin.

For a set ζ of zones, we note JζK :�
�

ZmPζ JZmK.

By abuse of notation, we sometimes write s P Zm instead of s P JZmK.

Remark 5.42. We notice that, in the de�nition of zone Zm � plocA, locB, Zq,

there is no assumption about the constants to use in the extended guards of Z.

In particular, they may contain constants greater than the maximal constants of

A Φ and B.

De�nition 5.43. The initial zone is Z init1 � plocA, locB, Zq with Z � xB1 �

0^� � �^xBn � 0^x1 � 0^y1 � 0, locApx1q � p`0,mark
Aq and locB � pb0,mark

Bq

where markA � J i� `0 P F and markB � J i� b0 P F
B.

A zone Zm � plocA, locB, Zq is accepting i� @1 ¤ i ¤ m, D`i P L such that

locApxiq � p`i,Jq and Db P B such that locB � pb,Jq.

Example 5.44. Let us consider again the TA B of Figure 4.12 and the OCATA

A Φ of Figure 5.6. The initial zone is Z init1 � plocA, locB, Zq with:

� locApx1q � p`2,Jq,

� locB � pb0,Jq, and

� Z � xB1 � 0^ x1 � 0^ y1 � 0.

The unique state of SB, Φ represented by Z init1 is:

tpb0, 0,Jq, p`2, r0, 0s,Jqu,

5.5 Zone-based algorithm 253

`2 `♦

b a, b

b, x P r1, 3s

a x :� 0

Figure 5.6: OCATA A Φ with Φ � 2pañ ♦r1,3sbq.

b0 b1

a, xB1 :� 0

a, xB1 � 1
b

Figure 5.7: A timed automaton B.

it is the initial state of SB, Φ. Z init1 is accepting because the markers of locApx1q

and locB are both J.

Here is an example of a zone using 2 pairs of clock copies: Z2 :� ploc1A, loc
1
B, Z

1q,

with:

� loc1Apx1q � p`2,Jq and loc
1
Apx2q � p`♦,Kq

� loc1B � pb1,Kq, and

� Z 1 � x1 ¥ 0^ y1 ¥ 0^ x1 � y1 ^ x2 � 0^ y2 � 0^ xB1 � 0.

Z2 represents the set of states:

tpb1, 0,Kq, p`2, rt, ts,Jq, p`♦, r0, 0s,Kq | t P R�u.

As for the �nite words setting, our algorithm on zones will start from the

initial zone and compute its successors. But this time, we are looking for an

accepting zone reachable from the initial zone and reachable from itself. We now

de�ne the timed and discrete successors of a given zone.

254 Chapter 5. MITL satis�ability and model-checking over in�nite words

De�nition 5.45. Let Zm be a zone. PostT pZmq denotes the zone such that:

JPostT pZmqK � ts1 P SB, Φ | Ds P Zm and t P R� such that s
t
ù s1u.

PostT pZmq can be computed from Zm using the same method as for �nite

words (see De�nition 4.64).

De�nition 5.46. Let Zm be a zone. PostDpZmq denotes a set of zones Z such

that:

JPostT pZmqK � ts1 P SB, Φ | Ds P Zm and σ P Σ such that s
σ
ÝÑ s1u.

Remark 5.47. As for the �nite words setting, we note that a state s of SB, Φ

and one of its discrete successors do not necessarily use the same number of clock

copies: an element of PostDpZmq may be a zone using a number of pairs of clock

copies di�erent from m.

We start giving two examples of computations of PostDpZmq before to give

an intuition on the general way to determine it. Finally, we will formally de�ne

how to compute it.

Example 5.48. Let us consider again the TA B of Figure 5.7 and the OCATA

A Φ of Figure 5.6. We consider the accepting zone Z1 :� plocA, locB, Zq with:

� locApx1q � p`2,Jq,

� locB � pb0,Jq, and

� Z � xB1 ¥ 0^ x1 ¥ 0^ y1 ¥ 0^ x1 � y1 ^ x1 � xB1 .

We are looking for PostDpZ1q. Let us consider s P Z1. s is of the form:

tpb0, t,Jq, p`2, rt, ts,Jqu, for some t P R�.

On the one hand, a discrete successor of such an s, reading b P Σ, will be a state

of the form:

tpb0, t,Jq, p`2, rt, ts,Jqu.

5.5 Zone-based algorithm 255

Indeed, even if s is accepting and the marking of locations must be started again,

b0 and `2 are also accepting locations. This set of states of SB, Φ is exactly

represented by the zone Z1 itself. On the other hand, a discrete successor of such

an accepting s, reading a P Σ, will be a state of the form:

tpb1, 0,Kq, p`2, rt, ts,Jq, p`♦, r0, 0s,Kqu, for t P R�.

This set of states of SB, Φ is exactly represented by the zone Za2 :� ploc1A, loc
1
B, Z

1q,

with:

� loc1Apx1q � p`2,Jq and loc
1
Apx2q � p`♦,Kq

� loc1B � pb1,Kq, and

� Z 1 � x1 ¥ 0^ y1 ¥ 0^ x1 � y1 ^ x2 � 0^ y2 � 0^ xB1 � 0.

We conclude that PostDpZ1q :� tZ1,Za2 u.

Example 5.49. Let us still consider the TA B of Figure 5.7 and the OCATA

A Φ of Figure 5.6. We consider the zone Z2 :� plocA, locB, Zq with:

� locApx1q � p`2,Jq and locApx2q � p`♦,Kq,

� locB � pb1,Kq, and

� Z � x1 ¥ 1^ y1 ¥ 1^ x1 � y1 ^ x2 � 1^ y2 � 1^ xB1 � 1.

We are looking for PostDpZ2q. Let us consider s P Z2. s is of the form:

tpb1, 1,Kq, p`2, rt, ts,Jq, p`♦, r1, 1s,Kqu, for some t ¥ 1.

Remark that we can only read an a from such a state (see the unique arc starting

from b1 in B). A discrete successor of s can either be of the form:

piq tpb0, 1,Jq, p`2, rt, ts,Jq, p`♦, r0, 0s,Kq, p`♦, r1, 1s,Kqu, or

256 Chapter 5. MITL satis�ability and model-checking over in�nite words

piiq tpb0, 1,Jq, p`2, rt, ts,Jq, p`♦, r0, 1s,Kqu.

We note that case piq is only possible because Mp Φq is big enough. The set

of states of SB, Φ presented in piq is exactly represented by the zone Z3 :�

ploc3
A, loc

3
B, Z

3q with:

� loc3
Apx1q � p`2,Jq, loc

3
Apx2q � p`♦,Kq and loc

3
Apx3q � p`♦,Kq,

� loc3
B � pb0,Jq, and

� Z3 � x1 ¥ 1^y1 ¥ 1^x1 � y1^x2 � 0^y2 � 0^x3 � 1^y3 � 1^xB1 � 1.

The set of states of SB, Φ presented in piiq is exactly represented by the zone

Zgroup2 :� plocgroupA , locgroupB , Zgroupq with:

� locgroupA px1q � p`2,Jq and loc
group
A px2q � p`♦,Kq,

� locgroupB � pb0,Jq, and

� Zgroup � x1 ¥ 1^ y1 ¥ 1^ x1 � y1 ^ x2 � 0^ y2 � 1^ xB1 � 1.

We conclude that PostDpZ2q :� tZ3,Zgroup2 u.

In general, we compute PostDpZmq, where Zm � plocA, locB, Zq, in a similar

way as over �nite words, except that the Miyano-Hayashi markers must be kept

updated. From a non-accepting zone, we proceed as follows.

a. When an interval stays in a same location `, and is not merged with a new

created interval in `:

� its marker stays unchanged if ` is non accepting, and

� its marker becomes J if ` is accepting (this case is necessary when we

reached a �nal zone and that all the markers were changed to K).

5.5 Zone-based algorithm 257

b. When a new interval r0, 0s is created in a location `, it is because several

intervals follows arcs leading to `:

� if all these intervals were marked by J, this new interval is also marked

by J, and

� in contrary, if at least one of these intervals was marked by K, this

interval witnesses a branch which have not visited F yet. We must

mark this new interval by K to recall it.

c. When a new interval is created in a location ` (because several intervals

follows arcs leading to `) and merged with the smallest interval which were

associated to `, the interval to marked takes marker J i�:

� ` is accepting, or

� all the intervals arriving in ` and the previous smallest interval asso-

ciated to ` are marked by J.5

From an accepting zone, we start changing all the markers to K before to proceed

as previously explained.

In the sequel, we formally de�ne what we have just intuitively explained. Let

us �x a zone Zm � plocA, locB, Zq. We will use the following formal notations:

� for an arc t of A Φ of the form p`, σ,
�
k Aj,kq such that

�
k Aj,k is a disjunct

in δp`, σq, we let destptq � t` | Dk : Aj,k � ` _ Aj,k � x.`u to be the set of

destinations of t.

� We �rst collect the arcs labelled by σ that start in the current locations of

both automata and combine them:

1. @c P Copiesm, @σ P Σ:

Epc, σq :� t arcs labelled by σ and whose starting location is

. the location of locApcqu,

5In all the other cases, a marker K should recall that at least one branch leading to the

presently considered interval has not visited F yet.

258 Chapter 5. MITL satis�ability and model-checking over in�nite words

2. @σ P Σ:

EpB, σq :� tarcs starting from the location of locB and labelled by σu,

3. @σ P Σ:

Z d σ :� EpB, σq �
±m
i�1Epxi, σq.

� Then, we introduce de�nitions that will allow us to select from the zone

the valuations that satisfy the guards of selected arcs from A Φ and B. To
do this, we collect the guards of all these arcs and combine them:

1. for every arc t:

Constrptq :� tc | c is a clock constraint in the guard of tu,

2. for tB � pbstart, σ, g, r, barrivalq an arc of B, and for a sequence t1, . . . , tm
of arcs of A Φ, we let:

gtB,t1,...,tm :� g ^
©

1¤i¤m
ciPConstrptiq

�
ci|x�xi ^ ci|x�yi

	
.

� Now, we �x an arc tB � pbstart, σ, g, r, barrivalq of B, and a sequence t1, . . . , tm
of arcs of A Φ to be �red simultaneously. We introduce de�nitions that

allow us to compute the locations, the clock copies present in them, and

the associated Miyano-Hayashi markers that will be active after �ring these

arcs. We need to distinguish between locations on which we loop from oth-

ers. Indeed, when we do not loop, we must reset one (see Example 5.49,

point piiq and zone Z3) or two (see Example 5.49, point piq and zone Zgroup2)

clock(s) in the destination location.

1. We �rst de�ne the following set keeping the destination location and

marker of B, and the destination location and the marker of each clock

copy of A Φ that changes of location:

LOCMptB, t1, . . . , tmq :�

. tpbarrival,markq | mark is the marker of locBu

. Y t ploc,markq | D1 ¤ i ¤ m : loc P destptiqztlocApxiqu and

. mark is the marker of locApxiqu.

5.5 Zone-based algorithm 259

2. We de�ne a set containing the clock copies that loop on their location:

Looppt1, . . . , tmq :� txi | locApxiq � p`,markq and ` P destptiqu

Y tyi | locApxiq � p`,markq and ` P destptiqu.

3. From Looppt1, . . . , tmq, we need to extract the clock copies with the

minimal value associated to each location ` on which some clock copies

loop. Indeed, in case of a merging of intervals in `, such a clock copy

will be reset (see Example 5.49, point piq and zone Zgroup2):

minLooppt1, . . . , tmq :�

. txi P Looppt1, . . . , tmq X Copiesbegin |

. @x1i P Looppt1, . . . , tmq with locApxiq � locApx
1
iq,

. x1i ¥ xi is implied by the extended guard of Zmu.

� Finally, to conclude the e�ect of the combined �ring of ptB, t1, . . . , tmq, we

need to compute which clocks and clock copies will be reset. By the previous

de�nitions, we only need to reset one or two clock copie(s) in the locations

` such that p`,markq P LOCMptB, t1, . . . , tmq for some mark P tJ,Ku.

For each such location `, we note r` an element of the set ttx`u, tx, yuu such

that:

(a) r` � tx`u implies that x` P minLooppt1, . . . , tmq and locApx
`q � `,

and

(b) r` � tx, yu implies that x P CopiesbeginzLooppt1, . . . , tmq and y P

CopiesendzLooppt1, . . . , tmq.

we furthermore require that

(c) for all `i, `j such that p`i,markiq P LOCMptB, t1, . . . , tmq and

p`j ,markjq P LOCMptB, t1, . . . , tmq for some marki,markj P tJ,Ku:

r`i X r`j � H.

Thanks to those notations, we are now able to de�ne the elements of PostDpZmq.

For Zm � plocA, locB, Zq,

260 Chapter 5. MITL satis�ability and model-checking over in�nite words

Z 1m1 � ploc1A, loc1B, Z 1q P PostDpZmq
i�

either (1) Zm is not accepting and:

there exists σ P Σ, ptB, t1, . . . , tmq P Z d σ and r`, for all ` such that p`,markq P

LOCMptB, t1, . . . , tmq for some mark P tJ,Ku, such that gtB,t1,...,tm XZ is satis-

�able and:

� Z 1 � pgtB,t1,...,tm X Zq
��
r Y

�
r`
�

:� 0
�
;

� @xi P Looppt1, . . . , tmqz
��

r`
�
6, loc1Apxiq consists in the location of locApxiq

and:

� the marker J if the location of locApxiq is in F ,

� the marker of locApxiq otherwise;

@x` P
�
` X Copiesbegin

�
zLooppt1, . . . , tmq

7, loc1Apx`q consists in the location

` and the marker:

� J i� ` P F or p`,Kq R LOCMptB, t1, . . . , tmq
8

@x` P r
` X Looppt1, . . . , tmq

9, loc1Apx`q consists in the location ` and the

marker:

� J i� ` P F or (p`,Kq R LOCMptB, t1, . . . , tmq and the marker of

locApx`q is J);

� loc1B consists in the destination location `B of tB and the marker:

� J i� `B P FB or p`B,Jq P LOCMptB, t1, . . . , tmq;

6case a. of the previously given intuition.
7case b. of the previously given intuition.
8Several branches reach location ` with di�erent markers and creat: if one of them was K,

it witnesses a branch that has not yet visited F and this information must be retained using a

K marker.
9case c. of the previously given intuition.

5.5 Zone-based algorithm 261

or (2) Zm is accepting and:

de�ning loc�A such that @1 ¤ i ¤ m, if locApxiq � p`,Jq, then loc
�
Apxiq � p`,Kq,

Z 1m1 satis�es the conditions of case (1) in which loc�A plays the role of locA.

The following proposition states that the elements of PostDpZmq were cor-

rectly de�ned. Its proof is close to that of Proposition 4.70 (its twin for the

setting of �nite words): it can be found in the appendix.

Proposition 5.50. Let Zm be a zone.

JPostDpZmqK � ts1 | Ds P Zm such that sÑ s1 in SB, Φu.

The operators Post, Post� and Post� are de�ned in a similar way for zones

over in�nite words and over �nite words (see De�nitions 4.71 and 4.72).

We recall that, over regions, as H is �nite, when considering W � H, we had
the existence of an m P N such that: Post�pWq �

�m
n�1 Post

npWq (see De�ni-
tion 5.34). Althrough there is no maximal value bounding the constants present

in the extended guards of a zone (see Remark 5.42), we recall (see Section 4.4)

that this problem was subject to debate, a debate that was �nally closed thanks

to the paper [15]. The technique used consists in the approximation of each zone

Z by ApproxβpZq (see Section 4.4 and [15] for further details). The number of

such `approximated' zones is then �nite and a correct algorithm in the spirit of

Algorithm 10 (over regions), will thus terminate. Hence, we can present Algo-

rithm 11, that uses approximation Approxβ and solves the MITL model-checking

problem using the same outline as Algorithm 10. This algorithm terminates be-

cause there is only a �nite number of `approximated' zones to explore.

262 Chapter 5. MITL satis�ability and model-checking over in�nite words

Algorithm 11 MITLModelCheckingOverIn�niteWordsWithZones

Input: A TA B and the ATA A Φ, for Φ P MITL.

Output: `true' i� B |ù Φ.

1: C Ð H

2: D Ð ApproxβpPost
�pZ init1 qq X F

3: while C � D do

4: C Ð D

5: D Ð ApproxβpPost
�pDqq X F

6: end while

7: if D � H then

8: return true

9: else

10: return false

11: end if

. .CHAPTER 6

Experimental results

In this chapter, we give the results obtained when testing the program im-

plementing our di�erent algorithms on several benchmarks. In addition to the

algorithms presented in the previous chapters, we implemented other versions,

in way to avoid considering useless clock copies. We start expliciting the trick

we uses to eliminate these useless clock copies before to present the obtained

experimental results on all the versions of our algorithms.

Eliminating useless clock copies. In many practical examples, MITL for-

mulas contain modalities of the form Ur0,�8r or Ũr0,�8r that do not impose any

real-time constraints (in some sense, they are LTL modalities). For instance, con-

sider the 2 modality in Φ � 2pañ ♦r1,2sbq. When this occurs in a formula Φ, we

can simplify the representation of con�gurations of AΦ, by dropping the values of

the clocks associated to those modalities (these clocks can be regarded as inactive

in the sense of [26]). We call those con�gurations reduced con�gurations.

Example 6.1. For instance, let us consider the OCATA AΦ of Figure 6.1. Elim-

inating useless clock copies amounts to skipping the clocks associated to `2. Let

263

264 Chapter 6. Experimental results

`2 `♦

b a, b

b, x P r1, 2s

a x :� 0

Figure 6.1: OCATA A with LpAq �
q
2pañ ♦r1,2sbq

y
.

us consider the con�guration

tp`2, 0.1q, p`♦, 0qu

of AΦ. It can be more simply represented by the pair

pt`2u, tp`♦, 0quq.

One can also verify that the values of the clock copies present in the initial

location p Φqinit of A Φ are not relevant. Let us note

Subr0,�8q p Φq :� tΦ P Subp Φq | Φ � Φinit or the outermost operator

of Φ is Ur0,�8r or Ũr0,�8ru.

Then, the states of A can either be

� a couple p`, Iq where ` P LzSubr0,�8q p Φq and I P IpR�q, or

� a singleton ` P Subr0,�8q p Φq.

A reduced con�guration is then a pair pS,Cq where S � Subr0,�8q p Φq and

C is a con�guration of A Φ such that @p`, vq P C, ` R Subr0,�8q p Φq. It is

clear that all the results presented in the previous chapters still hold on reduced

con�gurations and we also implemented the algorithms they contain with them:

the region or zone abstraction is only used on LzSubr0,�8q p Φq.

Tests results. To evaluate the practical feasibility of our approach, we have im-

plemented the region and zone-based algorithms (over �nite and in�nite words)

265

for model-checking and satis�ability in a prototype tool. To the best of our

knowledge, this is the �rst implementation to perform MITL model-checking and

satis�ability using an automata-based approach. We �rst consider a benchmark

for the satis�ability problem, adapted from the literature on LTL [35] and con-

sisting of six parametric formulas (with k P N and I P IpN�8q):

Epk, Iq �
�
i�1,...,k ♦I pi

Apk, Iq �
�
i�1,...,k 2I pi

Qpk, Iq �
�
i�1,...,k p♦Ipi _ 2Ipi�1q

Upk, Iq � p. . . pp1UIp2qUI . . . qUIpk

T pk, Iq � p1ŨIpp2ŨIpp3 . . . pk�1ŨIpkq . . . q

Rpk, Iq �
�
i�1,...,k p2I p♦Ipiq _ ♦Ip2Ipi�1qq

Our second benchmark evaluates the performance of our model-checking tool.

We consider a family of timed automata Bliftk that model a lift, parametrised by

the number k of �oors. A button can be pushed at each �oor to call it. The

alphabet contains a letter li for each �oor imeaning the lift has been called at this

�oor. A button to send the lift at each �oor is present in it: the alphabet contains

a letter bi for each �oor i meaning that button i has just been pushed. The lift

takes 1 second to go from a �oor to the next one and to open/close its doors: it

stays 1 second open between these opening/closure. Letter oi (respectively ci)

signi�es the lift opens (respectively closes) its doors at �oor i ; letter pi means

the lift passes �oor i without stopping. The lift goes up (respectively down) as

long as it is called upper (respectively lower). When it is not called anywhere, it

goes to the medium �oor and stays opened there.

Example 6.2. For instance, Figure 6.2 gives a representation of Blift2 . For the

sake of simplicity, we represent two similar edges (same starting and ending loca-

tions, same reset) carrying two di�erent letters by a unique edge carrying these

two letters. A location of this automaton is a 4-tuple pn, direction, go, open?q

where

� n is the number of the �oor the cabin is present in, with 0 ¤ n 2, 0

266 Chapter 6. Experimental results

p0,h,H,Jq p0,u,t1u,Jq

p0,u,t1u,Kq p0,u,t0,1u,Kq

p1,d,H,Kq p1,d,t0u,Kq

p1,d,t1u,Kq p1,d,t0,1u,Kq

p1,d,H,Jq p1,d,t0u,Jq

l1; b1

x:�0

c0 ,x�2
x:�0

l0

o1,x�2

x:�0

o1,x�2

x:�0

o0,x�2

x:�0

l0; b0

l1 l1

o0 ,x�2
x:�0

l0; b0

p0,x�1

x:�0

o0,x�1

x:�0

l0; b0

c1,x�2
x:�0

c1,x�2
x:�0

Figure 6.2: Blift2

representing the ground �oor,

� direction P tu, d, hu is u if the lift is going up, d if it is going down and h

if it remains at the �oor it is present in,

� go is the set of �oors to which the cabin must go (because the lift has been

called at this �oor or because the button present in the cabin has been

pushed to send the lift at this �oor), and

� open? P tJ,Ku is J i� the doors of the cabin are opened.

We implemented the algorithms of the LTL satis�ability and model-checking

shown in the previous chapters in a java prototype. We performed our tests on a

Mac Pro (mid 2010) with OS X Yosemite, processor 3.33 GHz, 6 core intel xeon,

with a memory of 32 GB 1333 MHz DDR3 ECC. We used Java SE Runtime

Environment (build 1.6.0_65-b14-466.1-11M4716).

267

Tables 6.1, 6.3, 6.2 and 6.4 are dedicated to the setting of �nite words. They

report on results over four versions of the satis�ability and model-checking algo-

rithms:

� column `Regions' is dedicated to the algorithm over regions (for the model-

checking, see Algorithm 3 when the order is not used and Algorithm 8 when

it is used),

� column `Reduced regions' is dedicated to the algorithm over the reduced

regions presented in the previous paragraph,

� column `Zones' is dedicated to the algorithm over zones (for the model-

checking, see Algorithm 9 when the order is not used),

� column `Reduced zones' is dedicated to the algorithm over zones reduced

in a way similar than regions.

Those columns contains the running time followed by the number of explored

regions or zones. Those four tables also precise, for each tested formula, the

expected1 answer in column `Sat ?', for the satis�ability benchmark, or in column

`ok ?', for the model-checking benchmark. The columns `size' and `OCATA/ TA

size' show the very small size of the OCATA representing the formulas. A time

out was set after 5 minutes, and OOM stands for `out of memory'.

Tables 6.1 and 6.2 report on results of the prototype when performing satis�-

ability over the formulas of our �rst benchmark. Table 6.1 consists in the results

obtained without using the order � of De�nition 4.38, while Table 6.2 shows

results obtained using this order.

Let us �rst consider, in Tables 6.1 and 6.2, the results concerning regions and

reduced regions. As expected, the running times and number of explored regions

are globally better over formulas containing intervals r0,�8r when reduced re-

gions are used. In average, over those formulas, from the use of regions to that

1and obtained, when the program terminates on this test !

268 Chapter 6. Experimental results

of reduced regions, the number of explored regions is divided by 2 and the execu-

tion time is often divided by 5. However, this running time is divided by about

32 over formulas Up10, r0,�8rq (with and without the use of the order) and by

49 over formula Rp5, r0,�8rq with the use of the order. The relation between

zones and reduced zones is less pronounced: the numbers of explored zones and

the running times are rather variable. Sometimes, the use of reduced zones gives

better results, sometimes the opposite happens.

From the use of regions to that of zones, in average, the running time is divided

by 6 and the number of explored regions/zones divided by 2.

When comparing results obtained without (see Table 6.1) and with (see Table 6.2)

the use of the order, the execution times are rather similar, although the num-

ber of explored regions/zones is in average divided by 3 thanks to the use of

the order. The similarity in the obtained running times certainly come from the

supplementary computations necessary to the use of the order in our program.

269

T
ab
le

6.
1:

F
in
it
e
w
or
d
s
w
it
h
ou
t
or
d
er

-
B
en
ch
m
ar
k
fo
r
th
e
sa
ti
s�
ab
il
it
y.

R
ep
or
te
d
va
lu
es

ar
e
ex
ec
u
ti
on

ti
m
e
in

m
s
/
n
u
m
b
er

of
ex
p
lo
re
d
re
gi
on
s
or

zo
n
es
.

S
a
t
?

F
o
rm

u
la

S
iz
e

R
eg
io
n
s

R
ed
u
ce
d
re
g
io
n
s

Z
o
n
es

R
ed
u
ce
d
zo
n
es

S
a
t

E
p5
,r

0
,�
8
rq

6
7
2
/
6
1

1
5
/
3
1

5
2
/
3
6

3
4
/
3
1

S
a
t

E
p1

0
,r

0
,�
8
rq

1
1

2
,6
5
1
/
2
,0
4
5

3
4
8
/
1
,0
2
3

1
,2
5
9
/
1
,0
3
3

2
,5
0
5
/
1
,0
2
3

S
a
t

E
p5
,r

5
,8
rq

6
3
7
3
/
2
2
8

3
8
5
/
2
2
8

7
9
/
3
3

7
9
/
3
3

S
a
t

E
p1

0
,r

5
,8
rq

1
1

6
4
,0
1
0
/
7
,1
7
2

8
4
,5
0
2
/
7
,1
7
2

1
,8
3
4
/
1
,0
2
5

2
,3
8
8
/
1
,0
2
5

U
n
sa
t

A
p1

0
,r

0
,�
8
rq

1
1

2
/
1

1
/
1

4
/
1

4
/
1

S
a
t

A
p1

0
,r

5
,8
rq

1
1

3
9
3
/
1

4
1
/
1

3
7
/
1

3
8
/
1

S
a
t

U
p1

0
,r

0
,�
8
rq

1
0

2
5
5
/
8

8
/
7

1
5
/
1

5
/
1

U
n
sa
t

U
p2
,r

5
,8
rq

2
1
4
/
7

7
/
3

4
/
2

4
/
2

U
n
sa
t

U
p3
,r

5
,8
rq

3
O
O
M

O
O
M

2
2
1
/
6
3

2
2
2
/
6
3

U
n
sa
t

U
p4
,r

5
,8
rq

3
O
O
M

O
O
M

O
O
M

O
O
M

S
a
t

T
p1

0
,r

0
,�
8
rq

1
0

9
/
1

1
/
1

8
/
1

5
/
1

S
a
t

T
p1

0
,r

5
,8
rq

1
0

2
1
/
1

3
/
1

5
/
1

5
/
1

S
a
t

R
p5
,r

0
,�
8
rq

2
1

3
,5
8
9
/
1
,6
4
1

7
3
/
8
1

1
,6
1
6
/
1
,0
3
3

1
0
7
/
8
1

S
a
t

R
p1

0
,r

0
,�
8
rq

4
1

¡
5
m
in

5
,7
0
3
/
5
,1
2
1

O
O
M

3
2
,6
0
8
/
5
,1
2
1

S
a
t

R
p5
,r

5
,8
rq

2
1

2
7
1
/
2

1
1
0
/
2

1
5
6
/
9

1
7
0
/
9

S
a
t

R
p1

0
,r

5
,8
rq

4
1

1
9
,6
5
2
/
1

¡
5
m
in

¡
5
m
in

¡
5
m
in

S
a
t

Q
p5
,r

0
,�
8
rq

1
1

4
5
/
3
9

1
0
/
2
0

3
8
/
2
9

1
8
/
2
0

S
a
t

Q
p1

0
,r

0
,�
8
rq

2
1

1
,1
6
7
/
1
,0
4
1

2
9
1
/
5
2
1

7
2
2
/
5
4
0

8
5
3
/
5
2
1

S
a
t

Q
p5
,r

5
,8
rq

1
1

2
4
3
/
1
2

1
2
3
/
1
0

8
7
/
1
6

8
8
/
1
6

S
a
t

Q
p1

0
,r

5
,8
rq

2
1

8
4
,2
2
9
/
8
4
9

1
1
,2
2
2
/
3
0
2

¡
5
m
in

¡
5
m
in

270 Chapter 6. Experimental results

T
ab
le
6.
2:

F
in
it
e
w
or
d
s
w
it
h
or
d
er

-
B
en
ch
m
ar
k
fo
r
th
e
sa
ti
s�
ab
il
it
y.

R
ep
or
te
d
va
lu
es

ar
e
ex
ec
u
ti
on

ti
m
e
in

m
s
/

n
u
m
b
er

of
ex
p
lo
re
d
re
gi
on
s
or

zo
n
es
.

S
a
t
?

F
o
rm

u
la

S
iz
e

R
eg
io
n
s

R
ed
u
ce
d
re
g
io
n
s

Z
o
n
es

R
ed
u
ce
d
zo
n
es

S
a
t

E
p5
,r

0
,�
8
rq

6
1
1
0
/
2
1

2
1
/
1
1

4
7
/
1
1

2
6
/
1
1

S
a
t

E
p1

0
,r

0
,�
8
rq

1
1

2
,7
4
9
/
5
0
5

3
8
7
/
2
5
3

9
7
3
/
2
5
3

8
4
7
/
2
5
3

S
a
t

E
p5
,r

5
,8
rq

6
5
2
7
/
8
1

5
6
2
/
8
1

8
1
/
1
2

8
5
/
1
2

S
a
t

E
p1

0
,r

5
,8
rq

1
1

6
9
,0
9
7
/
1
,7
7
5

7
0
,7
9
4
/
1
,7
7
5

1
,6
8
2
/
2
5
4

2
,2
0
7
/
2
5
4

U
n
sa
t

A
p1

0
,r

0
,�
8
rq

1
1

2
/
1

2
/
1

4
/
1

4
/
1

S
a
t

A
p1

0
,r

5
,8
rq

1
1

3
9
8
/
1

4
1
/
1

3
7
/
1

3
9
/
1

S
a
t

U
p1

0
,r

0
,�
8
rq

1
0

2
2
3
/
2

6
/
2

1
4
/
1

5
/
1

U
n
sa
t

U
p2
,r

5
,8
rq

2
1
5
/
7

7
/
3

4
/
2

4
/
2

U
n
sa
t

U
p3
,r

5
,8
rq

3
1
7
7
,7
1
3
/
2
,4
3
4

1
1
6
,3
1
4
/
2
,4
3
4

2
8
/
4

2
9
/
4

U
n
sa
t

U
p4
,r

5
,8
rq

3
¡

5
m
in

¡
5
m
in

¡
5
m
in

O
O
M

S
a
t

T
p1

0
,r

0
,�
8
rq

1
0

8
/
1

1
/
1

9
/
1

5
/
1

S
a
t

T
p1

0
,r

5
,8
rq

1
0

2
1
/
1

3
/
1

4
/
1

5
/
1

S
a
t

R
p5
,r

0
,�
8
rq

2
1

1
,8
2
4
/
3
7
8

1
2
7
/
6
6

1
,9
4
3
/
2
0
7

1
1
5
/
6
6

S
a
t

R
p1

0
,r

0
,�
8
rq

4
1

O
O
M

9
,8
9
2
/
4
,6
1
0

¡
5
m
in

4
0
,8
0
1
/
4
,6
1
0

S
a
t

R
p5
,r

5
,8
rq

2
1

2
7
0
/
2

1
0
9
/
2

1
5
7
/
9

1
7
1
/
9

S
a
t

R
p1

0
,r

5
,8
rq

4
1

1
8
,1
0
1
/
1

¡
5
m
in

¡
5
m
in

¡
5
m
in

S
a
t

Q
p5
,r

0
,�
8
rq

1
1

6
6
/
1
4

1
3
/
8

4
0
/
1
0

1
6
/
8

S
a
t

Q
p1

0
,r

0
,�
8
rq

2
1

1
,2
5
1
/
2
5
3

3
2
0
/
1
2
7

6
4
5
/
1
2
7

4
7
5
/
1
2
7

S
a
t

Q
p5
,r

5
,8
rq

1
1

2
4
6
/
1
2

1
2
3
/
1
0

8
6
/
1
6

8
7
/
1
6

S
a
t

Q
p1

0
,r

5
,8
rq

2
1

1
6
,8
1
6
/
1
2
7

5
,9
2
6
/
2
2
3

3
4
,0
5
8
/
3
4
7

3
6
,5
1
4
/
3
4
7

271

Tables 6.3 and 6.4 give the model-checking results obtained on our prototype

tool, when considering the timed automaton Bliftn , representing a lift with n �oors

(see the �rst column), and the formula given in the second column.

Table 6.3 presents results obtained without using the order � of De�nition 4.38,

while Table 6.4 displays results obtained using it.

Let us now consider the results over regions and reduced regions in Tables 6.3

and 6.4. The running times and numbers of explored regions are globally sim-

ilar and sometimes the use of reduced regions leads to greater execution times,

probably due to the supplementary computations necessary to maintain those

reduced regions. The relation between zones and reduced zones is this time more

pronounced: the running times and numbers of explored zones is reduced by 25%

or by 50%, depending on the considered test.

When comparing the use of regions and that of zones in Tables 6.3 and 6.4, we

see that zones enable to conclude a lot of tests on which the regions did not give

any answer by 5 minutes. On the simplest examples, on which both regions and

zones give an answer by 5 minutes, the running time and number of explored

regions/zones is in average divided by 10 from the use of regions to that of zones.

Then, the algorithm over regions quickly struggles while that over zones carries

on answering by 5 minutes.

Let us still compare the results obtained without the use of the order (see Ta-

ble 6.3) and with it (see Table 6.4). When considering formulas over a lift with

two �oors, the running times and numbers of explored regions/zones are globally

similar. Then, when considering zones, the use of the order turns out to be more

and more e�cient with the rising number of �oors: when considering a lift with

four or �ve �oors, the running times are in average reduced by 30% and the

numbers of explored zones are in average reduced by 50%, when using the order.

272 Chapter 6. Experimental results
T
ab
le
6.
3:

F
in
it
e
w
or
d
s
w
it
h
ou
t
or
d
er

-
B
en
ch
m
ar
k
fo
r
th
e
m
o
d
el
-c
h
ec
k
in
g.

R
ep
or
te
d
va
lu
es

ar
e
ex
ec
u
ti
on

ti
m
e

in
m
s
/
n
u
m
b
er

of
ex
p
lo
re
d
re
gi
on
s
or

zo
n
es
.

F
lo
o
rs

F
o
rm

u
la

O
C
A
T
A
/
T
A

si
ze

O
K

?
R
eg
io
n
s

R
ed
u
ce
d
re
g
io
n
s

Z
o
n
es

R
ed
u
ce
d
zo
n
es

2
2
�
i�

1
,2

� po
i
^
♦
r0
,�
8
r
c i
q
ñ
♦
s1
,2
s
c i
�

6
/
1
0

�
6
0
/
5
5

5
7
/
5
2

2
0
/
2
3

1
4
/
2
1

2
2
�
i�

1
,2

� pb
i
^
♦
r0
,�
8
r
o
i
q
ñ
♦
r0
,4
s
o
i

�
6
/
1
0

X
2
0
1
/
2
2
4

2
2
1
/
2
1
5

2
2
/
3
1

1
3
/
2
5

2
2
�
i�

1
,2

� pl
i
^
♦
r0
,�
8
r
o
i
q
ñ
♦
r0
,6
s
o
i

�
6
/
1
0

X
5
8
3
/
6
9
0

6
3
0
/
6
6
9

4
1
/
5
2

2
3
/
4
1

3
2
�
i�

1
,.
..
,3

� po
i
^
♦
r0
,�
8
r
c i
q
ñ
♦
s1
,2
s
c i
�

8
/
3
7

�
2
3
9
/
2
5
3

2
8
9
/
2
4
3

9
1
/
9
0

7
2
/
7
9

3
2
�
i�

1
,.
..
,3

� pb
i
^
♦
r0
,�
8
r
o
i
q
ñ
♦
r0
,1

2
s
o
i

�
8
/
3
7

X
¡
5
m
in

¡
5
m
in

5
1
0
/
5
5
3

4
8
0
/
3
8
8

3
2
�
i�

1
,.
..
,3

� pl
i
^
♦
r0
,�
8
r
o
i
q
ñ
♦
r0
,1

4
s
o
i

�
8
/
3
7

X
¡
5
m
in

¡
5
m
in

6
0
1
/
8
1
6

5
7
3
/
5
7
0

4
2
�
i�

1
,.
..
,4

� po
i
^
♦
r0
,�
8
r
c i
q
ñ
♦
s1
,2
s
c i
�

1
0
/
1
1
4

�
6
4
9
/
7
2
2

7
6
3
/
7
0
5

5
0
8
/
2
5
9

3
8
6
/
2
3
7

4
2
�
i�

1
,.
..
,4

� pb
i
^
♦
r0
,�
8
r
o
i
q
ñ
♦
r0
,2

0
s
o
i

�
1
0
/
1
1
4

X
¡
5
m
in

¡
5
m
in

9
,6
7
1
/
6
,1
2
1

3
,6
1
6
/
3
,3
9
2

4
2
�
i�

1
,.
..
,4

� pl
i
^
♦
r0
,�
8
r
o
i
q
ñ
♦
r0
,2

2
s
o
i

�
1
0
/
1
1
4

X
¡
5
m
in

O
O
M

1
6
,1
2
4
/
8
,3
4
5

6
,4
0
6
/
4
,7
2
1

5
2
�
i�

1
,.
..
,5

� po
i
^
♦
r0
,�
8
r
c i
q
ñ
♦
s1
,2
s
c i
�

1
2
/
3
1
1

�
2
,1
8
5
/
1
,8
0
4

3
,5
3
5
/
1
,7
1
5

1
,0
0
5
/
6
0
5

1
,1
9
8
/
5
6
7

5
2
�
i�

1
,.
..
,5

� pb
i
^
♦
r0
,�
8
r
o
i
q
ñ
♦
r0
,2

8
s
o
i

�
1
2
/
3
1
1

X
O
O
M

O
O
M

¡
5
m
in

1
4
0
,1
7
8
/
1
9
,7
0
4

5
2
�
i�

1
,.
..
,5

� pl
i
^
♦
r0
,�
8
r
o
i
q
ñ
♦
r0
,3

0
s
o
i

�
1
2
/
3
1
1

X
O
O
M

O
O
M

¡
5
m
in

2
8
2
,5
0
4
/
2
5
,3
6
8

273
T
ab
le

6.
4:

F
in
it
e
w
or
d
s
w
it
h
or
d
er

-
B
en
ch
m
ar
k
fo
r
th
e
m
o
d
el
-c
h
ec
k
in
g.

R
ep
or
te
d
va
lu
es

ar
e
ex
ec
u
ti
on

ti
m
e
in

m
s
/
n
u
m
b
er

of
ex
p
lo
re
d
re
gi
on
s
or

zo
n
es
.

F
lo
o
rs

F
o
rm

u
la

O
C
A
T
A
/
T
A

si
ze

O
K

?
R
eg
io
n
s

R
ed
u
ce
d
re
g
io
n
s

Z
o
n
es

R
ed
u
ce
d
zo
n
es

2
2
�
i�

1
,2

� po
i
^
♦
r0
,�
8
r
c i
q
ñ
♦
s1
,2
s
c i
�

6
/
1
0

�
1
9
8
/
5
3

1
8
9
/
4
7

2
3
/
1
9

1
5
/
1
6

2
2
�
i�

1
,2

� pb
i
^
♦
r0
,�
8
r
o
i
q
ñ
♦
r0
,4
s
o
i

�
6
/
1
0

X
3
6
9
/
2
1
4

3
2
7
/
1
4
4

3
0
/
2
7

1
8
/
2
1

2
2
�
i�

1
,2

� pl
i
^
♦
r0
,�
8
r
o
i
q
ñ
♦
r0
,6
s
o
i

�
6
/
1
0

X
1
,1
8
6
/
6
7
1

9
9
2
/
4
3
4

5
7
/
4
2

3
8
/
3
0

3
2
�
i�

1
,.
..
,3

� po
i
^
♦
r0
,�
8
r
c i
q
ñ
♦
s1
,2
s
c i
�

8
/
3
7

�
6
1
7
/
2
4
5

5
0
1
/
2
1
9

9
4
/
6
7

7
5
/
5
5

3
2
�
i�

1
,.
..
,3

� pb
i
^
♦
r0
,�
8
r
o
i
q
ñ
♦
r0
,1

2
s
o
i

�
8
/
3
7

X
¡
5
m
in

¡
5
m
in

6
4
6
/
3
6
5

5
2
6
/
2
1
8

3
2
�
i�

1
,.
..
,3

� pl
i
^
♦
r0
,�
8
r
o
i
q
ñ
♦
r0
,1

4
s
o
i

�
8
/
3
7

X
¡
5
m
in

¡
5
m
in

7
7
3
/
4
6
8

6
5
2
/
2
8
8

4
2
�
i�

1
,.
..
,4

� po
i
^
♦
r0
,�
8
r
c i
q
ñ
♦
s1
,2
s
c i
�

1
0
/
1
1
4

�
3
,5
9
8
/
6
9
1

3
,3
0
2
/
6
6
0

3
4
7
/
1
8
3

2
7
7
/
1
6
1

4
2
�
i�

1
,.
..
,4

� pb
i
^
♦
r0
,�
8
r
o
i
q
ñ
♦
r0
,2

0
s
o
i

�
1
0
/
1
1
4

X
¡
5
m
in

¡
5
m
in

6
,4
1
1
/
2
,6
6
5

3
,1
3
5
/
1
,4
5
8

4
2
�
i�

1
,.
..
,4

� pl
i
^
♦
r0
,�
8
r
o
i
q
ñ
♦
r0
,2

2
s
o
i

�
1
0
/
1
1
4

X
¡
5
m
in

¡
5
m
in

8
,8
3
2
/
3
,2
4
2

4
,5
5
1
/
1
,8
0
9

5
2
�
i�

1
,.
..
,5

� po
i
^
♦
r0
,�
8
r
c i
q
ñ
♦
s1
,2
s
c i
�

1
2
/
3
1
1

�
2
7
,4
6
4
/
1
,7
3
2

2
2
,6
3
8
/
1
,6
2
9

8
9
3
/
4
1
9

5
9
6
/
3
8
3

5
2
�
i�

1
,.
..
,5

� pb
i
^
♦
r0
,�
8
r
o
i
q
ñ
♦
r0
,2

8
s
o
i

�
1
2
/
3
1
1

X
¡
5
m
in

O
O
M

1
6
4
,0
0
8
/
1
3
,1
2
8

7
1
,8
0
7
/
7
,0
5
6

5
2
�
i�

1
,.
..
,5

� pl
i
^
♦
r0
,�
8
r
o
i
q
ñ
♦
r0
,3

0
s
o
i

�
1
2
/
3
1
1

X
¡
5
m
in

O
O
M

2
4
0
,9
2
6
/
1
5
,4
3
2

1
0
7
,0
6
3
/
8
,3
6
8

274 Chapter 6. Experimental results

Finally, Tables 6.5 and 6.6 are dedicated to in�nite words. Table 6.5 reports

on satis�ability results, similarly to those of Table 6.1, except that we are now

considering in�nite words. Those results are of course obtained without using

the order �, which does not apply to the setting of in�nite words. Table 6.6

displays model-checking results, similar to those presented in Table 6.3, but for

the setting of in�nite words. For this setting, we were able to produce satis�able

MITL formulas simpler than those established over �nite words. Once again, the

results of Table 6.6 are obtained without using any order.

Let us �rst consider the results obtained in Table 6.5. We start comparing

results obtained on regions and reduced regions. In average, when considering the

formulas containing an interval r0,�8r, the number of explored regions is divided

by 2, and the running times are divided by 5, when using the reduced regions

instead of the regions. On the other formulas, we have similar numbers of explored

regions and the running time are rather variable: sometimes the running time is

bigger when considering reduced regions, sometimes it is the opposite. We notice

that when using reduced regions, our program gives an answer to 3 more tests

than when using regions (by the time out of 5 minutes). Let us now consider the

zones and the reduced zones. The numbers of explored zones are rather similar

and the running times are in average higher by 10%, on all formulas, when using

reduced zones instead of zones. We notice the exception of formula Rp5, r0,�8rq

which gives an answer 30 times more quickly and explores 16 times less zones

with the use of reduced zones.

We now compare the results obtained with regions and with zones. In general,

the running times and the numbers of explored regions/zones are both divided

by 3 when using zones instead of regions. We highlight the example of formula

Ep10, r5, 8rq for which the running time is divided by 35 when using zones instead

of regions. We also notice that the use of zones enables to answer 3 supplementary

tests than that of regions (by 5 minutes): the 3 same problems that the reduced

regions also enabled to solve.

We now consider the results of Table 6.6. Let us �rst compare results on

275

regions and reduced regions. In average, the use of reduced regions instead of

regions only enables to reduce the number of explored regions by 3%, and the

executions times are higher by 20%. Once again, these bigger running times are

probably due to the supplementary computations necessary in the program to

maintain reduced regions. We now observe results over zones and reduced zones.

In general, the execution times are reduced by 10% when using reduced zones

instead of zones, but on some examples, the execution time is higher by 10%

as well. For the simplest formulas (i.e. when considering a lift with 2 �oors),

the number of explored zones are similar when using zones and reduced zones.

The gap gradually widens to reach a running time reduced by 40% using reduced

zones instead of zones, for formulas over a lift with 4 �oors.

Let us �nally compare results obtained on regions with that obatined on zones.

We �rst notice that the use of zones enabled to answer 4 more problems than

that of regions (by 5 minutes). On the tests on which both regions and zones

answer, when using zones instead of regions, the running times are in average

divided by 5 and the number of explored regions/zones is in general divided by

3, although it is divided by 13 on the example of formula 2
�
i�1,2

�
li ñ ♦r0,6soi

�
for a lift with 2 �oors. Surprisingly, the running time is bigger (by 10%) using

zones on the formula 2
�
i�1,...,3

�
oi ñ ♦s1,2sci

�
for a lift with 3 �oors.

276 Chapter 6. Experimental results

T
ab
le
6.
5:

In
�
n
it
e
w
or
d
s
w
it
h
ou
t
or
d
er

-
B
en
ch
m
ar
k
fo
r
th
e
sa
ti
s�
ab
il
it
y.

R
ep
or
te
d
va
lu
es

ar
e
ex
ec
u
ti
on

ti
m
e
in

m
s
/
n
u
m
b
er

of
ex
p
lo
re
d
re
gi
on
s
or

zo
n
es
.

S
a
t
?

F
o
rm

u
la

S
iz
e

R
eg
io
n
s

R
ed
u
ce
d
re
g
io
n
s

Z
o
n
es

R
ed
u
ce
d
zo
n
es

S
a
t

E
p5
,r

0
,�
8
rq

6
7
4
/
6
1

1
6
/
3
1

5
8
/
3
6

3
9
/
3
1

S
a
t

E
p1

0
,r

0
,�
8
rq

1
1

3
,2
9
6
/
2
,0
4
5

3
6
9
/
1
,0
2
3

1
,3
7
4
/
1
,0
3
3

2
,5
1
5
/
1
,0
2
3

S
a
t

E
p5
,r

5
,8
rq

6
3
8
2
/
2
2
8

3
9
4
/
2
2
8

8
3
/
3
3

8
6
/
3
3

S
a
t

E
p1

0
,r

5
,8
rq

1
1

7
0
,1
2
9
/
7
,1
7
2

7
9
,8
8
9
/
7
,1
7
2

1
,9
8
2
/
1
,0
2
5

2
,4
9
0
/
1
,0
2
5

U
n
sa
t

A
p1

0
,r

0
,�
8
rq

1
1

1
/
1

1
/
1

4
/
1

5
/
1

S
a
t

A
p1

0
,r

5
,8
rq

1
1

1
,9
2
6
/
7

2
,0
3
6
/
5

3
,0
3
6
/
2

3
,1
5
3
/
2

S
a
t

U
p1

0
,r

0
,�
8
rq

1
0

2
3
1
/
7

5
/
4

1
6
/
1

6
/
1

U
n
sa
t

U
p2
,r

5
,8
rq

2
1
3
/
6

1
5
/
8

4
/
2

4
/
2

U
n
sa
t

U
p3
,r

5
,8
rq

3
O
O
M

O
O
M

O
O
M

O
O
M

S
a
t

T
p1

0
,r

0
,�
8
rq

1
0

¡
5
m
in

3
/
2

3
3
/
3

7
/
2

S
a
t

T
p1

0
,r

5
,8
rq

1
0

5
2
/
2

4
0
/
2

1
1
/
2

1
1
/
2

S
a
t

R
p5
,r

0
,�
8
rq

2
1

¡
5
m
in

3
0
1
/
2
7
0

4
,3
0
7
/
1
,3
2
1

1
4
5
/
8
1

S
a
t

R
p1

0
,r

0
,�
8
rq

4
1

¡
5
m
in

O
O
M

O
O
M

¡
5
m
in

S
a
t

R
p5
,r

5
,8
rq

2
1

O
O
M

6
,9
9
6
/
1
1
7

1
,2
9
9
/
3
6

1
,5
1
8
/
3
6

S
a
t

R
p1

0
,r

5
,8
rq

4
1

¡
5
m
in

¡
5
m
in

¡
5
m
in

¡
5
m
in

S
a
t

Q
p5
,r

0
,�
8
rq

1
1

4
4
/
3
9

1
1
/
2
0

4
3
/
2
9

2
2
/
2
0

S
a
t

Q
p1

0
,r

0
,�
8
rq

2
1

1
,2
0
9
/
1
,0
4
1

2
8
6
/
5
2
1

8
4
1
/
5
4
0

9
3
3
/
5
2
1

S
a
t

Q
p5
,r

5
,8
rq

1
1

4
9
7
/
9
8

3
7
8
/
5
7

1
6
7
/
3
2

1
8
1
/
3
2

S
a
t

Q
p1

0
,r

5
,8
rq

2
1

3
5
,7
7
6
/
2
,6
4
6

2
0
,3
2
4
/
2
,9
1
2

8
1
,7
7
4
/
7
8
2

8
6
,2
2
8
/
7
8
2

277
T
ab
le
6.
6:

In
�
n
it
e
w
or
d
s
w
it
h
ou
t
or
d
er

-
B
en
ch
m
ar
k
fo
r
th
e
m
o
d
el
-c
h
ec
k
in
g.

R
ep
or
te
d
va
lu
es

ar
e
ex
ec
u
ti
on

ti
m
e

in
m
s
/
n
u
m
b
er

of
ex
p
lo
re
d
re
gi
on
s
or

zo
n
es
.

F
lo
o
rs

F
o
rm

u
la

O
C
A
T
A
/
T
A

si
ze

O
K

?
R
eg
io
n
s

R
ed
u
ce
d
R
eg
io
n
s

Z
o
n
es

R
ed
u
ce
d
zo
n
es

2
2
�
i�

1
,2

� o
i
ñ
♦
s1
,2
s
c i
�

4
/
1
0

�
1
3
2
/
9
0

1
2
4
/
8
7

5
7
/
3
5

5
6
/
3
2

2
2
�
i�

1
,2

� b
i
ñ
♦
r0
,4
s
o
i

�
4
/
1
0

X
2
0
7
/
2
2
4

2
0
2
/
2
1
5

3
1
/
3
1

2
6
/
2
5

2
2
�
i�

1
,2

� l i
ñ
♦
r0
,6
s
o
i

�
4
/
1
0

X
5
5
4
/
6
9
0

7
6
9
/
6
6
9

6
8
/
5
1

6
0
/
4
0

3
2
�
i�

1
,.
..
,3

� o
i
ñ
♦
s1
,2
s
c i
�

5
/
3
7

�
4
1
7
/
4
9
6

4
2
1
/
4
7
6

4
6
3
/
1
5
4

3
3
7
/
1
4
0

3
2
�
i�

1
,.
..
,3

� b
i
ñ
♦
r0
,1

2
s
o
i

�
5
/
3
7

X
¡
5
m
in

¡
5
m
in

1
,1
4
8
/
5
4
1

1
,0
0
8
/
3
7
6

3
2
�
i�

1
,.
..
,3

� l i
ñ
♦
r0
,1

4
s
o
i

�
5
/
3
7

X
¡
5
m
in

¡
5
m
in

1
,3
2
1
/
7
7
4

1
,3
8
7
/
5
4
0

4
2
�
i�

1
,.
..
,4

� o
i
ñ
♦
s1
,2
s
c i
�

6
/
1
1
4

�
2
,2
2
8
/
1
,6
9
7

2
,8
1
3
/
1
,6
3
9

1
,3
8
1
/
4
9
8

1
,5
6
5
/
4
6
1

4
2
�
i�

1
,.
..
,4

� b
i
ñ
♦
r0
,2

0
s
o
i

�
6
/
1
1
4

X
¡
5
m
in

¡
5
m
in

2
6
,1
4
6
/
5
,7
5
7

2
2
,7
7
6
/
3
,1
5
6

4
2
�
i�

1
,.
..
,4

� l i
ñ
♦
r0
,2

2
s
o
i

�
6
/
1
1
4

X
¡
5
m
in

¡
5
m
in

5
2
,1
6
7
/
7
,5
7
7

4
8
,7
5
4
/
4
,3
3
7

5
2
�
i�

1
,.
..
,5

� o
i
ñ
♦
s1
,2
s
c i
�

7
/
3
1
1

�
1
9
,1
0
6
/
4
,8
6
6

2
1
,8
3
3
/
4
,7
1
4

3
,2
1
6
/
1
,4
0
2

3
,8
3
8
/
1
,3
1
0

5
2
�
i�

1
,.
..
,5

� b
i
ñ
♦
r0
,2

8
s
o
i

�
7
/
3
1
1

X
¡
5
m
in

O
O
M

¡
5
m
in

O
O
M

5
2
�
i�

1
,.
..
,5

� l i
ñ
♦
r0
,3

0
s
o
i

�
7
/
3
1
1

X
O
O
M

O
O
M

¡
5
m
in

¡
5
m
in

Part II

MITL Reactive Synthesis

279

. .CHAPTER 7

MITL BRSPlant algorithm

In this chapter, we consider the MITL reactive synthesis over �nite words,

with the pointwise semantics. In [17], Bouyer and al. proved that the MTL

bounded reactive synthesis with plant (BRSPlant) is decidable. Unfortunately,

they proposed an algorithm based on OCATA and well quasi ordering, which

only gives a non primitive recursive bound. The aim of this chapter is to provide

an algorithm to solve the MITL BRSPlant problem with a better upper bound.

We present an algorithm following the outlines of that presented in [17].

This algorithm �rst constructs a timed game: this is the object of Section 7.1.

In Section 7.2, we present how the resolution of this timed game can be turned

into the analysis of a transition system of a particular kind: a symbolic transition

system. Section 7.3 then displays the algorithm, using the previously constructed

symbolic transition system, enabling to solve the MITL BRSPlant problem.

In these sections, we will so exhibit the objects progressively considered in [17],

with the aim to solve the MTL BRSPlant problem. Nevertheless, our adaptation

is twofold. On the one hand, we consider a version of the MITL BRSPlant

problem with a new kind of concurrency, which was not present in the de�nitions

281

282 Chapter 7. MITL BRSPlant algorithm

of [17]. Indeed, we only allow the environment to play a timed action if its delay is

smaller than that the controller would like to play. This type of concurrency (also

used in [28]) between the controller and the environment seems useful to enable

to intuitively construct plants for the BRSPlant problem. On the second hand,

we use OCATA interpreted over our interval semantics instead of the classical

one: this trick enables to bound the number of clock copies used and so, to reduce

the complexity of the algorithm of [17].

We end this chapter by proving, in Section 7.4, that to use our interval semantics

enables to improve the upper bound of the algorithm on MTL for the particular

case of MITL. Indeed, the algorithm presented in [17] for MTL has a non primitive

recursive upper bound while our algorithm for MITL executes in a time triply

exponential in the sizes of the MITL formula and the plant.

For the rest of this chapter, we are mainly considering the BRSPlant problem

for MITL. Note that MITL formulas only use constants in N, so that, in the

sequel, we will only use granularities of type µ � pX, 1,Kq. For the sake of

simplicity, we consider all along this chapter that a granularity is simply a pair

µ � pX,Kq where X is a �nite set of clocks, and K P N.

7.1 Towards a timed game

In this section, we describe the �rst step of the procedure of [17] to solve the

MITL BRSPlant problem. It consists in reducing it to a timed game between

the environment and the controller.

We �rst need to �x some necessary vocabulary about guards, granularities

and STSs.

De�nition 7.1. Let µ � pX, cmaxq be a granularity, we de�ne the size of µ to

be:

|µ| �

#
|X| � log2pcmaxq if cmax � 0

|X| otherwise

7.1 Towards a timed game 283

s0 s1

pb, x�1,Hq

pa, x�0, txuq, pa, xPs0,1r, txuq,

pa, x�1, txuq, pa, x¡1, txuq

Figure 7.1: An atomic STS.

De�nition 7.2. Let X be a set of clocks and g P GpXq. We note JgK the set of

valuations over X which satisfy the guard g.

De�nition 7.3. The granularity of an STS ST is µ � pX, cmaxq if X is the

set of clocks occuring in the constraints of ST and cmax is the largest constant

occuring in the constraints of ST .

De�nition 7.4. Let µ � pX,Kq be a granularity. A µ-granular constraint g is

µ-atomic if for every µ-granular constraint g1, either JgK � Jg1K or JgKXJg1K � H.

De�nition 7.5. We say that an STS ST of granularity µ is atomic if each clock

constraint of ST is µ-atomic.

Example 7.6. Let us consider the granularity µ � ptxu, 8q, we have : |µ| �

1� log2p8q � 4.

Let us note g the guard x ¡ 2^x ¤ 3. Then, JgK � tv : txu ÞÑ R� | vpxq Ps2, 3su.
Let us note g1 the guard x ¡ 2^ x 3. g and g1 are µ-granular constraints (see

de�nition 2.147). g is not µ-atomic because JgK X Jg1K � H and JgK � Jg1K.
However, g1 is µ-atomic.

Let us consider the STS ST of Figure 7.1. Its granularity is ν � ptxu, 1q and it

is atomic.

We are now able to recall the notion of timed game introduced in [31] and

also used in [17].

De�nition 7.7. A timed game over �nite words is a pair G � pST , Lq, where ST
is a symbol-deterministic STS with �nitely many states, over a symbolic alphabet

Γ based on pΣ, Xq and L � TΣ�. Moreover, we require that ST is atomic.

284 Chapter 7. MITL BRSPlant algorithm

p0 p1 p2

pb, x1�0,Hq,

pb, x1¡0,Hq

pb, x1�0,Hq,

pb, x1¡0,Hq,

pa, x1¡0,Hq

pa, x1�0, tx1uq, pa, x1¡0, tx1uq

pa, x1�0,Hq

pa, x1¡1,Hq

Figure 7.2: The atomic STS ST .

In the rest of the chapter, we will be particularly interested in MITL timed

games, which are timed games of the form G � pST , Lq such that L is the �nite

words language of an MITL formula, i.e. there is an MITL formula Φ such that

L � JΦK.

Example 7.8. Let us consider the atomic STS ST of Figure 7.2 and the following

MITL formula:

Φ � 2pañ ♦ 1bq.

The pair pST , JΦKq forms the timed game G.

Such a timed game is played between the controller and the environment as

follows. The controller chooses a valid subset of symbolic actions (as de�ned

below) enabled at the initial location of ST and the environment responds by

choosing an action pσ0, g0, R0q from that subset. Then, the controller chooses a

valid subset of symbolic actions enabled at the resulting location and the envi-

ronment picks pσ1, g1, R1q from it, and so on. In the formal de�nition hereunder,

we will see a choice of the controller and the corresponding response of the envi-

ronment as a unique step of the game.

Let us come back to the notion of validity, formalized by a validity function.

Intuitively, from the set U containing all the actions enabled at a given step

of the game, the validity function gives the set of subsets of U that are valid.

To be valid means that the controller cannot interfere with the clocks of the

7.1 Towards a timed game 285

environment. The controller is however allowed to reset the subset of its clocks

it wants to reset. Finally, when a valid subset of U contains a symbolic action

composed of an action of the controller and a guard g, it can only contain actions

of the environment with a guard g1 which is a `time predecessor' of g, i.e. a choice

of delay of the controller prevents the environment from playing later (but the

environment can always overtake the controller).

De�nition 7.9. Given a symbolic alphabet Γ based on pΣ, Xq with Σ � ΣCYΣE

and X � XCYXE
1, the validity function over Γ is the function valid : 2Γ Ñ 2p2

Γq

such that every set of actions U P 2Γ (representing the actions enabled at a given

step of the game) is mapped to the nonempty set of subsets of U containing all

(`valid') subsets V of U such that:

1. for each symbolic action of the form pσ, g,Rq P U with σ P ΣE and R � XE:

(a) either V includes exactly one action of the form pσ, g,R Y R1q for

some R1 � XC
2,

(b) or, noting g � t the guard g in which each constant k is replaced by

k � t, V does not contain any pσ, g,R1q but contains pσ1, g1, R1q P U

such that σ1 P ΣC and @t P R�, g � t^ g1 is not satis�able3;

2. for each symbolic action of the form pσ, g,Rq P U with σ P ΣC , V includes

at most one action of the form pσ, g,RYR1q for some R1 � XC .

Example 7.10. Let us consider again the timed game G � pST , JΦKq of Exam-

ple 7.8. Its STS has as symbolic alphabet Γ, based on pΣ, tx1uq with Σ � ΣCYΣE ,

ΣC � tbu and ΣE � tau, and XE � tx1u while XC � H. Let us consider the set

1representing the clocks of the controller and that of the environment.
2Here is our unique modi�cation from the de�nition of [31], the original condition was simply:

`for each symbolic action of the form pσ, g,Rq P U with σ P ΣE , V includes exactly one action

of the form pσ, g,R1q for some R1'. Our modi�cation aims to correspond to our adaptation of

the notion of controller (which adds a new kind of concurrency between timed actions proposed

by the controller and the environment).
3intuitively, this condition means that g is not a `time predecessor' of g1.

286 Chapter 7. MITL BRSPlant algorithm

U P 2Γ of symbolic actions that can be performed from location p0:

U � tpa, x1 � 0, tx1uq, pa, x1 ¡ 0, tx1uq, pb, x1 � 0, Hq, pb, x1 ¡ 0, Hqu.

validpUq � tV1, V2, V3u with:

� V1 :� tpa, x1 � 0, tx1uq, pa, x1 ¡ 0, tx1uqu

(it is obtained using twice the point 1. (a) of De�nition 7.9 and using its

point 2. with no action of the form pσ, g,RYR1q),

� V2 :� tpa, x1 � 0, tx1uq, pa, x1 ¡ 0, tx1uq, pb, x1 ¡ 0, Hqu

(it is also obtained using twice the point 1. (a) of De�nition 7.9 but using

its point 2. with 1 action of the form pσ, g,RYR1q), and

� V3 :� tpa, x1 � 0, tx1uq, pb, x1 � 0, Hqu

(it is obtained using the point 1. (a) of De�nition 7.9 for the symbolic

action pa, x1 � 0, tx1uq, the point 1. (b) of De�nition 7.9 for the symbolic

action pa, x1 ¡ 0, tx1uq, and using its point 2. with 1 action of the form

pσ, g,RYR1q).

Before to present what is a strategy in a timed game G � pST , Lq, we make

a remark about symbol-deterministic STSs like ST .

Remark 7.11. We already noticed that, in a deterministic STS, every timed

word can be read by at most one path. In the same way, in a symbol-deterministic

STS ST � pS, s0,∆, Sf q, every symbolic word γ can be read by at most one path.

More formally, there exists at most one path π whose trace is γ. In that case, we

denote by ∆ps0, γq the last location of the path π (if it exists).

We still need to de�ne what is an enabled symbolic action.

De�nition 7.12. Let ST � pS, s0,∆, Sf q be an STS, over the symbolic alphabet

Γ based on pΣ, Xq, and a symbolic word γ over Γ. We say that a symbolic action

pa, g,Rq P Σ � GpXq � 2X is enabled in ST after reading γ if there exists a

7.1 Towards a timed game 287

transition p∆ps0, γq, pa, g,Rq, s
1q in ∆ such that twpγ � pa, g,Rqq � H.

We note Enabled
symb
ST pγq the set of symbolic actions enabled in ST after read-

ing γ.

We are now able to de�ne a strategy in a timed game G � pST , Lq. As

previously explained, this strategy will represent the combination of an action

of the controller (i.e. the choice of a valid set of actions) and all the possible

responses of the environment (i.e. all the possible choices of one of the actions of

the set proposed by the controller).

De�nition 7.13. Let ST � pS, s0,∆, F q be an STS over the symbolic alphabet

Γ and valid be the validity function over Γ. A strategy in ST is a mapping

f : D � LsymbpST q Ñ 2Γ such that:

� ε P D and

� for all γ P D and b P fpθq: fpγq P validpEnabled symbST pγqq and γ � b P D.

In the same way, a strategy in the timed game G � pST , Lq is a strategy in ST .

Example 7.14. Let us consider again the timed game G � pST , JΦKq of Exam-

ples 7.8 and 7.10. Let us consider again the set:

U :� tpa, x1 � 0, tx1uq, pa, x1 ¡ 0, tx1uq, pb, x1 � 0, Hq, pb, x1 ¡ 0, Hqu.

It is exactly the set Enabled symbST pεq. Recall that validpUq � tV1, V2, V3u (see

Example 7.10). In particular, a strategy f in ST can only be a function associ-

ating either V1, or V2, or V3 to ε.

Such a strategy f induces a particular set of plays in a timed game G: we

here formally de�ne this notion.

De�nition 7.15. Let G � pST , Lq be a timed game whose STS has Γ as symbolic

alphabet. Let f be a strategy in ST . The set of plays of f , denoted by playspfq,

is the set of symbolic words of LsymbpST q that are consistent with f , i.e.:

288 Chapter 7. MITL BRSPlant algorithm

γ P playspfq i� for every pre�x of γ of the form γ1 � b: b P fpγ1q.

We are now able to de�ne when the controller wins such a timed game G �

pST , Lq.

De�nition 7.16. Let G � pST , Lq be a timed game whose STS ST � pS, s0,∆, F q

has Γ as symbolic alphabet. Let f be a strategy in ST .
We say that f is winning (for the controller) i� for every play γ P playspfq, we

have:

twpγq � L.

Here is an interesting Proposition of paper [17] linking the BRSPlant prob-

lem4 and this notion of timed game. Its proof stays correct despite our slight

modi�cation of the de�nition of controller thanks to our corresponding modi�-

cation of the notion of validity function.

Proposition 7.17 ([17]). Given a plant P over a symbolic alphabet Γ and of

set of clocks X, a granularity µ � pX YXC , cmaxq and a timed language L over

�nite words, one can construct a timed game G � pSTP , Lq such that STP has

granularity µ and

there exists a deterministic STS ST over Γ such that TΣ�ST ,P XLpPq � LY tεu

i�

there is a winning strategy in G.

Here is the formal de�nition of STP , obtained from a plant P (see [31]).

De�nition 7.18. Let us consider a plant P � pP, p0, δ, F
Pq over a symbolic

alphabet Γ based on pΣ, Xq and a granularity µ � pX YXC , cmaxq. STP,µ is the

symbol-deterministic STS pP, p0, δ
1, FPq such that pp, pa, g1, RYR1q, p1q P δ1 i�:

4It is easy to see that our de�nition of the BRSPlant problem (see De�nition 2.158) is only a

rewriting of the de�nition given in [17], but the addition of concurrency between timed actions

proposed by the controller and the environment.

7.1 Towards a timed game 289

p0 p1 p2

pb,J,Hq

pb,J,Hq, pa, x1¡0,Hq

pa,J, tx1uq

pa, x1�0,Hq

pa, x1¡1,Hq

Figure 7.3: The atomic STS ST .

p0 p1 p2

pb, x1�0,Hq, pb, x1�0,Hq,

pb, x1¡0,Hq, pb, x1¡0,Hq
pb, x1�0,Hq, pb, x1Ps0,1r,Hq,

pb, x1�1,Hq, pb, x1¡1,Hq,

pa, x1Ps0,1r,Hq, pa, x1�1,Hq,

pa, x1¡1,Hq

pa, x1�0, tx1uq, pa, x1Ps0,1r, tx1uq,

pa, x1�1, tx1uq, pa, x1¡1, tx1uq

pa, x1�0,Hq

pa, x1¡1,Hq

Figure 7.4: The STS STP,µ.

1. R1 � XC,

2. g1 is µ-atomic, and

3. there exists pp, pa, g,Rq, p1q P δ such that Jg1K � JgK.

Example 7.19. Let us consider the plant P � pP, p0, δ, F
Pq (see Figure 7.3)

over a symbolic alphabet Γ based on pta, bu, tx1uq, with Σ � ΣC YΣE , ΣC � tbu

and ΣE � tau.

First, let us observe the granularity µ � ptx1u, 1q, i.e. the controller has no proper

clock. STP,µ is the symbol-deterministic STS given in Figure 7.4.

If we now consider the granularity ν � ptx1, yu, 0q, i.e. the controller has one

clock y. STP,ν is the symbol-deterministic STS given in Figure 7.5.

Thanks to Proposition 7.17, the MITL BRSPlant problem can be reduced

to deciding the existence of a winning strategy in an MITL timed game. The

290 Chapter 7. MITL BRSPlant algorithm

p0 p1 p2

pb, x1�0,Hq, pb, x1Ps0,1r, tyuq,

pb, x1�1,Hq, pb, x1¡1, tyuq
pb, x1�0,Hq, pb, x1�0, tyuq,

pb, x1¡0,Hq, pb, x1¡0, tyuq,

pa, x1¡0,Hq, pa, x1¡0, tyuq

pa, x1�0, tx1uq, pa, x1�0, tx1,yuq,

pa, x1¡0, tx1uq, pa, x1¡0, tx1,yuq
pa, x1�0,Hq,

pa, x1�0, tyuq

pa, x1¡1,Hq,

pa, x1¡1, tyuq

Figure 7.5: The STS STP,ν .

aim of the following section will be to reduce the existence of a winning strategy

in an MITL timed game G � pSTP,µ, JΦKq to that of a winning strategy in a

symbol-deterministic STS.

7.2 Towards a deterministic STS

In this section, we �x a plant P � pP, p0, δ, F
Pq over a symbolic alphabet

Γ based on pΣ, Xq, an MITL formula Φ specifying desired behaviours and a

granularity µ � pXYXC , cmaxq. We consider the game GP � pSTP,µ, JΦKq, where
STP,µ � pS, s0,∆, F q and a complete5 OCATA A Φ � pΣ, L, `0, F

Φ, δq accepting

J ΦK (see De�nition 2.164), which will be interpreted over its f�Φ-semantics. Let

us notice that it is not di�cult to complete the OCATA given by De�nition 2.164

for Φ in way to obtain a complete OCATA accepting J ΦK.
The aim of this section is to reduce the existence of a winning strategy in GP

to that of a winning strategy in a symbol-deterministic STS representing the

parallel composition of STP,µ and the OCATA A Φ. This symbol-deterministic

STS is obtained in several steps from GP . In the �rst one, we de�ne an STS

5An OCATA A � pΣ, L, `0, F, δq is said complete i� @` P L, @σ P Σ, @t P R�, there exists a
transition starting from `, labelled by σ and such that t satis�es its guard.

7.2 Towards a deterministic STS 291

that simulates the parallel executions of STP,µ and A Φ. Then, in a way similar

to that followed to perform MITL model-checking, we use the regions of � (see

De�nition 4.21) to obtain an STS with �nitely many locations over the symbolic

alphabet Γ. As already observed, an STS with �nitely many locations is nothing

but a timed automaton. Hence, we are then in front of an `untimed' automaton

(over a symbolic alphabet): it may be translated into the symbol-deterministic

STS we were looking for, using the classical determinization method explained

in De�nition 2.17.

We now present the �rst part of the construction of the symbol-deterministic

STS we are looking for: we de�ne an STS that executes STP,µ and A Φ in

parallel. We begin �xing some necessary vocabulary.

De�nition 7.20. An STP,µ{A Φ-con�guration is a pair pps, vq, Cq, where ps, vq

is a con�guration of STP,µ and C is a con�guration of A Φ containing at most

Mp Φq clock copies (see De�nition 4.10).

De�nition 7.21. We call single step of STP,µ � pS, s0,∆, F q a transition

ps, vq
a,g,R , t
ÝÝÝÝÝÑ ps1, v1q

such that:

� ps, vq and ps1, v1q are two con�gurations of STP,µ,

� ps, pa, g,Rq, s1q P ∆ is a transition of STP,µ,

� v � t P JgK, and

� v1 � pv � tqrRÐ 0s.

De�nition 7.22. For pa, g, Y q P Γ, we de�ne:

� SuccSTP,µ pps, vq , t, pa, g,Rqq :� tps1, v1q | ps, vq
a,g,R , t
ÝÝÝÝÑ ps1, v1q is a single

step of STP,µu,

292 Chapter 7. MITL BRSPlant algorithm

� SuccA ΦpC, t, σq :� tC 1 | C
t,σ
ÝÝÑf� Φ

C 1 in A Φu.

Thanks to those useful notations, we are now able to formally de�ne the STS

STP, Φ representing the parallel execution of STP,µ and A Φ.

De�nition 7.23. Let STP,µ � pS, s0,∆, F q and A Φ � pΣ, L, `0, F, δq. We

de�ne the STS STP, Φ � pU, u0,Ý�q, where:

� U is the set of STP,µ{A Φ-con�gurations,

� u0 � pps0, v0q, tp`0, 0quq, where v0 is the valuation such that v0pxq � 0,

@x P X, corresponds to the initial STP,µ{A Φ-con�guration, and

� pps, vq, Cq
a,g,R
Ý� pps1, v1q, C 1q i� Dt P R� such that C 1 P SuccA ΦpC, t, σq

and ps1, v1q P SuccSTP,µpps, vq, t, pa, g,Rqq.

Example 7.24. We consider again the plant P � pP, p0, δ, F
Pq of Figure 7.6,

the granularity µ � ptx1u, 1q and the symbol-deterministic STS STP,µ (see Fig-

ure 7.6).

We consider the following MITL formula representing the desired behaviours

of P:
Φ � 2 pañ ♦ 1bq .

Figure 7.7 represents the completed OCATA A Φ (remark that location Φinit

of De�nition 2.164 has been omitted for simplicity) recognizing J ΦK.
Figure 7.8 gives a part of the STS STP, Φ: each of its nodes has potentially an un-

countable number of successors. We are not able to represent all the STP,µ{A Φ-

con�gurations, so that we represent most of them by a unique parametrized node.

For instance, we draw a unique node labelled ppp1, 0q, tp♦, t1quq, with t1 Ps0, 1r,

while in the real in�nite STS STP, Φ, there is one such node for each t1 Ps0, 1r

and as many arcs, all labelled by the same symbolic letter pa, x1 Ps0, 1r, tx1uq,

leading to them. Moreover, when we develop the transitions from a node, we

represent all the possible transitions labelled by a symbolic letter whose letter of

Σ is a. We never represent the transitions on letter b (for the sake of readability).

7.2 Towards a deterministic STS 293

p0 p1 p2

pb, x1�0,Hq, pb, x1�0,Hq,

pb, x1¡0,Hq, pb, x1¡0,Hq
pb, x1�0,Hq, pb, x1Ps0,1r,Hq,

pb, x1�1,Hq, pb, x1¡1,Hq,

pa, x1Ps0,1r,Hq, pa, x1�1,Hq,

pa, x1¡1,Hq

pa, x1�0, tx1uq, pa, x1Ps0,1r, tx1uq,

pa, x1�1, tx1uq, pa, x1¡1, tx1uq

pa, x1�0,Hq

pa, x1¡1,Hq

Figure 7.6: The STS STP,µ.

♦ 2 OK

KO

a, x:�0 a, b, x¥1, x:�0

b, x 1, x:�0a, b a, x 1

a, b

a, b

Figure 7.7: The complete OCATA A Φ.

The following proposition holds by construction of STP, Φ and thanks to

Theorem 4.7:

Proposition 7.25. For every plant P, every MITL formula Φ, the associated

complete OCATA A Φ, and the associated timed game GP � pSTP,µ, JΦKq:

LsymbpSTP, Φq � LsymbpSTP,µ �A Φq and LpSTP, Φq � LpSTP,µ �A Φq.

Unfortunately, STP, Φ has in�nitely many locations. However, as already

noticed on a timed transition system representing the parallel execution of a TA

and an OCATA, to solve the MITL model-checking problem, the relation � (see

De�nition 4.21) is a bisimulation:

Proposition 7.26. Let us consider STP, Φ � pU, u0,Ý�q (see De�nition 7.23).

Let pps1, v1q, C1q, pps2, v2q, C2q P U such that pps1, v1q, C1q � pps2, v2q, C2q. Then:

294 Chapter 7. MITL BRSPlant algorithm

ppp0, 0q, tp♦, 0quq

ppp1, 0q, tp♦, 0quq
...

ppp1, 0q, tp♦, t1quq
...

ppp1, 0q, tp♦, 1quq
...

ppp1, 0q, tp♦, t2quq
...

ppp1, 0q, tp2, 0quq

...

ppp2, 0q, tp2, 0quq
...

ppp0, t3q, tp2, t3quq ppp0, 1q, tpOK, 0quq
...

ppp0, t4q, tpOK, 0quq
...

...

ppp1, 0q, tp2, t5quq
...

ppp1, 0q, tpOK, 0quq
...

ppp1, 0q, tpOK, 0quq
...

...

pa, x1 � 0, tx1uq
pa, x1 Ps0, 1r, tx1uq pa, x1 � 1, tx1uq

pa, x1 ¡ 1, tx1uq

pa, x1 � 0, tx1uq, pa, x1 Ps0, 1r, tx1uq,

pa, x1 � 1, tx1uq, pa, x1 ¡ 1, tx1uq

pa, x1 � 0, Hq

pa, x1 Ps0, 1r, Hq pa, x1 � 1, Hq

pa, x1 ¡ 1, Hq

pa, x1 Ps0, 1r, tx1uq

pa, x1 � 1, tx1uq

pa, x1 ¡ 1, tx1uq

with: t1 and t3 Ps0, 1r; t2, t4 and t6 ¡ 1; t5 Ps0, 1r and t5 ¥ t3.

Figure 7.8: Representation of a part of STP, Φ.

7.2 Towards a deterministic STS 295

for each transition pps1, v1q, C1q
a,g,R
Ý� pps11, v

1
1q, C

1
1q, where pa, g,Rq is a symbolic

action and pps11, v
1
1q, C

1
1q P U , there exists pps

1
2, v

1
2q, C

1
2q P U such that:

pps2, v2q, C2q
a,g,R
Ý� pps12, v

1
2q, C

1
2q and pps11, v

1
1q, C

1
1q � pps

1
2, v

1
2q, C

1
2q.

The proof of this proposition is very close to that of Proposition 4.23.

We are so allowed to quotient the STS STP, Φ by the region bisimulation �.

Thanks to the bound Mp Φq on the number of clock copies in con�gurations of

A Φ, we obtain the STS with �nitely many locations ST �P, Φ de�ned below. The

regions of � are still represented by words of H (see De�nition 4.25). We recall

that the alphabet on which are written the words symbolically representing the

region of each s P STP, Φ is denoted Λ and consists in the subsets of:

pP Y Lq �REG� t1, 2, . . . ,maxpmax
`PL

pmax`q, nqu,

where max` is the maximal number of intervals that can be present in location

` P L of A Φ (given by the proof of Theorem 4.7), and n :� |X| the number of

clocks of P.
The function H : S Ñ Λ� maps its region to each s P STP, Φ.

De�nition 7.27. Let us consider STP, Φ � pU, u0,Ý�q (see De�nition 7.23).

ST �P, Φ � pW,w0,Ñq is the STS such that:

� W � tHpuq | u is an STP{A Φ-con�guration u,

� w0 � Hpu0q,

� w1
a,g,R
ÝÝÝÑ w2 i� there exists u1 P H

�1pw1q and u2 P H
�1pw2q such that

u1

a,g,R
Ý� u2.

We notice that the number of STP{A Φ-con�gurations is �nite thanks to

the existing bound on the number of clock copies of the f� Φ-semantics of A Φ

296 Chapter 7. MITL BRSPlant algorithm

given by Theorem 4.7. Hence, ST �P, Φ is a �nite STS that can be e�ectively

constructed.

Example 7.28. We consider again the STS STP, Φ given in Figure 7.8 (see Ex-

ample 7.24). Figure 7.9 gives the part of the STS ST �P, Φ (consisting in words of

H) corresponding to the part of STP, Φ given in Figure 7.8. We recall that, in Fig-

ure 7.8, the node labelled ppp1, 0q, tp♦, t1quq (with t1 Ps0, 1r) was a shorthand to

represent the in�nity of nodes really existing for each t1 Ps0, 1r and the in�nity of

arcs, all labelled by the same symbolic letter pa, x1 Ps0, 1r, tx1uq, leading to each

of them. In the present Figure 7.9 the node labelled by tpp1, t0u, 1qutp♦, s0, 1r, 1qu

is not yet a shorthand but is really unique in ST �P, Φ. Even though ST �P, Φ is

�nite, it has too many nodes to enable us to completely draw it.

We can now present the last step of the construction, whose aim is to obtain

a symbol-deterministic STS from ST �P, Φ. Remark that ST �P, Φ is an STS with

�nitely many locations, over a symbolic alphabet, so that pST �P, Φqdet (see De�-

nition 2.17) is a �nite symbol-deterministic STS, as we were looking for.

In the sequel, we however show that we can restrict the set of locations of

pST �P, Φqdet. We recall that a location of pST �P, Φqdet is a set of locations of

ST �P, Φ, i.e. a set of words of W . In fact, we claim we only need to consider the

locations of pST �P, Φqdet which are sets of words agreeing on the con�guration of

STP,µ they symbolically represent. This is due to the determinism of P.

De�nition 7.29. For w PW , we note reg STP,µpwq the maximal subword w1 � w

such that w1 does not contain occurrences of locations of A Φ.

To prove our claim, let us further de�ne a notion of enabled symbolic action,

from a given word of W .

De�nition 7.30. Let us consider ST �P, Φ � pW,w0,Ñq (see De�nition 7.27).

We say that a symbolic action pa, g,Rq P Σ� GpX YXCq � 2XYXC is enabled in

ST �P, Φ at a word w PW if there exists w1 PW such that w
a,g,R
ÝÝÝÑ w1 in ST �P, Φ.

We note Enabled
symb
ST �P, Φ

pwq the set of symbolic actions enabled in ST �P, Φ at a

word w.

7.2 Towards a deterministic STS 297

tpp0, t0u, 1q, p♦, t0u, 1qu

tpp1, t0u, 1q, p♦, t0u, 1qu
...

tpp1, t0u, 1qutp♦, s0, 1r, 1qu
...

tpp1, t0u, 1q, p♦, t1u, 1qu
...

tpp1, t0u, 1q, p♦, s1,�8r, 1qu
...

tpp1, t0u, 1q, p2, t0u, 1qu

...

tpp2, t0u, 1q, p2, t0u, 1qu
...

tpp0, s0, 1r, 1q, p2, s0, 1r, 1qu tpp0, t1u, 1q, pOK, t0u, 1qu
...

tpp0, s1,�8r, 1q, pOK, t0u, 1qu
...

...

tpp1, t0u, 1q, uutp2, s0, 1r, 1qu
...

tpp1, t0u, 1q, pOK, t0u, 1qu
...

tpp1, t0u, 1q, pOK, t0u, 1qu
...

...

pa, x1 � 0, tx1uq

pa, x1 Ps0, 1r, tx1uq pa, x1 � 1, tx1uq

pa, x1 ¡ 1, tx1uq

pa, x1 � 0, tx1uq, pa, x1 Ps0, 1r, tx1uq,

pa, x1 � 1, tx1uq, pa, x1 ¡ 1, tx1uq

pa, x1 � 0, Hq

pa, x1 Ps0, 1r, Hq pa, x1 � 1, Hq

pa, x1 ¡ 1, Hq

pa, x1 Ps0, 1r, tx1uq

pa, x1 � 1, tx1uq

pa, x1 ¡ 1, tx1uq

Figure 7.9: Representation of a part of ST �P, Φ.

298 Chapter 7. MITL BRSPlant algorithm

Since A Φ is complete and STP,µ is a symbol-deterministic atomic STS, we

have:

Lemma 7.31. For all w1, w2, w
1
1, w

1
2 PW with reg STP,µpw1q � reg STP,µpw2q:

w1
a,g,R
ÝÝÝÑ w11 and w2

a,g,R
ÝÝÝÑ w12 imply that

reg STP,µpw
1
1q � reg STP,µpw

1
2q.

Moreover, Enabled symbST �P, Φ
pw1q � Enabled

symb
ST �P, Φ

pw2q.

Thanks to this lemma, we are able to de�ne the set of locations of pST �P, Φqdet

we only need to consider. We then give the �nal de�nition of the symbol-

deterministic STS Det we were looking for.

De�nition 7.32. We note SW the set of non-empty �nite sets D �W such that

for all words w,w1 P D, reg STP,µpwq � reg STP,µpw
1q.

De�nition 7.33. We note Det � pSW, tw0u,∆Detq the restriction of pST �P, Φqdet

to the set of states of SW .

The following lemma shows it is su�cient to considerDet instead of pST �P, Φqdet

to answer language questions. It holds trivially, thanks to Lemma 7.31.

Lemma 7.34. LsymbpDetq � LsymbppST �P, Φqdetq.

Let us extend the notion of enabled symbolic action to the locations of Det.

De�nition 7.35. Let us consider ST �P, Φ � pW,w0,Ñq (see De�nition 7.27)

and Det � pSW, tw0u,∆Detq (see De�nition 7.33). We say that a symbolic action

pa, g,Rq P Σ� GpX YXCq � 2XYXC is enabled in Det at a set of words D P SW
if there exists w P D, w1 PW and a transition w

a,g,R
ÝÝÝÑ w1 in ST �P, Φ.

We note Enabled
symb
Det pDq the set of symbolic actions enabled in Det at a set of

words D.

7.2 Towards a deterministic STS 299

We will now present a proposition showing that we can reduce the MITL

BRSPlant problem (yet reduced to the search of a winning strategy in GP) to

the search of a safe strategy in Det, as de�ned below.

De�nition 7.36. An STP,µ{A Φ-con�guration pps, vq, Cq is bad if both s and C

are accepting.

A word w PW is bad if there is pps, vq, Cq P H�1pwq such that pps, vq, Cq is bad.

A set of words D P SW is bad if D contains some bad word.

De�nition 7.37. A strategy f in Det is safe i� for every �nite play γ of f ,

∆Detptw0u, γq is not bad.

Proposition 7.38 ([17]). There is a winning strategy in the timed game GP

with respect to undesired behaviours i� there is a safe strategy in Det.

The proof of this proposition is identical to that presented in [17] despite

the slight modi�cations we provided to the notions of controller and validity

function in way to add concurrency between the controller and the environment

of the BRSPlant problem.

Proposition 7.38 enables to conclude that the MITL BRSPlant problem can

be reduced to deciding the existence of a safe strategy in the symbol-deterministic

STS Det.

Example 7.39. We consider again the STS ST �P, Φ given in Figure 7.9 (see

300 Chapter 7. MITL BRSPlant algorithm

Example 7.24). We will use the following notations:

w0 :� tpp0, t0u, 1q, p♦, t0u, 1qu,

w1 :� tpp1, t0u, 1q, p♦, t0u, 1qu,

w2 :� tpp1, t0u, 1qutp♦, s0, 1r, 1qu,

w3 :� tpp1, t0u, 1q, p♦, t1u, 1qu,

w4 :� tpp1, t0u, 1q, p♦, s1,�8r, 1qu,

w5 :� tpp1, t0u, 1q, p2, t0u, 1qu,

w6 :� tpp2, t0u, 1q, p2, t0u, 1qu,

w7 :� tpp0, s0, 1r, 1q, p2, s0, 1r, 1qu,

w8 :� tpp0, t1u, 1q, pOK, t0u, 1qu,

w9 :� tpp0, s1,�8r, 1q, pOK, t0u, 1qu,

w10 :� tpp1, t0u, 1q, uutp2, s0, 1r, 1qu,

w11 :� tpp1, t0u, 1q, pOK, t0u, 1qu,

w12 :� tpp1, t0u, 1q, pOK, t0u, 1qu,

w13 :� tpp2, t0u, 1q, p♦, t0u, 1qu,

w14 :� tpp2, t0u, 1q, p2, t0u, 1qu,

w15 :� tpp0, s0, 1r, 1q, p♦, s0, 1r, 1qu,

w16 :� tp2, t0u, 1qutpp0, s0, 1r, 1qu,

w17 :� tpp0, t1u, 1q, p♦, t1u, 1qu,

w18 :� tpp0, t1u, 1q, p2, t0u, 1qu,

w19 :� tpp0, s1,�8r, 1q, p♦, s1,�8r, 1qu,

w20 :� tpp0, s1,�8r, 1q, p2, t0u, 1qu.

ST �P, Φ is then the STS partially represented in Figure 7.10. Figure 7.11 repre-

sents a part of Det, whose bad locations are represented with double borders. It

7.3 The algorithm 301

comes from the fact that, in ST �P, Φ, we have:

w1
pa,x1�0,Hq
ÝÝÝÝÝÝÝÑ w13,

w1
pa,x1�0,Hq
ÝÝÝÝÝÝÝÑ w14,

w1
pa,x1Ps0,1r,Hq
ÝÝÝÝÝÝÝÝÝÑ w15,

w1
pa,x1Ps0,1r,Hq
ÝÝÝÝÝÝÝÝÝÑ w16,

w1
pa,x1�1,Hq
ÝÝÝÝÝÝÝÑ w17,

w1
pa,x1�1,Hq
ÝÝÝÝÝÝÝÑ w18,

w1
pa,x1Ps1,�8r,Hq
ÝÝÝÝÝÝÝÝÝÝÑ w19,

w1
pa,x1Ps1,�8r,Hq
ÝÝÝÝÝÝÝÝÝÝÑ w20.

One can remark that Lemma 7.34 is indeed veri�ed on this example. For instance,

Let us observe the location tw8, w17, w18u of Det: it contains three words agreeing
on their trio `pp0, s1,�8r, 1q', symbolically representing a con�guration of STP,µ.

7.3 The algorithm

In the previous sections, we �rst showed that the MITL BRSPlant problem

can be reduced to deciding the existence of a winning strategy in an MITL timed

game (see Proposition 7.17). Then, we saw that this existence of winning strategy

can itself be reduced to the existence of a safe strategy in a symbol-deterministic

STS (see Proposition 7.38). In the present section, we present an algorithm

verifying the existence of such a safe strategy.

Let us �x a plant P � pP, p0, δ, F
Pq over a symbolic alphabet Γ based on

pΣ, Xq, an MITL formula Φ specifying desired behaviours and a granularity

µ � pX Y XC , cmaxq. We consider the MITL BRSPlant problem determined

by P, Φ and µ. We also consider a complete OCATA A Φ � pΣ, L, `0, F
Φ, δq

accepting J ΦK, the validity function valid and the symbol-deterministic STS

Det � pSW, tw0u,∆Detq of De�nition 7.33.

302 Chapter 7. MITL BRSPlant algorithm

w0

w1

...
w2

...
w3

...
w4

...

w5

...

w6

...

w7 w8

...

w9

...

...

w10

...
w11

...
w12

...

...

pa, x1 � 0, tx1uq

pa, x1 Ps0, 1r, tx1uq pa, x1 � 1, tx1uq

pa, x1 ¡ 1, tx1uq

pa, x1 � 0, tx1uq, pa, x1 Ps0, 1r, tx1uq,

pa, x1 � 1, tx1uq, pa, x1 ¡ 1, tx1uq

pa, x1 � 0, Hq

pa, x1 Ps0, 1r, Hq pa, x1 � 1, Hq

pa, x1 ¡ 1, Hq

pa, x1 Ps0, 1r, tx1uq

pa, x1 � 1, tx1uq

pa, x1 ¡ 1, tx1uq

Figure 7.10: Representation of a part of ST �P, Φ.

w0

w1, w5 w2, w5

...
w3, w5

...
w4, w5

...

...

w6, w13,

w14

...

w7, w15,

w16

...

w8, w17,

w18

...

w9, w19,

w20

...

pa, x1 � 0, tx1uq

pa, x1 Ps0, 1r, tx1uq pa, x1 � 1, tx1uq

pa, x1 ¡ 1, tx1uq

pa, x1 � 0, tx1uq

pa, x1 Ps0, 1r, tx1uq

pa, x
1 � 1, tx

1uq

pa, x1 ¡ 1, tx1uq

Figure 7.11: Representation of a part of Det.

7.3 The algorithm 303

We now present an algorithm enabling to decide of the existence of a safe

strategy in Det. It is very close to that used in [17]. The unique di�erence is

that, thanks to our bound on the number of clock copies in the con�gurations of

A Φ, Det has �nitely many locations. Hence, the following algorithm may stop

without requiring the use of a well quasi order (as used in [17]).

De�nition 7.40 (MITL BRSPlant algorithm). We build a �nite portion T� of

the tree given by the unfolding of Det and label its nodes by J or K. First of all,

we construct T� and label its leaves. We start from the initial location tw0u and,

at each step, we pick a leaf D P SW and proceed as follows:

1. if D is not bad and it has an ancestor D1 in the portion of the tree built so

far such that D1 � D, then we label the node D by J and do not compute

its successors;

2. if D is bad, then we label the node D by K and do not compute its successors;

3. otherwise, for any transition in Det of the form pD, pa, g,Rq,D1q P ∆Det,

we add a transition from the current node D to a new node D1 labelled by

pa, g,Rq. If D has no successor, then, it is labelled by J.

Remark that the construction of T� eventually ends because Det has only �nitely
many locations. Once T� is constructed, we label its internal nodes as follows.

For any internal node D, if there is a set of symbolic actions

U P validpEnabled symbDet pDqq such that for each pa, g,Rq P U , the transition in

T� from D labelled by pa, g,Rq leads to a node labelled by J, then we label D by

J; otherwise, we label D by K. Finally, the algorithm answers `yes' if the root of

T� is labelled by J and `no' otherwise.

The correctness of this algorithm is stated by the following proposition whose

proof is identical to that given in [17].

Proposition 7.41 ([17]). If the algorithm of De�nition 7.40 answers `no', then

there is no safe strategy in Det. If this algorithm answers `yes', then there is a

safe strategy in Det.

304 Chapter 7. MITL BRSPlant algorithm

The following proposition gives an upper bound on the number of locations

that may form the unfolding of the �nite portion T� of the unfolding of Det.

Proposition 7.42. The �nite portion T� of the unfolding of Det constructed
by the algorithm of De�nition 7.40 has at most O

�
a22b

	
locations, where:

� a � |Σ|.p2.cmax � 2q|X|�|XC |.2|X|�|XC |, and

� b = pMpΦq � |X| � |XC |q . p|P | � |Φ|q . p2.Cmax � 2q . max
�
|X| � |XC |,

max`PL pmax`q
�
, with max` the maximal number of intervals that can be

present in location ` P L of A Φ (given by the proof of Theorem 4.7).

Proof. We obtain this bound calculating step by step: the number of locations

of STP,µ, the number of words of W (the set of locations of ST �P, Φ), the number

of set of words of SW (the set of locations of Det) and �nally, the number of

locations of the unfolding of Det in which a branch is stopped as far as it reaches

a location that has already been seen on this branch.

By de�nition of STP,µ (see de�nition 7.18), STP,µ has the same number of loca-

tions as P, i.e. |P | locations.
A location of ST �P, Φ is a word over the alphabet Λ consisting in the subsets of:

pP Y Lq �REG� t1, 2, . . . ,max
�
|X| � |XC |, max`PLpmax`q

�
u.

which as between |X|�|XC | andMpΦq�|X|�|XC | letters. The maximal number

of locations of ST �P, Φ is so:

Σ
MpΦq�|X|�|XC |
j�|X|�|XC |

2j.m
1
� O

�
2pMpΦq�|X|�|XC |q.m

1
	
,

where m1 � p|X| � |Φ|q.p2.cmax � 2q.max
�
|X| � |XC |, max`PLpmax`q

�
(because

|L| � |Φ|).

A location of Det is a set of words of W , so that the number of locations of Det
is

O
�

22pMpΦq�|X|�|XC |q.m
1	
.

7.3 The algorithm 305

Finally, we want to calculate the number of locations of the unfolding of Det
computed by the algorithm of De�nition 7.40. In the worst case, all the lo-

cations of Det are present on each branch of this unfolding whose depth is so

O
�

22pMpΦq�|X|�|XC |q.m
1	
. Moreover, from each of its locations, may be read all the

symbolic actions of the symbolic alphabet Γ1 � Σ� GpX YXCq � 2XYXC . There

are

a � |Σ| . p2.cmax � 2q|X|�|XC | . 2|X|�|XC |

such symbolic letters. Hence, the number of locations of the unfolding of Det is

O

�
a22pMpΦq�|X|�|XC |q.m

1

� O

�
a22b

.

The following theorem is given to show that this upper bound on the number

of locations we need to explore to solve the MITL BRSPlant problem corresponds

to theoretical expectations. This observation is based on two ingredients. The

�rst one consists in observing the complexity bound obtained by D'Souza and

Madhusudan in [31] on a variant of the BRSPlant problem, in which the speci-

�cation L represents undesired behaviours and is given by a timed automaton6.

We remark that we can solve our own BRSPlant problem using that of [31]: we

only need to negate the MITL formula Φ speci�cating desired behaviours and

to construct the timed automaton B Φ recognizing J ΦK (see De�nition 4.13).

This leads us to our second ingredient: the bound given by Proposition 4.15 on

the number of locations of the timed automaton B Φ. Putting these ingredients

together, we prove that the MITL BRSPlant problem is in 3EXPTIME.

Proposition 7.43. The MITL BRSPlant problem is in 3EXPTIME.

Proof. Let us consider the MITL BRSPlant problem given by the plant P �

pP, p0, δ, F
Pq, the MITL formula Φ and the granularity µ � pX, cmaxq. It is

equivalent to construct from Φ the timed automaton B Φ recognizing J ΦK and
6We however notice that, in [31], D'Souza and Madhusudan are considering in�nite words.

306 Chapter 7. MITL BRSPlant algorithm

then solve the variant of the BRSPlant problem of [31] for the speci�cation of

undesired behaviours given by the timed automaton B Φ � pΣ, L, λ0, X, F, δq (see

De�nition 4.13). Let us note ν � pXΦ, cmax,Φq the granularity of B Φ. In [31],

the authors proved that this problem can be solved in time:

|P |Op|L|q � 2Op|Σ|.|L|q�|L|
2.logp|L|q.2Op|µ|�|ν|q

2

.

We now use Proposition 4.15, which gives the number of clocks used by B Φ and

a bound on the number of locations of B Φ. Noting that |Φ| � | Φ|, our MITL

BRSPlant problem can be solved in time:

|P |Opp|Φ|q
pm.|Φ|qq � 2Op|Σ|.pp|Φ|q

pm.|Φ|qqq�pp|Φ|qpm.|Φ|qq2.logpp|Φ|qpm.|Φ|qq.2Op|µ|�|ν|q
2

�|P |Op2
m.|Φ|.log2p|Φ|qq � 2Op|Σ|.p2

m.|Φ|.log2p|Φ|qqq�p2m.|Φ|.log2p|Φ|qq2.logp2m.|Φ|.log2p|Φ|qq.2
Op|XΦ|�logpcmax,Φq�|ν|q

2

,

where, noting IΦ the set of all the intervals that occur in Φ (and so in Φ),

m � maxIPIΦ

!
2�

Q
infpIq
|I|

U
� 1,

Q
suppIq
|I|

U
� 1

)
.

As |XΦ| �MpΦq � Op2|Φ|q, the MITL BRSPlant problem is in 3EXPTIME.

We close this section pointing out that we have tried to produce an e�cient

implementation of the algorithm of De�nition 7.40. Indeed, the locations of the

unfolding ofDet are computed `on the �y', as well as the words ofW (i.e. locations

of ST �P, Φ) that form them. In fact, we start from the root of Det, compute

its successors and enumerate the valid subsets of successors, i.e. the subsets of

successors reached following the arcs of each valid set of actions given by the

validity function valid. We go on computing the successors of each such valid

subset of successors, one by one. We stop the process as soon as a bad location

of Det is reached, meaning that the valid set of succesors currently considered is

not winning for the controller. If all the valid subsets of successors of a location

of Det are eliminated this way, we label this location by K and go back up in

the unfolding of Det. In the same way, when considering a location D of the

unfolding of Det and a valid subset V of its successors, if all the locations of V

can be labelled J (because they have no successor or had already been seen on

the branch of the unfolding of Det they belong to), D is also labelled J and we go

7.4 Order-based algorithms 307

back up in the unfolding of Det. It means that, in this case, we do not compute

the successors of the successors of D that did not belong to V .

7.4 Order-based algorithms

When we considered the MITL model-checking problem over �nite words, we

gave a basic algorithm and then tried to improve it elaborating a heuristic using

antichains. In a similar way, we here consider two di�erent orders enabling to

elaborate such heuristics for the algorithm of De�nition 7.40.

The �rst order has already been used by Bouyer and al. in [17]. Indeed, in this

paper, they were considering the MTL BRSPlant problem, so that the unfolding

of Det was an in�nite object: they needed this order in way to stop its branches

and ensure the termination of their algorithm. While, in our setting, the al-

gorithm terminates without considering any order, we can use it, to improve it

e�ciency in practice. The �rst part of this section will be dedicated to the de�ni-

tion of the order used in [17]. This order considers two locations of the unfolding

of Det, i.e. set of words, and compare them. In parallel, we found interesting,

as a location of the unfolding of Det is a set of words, to compare those words

amongst themselves. This is the object of the second order we will consider in

this section. In fact, we prove that we can simply keep the antichain of the mini-

mal words (in the sense of De�nition 4.38) among those forming each location of

the unfolding of Det, while keeping a correct algorithm for the MITL BRSPlant

problem. Finally, we prove that these two orders may be used in a synchronous

way, still keeping a correct algorithm.

In the following, we consider the MITL BRSPlant problem given by the plant

P � pP, p0, δ, F
Pq, over a symbolic alphabet Γ based on pΣ, Xq, the MITL for-

mula Φ specifying desired behaviours and the granularity µ � pXYXC , cmaxq. We

also consider a complete OCATA A Φ � pΣ, L, `0, F
Φ, δq accepting J ΦK, the va-

lidity function valid and the symbol-deterministic STS Det � pSW, tw0u,∆Detq

of De�nition 7.33.

308 Chapter 7. MITL BRSPlant algorithm

First heuristic: stopping the branches earlier. Let us begin de�ning the or-

der of Bouyer and al.. This order extends the de�nition of � (see De�nition 4.38)

to (power set) locations of SW .

De�nition 7.44. We de�ne the order �p.s. on the locations of Det as follows.

Let D1,D2 P SW :

D1 �p.s. D2 i� @w2 P D2, Dw1 P D1 such that w1 � w2.

As � induces a forward simulation on the words of H, �p.s. induces a forward
simulation on the sets of words of Det:

Proposition 7.45 ([17]). For all D1,D2,D11 P SW and pa, g,Rq P Σ � GpX Y

XCq � 2XYXC such that

D11 �p.s. D1 and pD1, pa, g,Rq,D2q P ∆Det,

there exists some D12 P SW such that

D12 �p.s. D2 and pD1,pa, g,Rq,D12q P ∆Det.

In [17], the algorithm of De�nition 7.40 is proved to be correct when using the

order �p.s. instead of � to truncate the branches of the unfolding of Det. Let us
formally de�ne the �nite part of this unfolding then constructed instead of T�.

We previously need to de�ne the successor of a location of Det by a symbolic

action pa, g,Rq.

De�nition 7.46. Let D be a location of Det � pSW, tw0u,∆Detq and pa, g,Rq P

Σ � GpX Y XCq � 2XYXC . We de�ne Posta,g,RpDq to be the unique7 D1 P SW
such that pD, pa, g,Rq,D1q P ∆Det if it exists, and H otherwise.

De�nition 7.47. We de�ne T�p.s. the �nite part of the unfolding of Det �
pSW, tw0u,∆Detq recursively obtained as follows:

7by symbol-determinism of Det

7.4 Order-based algorithms 309

� the root of T�p.s. is tw0u,

� for each node D in T�p.s. , if the branch of T�p.s. leading to D already

contains another node D1, such that D1 �p.s. D, then, D has no successor;

otherwise, for each symbolic action pa, g,Rq P Σ � GpX Y XCq � 2XYXC

such that Posta,g,RpDq � H, there is an arc labelled by pa, g,Rq from D to

Posta,g,RpDq.

The algorithm of De�nition 7.40 is still correct labelling the locations of T�

by J or K in the same way as done with those of T� (see [17] for the correctness

proof).

Second heuristic: minimal node labels. We now prove that it is su�cient

to maintain the antichain of minimal words (for the order � of De�nition 4.38)

of the sets of words forming the locations of Det, when developping its unfolding.

In the sequel, we will note T the complete unfolding of Det and T� the �nite

part of T in which a branch is stopped when its last node is equal to another of

its nodes. T� is the �nite part of T used in the algorithm of De�nition 7.40. We

now de�ne Tmin and T�min, constructed similarly as T and T�, but conserving

minpDq instead of each location D of Det.

De�nition 7.48. We de�ne Tmin the tree obtained as follows:

� the root of Tmin is the same as that of T ,

� for each node D of Tmin, for each symbolic action pa, g,Rq P Σ�GpXYXCq�

2XYXC such that Posta,g,RpDq � H, there is an arc labelled by pa, g,Rq from

D to minpPosta,g,RpDqq.

De�nition 7.49. We de�ne T�min the tree obtained as follows:

� the root of T�min is the same as that of T ,

� for each node D of T�min, if the branch of T
�
min leading to D already contains

D1, such that D1 � D, then, D has no successor; otherwise, for each sym-

310 Chapter 7. MITL BRSPlant algorithm

bolic action pa, g,Rq P Σ�GpXYXCq�2XYXC such that Posta,g,RpDq � H,

there is an arc labelled by pa, g,Rq from D to minpPosta,g,RpDqq.

Our following aim will be to prove that labelling the nodes of T�min instead

of those of T� is correct in way to solve the MITL BRSPlant problem, as stated

by the following theorem:

Theorem 7.50. Using the procedure of the algorithm of De�nition 7.40 to la-

belled the nodes of T� and T�min, we have that:

the root of T� is labelled by J i� the root of T�min is labelled by J.

In way to prove this theorem, we will �x some vocabulary and expound several

properties of T� and T�min.

De�nition 7.51. Let U � pV,Eq and U 1 � pV 1, E1q two directed trees whose

respective roots are r and r1. We say that U and U 1 are isomorphic if there exists

a bijection f : V Ñ V 1 such that: fprq � r1 and, @pv, wq P E, pfpvq, fpwqq P E1.

We call corresponding nodes nodes v P V and v1 P V 1 such that fpvq � v1.

De�nition 7.52. Let D be a node of T , Tmin, T
� or T�min. Let v P validp

Enabled
symb
Det pDqq be a valid set of actions among those enabled at D. We say

that v is safe if all the successors of D by a symbolic action from v are labelled

by J by the algorithm of De�nition 7.40.

We now give several lemmas and propositions that will enable to establish

the proof of Theorem 7.50. We start by stating two lemmas whose trivial proofs

are omitted.

Lemma 7.53. Let D be a location of Det. minpDq � D and minpDq �p.s. D.

Lemma 7.54. Let D,D1 be two locations of Det and pa, g,Rq P Σ�GpXYXCq�

2XYXC . D1 � D implies Posta,g,RpD1q � Posta,g,RpDq8.
8As previously noticed, Posta,g,RpD1q is a unique location of Det, as well as Posta,g,RpDq.

The inclusion Posta,g,RpD1q � Posta,g,RpDq concerns the words these two locations of Det
contain.

7.4 Order-based algorithms 311

Here is a useful proposition stating that, for any location D of Det, the same

symbolic actions are enabled from D and minpDq.

Proposition 7.55. LetD be a location ofDet � pSW, tw0u,∆Detq and pa, g,Rq P

Σ� GpX YXCq � 2XYXC :

Posta,g,RpDq � H i� Posta,g,RpminpDqq � H.

Proof. pñq Trivial by de�nition of ∆Det (see also De�nition 2.17) because

minpDq � D.
pðq Suppose Posta,g,RpminpDqq � H. It means we have no successor reading

pa, g,Rq from the smallest words of D (for the order �), by the de�nition of the

transition relation Ñ of ST �P, Φ and the de�nition of `minimal model', we can-

not have any successor reading pa, g,Rq from any word of D. So, Posta,g,RpDq �
H.

The following proposition enables to prove that T and Tmin are isomorphic.

This fact will be a key argument in the proof of Theorem 7.50.

Proposition 7.56. Let D be a location of Det � pSW, tw0u,∆Detq:

minpPosta,g,RpDqq � minpPosta,g,RpminpDqqq.

Proof. As D and minpDq are empty at the same time, this equality is trivially

veri�ed when one of them is empty. In the sequel, we suppose they are not

empty.

p�q Let w P minpPosta,g,RpDqq. Let us note D1 :� Posta,g,RpDq. We have

pD, pa, g,Rq,D1q P ∆Det and w P minpD1q. As minpDq �p.s. D, by Proposi-

tion 7.45, notingmD1 :� Posta,g,RpminpDqq, we have that pminpDq, pa, g,Rq,mD1q
P ∆Det and mD1 �p.s. D1. We must prove that w P minpmD1q.
w P mD1: as w P minpD1q, in particular, w P D1 and there is w̃ P D such that

w̃
a,g,R
ÝÝÝÑ w (in ST �P, Φ). We claim this implies there is also w� P minpDq such

312 Chapter 7. MITL BRSPlant algorithm

that w�
a,g,R
ÝÝÝÑ w (in ST �P, Φ). Indeed, if w̃ P minpDq, we are done. Other-

wise, w̃ R minpDq and there is w P minpDq such that w � w̃. As w̃
a,g,R
ÝÝÝÑ w,

by Proposition 4.43, there exists an mw such that w
a,g,R
ÝÝÝÑ mw and mw � w.

As w P D and by de�nition of Posta,g,RpDq, mw P D1. So, w P minpD1q and
mw � w, which imply that mw � w: mw is the w� we were looking for. Now,

we know that there is w� P minpDq such that w�
a,g,R
ÝÝÝÑ w, and so w P mD1 (since

mD1 :� Posta,g,RpminpDqq).
w P minpmD1q: w P minpD1q means that @w1 P D1, w1 � w implies that w1 �

w. As minpDq � D, by Lemma 7.54, Posta,g,RpminpDqq :� mD1 � D1 :�

Posta,g,RpDq. So, in particular, @w1 P mD1, w1 � w implies that w1 � w.

p�q Letmmw P minpPosta,g,RpminpDqqq. Let us notemD1 :� Posta,g,RpminpDqq.
We have pminpDq, pa, g,Rq,mD1q P ∆Det andmmw P minpmD1q. As minpDq � D
and Posta,g,RpminpDqq is not empty, Posta,g,RpDq is not empty and we will

note it D1. We so have: pD, pa, g,Rq,D1q P ∆Det and minpDq �p.s. D. By

Proposition 7.45 and as mD1 is the unique successor of minpDq reading pa, g,Rq
(by symbol-determinism of Det), we have pminpDq, pa, g,Rq,mD1q P ∆Det and

mD1 �p.s. D1. We must show that mmw P minpD1q :� minpPosta,g,RpDqq.
mmw P D1: we know that minpDq � D: by Lemma 7.54, Posta,g,RpminpDqq :�

mD1 � D1 :� Posta,g,RpDq. As mmw P minpmD1q, mmw P mD1 and so

mmw P D1.
mmw P minpD1q: mmw P minpmD1q means that @w1 P mD1, w1 � mmw im-

plies that w1 � mmw. Let x P D1 and suppose x � mmw. We will show that

x � mmw. As x P D1 and mD1 �p.s. D1, there is mx P mD1 such that mx � x.

As, moreover, x � mmw, we have mx � mmw and so mx � mmw. Hence,

mmw � x � mmw and so x � mmw.

Proposition 7.57. T and Tmin are isomorphic. Moreover, for each node D in

T , the corresponding node in Tmin is labelled by minpDq.

Proof. It is clear that T and Tmin are isomorphic by de�nition of these trees and

Proposition 7.56. We will prove that for each node D in T , the corresponding

node in Tmin is labelled by minpDq.

7.4 Order-based algorithms 313

Basis: the root tw0u of T is also the root of Tmin and it contains a unique word,

so that the root of Tmin is indeed labelled by minptw0uq.

Inductive case: suppose that D and minpDq are corresponding nodes of T

and Tmin, respectively. We must prove that for each symbolic action pa, g,Rq P

Σ�GpX YXCq� 2XYXC , D is linked to a node D1 by an arc labelled by pa, g,Rq

i� minpDq is linked to a node minpD1q by an arc labelled by pa, g,Rq. Indeed:

there is an arc labelled by pa, g,Rq from D to a node D1

i� D1 :� Posta,g,RpDq (by de�nition of T)

i� there is an arc from minpDq, labelled by pa, g,Rq,

to a node containing minpPosta,g,RpminpDqqq (by de�nition of Tminq

i� there is an arc from minpDq, labelled by pa, g,Rq,

to a node containing minpPosta,g,RpDqq (by Proposition 7.56)

i� there is an arc from minpDq, labelled by pa, g,Rq,

to a node containing minpD1q (by de�nition of D')

Nevertheless, T� and T�min are not isomorphic. Indeed, each branch of T�min

is necessarily shorter than the corresponding branch in T� but the converse is

not true.

Proposition 7.58. Each branch of T�min is necessarily shorter than the corre-

sponding branch in T�.

Proof. If a branch of T� is stopped in a node D that has a corresponding node

minpDq in T�min, there are three possible reasons for this:

1. D has no successor. Then, minpDq and has no successor, by Proposi-

tion 7.55.

2. there is D1 on the branch leading to D such that D1 � D. Then, on the

branch leading to minpDq is the node corresponding to D1: minpD1q. As

D1 � D, minpD1q � minpDq and T�min is stopped in minpDq.

314 Chapter 7. MITL BRSPlant algorithm

3. D is bad. Then, there is w P D such that w is bad. As minpDq �p.s. D
and w P H, there is mw P minpDq such that mw � w. As w is bad (all the

locations of B and A Φ present in w are accepting ones), mw is bad and

so is minpDq. T�min is so stopped in minpDq.

Remark 7.59. T� and T�min are not isomorphic because the reverses of cases 2.

and 3. are not true in general.

Remark 7.60. By de�nition of T� and T�min and Proposition 7.55, each node

of T�min has: either no successor, either as many successors as its corresponding

node in T�.

We present a last lemma, used in the proof of Theorem 7.50. It links the valid

set of actions existing from D and from minpDq.

Lemma 7.61. Let D be a node of T , minpDq be its corresponding node in Tmin
and let v � 2Γ. v is a valid set of actions from D i� v is a valid set of actions

from minpDq, i.e.:

v P validpEnabled symbDet pDqq i� v P validpEnabled symbDet pminpDqqq

Proof. pñq Suppose that v P validpEnabled symbDet pDqq. Then, v P validp

Enabled symbDet pminpDqqq because being valid from minpDq (see De�nition 7.9)

consists in satisfying properties on the actions readable from minpDq, but v is

valid from D and, by Proposition 7.55, the same labels are readable from minpDq
and D.
pðq The same argument holds.

Remark 7.62. The previous lemma also holds when considering a node D of T�

that has a corresponding node in T�min (in which case this corresponding node is

necessarily minpDq).

7.4 Order-based algorithms 315

Thanks to the previous lemmas and propositions, we are now ready to present

the proof of Theorem 7.50. This shows that replacing T� by T�min in the algorithm

of De�nition 7.40 does not change its correctness.

Proof of Theorem 7.50. pñq We will show the stronger following property:

if a node of T� that has a corresponding node in T�min is labelled by J, then its

corresponding node is also labelled by J.

Let D be a node of T� labelled by J by the algorithm of De�nition 7.40, which

has a corresponding node minpDq in T�min. We will show that minpDq is also
labelled by J by this algorithm. There are three possible reasons for which D
has been labelled by J:

1. D has no successor. Then, minpDq has no successor (see proposition 7.55):

it is labelled by J.

2. there is D1 on the branch leading to D such that D1 � D. Then, on the

branch leading to minpDq is the node corresponding to D1: minpD1q. As

D1 � D, minpD1q � minpDq and minpDq is labelled by J.

3. there is a safe valid set of actions v P validpEnabled symbDet pDqq.

� If minpDq (which cannot be bad) has no successor: then it is labelled

by J in T�min and we are done.

� otherwise, we will use the fact that v is valid from minpDq, i.e. v P
validpEnabled symbDet pminpDqqq (see Lemma 7.61 and Remark 7.62).

We will show that v is safe fromminpDq in T�min. Let D1 be a successor
of D by a symbolic action pa, g,Rq P v in T�: D1 is labelled by J and

has minpD1q as corresponding node in T�min. We must show that

minpD1q is labelled by J in T�min. Once again, the same cases can

be developed from corresponding nodes D1 labelled by J in T� and

316 Chapter 7. MITL BRSPlant algorithm

minpD1q in T�min. As the current case can only be repeated a �nite

number of times, because T� and T�min are �nite, we are done.

pðq Let us �x a sequence s of safe valid sets of actions, following a branch of

T�min from the root of T�min, witnessing that its root is labelled by J. We will only

consider the nodes of T�min reached following s and call Smin the subtree of T�min

they form. All the nodes of Smin are of course labelled by J in T�min and we will

show their corresponding nodes in T� are also labelled by J. This proves the

root of T� will be labelled by J, because, by Lemma 7.61, s is also a succession

of valid sets of actions, from the root of T�.

Let minpDq be a node of Smin: minpDq is labelled by J. Let us note D its

corresponding node in T�, we will show that D is also labelled by J. There are

three possible reasons for which minpDq has been labelled by J:

1. minpDq has no successor. Then, D has no successor (see proposition 7.55):

it is labelled by J.

2. there is minpD1q on the branch leading to minpDq such that minpD1q �
minpDq. We �rst remark that minpD1q is a node of Smin and is so labelled

by J. Then, minpDq (� minpD1q) is not bad and so D is not bad. We

distinguish two cases. On the one hand, if T� is stopped in D, this is

because there is D1 on the branch leading to D such that D1 � D: D
is so labelled by J and we are done. On the second hand, if T� is not

stopped in D, D has successors in T� and we must show there is a safe

valid set of actions v P validpEnabled symbDet pDqq (see Figure 7.12). Let v P
validpEnabled symbDet pminpD1qqq be a safe valid set of actions from minpD1q
(� minpDq): such a v exists because minpD1q is not a leaf of T�min and is

labelled by J. v is also a valid set of actions from D (see Lemma 7.61). We

�rst show that, in T�, each successor of D by a symbolic action pa, g,Rq P v

has its minimal elements given by the successor of minpD1q, for the same

action pa, g,Rq, in T�min. Let D” be the successor of D reading pa, g,Rq P v

in T� and mD” the successor of minpD1q reading pa, g,Rq in T�min. We

7.4 Order-based algorithms 317

have:

minpD”q � minpPosta,g,RpDqq
� minpPosta,g,RpminpDqqq (Proposition 7.56)

� minpPosta,g,RpminpD1qqq
� mD”.

Let us note S the subtree of T� whose root is D and leading only to

valid sets of successors corresponding to safe valid sets of successors of

the corresponding nodes in T�min. Then, following recursively the same

reasoning, the sets of minimal elements of each node of S will be given by

nodes of Smin. Remark that these nodes of Smin are not bad and labelled

by J. No node of S could so be labelled by K, because they could not be

bad (as the sets of their minimal elements are not bad). As T� is �nite, D
will eventually be labelled by J thanks to this succession of safe valid sets

of actions (leading only to nodes that could not be labelled by K and will

so eventually be labelled by J).

3. there is a safe valid set of actions v P validpEnabled symbDet pminpDqqq. By

Lemma 7.61, v P validpEnabled symbDet pDqq. We will show that v is safe

from D in T�. Let minpD”q be a successor of minpDq by a symbolic

action pa, g,Rq P v in T�min (minpD”q is so labelled by J) and has D” as

corresponding node in T�. We must show that D” is labelled by J in T�.

The three same cases can be developed from corresponding nodes minpD”q

labelled by J in T�min and D” in T�. As the current case can only be

repeated a �nite number of times as T� and T�min are �nite, we are done.

Combining both heuristics. Our following aim will be to use synchronously

the order �p.s. de�ned by Bouyer and al. in [17] and our own order (keeping

minpDq instead of each location D of Det). We will prove that the algorithm

of De�nition 7.40 is still correct when using the order �p.s. instead of � to

318 Chapter 7. MITL BRSPlant algorithm

situation

in T�

situation

in T�min

min(D") = mD" and min(D') = min(D)

minpD1q

mD”

minpDqD

D”

corresponding nodes

pa,g,Rq

pa,g,Rq

v: valid and safe

v: valid ...
and safe !

Figure 7.12: Representation of the situation of case 2., when minpDq has no

successor.

truncate the branches of the unfolding of Det and simultaneously conserving

minpDq instead of each location D of Det. Let us formally de�ne the �nite part

of the unfolding T of Det constructed this way.

De�nition 7.63. We de�ne T�min the �nite part of the unfolding of Det �
pSW, tw0u,∆Detq recursively obtained as follows:

� the root of T�min is the same as that of T .

� for each node D P SW in T�min, if the branch of T�min leading to D already

contains another node D1 such that D1 � D, then, D has no successor;

otherwise, for each symbolic action pa, g,Rq P Σ � GpX Y XCq � 2XYXC

such that Posta,g,RpDq � H, there is an arc labelled by pa, g,Rq from D to

minpPosta,g,RpDqq.

Our following aim will be to prove that labelling the nodes of T�min instead

of those of T� is correct in way to solve the MITL BRSPlant problem, as stated

by the following theorem:

7.4 Order-based algorithms 319

Theorem 7.64. Using the procedure of the algorithm of De�nition 7.40 to la-

belled the nodes of T� and T�min, we have that:

the root of T� is labelled by J i� the root of T�min is labelled by J.

In way to prove this theorem, we start by expounding several kind properties

of T�min and T�.

First of all, as in the case of T� and T�min, each branch of T�min is necessarily

shorter than the corresponding branch in T� but the converse is not true.

Proposition 7.65. Each branch of T�min is necessarily shorter than the corre-

sponding branch in T�.

Proof. If a branch of T� is stopped in a node D, that has minpDq as correspond-
ing node in T�min, there are three possible reasons for this:

1. D has no successor. Then, minpDq and has no successor, by Proposi-

tion 7.55.

2. there is D1 on the branch leading to D such that D �p.s. D1. Then, on the

branch leading to minpDq is the node corresponding to D1 minpD1q. We

will prove that, as D1 �p.s. D, we have that minpD1q �p.s. minpDq, what
proves that T�min is stopped in minpDq. Let w P minpDq, we must �nd

w1 P minpD1q such that w1 � w. As D1 �p.s. D, we know there is w� P D1

such that w� � w. If w� P minpD1q, we are done. Otherwise, there is

mw� P minpD1q such that mw� � w�. So, mw� � w� � w and mw� is the

w1 we were looking for.

3. D is bad. Then, there is w P D such that w is bad. As minpDq �p.s. D
and w P D, there is mw P minpDq such that mw � w. As w is bad (all the

locations of B and A Φ present in w are accepting ones), mw is bad and

so is minpDq. T�min is so stopped in minpDq.

320 Chapter 7. MITL BRSPlant algorithm

Remark 7.66. T� and T�min are not isomorphic because the reverses of cases 2.

and 3. are not true in general.

Remark 7.67. By de�nition of T� and T�min and Proposition 7.55, each node

of T�min has: either no successor, either as many successors as its corresponding

node in T�.

Another interesting property of T�min is that it is a subtree of T�min.

Proposition 7.68. T�min is a subtree of T�min.

Proof. Suppose a common branch of T�min and T�min is stopped in a node minD,
in T�min: we will show it is also stopped in T�min. There are three possible reasons

for why D has no son in T�min:

1. minD has no successor: then, T�min is also stopped in D ;

2. there is minD1, on the branch leading tominpDq such that minD � minD1.
In particular, minD � minD1 and T�min is also stopped in minpDq.

3. minD is bad: the T�min is also stopped in minD.

Figure 7.13 summarizes the relative inclusions of T , T�, T� and the relative

inclusions of T�min and T
�

min in those trees, according to isomorphism. This �gure

shows the more e�cient tree we want to apply the algorithm of De�nition 7.40

to is T�min. The following theorem shows the algorithm of De�nition 7.40 (proved

to be correct on T� in [17]) is still correct when applied on T�min instead of T�.

Proof of Theorem 7.64. pñq The proof is similar to that of pñq in the proof

of Theorem 7.50 using the fact that D1 �p.s. D implies minpD1q �p.s. minpDq

7.4 Order-based algorithms 321

T

T�

T� T�min

T�min

Figure 7.13: Relative inclusions of T , T�, T� and, according to isomorphism, of

T�min and T�min.

(proven above).

pðq The proof is similar to that of pðq in Theorem 7.50. Only the case 2. needs

a new argument. Let minpDq, a node of T�min labelled by J, and D, its corre-
sponding node in T�. We will show that D is also labelled by J when (case

2.) there is minpD1q, on the branch leading to minpDq such that minpDq �p.s.
minpD1q. To prove this, we show that minpDq �p.s. minpD1q implies D �p.s. D1,
so that the branch of T� is stopped in D and D is labelled by J. We sup-

pose minpDq �p.s. minpD1q. Let w1 P D1, we are looking for w P D such that

w � w1. As minpD1q �p.s. D1, there is w̃1 P minpD1q such that w̃1 � w1. As

minpDq �p.s. minpD1q, there is w̃ P minpDq such that w̃ � w̃1 � w1. So, w̃ � w1

and as minpDq � D, w̃ is the w we were looking for.

. .CHAPTER 8

Experimental results

We implemented the algorithm composed of the di�erent steps presented in

the previous chapter to solve the MITL BRSPlant problem. This chapter is

dedicated to the results obtained when testing this program. As for the MITL

satis�ability and model-checking algorithms, we performed our tests on a Mac

Pro (mid 2010) with OS X Yosemite, processor 3.33 GHz, 6 core intel xeon,

with a memory of 32 GB 1333 MHz DDR3 ECC. We used Java SE Runtime

Environment (build 1.6.0_65-b14-466.1-11M4716).

We notice that the algorithm presented in the previous chapter was cleverly

implemented. Indeed, the reachable locations of ST �P, Φ (see De�nition 7.27) and

Det (see De�nition 7.33) are computed on the �y, as well as the labellings by J

or K of the �nite constructed portion of the tree given by the unfolding of Det.
We tested our program on two benchmarks.

The �rst benchmark consists in a scheduling problem adapted from [23]. This

problem considers n computational units u1, . . . , un. Some job's must be realized:

each time a job arrives, a computational unit must be assigned to conduct it. A

323

324 Chapter 8. Experimental results

p0 p1

job, x1¡1, x1:�0

ui

(for 1¤i¤nq

Figure 8.1: The plant P used to represent the scheduling problem.

job takes T time units to be realized. Our �rst hypothesis, ensured by the plant, is

that the minimal time between the arrivals of two job's (an uncontrollable action)

is 1 time unit. The plant we use is presented in Figure 8.1. The speci�cations

we consider always have the same form. First, a job arrival (job, an action of the

environment) must be followed, in less than 1 time unit, by the assignment of a

computational unit (u1 or . . . or un, actions of the controller) to realize it, and

second, when a computational unit ui has just been assigned a job, it cannot be

assigned a new job for T time units. Precisely, we considered the cases T � n,

for 1 ¤ T ¤ 5, and T � n � 1, for 2 ¤ T ¤ 5. When T � n, the controller

has a winning strategy to ensure the satisfaction of the speci�cation, not when

T � n � 1. For the granularity of the controller, we always keep the maximal

constant allowed to be that of the considered formula. However, for each formula,

we consider granularities giving 0, 1 and �nally 2 clocks to the controller.

Tables 8.1 and 8.2 report on results over four versions of the MITL BRSPlant

algorithm. Table 8.1 concerns controllable formulas while Table 8.2 is dedicated

to uncontrollable formulas. These tables contains the following columns:

� column `T ' gives the number T such that a job takes T time units to be

realized,

� column `n' gives the number of compositional units,

� column `Clocks?' giving the number of clocks the controller is allowed to

use,

325

� column T� (respectively T�, T�min and T�min) is dedicated to the execution

of our MITL BRSPlant algorithm executed on the �nite portion of the

tree given by the unfolding of Det in which branches are stopped using �

(respectively, in which branches are stopped using the order �, in which

only minimal elements are kept and branches are stopped using �, and in

which only minimal elements are kept and branches are stopped using �).

Columns T�, T�, T�min and T�min contain the execution time, followed by the

number of constructed locations of Det / of ST �P, Φ. A time out was set after 5

minutes.

326 Chapter 8. Experimental results

T
ab
le
8.
1:

S
ch
ed
u
li
n
g
p
ro
b
le
m

-
C
on
tr
ol
la
b
le
fo
rm

u
la
s.

R
ep
or
te
d
va
lu
es

ar
e
ex
ec
u
ti
on

ti
m
e
in

m
s,
fo
ll
ow

ed
b
y
th
e

n
u
m
b
er

of
co
n
st
ru
ct
ed

lo
ca
ti
on
s
of
D
et

/
of
ST

� P
,

Φ
.

T
n

F
o
rm

u
la

C
lo
ck
s?

T
�

T
� m
in

T
�

T
� m
in

1
1

2
��
jo
b
ñ
♦
r0
,1
r
u

1

�
0

4
6

5
5

4
8

5
7

.
^
� u

1
ñ

2
s0
,1
s

u

1

��
1
6
/
5
2

1
6
/
5
2

1
6
/
5
2

1
6
/
5
2

1
1
9
9

4
0
5

1
9
3

2
6
8

4
7
/
1
4
7

4
7
/
1
4
7

4
7
/
1
4
7

4
7
/
1
4
7

2
4
,5
9
9

4
,6
4
8

4
,6
8
8

4
,5
8
4

5
5
4
/
1
,3
4
3

5
5
4
/
1
,3
4
3

5
4
4
/
1
,2
6
0

5
4
4
/
1
,2
6
0

2
2

2
��
jo
b
ñ
�

2 i�
1
♦
r0
,1
r
u
i

	
0

5
0
3

5
7
6

5
3
5

5
5
4

.
^
�

2 i�
1

� u
i
ñ

2
s0
,2
s

u
i

��
1
3
8
/
1
4
9

1
3
8
/
1
4
9

1
2
8
/
1
4
9

1
2
8
/
1
4
9

1
2
,6
3
2

4
,3
8
6

2
,2
9
0

2
,5
8
4

7
1
9
/
6
4
5

7
1
9
/
6
4
5

5
8
0
/
6
2
0

6
4
2
/
6
2
3

2
1
8
,4
5
3

1
8
,0
7
5

1
5
,9
1
0

1
6
,2
7
6

1
,9
5
7
/
2
,3
5
8

1
,8
9
6
/
2
,3
1
0

1
,6
8
3
/
2
,1
9
7

1
,6
8
3
/
2
,1
9
7

3
3

2
��
jo
b
ñ
�

3 i�
1
♦
r0
,1
r
u
i

	
0

4
,2
1
0

4
,7
0
6

4
,3
1
8

4
,4
7
7

.
^
�

3 i�
1

� u
i
ñ

2
s0
,3
s

u
i

��
9
8
3
/
3
4
2

1
,0
1
8
/
3
4
2

9
8
8
/
3
4
2

9
8
8
/
3
4
2

1
1
8
2
,5
2
4

1
8
9
,1
7
7

1
7
8
,2
5
6

1
8
4
,6
2
7

1
9
,8
7
1
/
2
,2
9
7

1
9
,2
5
0
/
2
,3
8
5

1
9
,8
0
6
/
2
,2
9
7

1
8
,8
0
5
/
2
,3
8
5

2
¡
5
m
in

¡
5
m
in

¡
5
m
in

¡
5
m
in

4
4

2
��
jo
b
ñ
�

4 i�
1
♦
r0
,1
r
u
i

	
0

5
4
,8
9
3

7
2
,6
2
5

6
4
,6
0
6

7
6
,2
5
0

.
^
�

4 i�
1

� u
i
ñ

2
s0
,4
s

u
i

��
1
1
,0
0
0
/
6
6
7

1
1
,2
8
2
/
6
6
7

1
1
,1
3
1
/
6
6
7

1
1
,0
2
0
/
6
6
7

1
¡
5
m
in

¡
5
m
in

¡
5
m
in

¡
5
m
in

2
¡
5
m
in

¡
5
m
in

¡
5
m
in

¡
5
m
in

5
5

2
��
jo
b
ñ
�

5 i�
1
♦
r0
,1
r
u
i

	
0

¡
5
m
in

¡
5
m
in

¡
5
m
in

¡
5
m
in

.
^
�

5 i�
1

� u
i
ñ

2
s0
,5
s

u
i

��

1
¡
5
m
in

¡
5
m
in

¡
5
m
in

¡
5
m
in

2
¡
5
m
in

¡
5
m
in

¡
5
m
in

¡
5
m
in

327
T
ab
le
8.
2:

S
ch
ed
u
li
n
g
p
ro
b
le
m

-
U
n
co
n
tr
ol
la
b
le
fo
rm

u
la
s.

R
ep
or
te
d
va
lu
es

ar
e
ex
ec
u
ti
on

ti
m
e
in

m
s,
fo
ll
ow

ed
b
y

th
e
n
u
m
b
er

of
co
n
st
ru
ct
ed

lo
ca
ti
on
s
of
D
et

/
of
ST

� P
,

Φ
.

T
n

F
o
rm

u
la

C
lo
ck
s?

T
�

T
� m
in

T
�

T
� m
in

2
1

2
��
jo
b
ñ
♦
r0
,1
r
u

1

�
0

7
7

9
9

7
7

1
0
1

.
^
� u

1
ñ

2
s0
,2
s

u

1

��
2
5
/
8
4

2
5
/
8
4

2
5
/
8
4

2
5
/
8
4

1
8
2
4

8
9
5

8
2
7

8
8
9

1
2
7
/
3
1
1

1
2
7
/
3
1
1

1
2
7
/
3
1
1

1
2
7
/
3
1
1

2
3
,0
7
9

3
,2
6
3

3
,1
1
8

3
,1
0
8

4
0
8
/
1
,1
1
6

4
2
1
/
1
,0
7
2

4
0
8
/
1
,1
1
6

4
0
8
/
1
,1
1
6

3
2

2
��
jo
b
ñ
�

2 i�
1
♦
r0
,1
r
u

1

	
0

6
5
9

9
1
3

6
6
7

9
2
6

.
^
�

2 i�
1

� u
i
ñ

2
s0
,3
s

u
i

��
2
6
8
/
2
5
4

2
8
8
/
2
5
4

2
6
8
/
2
5
4

2
8
8
/
2
5
4

1
1
7
1
3
4

2
1
0
1
8

1
9
1
5
1

2
2
0
4
1

3
3
8
0
/
1
6
9
8

3
7
3
4
/
1
7
7
7

3
7
8
9
/
1
7
4
1

4
2
7
1
/
1
8
0
6

2
¡
5
m
in

¡
5
m
in

¡
5
m
in

¡
5
m
in

4
3

2
��
jo
b
ñ
�

3 i�
1
♦
r0
,1
r
u

1

	
0

1
0
,6
2
1

1
2
,4
7
8

7
,6
5
7

8
,2
9
8

.
^
�

3 i�
1

� u
i
ñ

2
s0
,4
s

u
i

��
3
0
1
8
/
5
4
0

3
,0
1
8
/
5
4
0

2
,0
9
4
/
4
9
2

2
,0
0
9
/
4
3
6

1
¡
5
m
in

¡
5
m
in

¡
5
m
in

¡
5
m
in

2
¡
5
m
in

¡
5
m
in

¡
5
m
in

¡
5
m
in

5
4

2
��
jo
b
ñ
�

4 i�
1
♦
r0
,1
r
u

1

	
0

¡
5
m
in

¡
5
m
in

¡
5
m
in

¡
5
m
in

.
^
�

4 i�
1

� u
i
ñ

2
s0
,5
s

u
i

��

1
¡
5
m
in

¡
5
m
in

¡
5
m
in

¡
5
m
in

2
¡
5
m
in

¡
5
m
in

¡
5
m
in

¡
5
m
in

328 Chapter 8. Experimental results

Observing results of Tables 8.1 and 8.2, we �rst remark that the use of the

order �, as well as the idea to only keep the minimal elements of locations of Det,
were not fruitful. Indeed, the number of constructed locations of Det / ST �P, Φ

are very similar (and most of the time equal) when using T�, T�min, T
� or T�min.

However, the execution time on T�min, T
� and T�min are in general higher than

that on T�. This is probably due to the supplementary computation performed

by the program to keep the antichain of minimal elements or / and to compare

the constructed locations using �. Precisely, the execution time is increased, in

average, by 15% from T� to T�min, by 5% from T� to T� and by 20% from T�

to T�min. Nevertheless, on some examples, using T� instead of T� reduces the

execution time by 2%, 20% and even 43%.

We also notice that the program quickly struggles, for little values of the param-

eters T and n.

As a second benchmark, we once again consider the family of timed automata

Bliftk , modelling a lift, parametrised by its number k of �oors (see Chapter 6 for

details). This time, each Bliftk is considered to be a plant. Two letters are now

consider as uncontrollable actions and form the alphabet of the environment:

� letter li, meaning that the button of �oor i has just been pushed to make

the lift come at this �oor, and

� letter bi, meaning that the button present in the lift cabin to send it at

�oor i has just been pushed.

The remaining letters are considered to be controllable actions and form the

alphabet of the controller:

� letter oi and, respectively, letter ci, signifying the lift opens and, respec-

tively, closes its doors at �oor i;

� letter pi, meaning the lift passes �oor i without stopping.

329

The aim of the controller is to ensure the lift eventually reaches a �oor i by a

`brief' delay, each time li or bi has been pushed.

The obtained results were reported in Table 8.3, which contains the same

kind of columns as Tables 8.1 and 8.2. It additionnaly contains a column `Floors'

giving the number of �oors of the considered lift and a column `Contr?' giving

the expected1 answer.

We got very few results on this example (even giving no clock to the con-

troller), as witnesses Table 8.3. We notice that our program has facilities to

prove that a formula in uncontrollable. However, it only succeeded to prove (by

5 minutes) that one formula is controllable among all those proposed.

1and obtained, when the program terminates on this test !

330 Chapter 8. Experimental results

T
ab
le
8.
3:

L
if
t
p
ro
b
le
m
.
R
ep
or
te
d
va
lu
es
ar
e
ex
ec
u
ti
on

ti
m
e
in
m
s,
fo
ll
ow

ed
b
y
th
e
n
u
m
b
er
of
co
n
st
ru
ct
ed

lo
ca
ti
on
s

of
D
et

/
of
ST

� P
,

Φ
.

F
lo
o
rs

F
o
rm

u
la

C
o
n
tr
?

C
lo
ck
s?

T
�

T
� m
in

T
�

T
� m
in

2
2

� �
1 i�

0
pl
i
ñ
♦
r0
,6
s
o
i
q	

�
0

2
3

1
8

1
6

1
4

3
/
3

3
/
3

3
/
3

3
/
3

2
2

� �
1 i�

0

��
l i
^
♦
r0
,�
8
r
o
i

� ñ
♦
r0
,6
s
o
i

�	
X

0
¡
5
m
in

¡
5
m
in

¡
5
m
in

¡
5
m
in

2
2
� pl

0
^
♦
r0
,�
8
r
o
0
q
ñ
♦
r0
,6
s
o
0

�
X

0
1
1
8
,7
9
5

1
1
7
,4
1
5

1
3
9
,1
3
0

1
0
0
,5
3
4

2
6
,8
3
7
/
1
,6
6
7

2
4
,5
9
6
/
1
,6
3
3

2
9
,5
8
3
/
1
,7
4
4

2
1
,7
4
2
/
1
,5
9
5

3
2

� �
2 i�

0
pl
i
ñ
♦
r0
,1

4
s
o
i
q	

�
0

1
2
5

9
9

9
0

1
0
0

5
/
5

5
/
5

5
/
5

5
/
5

3
2

� �
2 i�

0

��
l i
^
♦
r0
,�
8
r
o
i

� ñ
♦
r0
,1

4
s
o
i

�	
X

0
¡
5
m
in

¡
5
m
in

¡
5
m
in

¡
5
m
in

3
2
� pl

0
^
♦
r0
,�
8
r
o
0
q
ñ
♦
r0
,1

4
s
o
0

�
X

0
¡
5
m
in

¡
5
m
in

¡
5
m
in

¡
5
m
in

4
2

� �
3 i�

0
pl
i
ñ
♦
r0
,2

2
s
o
i
q	

�
0

4
7
3

2
1
2

8
6

8
8

7
/
7

7
/
7

7
/
7

7
/
7

4
2

� �
3 i�

0

��
l i
^
♦
r0
,�
8
r
o
i

� ñ
♦
r0
,2

2
s
o
i

�	
X

0
¡
5
m
in

¡
5
m
in

¡
5
m
in

¡
5
m
in

4
2
� pl

0
^
♦
r0
,�
8
r
o
0
q
ñ
♦
r0
,2

2
s
o
0

�
X

0
¡
5
m
in

¡
5
m
in

¡
5
m
in

¡
5
m
in

5
2

� �
3 i�

0
pl
i
ñ
♦
r0
,3

0
s
o
i
q	

�
0

8
4
0

2
3
8

1
5
9

1
1
8
6

9
/
9

9
/
9

9
/
9

9
/
9

5
2

� �
3 i�

0

��
l i
^
♦
r0
,�
8
r
o
i

� ñ
♦
r0
,3

0
s
o
i

�	
X

0
¡
5
m
in

¡
5
m
in

¡
5
m
in

¡
5
m
in

5
2
� pl

0
^
♦
r0
,�
8
r
o
0
q
ñ
♦
r0
,3

0
s
o
0

�
X

0
¡
5
m
in

¡
5
m
in

¡
5
m
in

¡
5
m
in
5

. .CHAPTER 9

Conclusion and future work

All along this thesis, we investigated decidable veri�cation problems about

MITL, aiming to obtain algorithms which are e�cient in practice.

The �rst part of this thesis was dedicated to the MITL satis�ability and

model-checking by means of OCATA. Thanks to a new semantics for OCATA,

we presented a new algorithm to construct from any MITL formula Φ a timed

automaton BΦ recognizing JΦK, and, over in�nite words, a Büchi timed automa-

ton BωΦ recognizing JΦKω. We also presented algorithms working on the �y to

solve the MITL model-checking problem. Our �rst algorithms were based on

a region-based abstraction, and the second ones on a zone-based abstraction.

Over �nite words, we also give heuristics of these region-based and zone-based

algorithms using antichains. All these algorithms were implemented in a Java

prototype. The tests we performed on our programs show that the use of zones is

more e�cient than that of regions: it enables to obtain the answer more quickly

and computing less zones than the number of regions calculated with the other

algorithm. The results of tests are less marked on the e�ciency of the use of

antichains. The number of explored regions / zones are lower when using them,

331

332 Chapter 9. Conclusion and future work

but the execution time stay unchanged, probably because of the supplementary

computation needed in the program to maintain those antichains. Nevertheless,

our program enabled to answer various satis�ability and model-checking prob-

lems of reasonable size. As far as we know, our prototype of tools is the �rst

implementation of an MITL model-checker.

In the second part of this thesis, we investigated the MITL BRSPlant prob-

lem. We based our work on the existing results over the MTL BRSPlant problem.

Thanks to the use of our new semantics for OCATA, we showed that the exist-

ing non-primitive recursive algorithm for the MTL BRSPlant problem could be

improved for the particular case of MITL. Indeed, we obtained an MITL BRS-

Plant algorithm executing in time triply exponential in the sizes of the considered

MITL formula and plant. Then, we presented two orders leading to three pos-

sible heuristics for our basis algorithm. We also implemented these algorithms

in a Java prototype. Unfortunately, this program quickly encounters di�culties

solve problems, even on small instances. The heuristics based on antichains do

not seem to help it to be more e�cient.

Let us now present some future investigation directions. From a practical

point of view, it would be interesting to test our prototype of tool for the MITL

satis�ability, model-checking and BRSPlant problems on supplementary bench-

marks. In particular, we could try to develop benchmarks on which our MITL

BRSPlant algorithm is more e�cient. Another possible research direction could

consist in the improvement of all the implemented algorithms (with a particu-

lar attention to the MITL BRSPlant algorithm). The algorithms implemented

to solve the LTL reactive synthesis were recently improved thanks to the use of

adapted data structures [14]: such a trail should be explored. From a theoretical

point of view, we are particularly insterested in the MITL BRSPlant problem.

We recall this problem consists in �xing a priori the number of clocks the con-

troller is allowed to use to construct a winning strategy against the environment.

However, when considering an MITL formula Φ, we do not see how the controller

could need more clocks than the number of clocks necessary to verify that Φ is

333

satis�ed (i.e. MpΦq clocks). We may think that it is not necessary to bound a

priori the number of clocks the controller is allowed to use in way to keep the

decidability of the MITL BRSPlant problem: this bound should exist anyway

and be MpΦq.

. APPENDIX A

Proofs of Propositions 4.8 and 4.9

Let us recall useful results from [51] that enable to prove Proposition 4.8 and

Proposition 4.9.

Proposition A.1 ([51]). Let Φ � ϕ1UIϕ2 or Φ � ϕ1ŨIϕ2 be an MITL formula

and `Φ the associated location in AΦ. Let θ be an in�nite timed word.

The automaton AΦ accepts θ from con�guration tp`Φ, 0qu i� θ |ù Φ.

The following corollary directly follows from Proposition A.1.

Corollary A.2. Let Φ be an MITL formula, let K be a set of indices and, @k P K

let Φk � ϕ1,kUIkϕ2,k or Φkϕ1,kŨIkϕ2,k be subformulas of Φ. For all k P K, let

`Φk the associated locations in AΦ. Let θ be an in�nite timed word and, for all

k P K. Then:

AΦ accepts θ from con�guration tp`Φk , 0qkPKu i� θ |ù
�
kPK

ϕ1,kUIkϕ2,k.

335

336 Appendix A. Proofs of Propositions 4.8 and 4.9

Let us now adapt this result to the cases where the automaton reads the word

from states of the form p`, vq, with v potentially � 0:

Lemma A.3. Let Φ be an MITL formula, let K be a set of indices and, @k P K

let Φk � ϕ1,kUIkϕ2,k or Φk � ϕ1,kŨIkϕ2,k be subformulas of Φ. For all k P K,

let `Φk be their associated locations in AΦ. Let θ be an in�nite timed word and

vk P R� p@k P Kq.

The automaton AΦ accepts θ from con�guration tp`Φk , vkqkPKu i�

θ |ù
�
kPK

pΦk � vkq,

where, for all k P K, Φk � vk denotes the formula obtained from Φk by replacing

the Ik interval on the modality by Ik � vk.

Proof. We prove that, for all k P K such that the outer modality of Φk is U : AΦ

accept θ from p`Φk , vkq i� θ |ù ϕ1,kUIk�vkϕ2,k. The same arguments adapt to the

Ũ case, and the lemma follows.

Assume θ � pσ, τq with σ � σ1σ2 . . . σi . . . and τ � τ1τ2 . . . τi For all

v P R�, let θ� v denote the in�nite timed word pσ, τ 1q, where τ 1 � pτ1 � vqpτ2 �

vq . . . pτi � vq Observe that, by de�nition of the semantics of MITL,

θ |ù ϕ1UIϕ2 i� θ � v |ù ϕ1UI�vϕ2

(remark that the ϕ1 and ϕ2 formulas are preserved).

First, assume that θ |ù ϕ1,kUIk�vkϕ2,k and let us show that AΦ accepts θ from

p`Φk , vkq. Since θ |ù ϕ1,kUIk�vkϕ2,k, θ�vk |ù ϕ1,kUIkϕ2,k � Φk. Then, by Propo-

sition A.1, AΦ accepts θ � vk from p`Φk , 0q. Let p`Φk , 0q
τ1�vk,σ1ÝÝÝÝÝÑ C1

τ2�τ1,σ2ÝÝÝÝÝÑ

� � �
τi�τi�1,σi
ÝÝÝÝÝÝÑ Ci . . . be an accepting run of AΦ from p`Φk , 0q on θ�vk. Obviously,

the �rst time step can be decomposed as follows:

p`Φk , 0q
vkù p`Φk , vkq

τ1,σ1ÝÝÝÑ C1
τ2�τ1,σ2ÝÝÝÝÝÑ � � �

τi�τi�1,σi
ÝÝÝÝÝÝÑ Ci . . . ,

337

where the su�x starting in p`Φk , vkq is an accepting run on θ. We conclude that

AΦ accepts θ from p`Φk , vkq.

By using the same arguments, we can prove that AΦ accepts θ from p`Φk , vkq

implies that θ |ù ϕ1,kUIk�vkϕ2,k.

We will also need this simple lemma:

Lemma A.4. Let Φ be an MITL formula, let K a set of indices and, @k P K,

let Φk be subformulas of Φ of the form either ϕ1,kUIkϕ2,k or ϕ1,kŨIkϕ2,k. For all

k P K, let `Φk be their associated locations in AΦ. Let θ be an in�nite timed word

and Jk P IpR�q p@k P Kq.

The automaton AΦ accepts θ from con�guration tp`Φk , JkqkPKu

i�

@k P K,AΦ accepts θ from con�guration tp`Φk , Jkqu.

Proof. It is straightforward by de�nition of runs on AΦ: the time elapsed is

reported on each state p`Φk , Jkq and the reading of a letter gives a minimal model

for each state p`Φk , Jkq before to merge them into a unique new con�guration.

Now, we recall a second result from [51]:

Lemma A.5 ([51]). Let Φ be an MITL formula and ϕ a subformula of Φ. Let

θ � pσ, τq be a �nite timed word and π: C0 � tp`Φ, 0qu
t1ù C1

σ1ÝÑ C2
t2ù C3

σ2ÝÑ

. . .
tnù C2n�1

σnÝÑ C2n an accepting run of AΦ on θ. For all 1 ¤ i ¤ n:

C2i |ùr0,0s δpϕ, σiq implies pθ, iq |ù ϕ.

Thanks to a proof very similar to that of the previous Lemma (as presented

in Proposition 6.4 in [51]), we obtain the similar following result over in�nite

words:

338 Appendix A. Proofs of Propositions 4.8 and 4.9

Lemma A.6. Let Φ be an MITL formula and ϕ a subformula of Φ. Let θ � pσ, τq

be an in�nite timed word and π: C0 � tp`, Jqu
t1ù C1

σ1ÝÑ C2
t2ù C3

σ2ÝÑ . . .
tiù

C2i�1
σiÝÑ C2i . . . an accepting run of AΦ on θ from tp`, Jqu. For all i ¥ 1:

C2i |ùr0,0s δpϕ, σiq implies pθ, iq |ù ϕ.

We can now prove Propositions 4.8 and 4.9. We here present the proofs over

in�nite timed words, but they are identical for the setting of �nite timed words.

In these proofs, we will use the following notations. θ � pσ, τq is a timed word

with σ � σ1σ2 . . . σi . . . and τ � τ1τ2 . . . τi For all k ¥ 1, we denote by

θk � pσk, τkq, where σk � σkσk�1 . . . σi . . . and τk � τ 11τ
1
2 . . . τ

1
i�k . . . , the in�nite

timed word such that @i ¥ 1, τ 1i � τi�k � τk.

We moreover recall the following notation:

0pk, i, I, Jq :�

pθk, iq |ù Φ2 ^ τ
k
i P I � infpJq ^ τki P I � suppJq ^ @1 ¤ m1 i : pθk,m1q |ù Φ1.

Proposition 4.8: Let Φ be an MITL formula, let K be a set of indices and,

@k P K, let Φk � Φ1,kUIkΦ2,k be subformulas of Φ. For all k P K, let `Φk be

their associated locations in AΦ. Let θ � pσ, τq be an in�nite timed word and let

Jk P IpR�q be closed intervals.

The automaton AΦ accepts θ from con�guration tp`Φk , JkqkPKu

i�

@k P K, Dmk ¥ 1 : 0p0,mk, I, Jq.

Proof. Thanks to Lemma A.4, we only need to prove the following. Let Ψ be an

MITL formula, Φ :� ϕ1UIϕ2 a subformula of Ψ and `Φ its associated location in

AΨ. Let θ � pσ, τq be an in�nite timed word and J P IpR�q closed.

The automaton AΨ accepts θ from con�guration tp`Φ, Jqu

339

i�

Dm ¥ 1 : pθ,mq |ù ϕ2 ^ τm P I � infpJq ^ τm P I � suppJq

^@1 ¤ m1 m : pθ,m1q |ù ϕ1.

(ñ) As automaton AΨ accepts θ from con�guration tp`Φ, Jqu, there exists an

accepting run of AΨ on θ from tp`Φ, Jqu, say

π � C0
t1ù C1

σ1ÝÑ C2
t2ù C3

σ2ÝÑ . . .
tiù C2i�1

σiÝÑ C2i . . . ,

where C0 � tp`Φ, Jqu. For all i, when reading σi, two transitions can be taken:

either x.δpϕ2, σq ^ x P I or x.δpϕ1, σq ^ϕ1UIϕ2^ x ¤ suppIq. Let m be the �rst

position in the run where the transition x.δpϕ2, σq^x P I is taken. Such a position

must exist because `Φ is not an accepting location but π is an accepting run.

Then, for allm1 m, when reading σm1 , the transition x.δpϕ1, σjq^ϕ1UIϕ2^x ¤

suppIq is taken: it does not reset clock copies that stay in `Φ. So, the part

of con�guration C2m�1 associated with location `Φ is tp`Φ, J � τmqu. As the

transition x.δpϕ2, σmq ^ x P I is then taken, J � τm must satisfy x P I,

i.e. @v � τm P J � τm : v � τm P I (by de�nition of the minimal model)

i.e. @v P J : τm P I � v

and in particular (as J closed) τm P I�infpJq^τm P I�suppJq. Moreover, as π is

an accepting run, the part x.δpϕ2, σmq of the transition taken from tp`Φ, J�τmqu

corresponds to the fact that C2m |ùr0,0s δpϕ2, σmq, thanks to Lemma A.5, we know

it means that pθ,mq |ù ϕ2. In the same way, when reading σm1 , for 1 ¤ m1 m,

the transition x.δpϕ1, σm1q^ϕ1UIϕ2^x ¤ suppIq was taken. As π is an accepting

run, the part x.δpϕ1, σm1q of the transition taken from tp`Φ, J�τmqu corresponds

to the fact that C2m1 |ùr0,0s δpϕ1, σm1q, thanks to Lemma A.5, we know it means

that pθ,m1q |ù ϕ1. We conclude that Dm ¥ 1 : pθ,mq |ù ϕ2^τm P I�infpJq^τm P

I � suppJq ^ @1 ¤ m1 m : pθ,m1q |ù ϕ1.

(ð) We will construct an accepting run π ofAΨ on θ from con�guration tp`Φ, Jqu,

say C0 � tp`Φ, Jqu
t1ù C1

σ1ÝÑ C2
t2ù C3

σ2ÝÑ . . .
tiù C2i�1

σiÝÑ C2i By

hypothesis, Dm ¥ 0 such that (a) pθ,mq |ù ϕ2, (b) τm P I � infpJq ^ τm P

340 Appendix A. Proofs of Propositions 4.8 and 4.9

I � suppJq and (c) @1 ¤ m1 m : pθ,m1q |ù ϕ1. From `Φ we have two possible

transitions x.δpϕ2, σq^x P I and x.δpϕ1, σq^ϕ1UIϕ2^x ¤ suppIq. We construct

π in way it consists of following the transition x.δpϕ1, σm1q^ϕ1UIϕ2^x ¤ suppIq,

@1 ¤ m1 m, and the transition x.δpϕ2, σmq^x P I reading σm. We must prove

that π is an accepting run of AΨ on θ.

Remark that following transition x.δpϕ1, σm1q ^ ϕ1UIϕ2 ^ x ¤ suppIq, @1 ¤

m1 m, in particular, we loop on `Φ without reset of clock. It means that,

@1 ¤ m1 m, C2m1�1p`Φq � tJ � τm1u. So, it is possible to take transition

x.δpϕ1, σm1q ^ ϕ1UIϕ2 ^ x ¤ suppIq reading σm1 from `Φ because the interval

associated with this location is then J�τm1 and satis�es the clock constraint x ¤

suppIq: (b) implies that τm1 τm ¤ suppIq � suppJq, so suppJq � τm1 ¤ suppIq,

and so @j � τm1 P J � τm1 , j � τm1 ¤ suppIq. Moreover, we know that @1 ¤ m1

m, pθ,m1q |ù ϕ1. It means that, @1 ¤ m1 m, the automaton Aϕ1 accepts θm
1

from tpϕ1,init, 0qu, i.e. there is an accepting run of Aϕ1 on θm
1
taking transition

x.δpϕ1, σm1q (the unique transition we can take from location ϕ1,init). However,

the locations ofAϕ1 in which leads x.δpϕ1, σm1q can be assimilated to the locations

of AΨ corresponding to the same formulas (see de�nitions of such automata and

their locations). So, there is also an accepting run of AΨ on θm
1
taking transition

x.δpϕ1, σm1q (@1 ¤ m1 m). As transitions x.δpϕ1, σm1q ^ ϕ1UIϕ2 ^ x ¤ suppIq

loop on `Φ, when reading σm, the interval J � τm is still associated with location

`Φ. π then consists of taking transition x.δpϕ2, σmq^x P I. It is possible to take

this transition reading σm because J � τm satis�es the clock constraint x P I:

as τm P I � infpJq ^ τm P I � suppJq and J is an interval, @j P J, τm P I � j,

i.e. @j P J, j � τm P I and so @v P J � τm, v P I. Moreover, we know that

pθ,m1q |ù ϕ2. It means that the automaton Aϕ2 accepts θm from tpϕ2,init, 0qu,

i.e. there is an accepting run of Aϕ2 on θm taking transition x.δpϕ2, σmq (the

unique transition we can take from location ϕ2,init). By the same argument than

for ϕ1, there is also an accepting run of AΨ on θm
1
taking transition x.δpϕ2, σmq.

We conclude that π is an accepting run of AΨ on θ.

Proposition 4.9: Let Φ be an MITL formula, let K be a set of indices and,

341

@k P K, let Φk :� Φ1,kŨIkΦ2,k be sub-formulas of Φ. For all k P K, let `Φk be

their associated locations in AΦ. Let θ � pσ, τq be an in�nite timed word and

Jk P IpR�q.

The automaton AΦ accepts θ from con�guration tp`Φk , JkqkPKu

i�

@k P K,@v P Jk, the automaton AΨ accepts θ from con�guration tp`Φk , rv, vsqu

(i.e.: @k P K,@v P Jk, pθ, 1q |ù Φ1,kŨIk�vkΦ2,k).

Proof. Thanks to Lemme A.4, we only need to prove the following. Let Ψ be an

MITL formula, let Φ :� ϕ1ŨIϕ2 be a subformula of Ψ. Let `Φ be its associated

location in AΨ. Let θ � pσ, τq be an in�nite timed word and J P IpR�q. The

automaton AΨ accepts θ from con�guration tp`Φ, Jqu i� @v P J , the automaton

AΨ accepts θ from con�guration tp`Φ, rv, vsqu (i.e.: @v P J, θ |ù ϕ1ŨI�vϕ2).

(ñ) As AΨ accepts θ from tp`Φ, Jqu, there is an accepting run π of AΨ on θ from

C0 � tp`Φ, Jqu, say π:

C0
t1ù C1

σ1ÝÑ C2
t2ù C3

σ2ÝÑ . . .
tiù C2i�1

σiÝÑ C2i

Let v P J , we will inductively build an accepting run π1 of AΨ on θ from

D0 � tp`Φ, rv, vsqu, say D0
t1ù D1

σ1ÝÑ D2
t2ù D3

σ2ÝÑ . . .
tiù D2i�1

σiÝÑ D2i . . .

on θ such that the following invariant holds: for all i ¥ 0, for all p`, ru, usq P Di,

there is p`, Iq P Ci such that u P I. The base case is trivial by de�nition of C0 and

D0. For the inductive case, we �rst observe that the elapsing of time maintains

the invariant. A discrete transition labelled by σ, from some con�guration C2j�1

in π consists in selecting an arc as of the form p`, σ, γq for each s � p`, Iq in C2j�1,

whose guard is satis�ed by I. Then, �ring all these arcs yields the con�guration

C2j�2. From each s1 � p`, rv, vsq in D2j�1, we �re the arc as where s � p`, Iq is

a state in C2j�1 s.t v P I. Such an s exists by induction hypothesis. Since the

e�ects of the arcs are the same, we conclude that D2j�2 and C2j�2 respect the

invariant. We conclude that π1 is accepting thanks to the invariant and the fact

that π is accepting.

342 Appendix A. Proofs of Propositions 4.8 and 4.9

(ð) We have an accepting run πv of AΨ on θ from each con�guration tp`Φ, vqu,

say Cv0 � tp`Φ, vqu
t1ù Cv1

σ1ÝÑ Cv2
t2ù . . .

tiù Cv2i�1
σiÝÑ Cv2i We will

construct an accepting run π1 of AΨ on θ from con�guration tp`Φ, Jqu, say

C0 � tp`Φ, Jqu
t1ù C1

σ1ÝÑ C2
t2ù . . .

tiù C2i�1
σiÝÑ C2i Remark that

the six transitions we can take on this run from `Φ are: `x.δpϕ2, σiq^x.δpϕ1, σiq',

`x.δpϕ2, σiq ^ ϕ1ŨIϕ2', `x.δpϕ2, σiq ^ x ¡ suppIq', `x R I ^ x.δpϕ1, σiq', `x R

I ^ ϕ1ŨIϕ2' and `x R I ^ x ¡ suppIq'. So, as long as a transition containing

`ϕ1ŨIϕ2' is taken, the clock copy present in `Φ is not reset and the part of con-

�gurations C2i associated with `Φ will be tp`Φ, J � τiqu (assuming τ0 � 0). We

distinguish two cases to construct π1:

1. if ϕ2 is veri�ed on each reading of a letter in K :�
�
vPJ

I � v: then π' con-

sists of taking the transition `x R I ^ ϕ1ŨIϕ2' on each reading of a letter

in an instant τi K. In such instants, the part of con�guration associated

with `Φ we are in is tp`Φ, J � τiqu and we indeed satisfy @u P J � τi, u R I;

else Du P J � τi such that u P I and so u� τi P J and u�pu� τiq � τi P K,

which contradicts our hypothesis.

Then, π' consists of taking the transition `x.δpϕ2, σiq ^ ϕ1ŨIϕ2' on each

reading of a letter in an instant τm P K. We know (hypothesis of this case

1.) that in all these instants, pθ,mq |ù ϕ2. It means that the automaton

Aϕ2 accepts θm from tpϕ1,init, 0qu, i.e. there is an accepting run of Aϕ2 on

θm taking transition x.δpϕ2, σmq (the unique transition we can take from

location ϕ2,init). However, the locations of Aϕ2 in which leads x.δpϕ2, σmq

can be assimilated to the locations of AΨ corresponding to the same for-

mulas (see de�nitions of such automata and their locations). So, there is

also an accepting run of AΨ on θm taking transition x.δpϕ2, σmq.

Finally, on the �rst reading of a letter after K, say in τj ¡ K, π' consists

of taking the transition `x R I ^ x ¡ I'. It is possible because, then, the

part of con�guration associated with `Φ we are in is tp`Φ, J � τjqu and

@u P J � τj : u ¡ I. To prove it, suppose that Du P J � τj : u I or u P I.

On the one hand, if u I, as u P J � τj , Dv P J : u � v � τj I, i.e.:

343

Dv P J : τj I � v, which contradicts that τj ¡ K. On the other hand,

if u P I, as u P J � τj , Dv P J : u � v � τj P I, i.e.: Dv P J : τj P I � v,

what contradicts that τj ¡ K. π' is so an accepting run of AΨ on θ from

con�guration tp`Φ, Jqu.

2. else, ϕ1 is veri�ed in a certain instant in L � tu1|Du P K : 0 ¤ u1 ¤ uu.

Then, there exists a smallest instant τi P L such that ϕ1 is satis�ed in τi.

Moreover, as for each v P J, θ |ù ϕ1ŨI�vϕ2, each instant τj with 0 ¤ j ¤ i

and τj P K is an instant in which ϕ2 must be satis�ed. We must again

distinguish two cases:

� If τi K, then π' consists of taking the transition `x R I ^ ϕ1ŨIϕ2'

on each reading of a letter in an instant τj with 0 ¤ j i (in such

instants, we indeed satisfy @u P J � τj , u R I because τj R K) and

taking the transition `x R I^x.δpϕ1, σiq' when reading σi (it is possible

because τi R K). We can prove that this run is accepting showing, in

a similar way as in case 1., that there is an accepting run taking

transition x.δpϕ1, σiq when reading σi.

� If τi P K, then π' consists of: taking the transition `x R I^ϕ1ŨIϕ2' on

each reading of a letter in an instant τj with 0 ¤ j i and τj R K (in

such instants, we indeed satisfy @u P J � τj , u R I because τj R K) ;

taking the transition `x.δpϕ2, σjq^ϕ1ŨIϕ2' on each reading of a letter

in an instant τj with 0 ¤ j i and τj P K (we know ϕ2 is veri�ed

in such instants) and taking the transition `x.δpϕ2, σiq ^ x.δpϕ1, σiq'

when reading σi (it is possible because as τi P K, ϕ2 is satis�ed in this

instant). We can prove that this run is accepting showing, in a similar

way as in case 1., that there is an accepting run taking transitions

x.δpϕ2, σjq and x.δpϕ2, σiq ^ x.δpϕ1, σiq when reading σi.

. APPENDIX B

Proofs of the bisimulation lemma over

�nite and in�nite words

Here is the proof of the bisimulation lemma stated over �nite words in Sec-

tion 4.2.

Proposition 4.23: Let Φ be an MITL formula, B � pΣ, B, b0, X, δB, FBq be a

timed automaton and SB, Φ, of state space S, be the transition system given by

De�nition 4.17. Let pB1, C1q, pB2, C2q P S such that pB1, C1q � pB2, C2q. Then:

1. for each transition

pB1, C1q
t
ù pA1, D1q with t P R� and pA1, D1q P S,

there exists t1 P R� and pA2, D2q P S such that:

pB2, C2q
t1
ù pA2, D2q and pA1, D1q � pA2, D2q ;

2. for each transition

pB1, C1q
σ
ÝÑ pA1, D1q, with σ P Σ and pA1, D1q P S,

there exists pA2, D2q P S such that:

345

346 Appendix B. Proofs of the bisimulation lemma over �nite and in�nite words

pB2, C2q
σ
ÝÑ pA2, D2q and pA1, D1q � pA2, D2q.

Proof. We let B1 � pb, vq and C1 � tp`k, IkqkPKu, as pB1, C1q � pB2, C2q, we can

let B2 � pb, v
1q and C2 � tp`k, I

1
kqkPKu.

1. Let us suppose that pB1, C1q
σ
ÝÑ pA1, D1q, with σ P Σ. Let us note D1 �

tp`q, JqqqPQu and A1 � pr, v�q. On the one hand, we have that C1
σ
ÝÑ D1 and

so D1 P f
�
 ΦpE1q, where E1 �

� �
kPK

Ek

�
and each Ek is a minimal model of

δp`k, σq with respect to Ik. We recall that E1 �

� �
kPK

akrIks

�
where ak is a set

of atoms as described in Remarks 3.23 and 3.24. Let E2 �

� �
kPK

akrI
1
ks

�
, i.e., we

use the same arcs from C1 to E1 than from C2 to E2, for each D2 P f
�
 ΦpE2q, we

have that C2
σ
ÝÑf� Φ

D2 (because pB1, C1q � pB2, C2q and so, thanks to condition

2. of the de�nition of `�', Ik and I 1k satisfy the same clock constraints). On

the other hand, pB1, C1q
σ
ÝÑ pA1, D1q means that B1

σ
ÝÑ A1: there exists an arc

pb, σ, r, c, Rq P δB such that

v |ù c and @xp P R : v�pxpq � 0, while @xp R R : v�pxpq � vpxpq.

Let us note A2 � pr, v
1�q where v1� is such that

@xp P R : v1�pxpq � 0, while @xp R R : v1�pxpq � v1pxpq.

We have that B2
σ
ÝÑ A2 following the arc pb, σ, r, c, Rq: as pB1, C1q � pB2, C2q, the

condition 2. of the de�nition of `�' enables vpx1q, . . . , vpxnq and v
1px1q, . . . , v

1pxnq

to satisfy the same clock constraints (so that v1 |ù c). We will prove that

pA1, E1q � pA2, E2q. The clock values observed to verify conditions 2. to 8. are

included in:

V al :� tvpxpq|1 ¤ p ¤ nu Y tv1pxpq|1 ¤ p ¤ nu Y tinfpIkq|k P Ku

YtsuppIkq|k P Ku Y tinfpI
1
kq|k P Ku Y tsuppI

1
kq|k P Ku Y t0u

347

(because the discrete transitions either let the clocks values unchanged or replace

them by 0). However, conditions 2. to 8. were veri�ed on

V alzt0u

thanks to the fact that s1 � s2. Moreover if a clock value is replaced by 0 in z or

E1, the corresponding clock value in z1 or E2 is also replaced by 0 (which is the

smallest possible clock value, so that its comparisons with all other clocks values

will enable to verify 3. to 8.). So, pA1, E1q � pA2, E2q.

Now, as D1 P f
�
 ΦpE1q, we choose D2 P f

�
 ΦpE2q such that the intervals of E2

grouped to obtain D2 correspond to those grouped in E1 to obtain D1. Let us

recall that D1 � tp`q, JqqqPQu and let us note D2 � tp`q, J
1
qqqPQu. Formally, we

want D2 to be such that @p`k, Ikq, p`k̃, Ik̃q P C1:�
p`q, Jqq P destpC1, D1, p`k, Ikqq ^ p`q, Jqq P destpC1, D1, p`k̃, Ik̃qq

	
ñ

�
p`q, J

1
qq P destpC2, D2, p`k, I

1
kqq ^ p`q, J

1
qq P destpC2, D2, p`k̃, I

1
k̃
qq
	
.

We conclude that pA1, D1q � pA2, D2q (the arguments are the same as those why

pA1, E1q � pA2, E2q).

2. Let us suppose that pB1, C1q
t
ù pA1, D1q for a certain t P R�. We must prove

there exists t1 P R� and a con�guration pA2, D2q such that

pB2, C2q
t1
ù pA2, D2q. (B.1)

To do that, we �rst de�ne the `time successor' of an element pB,Cq of S, noted

nextpB,Cq: it is an element of the �rst equivalence class of � reachable from the

class of pB,Cq (and di�erent from it) letting time elapsing. Then, we prove that

nextpB1, C1q � nextpB2, C2q, from which we �nally deduce B.1.

Let pB,Cq P S with B � pb, vq and C � tp`k, IkqkPKu. Let

V :� tvpxpq|1 ¤ p ¤ nu Y tv|p`k, Ikq P C ^ pv � infpIkq _ v � suppIkqqu

be the set of clock values present in B and C. We note µ � maxtfracpvq|v P V u.

We de�ne d as 1�µ
2 if V contains an integer smaller or equal to cmax, and 1� µ

348 Appendix B. Proofs of the bisimulation lemma over �nite and in�nite words

otherwise. We de�ne the time successor of pB,Cq to be:

nextpB,Cq :�
�
pb, v � dq, tp`k, Ik � dqkPKu

�
.

We claim that:

pB1, C1q � pB2, C2q implies nextpB1, C1q � nextpB2, C2q. (B.2)

Indeed, we know nextpB1, C1q � ppb, v � dq, tp`k, Ik � dqkPKuq for a certain d ¡ 0,

and nextpB2, C2q � ppb, v
1 � d1q, tp`k, I

1
k � d

1qkPKuq for a certain d1 ¡ 0. The ef-

fect on pB1, C1q is either, if an integer is present among the clocks values, to

keep the order of their fractional parts unchanged, either, otherwise, to permute

the order of the fractional parts of the clocks values with the largest fractional

parts such that they now have a zero fractional part (and so are the clock values

with the smallest fractional parts). The e�ect on pB2, C2q being the same, in the

same cases, and the conditions of pB1, C1q � pB2, C2q certifying that an integer

is present among the clocks values of pB1, C1q i� there is an integer between

the clocks values of s2, conditions 1. to 8. are still veri�ed on nextpB1, C1q and

nextpB2, C2q: nextpB1, C1q � nextpB2, C2q.

Now, as pB1, C1q
t
ÝÑ pA1, D1q: it means there exists an n ¥ 0 such that pA1, D1q �

nextnpB1, C1q. As pB1, C1q � pB2, C2q, we deduce from B.2 that: nextnpB1, C1q �

nextnpB2, C2q and so, taking pA2, D2q � nextnpB2, C2q, we verify B.1 (d1 is the

sum of the n d's used to recursively computed nextpB2, C2q, next
2pB2, C2q, . . . ,

nextnpB2, C2q).

We now present the proof of the bisimulation lemma stated over in�nite words

in Section 5.4. It is very close to the previously presented proof but takes into

account the Miyano-Hayashi markers.

Proposition 5.23: Let Φ be an MITL formula, B � pΣ, B, b0, X, δB, FBq be a

timed automaton and SB, Φ, of state space S, be the transition system given by

De�nition 5.18. Let s1, s2 P S such that s1 � s2. Then:

1. for each transition

s1
t
ù z1 with t P R� and z1 P S,

349

there exists t1 P R� and z2 P S such that:

s2
t1
ù z2 and z1 � z2 ;

2. for each transition

s1
σ
ÝÑ z1, with σ P Σ and z1 P S,

there exists z2 P S such that:

z1
σ
ÝÑ z2 and z1 � z2.

Proof. Let us note s1 � tp`k, Ik,mkqkPKu Y tpb, v,mbqu, as s1 � s2, we can

suppose that s2 � tp`k, I
1
k,mkqkPKu Y tpb, v

1,mbqu. In the following, we will use

the following notations: C � tp`k, IkqkPKu, C
1 � tp`k, I

1
kqkPKu, s � tpb, vqu and

s1 � tpb, v1qu.

1. suppose that s1
σ
ÝÑ z1, with σ P Σ and z1 � tp`q, Jq,mqqqPQu Y tpr, v

�,mrqu.

Let us note D � tp`q, JqqqPQu and z � pr, v
�q. On the one hand, we have that

C
σ
ÝÑf� Φ

D and so D P f� ΦpEq, where E �
�
kPK

Ek and each Ek is a minimal

model of δp`k, σq with respect to Ik. We recall that E �

� �
kPK

akrIks

�
where ak

is a set of atoms as described in Remarks 3.23 and 3.24. Let E1 �

� �
kPK

akrI
1
ks

�
,

i.e., we use the same arcs from C to E than from C 1 to E1, for each D1 P f� ΦpE
1q,

we have that C 1
σ
ÝÑf� Φ

D1 (because as s1 � s2, thanks to condition 2. of the

de�nition of "�", Ik and I 1k satisfy the same clock constraints). On the other

hand, s1
σ
ÝÑ z1 means that s

σ
ÝÑ z: there exists an arc pb, σ, c, R, rq P δB such that

v |ù c and @xp P R : v�pxpq � 0, while @xp R R : v�pxpq � vpxpq.

Let us note z1 � pr, v1�q where v1� is such that

@xp P R : v1�pxpq � 0, while @xp R R : v1�pxpq � v1pxpq.

We have that s1
σ
ÝÑ z1 following the arc pb, σ, c, R, rq: as s1 � s2, the condition

2. of the de�nition of "�" enables vpx1q, . . . , vpxnq and v
1px1q, . . . , v

1pxnq to satisfy

350 Appendix B. Proofs of the bisimulation lemma over �nite and in�nite words

the same clock constraints (so that v1 |ù c). Let us note z3 � tp`, I,mq|p`, Iq P

EuYtpr, v�,mrqu the
1 element of S such that s

σ
ÝÑ z3, and z4 � tp`, I,mq|p`, Iq P

E1uYtpr, v1�,m1rqu the unique element of S such that s
σ
ÝÑ z3. We will prove that

z3 � z4. Condition 1. of the de�nition of � is satis�ed because C and C 1 owned

the same markers, as well as s and s1 (because s1 � s2), we chose the same

minimal models to go from C to E than from C 1 to E1 and the same arc of B to

go from s to z than from s1 to z1 (these are the unique parameters for the choice

of the markers of z3 and z4). We still must prove that conditions 2. to 8. are

satis�ed. The clock values observed to verify conditions 2. to 8. are included in

V al :� tvpxpq|1 ¤ p ¤ nu Y tv1pxpq|1 ¤ p ¤ nu Y tinfpIkq|k P Ku

YtsuppIkq|k P Ku Y tinfpI
1
kq|k P Ku Y tsuppI

1
kq|k P Ku Y t0u

(as the discrete transitions either let the clocks values unchanged or replace them

by 0). However, conditions 2. to 8. were veri�ed on

V alzt0u

thanks to the fact that s1 � s2. Moreover if a clock value is replaced by 0 in z or

E, the corresponding clock value in z1 or E1 is also replaced by 0 (which is the

smallest possible clock value, so that its comparisons with all other clocks values

will enable to verify 3. to 8.). So, z3 � z4.

Now, as D P f� ΦpEq, we choose D1 P f� ΦpE
1q such that the intervals of E1

grouped to obtain D1 correspond to those grouped in E to obtain D. Let us

recall that D � tp`q, JqqqPQu and let us note D1 � tp`q, J
1
qqqPQu. Formally, we

want D1 to be such that: @p`k, Ikq, p`k̃, Ik̃q P C:�
p`q, Jqq P destpC,D, p`k, Ikqq ^ p`q, Jqq P destpC,D, p`k̃, Ik̃qq

	
ñ

�
p`q, J

1
qq P destpC

1, D1, p`k, I
1
kqq ^ p`q, J

1
qq P destpC

1, D1, p`k̃, I
1
k̃
qq
	
.

We conclude that z1 � z2 (the arguments are the same as those why z3 � z4).

2. Let us suppose that s1
t
ù z1 for a certain t P R�. We must prove there exists

1once the minimal models and the arc of B of the de�nition of σ
ÝÑ are chosen, it is easy to

see there exists a unique possible choice for the values of the markers of z3.

351

t1 P R� and a con�guration z2 such that:

s2
t1
ù z2. (B.3)

To do that, we �rst de�ne the "time successor" of an element s of S, noted

nextpsq: it is an element of the �rst equivalence class of � reachable from the

class of s1 (and di�erent from it) letting time elapsing. Then, we prove that

nextps1q � nextps2q, from which we �nally deduce B.3.

Let s P S with s � tp`k, Ik,mkqkPKuYtpb, v,mbqu. Let us note C � tp`k, IkqkPKu

and s � tpb, vqu. Let

V :� tvpxpq|1 ¤ p ¤ nu Y tv|p`k, Ikq P C ^ pv � infpIkq _ v � suppIkqqu

be the set of clock values present in s and C. We note µ � maxtfracpvq|v P V u.

We de�ne d as 1�µ
2 if V contains an integer smaller or equal to cmax, and 1� µ

otherwise. We de�ne the time successor of s to be

nextpB,Cq :� tp`k, Ik � d,mkqkPKu Y tpb, v � d,mbqu.

We claim that:

s1 � s2 implies nextps1q � nextps2q. (B.4)

We know nextps1q � tp`k, Ik � d,mkqkPKu Y tpb, v � d,mbqu for a certain d ¡ 0,

and nextps2q � tp`k, I
1
k�d

1,mkqkPKuYtpb, v
1�d1,mbqu for a certain d

1 ¡ 0. The

e�ect on s1 is either, if an integer is present among the clocks values, to keep the

order of their fractional parts unchanged, either, otherwise, to permute the order

of the fractional parts of the clocks values with the largest fractional parts such

that they now have a zero fractional part (and so are the clock values with the

smallest fractional parts). The e�ect on s2 being the same, in the same cases, and

the conditions of s1 � s2 certifying that an integer is present among the clocks

values of s1 i� there is an integer between the clocks values of s2, conditions 1. to

8. are still veri�ed on nextps1q and nextps2q: nextps1q � nextps2q.

Now, as s1
t
ù z1: it means there exists an n ¥ 0 such that z1 � nextnps1q.

As s1 � s2, we deduce from B.4 that: nextnps1q � nextnps2q and so, taking

z2 � nextnps2q, we verify B.3 (d1 is the sum of the n d's used to recursively

computed nextps2q, next
2ps2q, . . . , next

nps2q).

. APPENDIX C

Proof of Proposition 5.20

This section is dedicated to the proof of Proposition 5.20 which is closed to

that of Proposition 5.13

Proposition 5.20: For every MITL formula Φ, the associated A Φ and f� Φ,

and for every Büchi timed automaton B:

LωpSB, Φq � Lωf� Φ
pA Φq X LpBq.

Proof. p�q Let θ � pσ, τq P Lωf� Φ
pA Φq X LpBq, with σ � σ1σ2 � � �σn . . . and

τ � τ1τ2 � � � τn We will prove that θ P LωpSB, Φq. Let us note ti � τi � τi�1

for all 1 ¤ i ¤ |θ|, assuming τ0 � 0. We have an accepting f� Φ-run of A Φ on θ,

say πA:

CA
0

t1ù CA
1

σ1ÝÑf� Φ
CA

2
t2ù CA

3
σ2ÝÑf� Φ

. . .
tiù CA

2i�1
σiÝÑf� Φ

CA
2i

We also have an accepting run of B on θ, say πB:

CB
0

t1ù CB
1

σ1ÝÑ CB
2

t2ù CB
3

σ2ÝÑ . . .
tiù CB

2i�1
σiÝÑ CB

2i

353

354 Appendix C. Proof of Proposition 5.20

We must prove that there is an accepting run of SB, Φ on θ, say π1:

s0
t1ù s1

σ1ÝÑ s2
t2ù s3

σ2ÝÑ . . .
tiù s2i�1

σiÝÑ si

We construct π1 by induction, proving additionally that the two following prop-

erties hold for j ¥ 0:

p�2jq CA
2j � tp`k, IkqkPKu and C

B
2j �u Y tpb, vqu i�

s2j � tp`k, Ik,mkqkPKu Y tpb, v,mBqu for some mk P tJ,Ku, for all k P K,

and some mB P tJ,Ku;

p�2jq if piq a location of F occurs on all the branches of πA between the last

con�guration CA
2j1 such that s2j1 P α (or, failing that, between CA

0) and

CA
2j , and piiq a location of FB occurs in πB between the last con�guration

CB
2j1 such that s2j1 P α (or, failing that, between CB

0) and C
B
2j ,

then, s2j P α.

Basis: We know that CA
0 � tp`0, r0, 0squ, C

B
0 � tpb0, v0qu and s0 � tp`0, r0, 0s,Kq,

pb0, v0,mqu, where v0 is the valuation such that v0pxq � 0, @x P X, and m � J

i� b0 P F
B. It is clear that p�0q and p�0q are veri�ed because only `0 R F occurs

on the (unique) branch of π.

Induction: Suppose that we constructed π1 until s2i and that p�2jq and p�2jq are

veri�ed @0 ¤ j ¤ i. We will construct π1 until s2pi�1q in way p�2pi � 1qq and

p�2pi� 1qq will still be veri�ed.

First, we must construct s2i�1 such that s2i
ti�1
ù s2i�1. Suppose s2i �

tp`k, Ik,mkqkPKu Y tpb, v,mBqu, as p�2iq is veri�ed by hypothesis, it means that

CA
2i can be written as tp`k, IkqkPKu and that CB

2i can be written as tpb, vqu.

We must choose s2i�1 to be tp`k, Ik � ti�1,mkqkPKu Y tpb, v � ti�1,mBqu. As

CA
2i

ti�1
ù CA

2i�1, C
A
2i�1 � CA

2i � ti�1 � tp`k, Ik � ti�1qkPKu. In a similar way, as

CB
2i

ti�1
ù CB

2i�1, C
B
2i�1 � CB

2i � ti�1 � tpb, v � ti�1qu. Remark that the following

property holds:

p�2i� 1q CA
2i�1 � tp`k, IkqkPKu and C

B
2i�1 � tpb, vqu i�

355

. s2i�1 � tp`k, Ik,mkqkPKu Y tpb, v,mBqu for some mk P tJ,Ku, for all

. k P K, and some mB P tJ,Ku.

Secondly, we must construct s2pi�1q such that s2i�1
σi�1
ÝÝÝÑ s2pi�1q. We know that

CA
2i�1

σi�1
ÝÝÝÑf� Φ

CA
2pi�1q and C

B
2i�1

σi�1
ÝÝÝÑ CB

2pi�1q. Suppose s2i�1 � tp`k, Ik,mkqkPKu

Ytpb, v,mBqu, as p�2i � 1q is veri�ed, CA
2i�1 can be written as tp`k, IkqkPKu and

CB
2i�1 as tpb, vqu. Let us further suppose that CA

2pi�1q � tp`k1 , Ik1qk1PK1u and

CB
2pi�1q � tpb

1, v1qu. We construct:

s2pi�1q :� tp`k1 , Ik1 ,mk1qk1PK1u Y tpb
1, v1,m1Bqu

to be the unique state1 of S such that tp`k, IkqkPKu
σi�1
ÝÝÝÑf� Φ

tp`k1 , Ik1qk1PK1u

and pb, vq
σi�1
ÝÝÝÑ pb1, v1q. p�2pi � 1qq is trivially veri�ed. It remains to prove

that p�2pi � 1qq is satis�ed. Suppose that piq a location of F occurs on all the

branches of πA between the last con�guration CA
2j1 such that s2j1 P α (or, failing

that, between CA
0) and CA

2pi�1q, and that piiq a location of FB occurs in πB

between the last con�guration CB
2j1 such that s2j1 P α (or, failing that, between

CB
0) and C

B
2pi�1q. We must prove that s2pi�1q P α, i.e. all the trios of s2pi�1q has

J as last component. On the one hand, remark that the hypothesis implies there

exists a transition
σj
ÝÑ in πB, for some j1 ¤ j ¤ i � 1, such that CB

2j � pb, vq for

some b P FB. On the second hand, let β � β0β1β2 . . . β2j1 . . . β2j . . . β2pi�1q . . .

be a branch of πA. The hypothesis implies there exists a transition
σj
ÝÑf� Φ

of

πA, for some j1 ¤ j ¤ i � 1, such that β2j � p`, Iq for some ` P F . Thanks to

p�2jq, p`, I,mkq P s2j , for some mk in tJ,Ku, but point (v)-(b) of the de�nition

of SB, Φ (De�nition 5.18) obliges mk to be J. We conclude from these two

facts that the third components associated in π1 to the di�erent states of the

branches of π will gradually (between s2j1 and s2pi�1q) become J. We must

still ensure they will eventually never become K again. One the one hand, a

pair pb, vq � CB
j (for 2j1 ¤ j ¤ 2pi � 1q) of πB, corresponding to pb, v,Jq in

π1, can have a successor pb1, v1q in πB and a corresponding successor pb1, v1,Kq

in π1 i� sj is accepting and b1 R FB: this is not possible under the present

1once the minimal models of the de�nition of
σi�1
ÝÝÝÑ are chosen, it is easy to see there exists

a unique possible choice for the values of the mk and of mB of s2pi�1q.

356 Appendix C. Proof of Proposition 5.20

hypothesis. On the other hand, a pair p`, Iq P CA
j (for 2j1 ¤ j ¤ 2pi � 1q) of

πA, corresponding to p`, I,Jq in π1, can have a successor p`1, I 1q in πA and a

corresponding successor p`1, I 1,Kq in π1 i� sj is accepting and `1 R F (which is

not possible under the present hypothesis) or p`1, I 1,Kq comes from the grouping

of trios (thanks to f� Φ) emanating from trios such that at least one of them

had K as last component (case (v)-(c) of the de�nition of SB, Φ). It means that

no location of F occurs on one of the branches of πA leading to p`1, I 1q, say

β1 � β10β
1
1β
1
2 . . . β2j1 . . . β

1
2k1 . . . β

1
2pi�1q . . . , with β

1
2k � p`

1, I 1q, since β12j1 (else, we

contradict case (v)-(c) of the de�nition of SB, Φ). But, by hypothesis, a location

of F occurs on all the branches of πA between steps 2j1 and 2pi � 1q, so there

exists a transition
σ2j̃
ÝÝÑf� Φ

, for k1 j̃ ¤ i� 1, such that β1
2j̃

has its location in F :

once again, point (v)-(b) of the de�nition of SB, Φ obliges m2j̃ to be J.

As a location of F occurs on all branches of πA between steps 2j1 and 2pi � 1q

and there is only a �nite number of branches leading to a state of CA
2pi�1q, we

conclude that we can only encounter this last case a �nite number of times and

so s2pi�1q P α: p�2pi� 1qq is satis�ed.

To end this part of the proof, we must show that π1 is accepting. The previous

induction proves that p�2jq is veri�ed for all j ¥ 0. As πA and πB are accepting,

we have that: piq a location of F occurs on all the branches of πA in�nitely

often, and piiq a location of FB occurs in�nitely often along πB. Hence, there is

an in�nite number of j and j1 such that the antecedent of p�2jq is true. So, in

this same in�nite number of times, we know that s2j P α, what proves that π
1 is

accepting.

p�q Let θ � pσ, τq P LωpSB, Φq, with σ � σ1σ2 � � �σn . . . and τ � τ1τ2 � � � τn

We will prove that θ P Lωf� Φ
pA Φq X LpBq. Let us note ti � τi � τi�1 for all

1 ¤ i ¤ |θ|, assuming τ0 � 0. We have an accepting run of SB, Φ on θ, say π:

s0
t1ù s1

σ1ÝÑ s2
t2ù s3

σ2ÝÑ . . .
tiù s2i�1

σiÝÑ si

We must prove that piq there is an accepting f� Φ-run of A Φ on θ, say πA:

CA
0

t1ù CA
1

σ1ÝÑf� Φ
CA

2
t2ù CA

3
σ2ÝÑf� Φ

. . .
tiù CA

2i�1
σiÝÑf� Φ

CA
2i

357

and piiq there is an accepting run of B on θ, say πB:

CB
0

t1ù CB
1

σ1ÝÑ CB
2

t2ù CB
3

σ2ÝÑ . . .
tiù CB

2i�1
σiÝÑ CB

2i

We construct πA and πB by induction, proving additionally that the two following

properties hold for j ¥ 0:

p�2jq CA
2j � tp`k, IkqkPKu and C

B
2j �u Y tpb, vqu i�

s2j � tp`k, Ik,mkqkPKu Y tpb, v,mBqu for some mk P tJ,Ku, for all k P K,

and some mB P tJ,Ku;

(�2j) if s2j P α, then, piq a location of F occurs on all the branches of πA

between the last con�guration CA
2j1 such that s2j1 P α (or, failing that,

between CA
0) and CA

2j , and piiq a location of FB occurs in πB between the

last con�guration CB
2j1 such that s2j1 P α (or, failing that, between CB

0) and

CB
2j .

Basis: We know that s0 � tp`0, r0, 0s,Kq, pb0, v0,mqu, C
A
0 � tp`0, r0, 0squ,and

CB
0 � tpb0, v0qu, where v0 is the valuation such that v0pxq � 0, @x P X, and

m � J. p�0q and p�0q are trivially veri�ed.

Induction: Suppose that we constructed πA and πB until CA
2i and C

B
2i and that

moreover p�2jq and p�2jq are veri�ed @0 ¤ j ¤ i. We will construct πA and πB

until CA
2pi�1q and C

B
2pi�1q in way p�2pi� 1qq and p�2pi� 1qq will still hold.

First, we must construct CA
2i�1 such that CA

2i

ti�1
ù CA

2i�1 and CB
2i�1 such that

CB
2i

ti�1
ù CB

2i�1. We know that s2i
ti�1
ù s2i�1. Suppose s2i � tp`k, Ik,mkqkPKu Y

tpb, v,mBqu, as p�2iq is veri�ed by hypothesis, CA
2i � tp`k, IkqkPKu and CB

2i �

tpb, vqu. We must choose CA
2i�1 to be tp`k, Ik� ti�1qkPKu and C

B
2i�1 to be tpb, v�

ti�1qu. As s2i
ti�1
ù s2i�1, s2i�1 � tp`k, Ik � ti�1,mkqkPKu Y tpb, v � ti�1,mBqu.

Remark that the following property holds:

p�2i� 1q CA
2i�1 � tp`k, IkqkPKu and C

B
2i�1 � tpb, vqu i�

. s2i�1 � tp`k, Ik,mkqkPKu Y tpb, v,mBqu for some mk P tJ,Ku, for all

. k P K, and some mB P tJ,Ku.

358 Appendix C. Proof of Proposition 5.20

Secondly, we must construct CA
2pi�1q such that CA

2i�1

σi�1
ÝÝÝÑf� Φ

CA
2pi�1q and C

B
2pi�1q

such that CB
2i�1

σi�1
ÝÝÝÑ CB

2pi�1q. We know that s2i�1
σi�1
ÝÝÝÑ s2pi�1q. Suppose s2i�1 �

tp`k, Ik,mkqkPKuYtpb, v,mBqu, as p�2i�1q is veri�ed, CA
2i�1 � tp`k, IkqkPKu and

CB
2i�1 � tpb, vqu. Let us further suppose that s2pi�1q � tp`k1 , Ik1 ,mk1qk1PK1u Y

tpb1, v1,m1Bqu. We construct CA
2pi�1q � tp`k1 , Ik1qk1PK1u and C

B
2pi�1q � tpb

1, v1qu, so

that p�2pi�1qq holds. Remark that, by de�nition ofÑ: s2i�1
σi�1
ÝÝÝÑ s2pi�1q and so

we have CA
2i�1

σi�1
ÝÝÝÑf� Φ

CA
2pi�1q and C

B
2i�1

σi�1
ÝÝÝÑ CB

2pi�1q (what we needed). It re-

mains to prove that p�2pi�1qq is satis�ed. Suppose that s2pi�1q P α (i.e. @k1 P K 1,

mk1 � J). We must prove that piq between the last con�guration CA
2j1 such that

s2j1 P α (or, failing that, between CA
0) and CA

2pi�1q, a location of F occurs on all

the branches of πA, and that piiq a location of FB occurs in πB between the last

con�guration CB
2j1 such that s2j1 P α (or, failing that, between CB

0) and C
B
2pi�1q.

Let us prove these two facts by contradiction. On the one hand, suppose that no

location of FB occurs in πB between the last con�guration CB
2j1 such that s2j1 P α

(or, failing that, between CB
0) and C

B
2pi�1q. Then, as s2j1 P α, all the third com-

ponents of s2j1 are replaced by K (likewise, by the previous hypothesis and by

de�nition of s0, its unique trio whose location is in B has K as last component)

before evolving reading σj1�1, σj1�2, . . . , σi�1 thanks to the rules in (v) in the de�-

nition of SB, Φ (De�nition 5.18). Hence, the trio of s2j1 corresponding to C
B
2j1 can

only evolve to a trio with J as last component if case (d) is satis�ed, what is im-

possible between CB
2j1 and C

B
2pi�1q. This contradicts the fact that s2pi�1q P α. On

the second hand, let us consider a branch β � β0β1β2 . . . β2j1 . . . β2j . . . β2pi�1q . . .

of πA and suppose that @j1 ¤ j ¤ i�1, β2j has not its location in F . As s2j1 P α,

all the third components of s2j1 are replaced by K (likewise, by de�nition of s0,

its unique trio whose location is in L has K as last component) before evolving

reading σj1�1, σj1�2, . . . , σi�1 thanks to the rules in (v) in the de�nition of SB, Φ

(De�nition 5.18). But, observing those rules in (v), when a trio has K as last

component, it can only evolve to a trio with J as last component if the `other-

wise' part of case (c) is satis�ed, what is impossible along β. This contradicts

the fact that s2pi�1q P α.

359

To end the proof, we must show that πA and πB are accepting. The previous

induction proves that p�2jq holds for all j ¥ 0. As π is accepting, we know that

s2j P α for in�nitely many j and so, between any two successive such j's all the

branches of πA visit F and πB visits FB. We conclude that piq all the branches

of πA visit F in�nitely often, what proves that πA is accepting, and that piiq πB

visit FB in�nitely often, what proves that πB is accepting.

. APPENDIX D

Other proofs of Section 5.4

One can �nd in this section the proofs of the propositions stated in Section 5.4.

Proposition 5.27: Let s, s1 P S. We have: s � s1 i� Hpsq � Hps1q.

Proof. (ñ) Suppose that s � s1, then the order of the fractional parts of all the

clock values that s contains is the same than those of all the corresponding clock

values that s1 contains (see � conditions 3. to 8.). Moreover, their corresponding

states have their in�ma (respectively their suprema, respectively clocks values)

in the same region (see � condition 2.) and their locations are the same. The

way Hpsq and Hps1q are constructed, their will be no di�erence between these

two words.

(ð) Suppose Hpsq � Hps1q, then we associate each interval of the con�guration

s of A Φ, clearly de�ned by two 4-tuples in Hpsq, to the interval of s1 that is

represented by the two corresponding 4-tuples of Hps1q. Moreover, for 1 ¤ i ¤ n,

we associate each value vi of the clock xi of B, clearly de�ned by a certain 4-tuple

in Hpsq, with the value of v1i of the clock xi of B represented in the corresponding

4-tuple ofHps1q. AsHpsq � Hps1q, conditions 1. and 2. of � are of course veri�ed.

361

362 Appendix D. Other proofs of Section 5.4

The other conditions are also respected thanks to the groupings executed on the

elements of Hpsq and Hps1q to re�ect the increasing order of the fractional parts

of the second components (i.e. clock) values.

Proposition 5.30: Let W 1,W 2 P H, σ P Σ and t P R�.
W 1 σ

ÝÑW 2 i� Ds1 P pHq�1pW 1q and s2 P pHq�1pW 2q : s1 σ
ÝÑ s2.

Proof. (ñ) Follows directly from De�nition 5.28.

(ð) Suppose that s1 P pHq�1pW 1q, s2 P pHq�1pW 2q, and that s1 σ
ÝÑ s2. Let

s3 P pHq�1pW 1q, we must prove that Ds4 P pHq�1pW 2q : s3 σ
ÝÑ s4. As s3 P

pHq�1pW 1q and s1 P pHq�1pW 1q, by Proposition 5.27, s3 � s1. As s1 σ
ÝÑ s2,

Proposition 5.23 ensures that Ds4 P pHq�1pW 2q : s3 σ
ÝÑ s4.

Proposition 5.32: For each word W P H, PostpW q is �nite and e�ectively

computable.

Proof. Let W P H. The set of all W 2 such that W ÝÑT W 2 is a �nite set of

words with the same number of 4-tuples than W. We form this set accumulating

the words computed recursively as follows, using at each time the last Wnext

obtained (and starting from W):

� if the �rst letter of Wnext contains 4-tuples whose second component is t0u

or t1u or ... or tcmaxu, the following Wnext is the word created as follows:

1. the 4-tuples of this �rst letter whose second component is tcmaxu are re-

placed by the same 4-tuples in which tcmaxu is replaced by scmax,�8r,

2. the other 4-tuples of this �rst letter are deleted from it (if it then

becomes empty, it is omitted). A new set of 4-tuples is created as a

new second letter: it will contain these same 4-tuples in which the

second component is replaced by the immediately following region

363

(s0, 1r instead of t0u, s1, 2r instead of t1u, ..., scmax � 1, cmaxr instead

of tcmax � 1u). The end of the word does not change.

� else, the following Wnext is the word created as follows. The last letter of

Wnext is deleted. Its 4-tuples are modi�ed to create a new set that will

contain these same 4-tuples in which the second component is replaced

by the immediately following region (t1u instead of s0, 1r, t2u instead of

s1, 2r, . . . , tcmaxu instead of scmax � 1, cmaxr). This new set is either joined

with the �rst letter of the modi�ed Wnext, if it contains 4-tuples having

scmax,�8r as second components, or added as a new �rst letter of the

modi�ed Wnext otherwise. The rest of the word does not change.

We stop when we encounter a Wnext that has a unique letter whose 4-tuples have

scmax,�8r as second components.

Then, for each possible W 2 such that W ÝÑT W 2, we easily �nd a s P S

such that Hpsq � W 2 (note that the choice of s does not matter thanks to

Proposition 5.30). For all σ P Σ, it is easy to compute the set of elements s1 of S

such that s
σ
ÝÑ s1. This set is �nite and, from each of its elements s1, we can get

back Hps1q.

Once we have examined each letter σ P Σ, for each possible W 2, the (�nite !) set

of all the Hps1q found form PostpW q.

. .APPENDIX E

Proof of Proposition 5.50

In this section, we present the proof of Proposition 5.50. It is closed to the

proof of Proposition 4.70.

Proposition 5.50: Let Zm be a zone.

JPostDpZmqK � ts1 | Ds P Zm such that sÑ s1 in SB, Φu.

Proof. p�q Suppose that Zm � plocA, locB, Zq, where locB � pb,markBq and

@1 ¤ k ¤ m, locApxkq � p`k,markkq. Let s
1 P PostDpZmq. There exists a certain

s1 P Z 1m1 for a certain Z 1m1 P PostDpZmq constructed thanks to σ, tB, t1, . . . , tm,

and (without loss of generality) thanks to r`1 , . . . , r`p , representing the respec-

tive reset in locations `1, . . . , `p. We note Z 1m1 � ploc1A, loc
1
B, Z

1q and tB �

pb, σ, g, r, b1q. Let us suppose that s1 � tp`1k1 , I
1
k1 ,mark

1
k1q

m1

k1�1u

Ytpb1, v1,mark1Bqu, with, @1 ¤ k1 ¤ m1, I 1k1 � rv
1pxk1q, v

1pyk1qs. We will construct

a particular state s of Zm and then prove that s
σ
ÝÑ s1 in SB, Φ. Let us construct

365

366 Appendix E. Proof of Proposition 5.50

s � tp`k, Ik,markkq
m
k�1uYtpb, v,markBqu, with, @1 ¤ k ¤ m, Ik � rvpxkq, vpykqs,

where:

1. Arc of B without reset: @1 ¤ i ¤ n: if xBi R r, we de�ne vpx
B
i q � v1pxBi q,

2. New complete interval: @1 ¤ k ¤ m: if there exists 1 ¤ j ¤ p such that r`j

is a doubloon and xk P r
`j , then x`k and y`k were not used in Z and their

values must not be de�ned,

3. Loop without merge: @1 ¤ k ¤ m: if @1 ¤ j ¤ p, xk R r
`j but that loc1A is

de�ned on xk, we de�ne vpxkq � v1pxkq and vpykq � v1pykq,

4. Loop with merge: @1 ¤ k ¤ m1: if there exists 1 ¤ j ¤ p such that r`j is a

singleton and xk P r
`j , then we de�ne vpykq � v1pykq,

5. Arc going out or arc of B with reset: the values of vpxkq, vpykq and vpx
B
i q

that we still must de�ne are arbitrarily chosen in way they satisfy the

extended clock constraints of gtB,t1,...,tm X Z (which is possible because

gtB,t1,...,tm XZ is satis�able and we only chose values of clocks/clock copies

that have the same value in Z 1m1 , so that they cannot prevent gtB,t1,...,tmXZ
from being satis�able).

We must prove that s
σ
ÝÑ s1 in SB, Φ (see De�nition 5.18). Let us start proving

case (a) of this de�nition, i.e.: pb, vq
σ
ÝÑ pb1, v1q in B and tp`k, Ikq

m
k�1u

σ
ÝÑf� Φ

tp`1k1 , I
1
k1q

m1

k1�1u in A Φ.

We �rst show that pb, vq
σ
ÝÑ pb1, v1q in B thanks to tB. Indeed, v |ù g because g is

contained in gtB,t1,...,tm XZ ; @x P r, v1pxq � 0 because it is reset by de�nition of

Z 1m1 P PostDpZmq and @x P txB1 , . . . , xB2 uzr, v1pxq � vpxq by previous point 1..

Now, let us show that tp`k, Ikq
m
k�1u

σ
ÝÑf� Φ

tp`1k1 , I
1
k1q

m1

k1�1u in A Φ. We must prove

there exists minimal models Mk, for 1 ¤ k ¤ m of δp`k, σq with respect to Ik

such that tp`1k1 , I
1
k1q

m1

k1�1u P f
�
 Φ

�
p
�m
k�1Mkq

�
	
. For each 1 ¤ k ¤ m, we take

Mk to be the minimal model of δp`k, σq with respect to Ik obtained following

the arc tk: it can be taken because its clock constraint is veri�ed on vpxkq and

367

vpykq (it is indeed present in gtB,t1,...,tm X Z) and as this clock constraint can

only be an interval (convex), it is also veri�ed on each i P Ik. We then take the

element E of f� Φ

�
p
�m
k�1Mkq

�
	
that merges the two more little intervals present

in `j , for 1 ¤ j ¤ p, i� r`j is a singleton. It remains to prove that the obtained

con�guration is exactly tp`1k1 , I
1
k1q

m1

k1�1u. It is based on the following facts:

a. each p`k, Ikq that does not loop disappear from tp`k, Ikq
m
k�1u to E and is

not present in tp`1k1 , I
1
k1q

m1

k1�1u: the clock copies representing such intervals

disappear from Zm to Z 1m1 (i.e. locA is not de�ned on them anymore),

b. for each location `j , with 1 ¤ j ¤ p, destination of at least one tk for

1 ¤ k ¤ m, p`j , r0, 0sq is present in p
�m
k�1Mkq

� and

� if r`j is a doubloon: two new clock copies, say x`j and y`j are used by

Z 1m1 . They are de�ned and reset in way p`j , r0, 0sq is also present in

tp`1k1 , I
1
k1q

m1

k1�1u ;

� else: by de�nition of r`j and minLooppt1, . . . , tmq, the clock copy xj

representing the beginning of the more little interval in tp`k, Ikq
m
k�1u

that loops on `j , say Ij � rvpxjq, vpyjqs, is reset in Z 1m1 : tp`1k1 , I 1k1qm
1

k1�1u

contains p`j , r0, vpyjqsq ;

c. each p`k, Ikq that loops is still present in p
�m
k�1Mkq

�: the clock copies

representing Ik in Zm are still present in Z 1m1 but the clock copy representing
its beginning could have been reset, so that tp`1k1 , I

1
k1q

m1

k1�1u contains either

p`k, rvpxkq, vpykqsq or p`k, r0, vpykqsq,

d. when computing E from p
�m
k�1Mkq

�, we know the two more little intervals

present in `j , for 1 ¤ j ¤ p, are merged i� r`j is a singleton. So, p`j , r0, 0sq

and p`j , Ijq are merged in p`j , r0, vpyjqsq i� Ij is the more little interval

that loops on `j , r
`j is a singleton and so must contain the clock copy

representing its beginning: xj . In this case and only in this case, xj is then

reset by de�nition of Z 1m1 P PostDpZmq so that E contains p`j , r0, vpyjqsq

i� tp`1k1 , I
1
k1q

m1

k1�1u also contains p`j , r0, vpyjqsq.

368 Appendix E. Proof of Proposition 5.50

It remains to prove cases (b), (c) and (d) of De�nition 5.18, ruling the evolution of

Miyano-Hayashi markers. The Miyano-Hayashi markers are treated in the same

way from s to s1 than from Zm to Z 1m1 (observing De�nition 5.18 and the de�nition
of the Z 1m1 P PostDpZmq, when Z 1m1 is induced by σ, tB, t1, . . . , tm, r

`1 , . . . , r`p).

Remark that s and Zm are always accepting in the same time. When they

are accepting, all the markers of both s and Zm are turned to K. Then, they

are treated as non-accepting state/zone and their markers are kept updated as

follows.

e. The Miyano-Hayashi marker mark1B of s1 is J i� markB � J or b1 P FB

(see De�nition 5.18); while the marker of loc1B of Z 1m1 is J i� the location

of loc1B (i.e. b1) is in FB or pb1,Jq P LOCMptB, t1, . . . , tmq.

f. In s1, for all 1 ¤ k1 ¤ m1:
�
`1k1 P F ñ mark1k1 � J

�
(see De�nition 5.18);

while the marker mark1k1 of Z 1m1 is always marked by J when the location

of loc1Apx
1
k1q is in F .

g. In s1, @1 ¤ k ¤ m1 with `1
k
R F : mark1

k
� K i� D1 ¤ k� ¤ m such that

p`k� , Ik� ,Kq P s and p`
1
k
, I 1
k
q P destptp`k, IkqkPKu, tp`

1
k1 , I

1
k1q

m1

k1�1u, p`k� , Ik�qq

(see De�nition 5.18). The same marker mark1
k
of Z 1m1 is K i�

piq xk P Looppt1, . . . , tmqz
��p

i�1 r
`i
�
, loc1Apxkq (i.e. `

1
k
) is not in F and

the marker of locApxkq is K, or

piiq xk P
�
r`
1
k X Copiesbegin

	
zLooppt1, . . . , tmq and

p`1
k
,Kq P LOCMptB, t1, . . . , tmq, or

piiiq xk P r
`1
k X Looppt1, . . . , tmq, and loc1Apxkq (i.e. `

1
k
) is not in F , and

either p`,Kq P LOCMptB, t1, . . . , tmq or the marker of `1
k
is K.

From s to s1 as well as from Zm to Z 1m1 , this last case re�ects the fact that
a marker K is associated to an interval (or a pair of clock copies for Zm) if
either piq this interval loops without merging on a non accepting location

and was already marked K or piiq this interval results from the creation

of a new interval in a location and this creation is due to the changing of

369

location of at least one interval that was marked K in its source location, or

piiiq this interval results from the creation of a `semi-new interval' (a new

interval is merged with the previous smallest interval of this location) and

either the previous smallest interval of this location was marked K, or the

creation of this semi-new interval is due to the changing of location of at

least one interval that was marked K in its source location.

p�q Let Zm � plocA, locB, Zq be a zone and s1 be such that Ds P Zm with

s Ñ s1 in SB, Φ. Let us show that s1 P PostDpZmq. Let us suppose that

s � tp`k, Ik,markkq
m
k�1uYtpb, v,markBqu, with, @1 ¤ k ¤ m, Ik � rvpxkq, vpykqs

and s1 � tp`1k1 , I
1
k1 ,mark

1
k1q

m1

k1�1u Y tpb
1, v1,mark1Bqu, with, @1 ¤ k1 ¤ m1, I 1k1 �

rv1pxk1q, v
1pyk1qs. As sÑ s1, there exists σ P Σ such that:

� pb, vq
σ
ÝÑ pb1, v1q in B, i.e.: there exists an arc tB � pb, σ, g, r, b

1q such that

v |ù g, @x P r, v1pxq � 0 and @x P txB1 , . . . , x
B
nuzr, v

1pxq � vpxq;

� tp`k, Ikq
m
k�1u

σ
ÝÑf� Φ

tp`1k1 , I
1
k1q

m1

k1�1u in A Φ, i.e.: tp`1k1 , I
1
k1q

m1

k1�1u � E P

f� Φ

�
p
�m
k�1Mkq

�
	
for certain minimal models Mk of δp`k, σq with respect

to Ik, which are themselves obtained by taking certain arcs tk from `k, for

1 ¤ k ¤ m.

Let us de�ne r`j , for 1 ¤ j ¤ p by:

� r`j contains two new clock copies i� D1 ¤ k ¤ m such that tk goes to `j

with a reset and no merge is applied by f� Φ on `j ,

� r`j contains the clock representing the beginning of the more little interval

present in `j that loops on `j taking one of the tk,for 1 ¤ k ¤ m, i�

D1 ¤ k ¤ m such that tk goes to `j with a reset and a merge is applied by

f� Φ on `j ,

� r`j is unde�ned in the other case, i.e. when none of the tk, for 1 ¤ k ¤ m,

goes to `j with a reset.

370 Appendix E. Proof of Proposition 5.50

It is easy to prove that the Z 1m1 P PostDpZmq induced by σ, tB, t1, . . . , tm, r`1 , . . . , r`p

contains s1, noting Z 1m1 � ploc1A, loc1B, Z 1q, thanks to the following facts.

� As s P Zm, the extended constraint Z is satis�ed by its clock values ;

moreover, having taken arcs tB, t1, . . . , tm ensure the bounds of the intervals

and the clock values of s satisfy gtB,t1,...,tm XZ (in particular gtB,t1,...,tm XZ

is satis�able and Z 1m1 really exists).

� A clock xBi , for 1 ¤ i ¤ n, is reset in the construction of Z 1m1 i� v1pxBi q � 0.

� The facts b., c. and d. of the proof of inclusion � are still true here.

� The Miyano-Hayashi markers are treated in the same way from Zm to

Z 1m1 than from s to s1 (observing De�nition 5.18 and the de�nition of the

Z 1m1 P PostDpZmq, when Z 1m1 is induced by σ, tB, t1, . . . , tm, r
`1 , . . . , r`p):

see cases e., f. and g. of the proof of inclusion � for details.

Bibliography

[1] M. Abadi, L. Lamport, and P. Wolper. Realizable and unrealizable speci�ca-

tions of reactive systems. In G. Ausiello, M. Dezani-Ciancaglini, and S. R. D.

Rocca, editors, Automata, Languages and Programming, 16th International

Colloquium, ICALP89, Stresa, Italy, July 11-15, 1989, Proceedings, volume

372 of Lecture Notes in Computer Science, pages 1�17. Springer, 1989.

2 citations in pages 5 and 33.

[2] P. A. Abdulla, J. Deneux, J. Ouaknine, K. Quaas, and J. Worrell. Universal-

ity analysis for one-clock timed automata. Fundam. Inform., 89(4):419�450,

2008.

2 citations in pages 186 and 250.

[3] R. Alur and D. L. Dill. Automata for modeling real-time systems. In M. Pa-

terson, editor, Automata, Languages and Programming, 17th International

Colloquium, ICALP90, Warwick University, England, July 16-20, 1990, Pro-

ceedings, volume 443 of Lecture Notes in Computer Science, pages 322�335.

Springer, 1990.

Cited in page 36.

[4] R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput. Sci.,

126(2):183�235, 1994.

7 citations in pages 3, 36, 41, 42, 43, 151, and 186.

371

372 Bibliography

[5] R. Alur, T. Feder, and T. A. Henzinger. The bene�ts of relaxing punctuality.

J. ACM, 43(1):116�146, 1996.

8 citations in pages 4, 90, 92, 96, 97, 107, 127, and 234.

[6] R. Alur, L. Fix, and T. A. Henzinger. Event-clock automata: A determiniz-

able class of timed automata. Theor. Comput. Sci., 211(1-2):253�273, 1999.

Cited in page 101.

[7] R. Alur and T. A. Henzinger. Real-time logics: Complexity and expressive-

ness. Inf. Comput., 104(1):35�77, 1993.

4 citations in pages 3, 61, 92, and 95.

[8] R. Alur and P. Madhusudan. Decision problems for timed automata: A

survey. In M. Bernardo and F. Corradini, editors, Formal Methods for the

Design of Real-Time Systems, International School on Formal Methods for

the Design of Computer, Communication and Software Systems, SFM-RT

2004, Bertinoro, Italy, September 13-18, 2004, Revised Lectures, volume

3185 of Lecture Notes in Computer Science, pages 1�24. Springer, 2004.

Cited in page 186.

[9] E. Asarin and P. Bouyer, editors. Formal Modeling and Analysis of Timed

Systems, 4th International Conference, FORMATS 2006, Paris, France,

September 25-27, 2006, Proceedings, volume 4202 of Lecture Notes in Com-

puter Science. Springer, 2006.

2 citations in pages 377 and 379.

[10] C. Baier and J.-P. Katoen. Principles of Model Checking (Representation

and Mind Series). The MIT Press, 2008.

2 citations in pages 2 and 18.

[11] J. Bengtsson and W. Yi. Timed automata: Semantics, algorithms and tools.

In J. Desel, W. Reisig, and G. Rozenberg, editors, Lectures on Concurrency

and Petri Nets, Advances in Petri Nets [This tutorial volume originates from

the 4th Advanced Course on Petri Nets, ACPN 2003, held in Eichstätt, Ger-

many in September 2003. In addition to lectures given at ACPN 2003, ad-

373

ditional chapters have been commissioned], volume 3098 of Lecture Notes in

Computer Science, pages 87�124. Springer, 2003.

2 citations in pages 190 and 193.

[12] N. Bertrand, A. Stainer, T. Jéron, and M. Krichen. A game approach to

determinize timed automata. In M. Hofmann, editor, Foundations of Soft-

ware Science and Computational Structures - 14th International Conference,

FOSSACS 2011, Held as Part of the Joint European Conferences on The-

ory and Practice of Software, ETAPS 2011, Saarbrücken, Germany, March

26-April 3, 2011. Proceedings, volume 6604 of Lecture Notes in Computer

Science, pages 245�259. Springer, 2011.

Cited in page 42.

[13] D. Berwanger, K. Chatterjee, M. D. Wulf, L. Doyen, and T. A. Henzinger.

Alpaga: A tool for solving parity games with imperfect information. In

S. Kowalewski and A. Philippou, editors, Tools and Algorithms for the Con-

struction and Analysis of Systems, 15th International Conference, TACAS

2009, Held as Part of the Joint European Conferences on Theory and Prac-

tice of Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings,

volume 5505 of Lecture Notes in Computer Science, pages 58�61. Springer,

2009.

Cited in page 3.

[14] A. Bohy. Antichain based algorithms for the synthesis of reactive systems.

PhD thesis, Computer Science Department. University of Mons, Belgium,

may, 2014.

Cited in page 332.

[15] P. Bouyer. Timed automata may cause some troubles. Technical report,

Research Report LSV-02-9, Lab. Spéci�cation et Véri�cation, CNRS & ENS

de Cachan, France, 2002.

3 citations in pages 201, 202, and 261.

[16] P. Bouyer. Model-checking timed temporal logics. Electr. Notes Theor.

374 Bibliography

Comput. Sci., 231:323�341, 2009.

4 citations in pages 62, 63, 92, and 93.

[17] P. Bouyer, L. Bozzelli, and F. Chevalier. Controller synthesis for MTL

speci�cations. In C. Baier and H. Hermanns, editors, CONCUR 2006 -

Concurrency Theory, 17th International Conference, CONCUR 2006, Bonn,

Germany, August 27-30, 2006, Proceedings, volume 4137 of Lecture Notes

in Computer Science, pages 450�464. Springer, 2006.

18 citations in pages 5, 6, 76, 77, 80, 84, 85, 281, 282, 283, 288, 299, 303, 307,

308, 309, 317, and 320.

[18] T. Brihaye, V. Bruyère, L. Doyen, M. Ducobu, and J. Raskin. Antichain-

based QBF solving. In T. Bultan and P. Hsiung, editors, Automated Tech-

nology for Veri�cation and Analysis, 9th International Symposium, ATVA

2011, Taipei, Taiwan, October 11-14, 2011. Proceedings, volume 6996 of Lec-

ture Notes in Computer Science, pages 183�197. Springer, 2011.

Cited in page 167.

[19] T. Brihaye, M. Estiévenart, and G. Geeraerts. On MITL and alternating

timed automata. In V. A. Braberman and L. Fribourg, editors, Formal Mod-

eling and Analysis of Timed Systems - 11th International Conference, FOR-

MATS 2013, Buenos Aires, Argentina, August 29-31, 2013. Proceedings,

volume 8053 of Lecture Notes in Computer Science, pages 47�61. Springer,

2013.

3 citations in pages 6, 108, and 128.

[20] T. Brihaye, M. Estiévenart, and G. Geeraerts. On MITL and alternating

timed automata. CoRR, abs/1304.2814, 2013.

3 citations in pages 6, 108, and 128.

[21] T. Brihaye, M. Estiévenart, and G. Geeraerts. On MITL and alternating

timed automata over in�nite words. In A. Legay and M. Bozga, editors, For-

mal Modeling and Analysis of Timed Systems - 12th International Confer-

ence, FORMATS 2014, Florence, Italy, September 8-10, 2014. Proceedings,

375

volume 8711 of Lecture Notes in Computer Science, pages 69�84. Springer,

2014.

2 citations in pages 6 and 207.

[22] T. Brihaye, M. Estiévenart, and G. Geeraerts. On MITL and alternating

timed automata over in�nite words. CoRR, abs/1406.4395, 2014.

2 citations in pages 6 and 207.

[23] P. E. Bulychev, A. David, K. G. Larsen, and G. Li. E�cient controller

synthesis for a fragment of mtl0,8. Acta Inf., 51(3-4):165�192, 2014.

Cited in page 323.

[24] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,

M. Roveri, R. Sebastiani, and A. Tacchella. Nusmv 2: An opensource tool for

symbolic model checking. In E. Brinksma and K. G. Larsen, editors, Com-

puter Aided Veri�cation, 14th International Conference, CAV 2002,Copen-

hagen, Denmark, July 27-31, 2002, Proceedings, volume 2404 of Lecture

Notes in Computer Science, pages 359�364. Springer, 2002.

2 citations in pages 2 and 32.

[25] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic veri�cation of

�nite-state concurrent systems using temporal logic speci�cations. ACM

Trans. Program. Lang. Syst., 8(2):244�263, 1986.

Cited in page 31.

[26] C. Daws and S. Yovine. Reducing the number of clock variables of timed

automata. In Proceedings of the 17th IEEE Real-Time Systems Symposium

(RTSS'96), December 4-6, 1996, Washington, DC, USA, pages 73�81. IEEE

Computer Society, 1996.

Cited in page 263.

[27] D. L. Dill. Timing assumptions and veri�cation of �nite-state concurrent

systems. In J. Sifakis, editor, Automatic Veri�cation Methods for Finite

State Systems, International Workshop, Grenoble, France, June 12-14, 1989,

376 Bibliography

Proceedings, volume 407 of Lecture Notes in Computer Science, pages 197�

212. Springer, 1989.

3 citations in pages 186, 187, and 251.

[28] L. Doyen, G. Geeraerts, J. Raskin, and J. Reichert. Realizability of real-

time logics. In J. Ouaknine and F. W. Vaandrager, editors, Formal Modeling

and Analysis of Timed Systems, 7th International Conference, FORMATS

2009, Budapest, Hungary, September 14-16, 2009. Proceedings, volume 5813

of Lecture Notes in Computer Science, pages 133�148. Springer, 2009.

4 citations in pages 77, 101, 102, and 282.

[29] L. Doyen and J. Raskin. Improved algorithms for the automata-based ap-

proach to model-checking. In O. Grumberg and M. Huth, editors, Tools and

Algorithms for the Construction and Analysis of Systems, 13th International

Conference, TACAS 2007, Held as Part of the Joint European Conferences

on Theory and Practice of Software, ETAPS 2007 Braga, Portugal, March

24 - April 1, 2007, Proceedings, volume 4424 of Lecture Notes in Computer

Science, pages 451�465. Springer, 2007.

Cited in page 3.

[30] L. Doyen and J. Raskin. Antichain algorithms for �nite automata. In J. Es-

parza and R. Majumdar, editors, Tools and Algorithms for the Construc-

tion and Analysis of Systems, 16th International Conference, TACAS 2010,

Held as Part of the Joint European Conferences on Theory and Practice of

Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings,

volume 6015 of Lecture Notes in Computer Science, pages 2�22. Springer,

2010.

Cited in page 167.

[31] D. D'Souza and P. Madhusudan. Timed control synthesis for external spec-

i�cations. In H. Alt and A. Ferreira, editors, STACS 2002, 19th Annual

Symposium on Theoretical Aspects of Computer Science, Antibes - Juan les

Pins, France, March 14-16, 2002, Proceedings, volume 2285 of Lecture Notes

377

in Computer Science, pages 571�582. Springer, 2002.

10 citations in pages 5, 76, 77, 80, 85, 283, 285, 288, 305, and 306.

[32] E. Filiot, N. Jin, and J. Raskin. Antichains and compositional algorithms

for LTL synthesis. Formal Methods in System Design, 39(3):261�296, 2011.

3 citations in pages 5, 33, and 167.

[33] O. Finkel. Undecidable problems about timed automata. In Asarin and

Bouyer [9], pages 187�199.

Cited in page 42.

[34] P. Gastin and D. Oddoux. Fast LTL to büchi automata translation. In

G. Berry, H. Comon, and A. Finkel, editors, Computer Aided Veri�cation,

13th International Conference, CAV 2001, Paris, France, July 18-22, 2001,

Proceedings, volume 2102 of Lecture Notes in Computer Science, pages 53�

65. Springer, 2001.

4 citations in pages 32, 33, 34, and 212.

[35] G. Geeraerts, G. Kalyon, T. L. Gall, N. Maquet, and J. Raskin. Lattice-

valued binary decision diagrams. In A. Bouajjani and W. Chin, editors, Au-

tomated Technology for Veri�cation and Analysis - 8th International Sympo-

sium, ATVA 2010, Singapore, September 21-24, 2010. Proceedings, volume

6252 of Lecture Notes in Computer Science, pages 158�172. Springer, 2010.

Cited in page 265.

[36] B. D. Giampaolo, G. Geeraerts, J. Raskin, and N. Sznajder. Safraless proce-

dures for timed speci�cations. In K. Chatterjee and T. A. Henzinger, editors,

Formal Modeling and Analysis of Timed Systems - 8th International Con-

ference, FORMATS 2010, Klosterneuburg, Austria, September 8-10, 2010.

Proceedings, volume 6246 of Lecture Notes in Computer Science, pages 2�22.

Springer, 2010.

Cited in page 5.

[37] E. Grädel, W. Thomas, and T. Wilke, editors. Automata Logics, and In�nite

Games: A Guide to Current Research. Springer-Verlag New York, Inc., New

378 Bibliography

York, NY, USA, 2002.

4 citations in pages 2, 14, 16, and 20.

[38] T. A. Henzinger, J. Raskin, and P. Schobbens. The regular real-time lan-

guages. In K. G. Larsen, S. Skyum, and G. Winskel, editors, Automata,

Languages and Programming, 25th International Colloquium, ICALP'98,

Aalborg, Denmark, July 13-17, 1998, Proceedings, volume 1443 of Lecture

Notes in Computer Science, pages 580�591. Springer, 1998.

Cited in page 97.

[39] R. Koymans. Specifying real-time properties with metric temporal logic.

Real-Time Systems, 2(4):255�299, 1990.

2 citations in pages 3 and 57.

[40] O. Kupferman and M. Y. Vardi. Weak alternating automata are not that

weak. ACM Trans. Comput. Log., 2(3):408�429, 2001.

2 citations in pages 211 and 212.

[41] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell. STTT,

1(1-2):134�152, 1997.

3 citations in pages 3, 36, and 186.

[42] S. Lasota and I. Walukiewicz. Alternating timed automata. ACM Trans.

Comput. Log., 9(2), 2008.

3 citations in pages 43, 44, and 108.

[43] C. Löding and W. Thomas. Alternating automata and logics over in�nite

words. In J. van Leeuwen, O. Watanabe, M. Hagiya, P. D. Mosses, and

T. Ito, editors, Theoretical Computer Science, Exploring New Frontiers of

Theoretical Informatics, International Conference IFIP TCS 2000, Sendai,

Japan, August 17-19, 2000, Proceedings, volume 1872 of Lecture Notes in

Computer Science, pages 521�535. Springer, 2000.

Cited in page 212.

[44] O. Maler, D. Nickovic, and A. Pnueli. From MITL to timed automata. In

379

Asarin and Bouyer [9], pages 274�289.

2 citations in pages 4 and 90.

[45] N. Maquet. New Algorithms and Data Structures for the Emptiness Problem

of Alternating Automata. PhD thesis, Université Libre de Bruxelles, 2011.

3 citations in pages 34, 107, and 248.

[46] S. Miyano and T. Hayashi. Alternating �nite automata on omega-words.

Theor. Comput. Sci., 32:321�330, 1984.

2 citations in pages 26 and 208.

[47] D. E. Muller, A. Saoudi, and P. E. Schupp. Alternating automata, the weak

monadic theory of trees and its complexity. Theor. Comput. Sci., 97(2):233�

244, 1992.

2 citations in pages 211 and 212.

[48] J. Ouaknine and J. Worrell. On the language inclusion problem for timed

automata: Closing a decidability gap. In 19th IEEE Symposium on Logic in

Computer Science (LICS 2004), 14-17 July 2004, Turku, Finland, Proceed-

ings, pages 54�63. IEEE Computer Society, 2004.

Cited in page 43.

[49] J. Ouaknine and J. Worrell. On the decidability of metric temporal logic. In

20th IEEE Symposium on Logic in Computer Science (LICS 2005), 26-29

June 2005, Chicago, IL, USA, Proceedings, pages 188�197. IEEE Computer

Society, 2005.

2 citations in pages 44 and 108.

[50] J. Ouaknine and J. Worrell. On metric temporal logic and faulty turing

machines. In L. Aceto and A. Ingólfsdóttir, editors, Foundations of Software

Science and Computation Structures, 9th International Conference, FOS-

SACS 2006, Held as Part of the Joint European Conferences on Theory and

Practice of Software, ETAPS 2006, Vienna, Austria, March 25-31, 2006,

Proceedings, volume 3921 of Lecture Notes in Computer Science, pages 217�

380 Bibliography

230. Springer, 2006.

5 citations in pages 61, 62, 65, 95, and 96.

[51] J. Ouaknine and J. Worrell. On the decidability and complexity of metric

temporal logic over �nite words. Logical Methods in Computer Science, 3(1),

2007.

24 citations in pages 4, 5, 34, 44, 45, 55, 61, 62, 65, 85, 86, 87, 95, 134, 151, 152,

207, 208, 209, 213, 220, 235, 335, and 337.

[52] P. Parys and I. Walukiewicz. Weak alternating timed automata. Logical

Methods in Computer Science, 8(3), 2012.

4 citations in pages 55, 56, 212, and 213.

[53] A. Pnueli. The temporal logic of programs. In 18th Annual Symposium

on Foundations of Computer Science, Providence, Rhode Island, USA, 31

October - 1 November 1977, pages 46�57. IEEE Computer Society, 1977.

Cited in page 2.

[54] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Con-

ference Record of the Sixteenth Annual ACM Symposium on Principles of

Programming Languages, Austin, Texas, USA, January 11-13, 1989, pages

179�190. ACM Press, 1989.

3 citations in pages 5, 33, and 34.

[55] M. O. Rabin and D. Scott. Finite automata and their decision problems.

IBM Journal of Research and Development, 3(2):114�125, april 1959. ISSN

0018-8646. doi: 10.1147/rd.32.0114.

Cited in page 16.

[56] J. Raskin. Logics, Automata and Classical Theories for Deciding Real Time.

PhD thesis, Computer Science Department. University of Namur, Belgium,

april, 1999.

3 citations in pages 97, 98, and 101.

[57] J. Raskin and P. Schobbens. The logic of event clocks - decidability, complex-

ity and expressiveness. Journal of Automata, Languages and Combinatorics,

381

4(3):247�286, 1999.

3 citations in pages 98, 100, and 101.

[58] T. C. Ruys and G. J. Holzmann. Advanced SPIN tutorial. In S. Graf

and L. Mounier, editors, Model Checking Software, 11th International SPIN

Workshop, Barcelona, Spain, April 1-3, 2004, Proceedings, volume 2989 of

Lecture Notes in Computer Science, pages 304�305. Springer, 2004.

2 citations in pages 2 and 32.

[59] S. Safra. Exponential determinization for omega-automata with a strong

fairness acceptance condition. SIAM J. Comput., 36(3):803�814, 2006.

Cited in page 18.

[60] P. Schobbens, J. Raskin, and T. A. Henzinger. Axioms for real-time logics.

Theor. Comput. Sci., 274(1-2):151�182, 2002.

Cited in page 97.

[61] A. P. Sistla and E. M. Clarke. The complexity of propositional linear tem-

poral logics. J. ACM, 32(3):733�749, 1985.

2 citations in pages 31 and 32.

[62] M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In

F. Moller and G. M. Birtwistle, editors, Logics for Concurrency - Structure

versus Automata (8th Ban� Higher Order Workshop, August 27 - September

3, 1995, Proceedings), volume 1043 of Lecture Notes in Computer Science,

pages 238�266. Springer, 1995.

Cited in page 34.

[63] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic

program veri�cation (preliminary report). In Proceedings of the Symposium

on Logic in Computer Science (LICS'86), Cambridge, Massachusetts, USA,

June 16-18, 1986, pages 332�344. IEEE Computer Society, 1986.

Cited in page 31.

[64] M. D. Wulf, L. Doyen, T. A. Henzinger, and J. Raskin. Antichains: A new

algorithm for checking universality of �nite automata. In T. Ball and R. B.

382 Bibliography

Jones, editors, Computer Aided Veri�cation, 18th International Conference,

CAV 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings, volume 4144

of Lecture Notes in Computer Science, pages 17�30. Springer, 2006.

2 citations in pages 3 and 167.

[65] M. D. Wulf, L. Doyen, N. Maquet, and J. Raskin. Alaska. In S. D. Cha,

J. Choi, M. Kim, I. Lee, and M. Viswanathan, editors, Automated Tech-

nology for Veri�cation and Analysis, 6th International Symposium, ATVA

2008, Seoul, Korea, October 20-23, 2008. Proceedings, volume 5311 of Lec-

ture Notes in Computer Science, pages 240�245. Springer, 2008.

Cited in page 3.

[66] M. D. Wulf, L. Doyen, N. Maquet, and J. Raskin. Antichains: Alternative

algorithms for LTL satis�ability and model-checking. In C. R. Ramakrishnan

and J. Rehof, editors, Tools and Algorithms for the Construction and Analy-

sis of Systems, 14th International Conference, TACAS 2008, Held as Part of

the Joint European Conferences on Theory and Practice of Software, ETAPS

2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings, volume 4963

of Lecture Notes in Computer Science, pages 63�77. Springer, 2008.

2 citations in pages 3 and 167.

	Acknowledgements
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Preliminaries
	Basic notions
	Automata
	Alternating automata
	Linear Temporal Logic
	The LTL syntax and semantics
	The problems

	From LTL to Alternating Automata
	Timed automata
	Alternating timed automata
	Metric Temporal Logic
	MTL syntax and pointwise semantics
	The problems

	From MTL to OCATA
	The continuous semantics
	Timed state sequences
	Timed automata and alternating timed automata
	Metric Temporal Logic

	Alternative real-time logics
	MITL
	MITL0,
	ECL
	LTL

	I MITL Satisfiability and Model-Checking
	An interval semantics for OCATA
	MITL satisfiability and model-checking over finite words
	From MITL to timed automata
	The approximation functions f
	Towards a timed automaton

	MITL model-checking: the techniques
	Antichain-based heuristic
	Zone-based algorithm
	Order-based heuristic for zones

	MITL satisfiability and model-checking over infinite words
	TOCATA: a class of OCATA for MITL
	Tree-like OCATA
	Properties of TOCATA

	From MITL to Büchi Timed Automata
	A Büchi transition system for each OCATA
	Towards a Büchi timed automaton

	MITL model-checking with TOCATA: the techniques
	Region-based algorithm
	Zone-based algorithm

	Experimental results

	II MITL Reactive Synthesis
	MITL BRSPlant algorithm
	Towards a timed game
	Towards a deterministic STS
	The algorithm
	Order-based algorithms

	Experimental results
	Conclusion and future work

	Proofs of Propositions 4.8 and 4.9
	Proofs of the bisimulation lemma over finite and infinite words
	Proof of Proposition 5.20
	Other proofs of Section 5.4
	Proof of Proposition 5.50
	Bibliography

