
ar
X

iv
:1

51
2.

02
20

9v
2 

 [
he

p-
th

] 
 2

0 
Ja

n 
20

16

MI-TH-1543

An Action for Matter Coupled Higher Spin Gravity

in Three Dimensions

Roberto Bonezzi 1, Nicolas Boulanger 1, Ergin Sezgin 2 and Per Sundell 3
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ABSTRACT

We propose a covariant Hamiltonian action for the Prokushkin and Vasiliev’s matter coupled

higher spin gravity in three dimensions. The action is formulated on X4 × Z2 where X4 is an

open manifold whose boundary contains spacetime and Z2 is a noncommutative twistor space.

We examine various consistent truncations to models of BF type in X4 and Z2 with B2 terms

and central elements. They are obtained by integrating out the matter fields in the presence of

a vacuum expectation value ν ∈ R for the zero-form master field. For ν = 0, we obtain a model

on X4 containing Blencowe’s action and a model on Z2 containing the Prokushkin–Segal–Vasiliev

action. For generic ν (including ν = 0), we propose an alternative model on X4 with gauge

fields in the Weyl algebra of Wigner’s deformed oscillator algebra and Lagrange multipliers in the

algebra of operators acting in the Fock representation space of the deformed oscillators.

http://arxiv.org/abs/1512.02209v2
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1 Introduction

Three-dimensional gravity with negative cosmological constant, as defined by the sl(2,R)⊕sl(2,R)

Chern–Simons (CS) action of [1, 2], provides a rich framework for testing various aspects of

quantum gravity in a setting that is simpler than in higher dimensions, yet nontrivial. Although

AdS3 gravities are topological, they admit black holes [3] and possess moduli spaces at conformal

infinity governed by infinite-dimensional conformal symmetry algebras [4, 5]; see [6] for a review.
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As for higher spin gravities, these are simpler as well in three dimensions, where the massless

higher spin fields are topological, and hence the spectrum requirements on the gauge algebras sim-

plify considerably. Topological higher spin gravities based on the principal embedding of sl(2,R)

into sl(N,R) were shown in [7, 8] to have asymptotic WN symmetries. In [9] holographic cor-

respondences were conjectured for higher spin gravities with infinite-dimensional gauge algebras

hs(2)⊕ hs(2) and their deformation hs(λ)⊕ hs(λ) coupled to (complex) bulk scalars.

In the above works, the (classical) gauge sector is assumed to be described by various CS gener-

alisations [10, 11, 12] of the Achucarro–Townsend supergravity Lagrangian [1]. On the other hand,

one class of matter coupled higher spin gravities is described on-shell by the Prokushkin–Vasiliev

(PV) equations [13], and off-shell by the Prokushkin–Segal–Vasiliev (PSV) action principle in

twistor space [14]. However, as spacetime is absent in the latter, its relation to the CS formula-

tions has remained unclear. Moreover, there exists a second class of matter coupled higher spin

gravities based on action principles in three dimensions with an extra dynamical two-form [12],

whose relation to the PV system is unclear.

In this paper, we provide the PV system with an action principle of covariant Hamiltonian

type on a six-manifold given by the direct product of a closed twistor space Z2 and an open

four-manifold X4 whose boundary X3 contains spacetime M3. When subjected to the variational

principle combined with natural boundary conditions, the action yields the PV equations on its

five-dimensional boundary X3×Z2. The action is constructed such that upon integrating out the

matter fields in the presence of an expectation value ν for the PV zero-form, the effective action for

the gauge fields can be consistently truncated to models of BF type on X4. These model contain B

squared terms1 containing the standard symplectic structure of three-dimensional Fronsdal fields.

For ν = 0, we obtain a model on X4 containing Blencowe’s action, as well as a model on Z2

containing the Prokushkin–Segal–Vasiliev action. In these models, the dual spaces that contain

the gauge fields and Lagrange multipliers are isomorphic. For generic ν (including ν = 0), we

shall also consider a model on X4 in which the aforementioned two spaces are not isomorphic.

However, its existence depends on the finiteness of the trace of the vacuum-to-vacuum projector

of a deformed oscillator induced from six dimensions. If existing, such a model would provide

1 The B field of the BF-like models originate from the even Lagrange multiplier in the covariant Hamiltonian

action, denoted by T in (3.27).
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an alternative to the BF-like Blencowe model based on Vasiliev’s supertrace [15], whose six-

dimensional origin remains unclear.

The master action to be constructed here is analog of the one for the four-dimensional Vasiliev

system found in [16]. In particular, it does not extend the closed and central two-form of the PV

system into a dynamical field off-shell. The inclusion of a dynamical two-form in an action that

is an analog of that for four-dimensional models given recently in [17] and which makes contact

with both the PV system as well as the action proposed in [12] will be treated elsewhere.

The paper is structured as follows: In Section 2, we cast the PV system as a differential

algebra on the direct product of twistor space and spacetime. After this preparation, we propose

a covariant Hamiltonian action on X4 × Z2, with a term quadratic in Lagrange multipliers, in

Section 3. In Section 4, we examine the consistent truncations to the BF-like version of the

Blencowe model on X4 and the PSV action on Z2. We summarize our results and provide an

outlook in the Conclusions in Section 5. In Appendix A, we review the mass deformation. In

Appendix B, we present the proposed ν-deformed BF-like model on X4.

2 Prokushkin–Vasiliev models

In this section, we rewrite the PV equations [13] as a differential algebra generated by master fields

on a noncommutative manifold valued in an associative algebra, or equivalently, as an associative

bundle with fusion rules. In particular, we shall identify the minimal bosonic model and its

massive deformation. For a recent, in-depth treatment of the weak-field perturbative analysis of

PV systems to first nontrivial order in interactions, see [18].

2.1 Differential algebra

The master fields are

A = dxµWµ(x, z|y; Γi) + dzαVα(x, z|y; Γi) , B = B(x, z|y; Γi) , (2.1)

defined locally on the direct product M3 ×Z2 of a commutative three-dimensional real manifold

M3 with coordinates xµ, µ = 1, 2, 3, and a non-commutative two-dimensional real manifold Z2

with coordinates zα, α = 1, 2. The fields are valued in an associative algebra generated by a
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real oscillator yα, α = 1, 2, coordinatizing an internal noncommutative manifold Y2, and a set of

elements Γi, i = 1, . . . , N , obeying

{Γi,Γj} = 2δij , (2.2)

thus coordinatizing the Clifford algebra CℓN , that we shall denote by CN for brevity. The de-

pendence of the master fields on (yα, zα) is treated using symbol calculus, whereby they belong

to classes of functions (or distributions) on Y2 × Z2 that can be composed using two associative

products: the standard commutative product rule, denoted by juxtaposition, and an additional

noncommutative product rule, denoted by a ⋆. In what follows, we shall use the normal ordered

basis in which the star product rule is defined formally by

(f ⋆ g)(y, z) :=

∫

R4

d2ud2v

(2π)2
eiv

αuαf(y + u, z + u) g(y + v, z − v) , (2.3)

whereas a more rigorous definition requires a set of fusion rules (see below). In particular, the

above composition rule rigorously defines the associative Weyl algebra Aq(4). This algebra con-

sists of arbitrary polynomials in yα and zα, modulo

yα ⋆ yβ = yαyβ + iǫαβ , yα ⋆ zβ = yαzβ − iǫαβ , (2.4)

zα ⋆ yβ = zαyβ + iǫαβ , zα ⋆ zβ = zαzβ − iǫαβ , (2.5)

whose symmetric and anti-symmetric parts, respectively, define the normal order and the (ordering

independent) commutation rules, viz.2

[yα, yβ]⋆ = −[zα, zβ ]⋆ = 2iǫαβ , [yα, zβ]⋆ = 0 . (2.6)

The basis one-forms (dxµ, dzα) obey

[dxµ, f ]⋆ = 0 = [dzα, f ]⋆ , (2.7)

where the graded star commutator3 of differential forms is given by

[f, g]⋆ = f ⋆ g − (−1)deg(f)deg(g)g ⋆ f , (2.8)

with deg denoting the total form degree on M3 × Z2 . To describe bosonic models, we impose

π(A) = A , π(B) = B (2.9)

2The doublet variables yα and zα form Majorana spinors once the equations are cast into a manifestly Lorentz

covariant form.
3We will explicitly use commutators and anticommutators, in Section 3.

4



where π is the automorphism of the differential star product algebra defined by

π(xµ, dxµ, zα, dzα, yα,Γi) = (xµ, dxµ,−zα,−dzα,−yα,Γi) . (2.10)

The hermitian conjugation is defined by

(f ⋆ g)† = (−1)deg(f)deg(g)g† ⋆ f † , (zα, dz
α; yα,Γi)

† = (−zα,−dz
α; yα,Γi) . (2.11)

and the reality conditions on the master fields read

A† = −A , B† = B . (2.12)

Defining

F = dA+ A ⋆ A , DB = dB + A ⋆ B −B ⋆ A , d = dxµ∂µ + dzα
∂

∂zα
, (2.13)

where the differential obeys

d(f ⋆ g) = (df) ⋆ g + (−1)deg(f)f ⋆ dg , (df)† = d(f †) , (2.14)

the PV field equations can be written as

F +B ⋆ J = 0 , DB = 0 , (2.15)

where

J := − i
4
dzαdzα κ κ := eiy

αzα . (2.16)

The element J is closed and central in the space of π-invariant forms, viz.

dJ = 0 , J ⋆ f = π(f) ⋆ J , (2.17)

as can be seen from the fact that κ, which is referred to as the inner Klein operator, obeys

κ ⋆ f(x, dx, z, dz, y,Γi) ⋆ κ = f(x, dx,−z, dz,−y,Γi) . (2.18)

It follows that (2.15) defines a universally Cartan integrable system (i.e. a set of generalized cur-

vature constraints compatible with d2 ≡ 0 in any dimension). The Cartan gauge transformations

take the form

δǫA = dǫ+ [A, ǫ]⋆ , δǫB = [B, ǫ]⋆ . (2.19)
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2.2 Lorentz covariance

Introducing

Sα := zα − 2i Vα , dX := dxµ∂µ , (2.20)

the equations can be rewritten as

dXW +W ⋆W = 0 , dXB + [W,B]⋆ = 0 , dXSα + [W,Sα]⋆ = 0 ,

[Sα, B]⋆ = 0 , [Sα, Sβ]⋆ = −2iǫαβ
(
1− B ⋆ κ

)
.

(2.21)

In view of {Sα, κ}⋆ = 0, which follows from the bosonic projection, the above equations define a

deformed oscillator algebra, fibered over M3, for which B plays the role of deformation parameter.

The equations can be cast into manifestly Lorentz covariant form [19, 20] by introducing a bona

fide Lorentz connection ωαβ = dxµωαβ
µ on M3 and defining

W = W −
1

4i
ωαβMαβ , Mαβ = y(α ⋆ yβ) − z(α ⋆ zβ) + S(α ⋆ Sβ) . (2.22)

in terms of which the master field equations on M3 take the form

∇W +W ⋆W +
1

4i
rαβMαβ = 0 , ∇B + [W, B]⋆ = 0 , ∇Sα + [W, Sα]⋆ = 0 , (2.23)

where

∇W = dXW + [ω,W]⋆ , ∇B = dXB + [ω,B]⋆ , (2.24)

∇Sα = dXSα − ωα
βSβ + [ω, Sα]⋆ . (2.25)

and

ω =
1

4i
dxµωαβ

µ (yα ⋆ yβ − zα ⋆ zβ) , rαβ = dXω
αβ − ωαγωγ

β , (2.26)

which are related by r = 1
4i
rαβ(yα ⋆ yβ − zα ⋆ zβ) = dXω+ω ⋆ω. The deformed Lorentz generators

obey the algebra

[Mαβ ,Mγδ]⋆ = 4iǫ(β|(γMδ)|α) − δαβMγδ + δγδMαβ , (2.27)

where the induced transformations

δαβMγδ = 4iǫ(β|(γMδ)|α) − [y(α ⋆ yβ) − z(α ⋆ zβ),Mγδ]⋆ (2.28)

act on the component fields of Mγδ. The above commutation rules are an example of a more

general construction wherein a Lie algebra L acts on a space M via Lie derivatives and

T : L×M → A , T : (X, p) 7→ TX(p) , (2.29)
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is a representation of L in an associative algebra with product ⋆ obeying

[TX , TY ]⋆ = T[X,Y ] −LXTY + LY TX , (2.30)

which can be seen to obey the Jacobi identity using [LX ,LX ] = L[X,Y ] and the Leibniz’ rule

LX(TY ⋆ TZ) = (LXTY ) ⋆ TZ + TY ⋆ (LXTZ).

2.3 Original PV model and its truncations

By taking N = 4 and identifying

(k)PV = Γ , (ν)PV = −ν , (ρ)PV = Γ1 , (yα)PV = Γ1 yα , (zα)PV = Γ1 zα , (2.31)

(ψ1)PV = iΓ23 , (ψ2)PV = iΓ24 . (2.32)

we recover the original PV system, in which ψ1 is used to define the AdS3 translation operators.

By imposing the following conditions on the master fields, conditions that will be justified later

on from the existence of an action principle,

[Γ, A] = 0 , [Γ, B] = 0 , (2.33)

i.e. by taking them to be valued in the subalgebra

C+
4 =

⊕

σ=±

Πσ
Γ C4 Πσ

Γ , Πσ
Γ =

1

2
(1 + σΓ) , Γ = Γ1234 , (2.34)

of C4, we obtain the ρ -projected PV system in which the master fields (W,B)PV are ρ -independent

and (Sα)PV depend linearly on ρ. The B field consists of eight real zero-form master fields. Four

of these describe real propagating scalar fields in AdS3 . The remaining four provide topological

deformation parameters. The following truncation

(A,B) = Π+
Γ (A,B) , (2.35)

yields a model containing two real propagating scalars and two topological master fields. Trun-

cating one last time by imposing

τ(A,B) = (−A,B) , (2.36)

using the anti-automorphism defined by

τ(f ⋆ g) = (−1)deg(f)deg(g)τ(g) ⋆ τ(f) , (2.37)
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τ(zα, dzα; yα,Γi) = (−izα,−idzα; iyα, ǫ(i)Γi) , ǫ(i) = (+,+,−,−) , (2.38)

yields a model with one propagating scalar and one topological master field. This model is

identical to the original PV model based on the algebra ho+01(1, 0|4)
4. In all of the above models,

the component along Γ plays the role of a real mass parameter, denoted by ν; see Appendix A.

2.4 Associative bundle

The master fields equations define an associative algebra bundle Â over M3 [21, 22]. The fiber

algebra Â|p at a generic point p ∈ M3 is related by a similarity transformation to that at a

reference point p0 ∈ M3. To describe the latter, it is convenient to separate the variables in

Ω[0](Y2)⊗ Ω(Z2), as (2.3) reduces to separate Weyl order on Ω[0](Y2) and Ω(Z2). One can then

use the factorization formula

κ = κz ⋆ κy , κy := 2π δ2(yα) , κz := 2πδ2(zα) , (2.39)

to solve the deformed oscillator algebra at p0 formally in terms of auxiliary integrals facilitated

by analytical continuation methods in Ω(Z2) [23]. Thus,

Â|p ∼= Â|p0 = Ω(Z2)⊗A⊗ CN , A =
⊕

Σ

Aq(2)[Σ] , (2.40)

where Aq(2)[Σ] are vector spaces of symbols corresponding to a set of boundary conditions on

M3 × Z2 [24, 23]; for examples, see Section 4. Harmonic expansions, spectrum analysis and

exact solutions show that the associative bundle contains nonpolynomial sectors obtainable from

reference elements [24, 23, 17]

TΣ ∈ Aq(2)[Σ] , (2.41)

by the left and right action of the Weyl algebra Aq(2). We write

Aq(2)[Σ] = Aq(2)[TΣ;λ, ρ] , (2.42)

indicating the properties of Aq(2)[Σ] as a left (λ) and right (ρ) module of Aq(2). The associative

structure of A requires a fusion rule

Aq(2)[Σ] ⋆Aq(2)[Σ′] =
⊕

Σ′′

NΣΣ′

Σ′′

Aq(2)[Σ′′] , NΣΣ′

Σ′′

∈ {0, 1} , (2.43)

4In the notation of Prokushkin and Vasiliev, the algebra ho+01(1, 0|4) arises in Section 9 of [13] by taking n = 1,

m = 0, α = 0 and β = 1 in Eqs. (9.6)–(9.11) followed by a P+-projection (which corresponds to our Π+
Γ -projection)

and the projection using the anti-automorphism σ in Eq. (4.21).
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such that if NΣΣ′
Σ′′

= 1 then the left-hand side is to be computed using (2.3) with zα = 0

and expanded into the basis of Aq(2)[Σ′′] such that all nontrivial products are finite and the

resulting multiplication table is associative. For example, massless particles and various types

of algebraically special exact solution spaces arise within Gaussian sectors. The Weyl algebra

Aq(2) ≡ Aq(2)[1], with reference state being the identity operator, is also included (as the sector

corresponding to twistor space plane waves), typically with5 N1Σ
Σ = NΣ1

Σ = 1.

3 Covariant Hamiltonian action

In this section we begin by discussing some generalities on covariant Hamiltonian actions on

X4 × Z2. We then determine the constraints on the Hamiltonian such that it leads to a master

action in which the master field content, including the Lagrange multipliers, are extended to

consist of sum of even and odd forms of appropriate degree, and central elements. This action

yields a generalized version of the PV field equations.

3.1 Generalities

In order to formulate the theory within the AKSZ framework [26] using its adaptation to non-

commutative higher spin geometries proposed in [27], we assume a formulation of the PV system

that treats Z2 as being closed and introduce an open six-manifold M6 with boundary

∂M6 = X3 × Z2 , (3.1)

where X3 is a closed manifold containing M3 as an open submanifold. On M6, we introduce a

two-fold duality extended [28, 16, 29] 6 set of differential forms given by

A = A[1] + A[3] + A[5] , B = B[0] +B[2] +B[4] , (3.2)

T = T[4] + T[2] + T[0] , S = S[5] + S[3] + S[1] , (3.3)

5An exception is fractional spin gravity [25] whose fractional spin sector Ψ and Lorentz singlet sector U have

NΨ1
Ψ = 1 and N1U

U = NU1
U = 0.

6Starting from a universally Cartan integrable system and replacing each p-form by a sum of forms of degrees

p, p+2, . . . , p+2N , and each structure constant by a function of off-shell closed and central terms, i.e. elements

in the de Rham cohomology valued in the center of the fiber algebra, with a decomposition into degrees 0, 2, . . . ,

2N , yields a new universally Cartan integrable system, referred to as the N -fold duality extension of the original

system. More generally, one may consider on-shell duality extensions by including on-shell closed complex-valued

functionals into the extension of the structure constants [30, 29].
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valued in A⊗ C4 and where the subscript denotes the form degree. We let {JI} denote the gen-

erators of the ring of off-shell closed and central terms, i.e. elements in the de Rham cohomology

of M6 valued in the center of A⊗ C4, which hence obey

dJI = 0 ,
[
JI , f

]
⋆

= 0 , (3.4)

(off-shell) for any differential form f on M6 valued in A⊗C4. Following the approach of [16], we

consider actions of the form

SH =

∫

M6

TrA⊗C4

[
S ⋆ DB + T ⋆ F + V(S, T ;B; JI)

]
(3.5)

=

∫

M6

TrA⊗C4

[
S ⋆ dB + T ⋆ dA−H(S, T ;A,B; JI)

]
(3.6)

where TrA⊗C4 denotes a cyclic trace operation on A⊗ C4 . We assume a structure group gauged

by A and that S, T and B belong to sections, and (3.6) makes explicit the covariant Hamiltonian

form, with

H(S, T ;A,B; JI) = −S ⋆ [A,B]⋆ − T ⋆ A ⋆ A− V(S, T ;B; JI) . (3.7)

Thus, the coordinate and momentum master fields, defined by

(Xα;Pα) := (A,B;T, S) , (3.8)

lie in subspaces of A that are dually paired using TrA, which leads to distinct models depending

on whether these subspaces are isomorphic or not. In the reductions that follow, we shall consider

the first type of models, while a model with coordinates and momenta in non-isomorphic spaces

is treated in Appendix B. Moreover, for definiteness, we shall assume that

M6 = X4 ×Z2 , (3.9)

and the associative bundle Â defined in (2.40) is chosen such that

Ľ =

∮

Z2

TrA⊗C4

[
S ⋆ DB + T ⋆ F + V(S, T ;B; JI)

]
, (3.10)

is finite (and globally defined on X4). The action can then be written as

SH =

∫

X4

Ľ . (3.11)
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We shall furthermore assume that
∫

M6

TrA⊗C4df =

∮

∂M6

TrA⊗C4f , (3.12)

and ∫

M6

TrA⊗C4f ⋆ g = (−1)deg(f)deg(g)
∫

M6

TrA⊗C4g ⋆ f , (3.13)

∮

∂M6

TrA⊗C4f ⋆ g =

∮

∂M6

TrA⊗C4g ⋆ f , (3.14)

from which it follows that H is a graded cyclic ⋆-function.

3.2 Constraints on H

The Hamiltonian is constrained by gauge invariance, or equivalently, by universal on-shell Cartan

integrability7. In addition, it is constrained by the requirement that the equations of motion on

M6 reduce to a desired set of equations of motion on ∂M6 upon assuming natural boundary

conditions. To examine the above, we let

Z i ≡ (Xα;Pα) , (3.15)

and consider the total variation

δSH ≡

∫

M6

TrA⊗C4δZ
i ⋆Rj Ωij + (−)deg(Pα)

∮

∂M6

TrA⊗C4Pα ⋆ δX
α , (3.16)

where Ωij is a graded anti-symmetric constant matrix8 and the Cartan curvatures are given by

Ri := dZ i +Qi(Z) ≈ 0 , Qi := Ωij∂jH , (3.17)

where ∂i denotes the graded cyclic derivative defined by

δ

∫

M6

TrA⊗C+
4
U =

∫

M6

TrA⊗C+
4
δZ i ⋆ ∂iU , (3.18)

for any graded cyclic ⋆-function U . We find

RA = F + ∂TV , RB = DB + ∂SV , (3.19)

RS = DS + ∂BV , RT = DT − [B, S]⋆ . (3.20)

7 Covariant Hamiltonian actions are gauge invariant iff their equations of motion form universally Cartan

integrable systems.
8Adopting the conventions of [27], we take ΩikΩkj = −δij .

11



Requiring A and B to be free to fluctuate on ∂M6 , the variational principle implies

Pα|∂M6
= 0 . (3.21)

The Cartan integrability requires
−→
Q ⋆Qi ≡ 0 , (3.22)

using a notation in which ⋆-vector fields
−→
V ≡ V i

−→
∂ i act on ⋆-functions as follows:

9

−→
V ⋆ (U1 ⋆ U2) = (

−→
V ⋆ U1) ⋆ U2 + (−1)deg(

−→
V )deg(U1) U1 ⋆ (

−→
V ⋆ U2) ,

−→
V Z i = V i . (3.23)

Moreover, imposing

∂iV|Pα=0 = (0, 0;F , 0) , (3.24)

the set of boundary equations is a two-fold duality extension of the PV system, viz.

F + F(B; JI) = 0 , DB = 0 , (3.25)

where

F(B; JI) :=
∑

n>0

Fn(J
I) ⋆ B⋆n , Fn(J

I) =
∑

k>0

Fn,I1...IkJ
I1 ⋆ · · · ⋆ JIk , (3.26)

for a set of complex constants Fn,I1...Ik .

3.3 The master action

In order to obtain a model that admits consistent truncations to three-dimensional CS higher

spin gravities, we need to assume that V contains a term that is quadratic in T . The simplest

possible such action is given by

SH =

∫

M6

TrA⊗C4

[
S ⋆ DB + T ⋆

[
F + g + h ⋆ (B − 1

2
µ ⋆ T )

]
+ µ ⋆ B ⋆ S ⋆ S

]
(3.27)

where

g = g(JI) , h = h(JI) , µ = µ(JI) (3.28)

are even closed and central elements on M6 in degrees

deg(g, h, µ) = (2 mod 2, 2 mod 2, 0 mod 2) . (3.29)

9If Usymm is a totally symmetric ⋆-function, then ∂iUsymm =
−→
∂ iUsymm.
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The reality conditions are given by

(A,B;T, S; g, h, µ)† = (−A,B;−T, S;−g,−h,−µ) , (3.30)

The total variation

δSH =

∫

M6

TrA⊗C4

(
δT ⋆RA + δS ⋆RB + δA ⋆RT + δB ⋆RS

)

+

∮

∂M6

TrA⊗C4(T ⋆ δA− S ⋆ δB) , (3.31)

where the Cartan curvatures read

RA = F + g + h ⋆ (B − µ ⋆ T ) ≈ 0

RB = DB + µ ⋆ [S,B]⋆ ≈ 0

RT = DT + [S,B]⋆ ≈ 0

RS = DS + h ⋆ T + µ ⋆ S ⋆ S ≈ 0

(3.32)

The generalized Bianchi identities are

DRA ≡ h ⋆ (RB − µ ⋆RT ) , (3.33)

DRB ≡ [(RA + µ ⋆RS), B]⋆ − µ ⋆ {RB, S}⋆ , (3.34)

DRT ≡ [RA, T ]⋆ + [RS, B]⋆ − {RB, S}⋆ , (3.35)

DRS ≡ [RA, S]⋆ + µ ⋆ [RS, S]⋆ + h ⋆RT . (3.36)

The gauge transformations

δǫ,ηA = DǫA − h ⋆ (ǫB − µ ⋆ ηT ) , (3.37)

δǫ,ηB = DǫB − [ǫA, B]⋆ − µ ⋆ [ηS, B]⋆ + µ ⋆ {S, ǫB}⋆ , (3.38)

δǫ,ηT = DηT − [ǫA, T ]⋆ − [ηS, B]⋆ + {S, ǫB}⋆ , (3.39)

δǫ,ηS = DηS − [ǫA, S]⋆ − µ ⋆ [ηS, S]⋆ − h ⋆ ηT , (3.40)

which transform the Cartan curvatures into each other, induce

δǫ,ηSH =

∫

M6

TrA⊗C4

(
ηT ⋆ [F + g + h ⋆ B] + ηS ⋆ DB

)
. (3.41)

13



We take (ǫB; ηT , ηS) to belong to sections of the structure group and impose10

(ηT , ηS)|∂M6
= 0 . (3.42)

We have also assumed that (A,B) fluctuate on ∂M6, which implies11

T |∂M6
≈ 0 ≈ S|∂M6

. (3.43)

The resulting boundary equations of motion

F + g + h ⋆ B ≈ 0 , DB ≈ 0 (3.44)

thus provide a duality extended version of the Prokushkin–Vasiliev equations, that is free from

any interaction ambiguity, following a variational principle.

In the action (3.27), the relative coefficient of the BSS and TT terms is fixed uniquely by

Cartan integrability. The action is invariant under (B, S;µ, h) → (λ ⋆ B, λ−1 ⋆ S;λ ⋆ µ, λ−1 ⋆ h)

for closed and central elements λ = λ(J i) of degree 0 mod 2 that are real and invertible.

The canonical transformation (A,B) → (A − 1
2
µ ⋆ S,B + 1

2
µ ⋆ T ) leads to replacement of

∫
M6

TrA⊗C4

[
−1

2
µ ⋆ T ⋆ T + µ ⋆ B ⋆ S ⋆ S

]
in (3.27) by 1

4

∫
M6

TrA⊗C4µ⋆T ⋆S⋆S−
1
2

∮
∂M6

TrA⊗C4µ⋆

T ⋆S. However, as we shall see, the form of the Hamiltonian action for the PV system that lends

itself most straightforwardly to consistent truncations of the B field is given by (3.27).

4 Consistent truncations

In this section we perform consistent truncations of the covariant Hamiltonian master action in

six dimensions down to various models on X4 and Z2. The truncations consist of integrating out

the fluctuations in B around its vacuum expectation value νΓ followed by reductions on Z2 and

X4. On X4, we reach BF -like models with Lagrangian forms containing Blencowe’s action for

ν = 0 and a ν-deformed version thereof that we present in Appendix B. For ν = 0, the reduction

to Z2 yields the Prokushkin–Segal–Vasiliev (PSV) action.

A consistent truncation a system with action S[ϕ] and equations of motion E(ϕ) = 0 amounts

to an Ansatz ϕ = ϕ(ϕ′) off-shell such that E(ϕ(ϕ′)) = 0 are equivalent to a set of equations

10 Following the AKSZ approach, the Batalin–Vilkovisky classical master equation requires that the ghosts

corresponding to (ηT , ηS) vanish at ∂M6 off-shell.
11 Following the AKSZ approach, the Batalin–Vilkovisky classical master equation requires that (3.43) holds

off-shell.
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E ′(ϕ′) = 0 that i) are integrable without any algebraic constraints on ϕ′; and ii) follow by

applying the variational principle to the reduced action Sred[ϕ
′] := S[ϕ(ϕ′)].

4.1 Reduction to BF-like extension of Blencowe’s action

Starting from the equations of motion (3.32) and setting B = 0 yields

F + g − h ⋆ µ ⋆ T = 0 , DT = 0 , (4.1)

and

DS + h ⋆ T + µ ⋆ S ⋆ S = 0 , (4.2)

which together form a Cartan integrable system containing (4.1) as a subsystem, i.e. the free

differential algebra generated by (A, T, S) contains a subalgebra generated by (A, T ). Assuming

∂M6 to consist of a single component, it follows from S|∂M6
= 0 that S can be reconstructed

from (A, T ) on-shell 12 from (4.2). Therefore, the system (4.1) is a consistent truncation of the

original system (3.32) on-shell.

Rewriting the full action (3.27) by integrating by parts in its SDB-term yields

SH =

∫

M6

TrA⊗C4

[
T ⋆ (F + g − 1

2
h ⋆ µ ⋆ T ) +B ⋆ (DS + h ⋆ T + µ ⋆ S ⋆ S)

]
. (4.3)

It follows that B = 0 is a saddle point of the path integral at which B and S can be integrated

out in a perturbative expansion. Schematically, modulo gauge fixing, one has
∫

〈B〉=0

[DB][DS]e
i
~
SH ∼ e

i
~
Seff [A,T ] , (4.4)

where the effective action

Seff [A, T ] = Sred[A, T ] +O(~) , (4.5)

consists of loop corrections (comprising attendant functional determinants on noncommutative

manifolds) and

Sred =

∫

M6

TrA⊗C4T ⋆ (F + g − 1
2
h ⋆ µ ⋆ T ) . (4.6)

The latter is a consistently reduced classical action in the sense that it reproduces the subsystem

(4.1). The reduced system, which thus consists if the gauge sector of the original system, is a

topological theory with local symmetries

δA = Dǫ+ µ ⋆ h ⋆ η , δT = Dη − [ǫ, T ]⋆ , (4.7)

12 Since T |∂M6
= 0 on-shell as well it follows that both S and T can be taken to vanish on M6 on-shell.
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and equations of motion and boundary conditions given by

F + g − µ ⋆ h ⋆ T = 0 , DT = 0 , (4.8)

T |∂M6
= 0 . (4.9)

The boundary equations are thus given by

(F + g)|∂M6
= 0 . (4.10)

To address Blencowe’s theory, we truncate once more by reducing (4.1) under the assumptions

that

g = ǧ[2] − µ0J ⋆ ǧ
′
[2] , µ = µ[0] ≡ µ0 , h = J , (4.11)

where µ0 is an imaginary constant, and that

A = W̌[1] − Ǩ[1] − µ0J ⋆ Ǩ[1] , (4.12)

T = Ť[2] + Ǩ[1] ⋆ Ǩ[1] − µ0J ⋆ Ť[2] , (4.13)

where by definition

f̌ ∈ Ω(X4)⊗ 1Ω(Z2) ⊗ Ǎ ⊗ Č4 , (4.14)

in terms of an associative algebra Ǎ of π-projected symbols of yα (to be specified below). Thus

df̌ = dX f̌ , π(f̌) = f̌ , (4.15)

as required for π(A, T ) = (A, T ). Defining

F̌ = dXW̌ + W̌ ⋆ W̌ , ĎǨ = dXǨ + [W̌ , Ǩ]⋆ , ĎŤ = dX Ť + [W̌ , Ť ]⋆ , (4.16)

suppressing the subscripts indicating form degrees, the reduction of (4.1) yields

F̌ + Ť + ǧ + ǧ′ = 0 , ĎŤ = 0 , (4.17)

DǨ − Ǩ ⋆ Ǩ + Ť + ǧ′ = 0 , (4.18)

which is a Cartan integrable system containing (4.17) as a subsystem. From (4.9) and (4.13), we

deduce the boundary conditions

Ť |∂X4
= 0 = (Ǩ ⋆ Ǩ)|∂X4

, (4.19)
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which are compatible with (4.18) since [ǧ′, Ǩ]⋆ = 0. Substituting (4.12) and (4.13) into (4.6) and

using (4.19) we obtain

Šred[W̌ , Ť ] = −µ0

∫

X4

∫

Z2

TrA⊗C4J ⋆ Ť
(
F̌ + ǧ + ǧ′ + 1

2
Ť
)
, (4.20)

which reproduces (4.17) on-shell, implying that truncation (4.12)–(4.14) is indeed consistent.

There are two independent embeddings of Blencowe’s model into the above master action.

They can be obtained by choosing the fiber algebras

m = 0 : Ǎ ⊗ Č4 =
(
Aq+(2)⊕ (Aq+(2) ⋆ κy)

)
⊗ C4 , (4.21)

m = 1 : Ǎ ⊗ Č4 =
(
Aq+(2)⊕ (Aq+(2) ⋆ κy)

)
⊗ C+

4 , (4.22)

and equipping A⊗ C4 with trace operations as follows13:

TrmA⊗C4(f0 + f1 ⋆ κy) :=

∫

Y2

d2y

2π
TrC4(Γ)

mκy ⋆ fm ≡ STrAq(2)TrC4(Γ)
mfm , m = 0, 1 , (4.23)

where fm ∈ Aq+(2)⊗ C4 and

∫

Y2

d2y

2π
=

∫

R2

d2y

2π
, TrC4

4∑

k=0

fi1..ik Γ
[i1..Γik] := f0 . (4.24)

The factorization formula (2.39) then yields14

∫

Z2

TrmA⊗C4
J ⋆ (f̌0 + f̌1 ⋆ κy) = iπ STrAq(2)TrC4(Γ)

mf̌1−m . (4.25)

We truncate the models further as follows:

m = 0 : W̌ = Π+
κy
⋆ W+ +Π−

κy
⋆ W− , Ť = Π+

κy
⋆ T+ +Π−

κy
⋆ T− , (4.26)

m = 1 : W̌ = Π+
ΓW+ +Π−

ΓW− , Ť = Π+
ΓT+ +Π−

ΓT− , (4.27)

where W± and T± are independent of Γi and κy, and

Π±
κy

=
1± κy

2
. (4.28)

Inserting (4.26) and (4.27) into (4.20) and using

m = 0 :

∫

Z2

Tr0A⊗C4
J ⋆ Π±

κy
f = ± iπ

2
STrAq(2)f , (4.29)

13The (graded cyclic) supertrace obeys STrAq(2)f ⋆ g = STrAq(2)g ⋆ π(f) and STrAq(2)f = f(0) provided that

f(y) is the symbol of f defined in Weyl order.
14We use the normalizations dzαdzα = −2dz1dz2 = −2d2z and

∫
d2yd2zκ ⋆ f(y) = 4π2f(0) .
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m = 1 :

∫

Z2

Tr1A⊗C4J ⋆Π
±
Γ f = ± iπ

2
STrAq(2) f , (4.30)

for f independent of Γi and κy, yields the following four-dimensional Hamiltonian extension of

Blencowe’s action:

SBl = − iπ
2
µ0

∫

X4

STrAq(2)

[
T+(F+ + ǧ + ǧ′ + 1

2
T+)− T−(F− + ǧ + ǧ′ + 1

2
T−)

]
, (4.31)

which is thus reached for both m = 0 and m = 1.

Assuming that X4 = X3×[0,∞[ and that all fields fall off at X3×∞, and assuming furthermore

that X3 has a simple topology such that

ǧ + ǧ′ = 0 , (4.32)

the elimination of the Lagrange multipliers yields

SBl =
iπ
2
µ0 (SCS[W+]− SCS[W−]) , (4.33)

with

SCS[W ] =

∮

X3

STrAq(2)

[
1
2
W ⋆ dW + 1

3
W ⋆W ⋆W

]
, (4.34)

where now d denotes the exterior derivative on X3. Equivalently,

SBl = iµ0π

∮

X3

STrAq(2)

[
E ⋆ (dΩ + Ω ⋆ Ω) + 1

3
E ⋆ E ⋆ E

]
, W± = Ω± E , (4.35)

from which we identify

µ0 = −
4i

π2

ℓAdS

GN
(4.36)

using the conventions of [31]. Relaxing the assumption on ǧ + ǧ′ by taking it to be a nontrivial

element in the de Rham cohomology of X3, Blencowe’s action is accompanied by the extra term

Sg = 2iπµ0

∫

X4

STrAq(2)(ǧ + ǧ′) ⋆ F̌ = 2iπµ0

∮

X3

STrAq(2)(ǧ + ǧ′) ⋆ W̌

= iπµ0

∮

X3

STrAq(2)(ǧ + ǧ′) ⋆ E , (4.37)

which is the flux of the central gauge fields in W̌ through the two-cycle dual to ǧ+ ǧ′. Thus, the

modified Blencowe equations of motion take the form

dΩ+ Ω ⋆ Ω + E ⋆ E = −(ǧ + ǧ′) , dE + Ω ⋆ E + E ⋆ Ω = 0 . (4.38)
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4.2 Reduction to PSV action

Instead of reducing (3.27) on Z2 one may consider a reduction on X4 under the assumption that

∂X4 = ∅ , (4.39)

as well as ∂Z2 = ∅ . The absence of any boundary condition on T implies that its integration

constant in form degree zero contains local degrees of freedom. To exhibit the model on Z2, we

first perform a consistent truncation by setting

B = νΓ , (4.40)

leading to the reduced action

Sred[A, T ] =

∫

M6

TrA⊗C4

[
T ⋆ (F + g + νΓh− 1

2
h ⋆ µ ⋆ T )

]
. (4.41)

We then proceed by introducing a volume form J̌[4] on X4 and background potentials W̌
(0)
[3] and

V
(0)
[1] on X4 and Z2, respectively, defined by

dXW̌
(0)
[3] = J̌[4] , F

(0)
[2] + νΓJ = 0 , F

(0)
[2] := dZV

(0)
[1] + V

(0)
[1] ⋆ V

(0)
[1] . (4.42)

In particular, we take W̌
(0)
[3] to be independent of the internal coordinates yα . We next perform a

further truncation by taking

h = J + iJ̌[4] , µ = µ0 , g = g′[2] , (4.43)

and considering the Ansatz

A = V
(0)
[1] + V ′

[1] − µ0 W̌
(0)
[3] ⋆ (1 + i[α − β]J) ⋆ C ′ − iνΓ W̌

(0)
[3] , (4.44)

T = i (1 + iαJ + βJ̌[4]) ⋆ C
′ , (4.45)

with α, β ∈ R and fluctuating fields

f ′ ∈ 1|X4
⊗ Ω(Z2)⊗A′ ⊗ C+

4 , π(f ′) = f ′ , df ′ = dZf
′ , (4.46)

where Ω(Z2)⊗A′ consists of an algebra of π-invariant master fields. Defining

F ′ = dZV
′ + {V (0), V ′}⋆ + V ′ ⋆ V ′ , D′C ′ = dZC

′ + [V (0) + V ′, C ′]⋆ (4.47)
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and suppressing the subscripts denoting form degrees, one has

F = F (0) + F ′ − iνΓ J̌ − µ0 J̌ ⋆ [1 + i(α− β)J ] ⋆ C ′ + µ0W̌
(0) ⋆ D′C ′ . (4.48)

where we used that J ⋆ D′C ′ ≡ 0 being a 3-form on Z2 and {V (0) + V ′, W̌ (0)}⋆ ≡ 0 since W̌ (0) is

independent of yα .

The equations of motion of (4.41) on the above Ansatz read

F ′ + g′ − iµ0J ⋆ C
′ = 0 , D′C ′ = 0 , µ0 (β − 2α) J ⋆ J̌[4] ⋆ C

′ = 0 , (4.49)

while plugging the Ansatz back into the action (4.41) yields

S ′
red = i

∫

X4

J̌[4]

∫

Z2

TrA⊗C4

(
C ′ ⋆

[
β(F ′

[2] + g′[2])− i µ0 α J ⋆ C
′
] )

, (4.50)

from which it follows that the Ansatz leads to a nontrivial and consistent truncation provided

β = 2α . (4.51)

In order to define the combined integration over Z2 and trace operation A, we may take

ν = 0 , g′ = 0 . (4.52)

The background connection V (0) thereby is flat. The simplest choice amounts to take V (0) = 0 .

We then choose

TrA⊗C4 =

∫

Y2

d2y

2π
TrC4 (4.53)

and make the redefinition15

C ′ = κ ⋆ b′ , s′α = zα − 2i V ′
α , (4.54)

so that

F ′ = −1
4
dzα ∧ dzβ

(
s′α ⋆ s

′
β + iǫαβ

)
, (4.55)

and the reduced action now reads

S ′
red =

α

2
Vol(X4)

∫

Z2

d2z TrA⊗C4 κ ⋆ (is
′α ⋆ s′α ⋆ b

′ + 2b′ + iµ0 b
′ ⋆ b′) , (4.56)

where Vol(X4) =
∫
X4
J̌[4] . The above action is identified with the original action given in [14]

upon taking µ0 = −i and Vol(X4) =
2
α
.

15One could as well take the flat connection V (0) = −izα dzα together with s′α = −zα − 2iV ′
α .
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5 Conclusions

We have presented an action principle for the bosonic sector of Prokushkin and Vasiliev’s three-

dimensional matter coupled higher spin gravity. By integrating out the matter fields, in a fashion

that amounts to a consistent truncation in the classical limit, followed by consistent dimensional

reductions, we have found that the action contains various higher spin CS models as well as the

action [14] of Prokushkin, Segal and Vasiliev on twistor space.

The construction rests on three ingredients: i) Cartan and Vasiliev’s unfolded formulation of

classical field theory in terms of vanishing curvatures whereby the local degrees of freedom arise

via the Weyl zero-form (as captured by harmonic expansions taking place in associative bundles

independently of the dimension of the base manifold); ii) the usage of noncommutative twistor

spaces for describing massless Weyl zero-forms in constantly curved backgrounds; and iii) the

AKSZ formulation of quantum field theories based on covariant Hamiltonian actions on open

bulk manifolds (whose boundaries contain the classical Cartan integrable systems).

When applied to massless degrees of freedom in three dimensions with spin greater than

one, the above approach naturally leads to actions in six dimensions containing two-dimensional

noncommutative twistor spaces. Their reductions on twistor space yields BF-like actions on four-

manifolds, given by spacetimes times the extra auxiliary AKSZ radius, in their turn containing

the standard symplectic structures of the three-dimensional massless gauge fields of spin greater

than one (which are CS theories). Thus, modulo technicalities having to do with consistency

of the reduction schemes and the structure of the modules making up the associative bundles

underlying higher spin gravities, there is a clear overlap in four dimensions between the stan-

dard CS formulation of three-dimensional higher spin gauge fields and the covariant Hamiltonian

formulation in six dimensions.

Turning to applications, it would be interesting to see to what extent the action, possibly

supplemented by boundary terms, can be used to compute the free energy and entropy of exact

solutions of the PV system, such as the recent nontrivial examples found in [32]; for related pro-

posals for on-shell actions, see [12] and [33]. The action could also have a bearing on the one-loop

corrections from matter fields to the higher spin CS gauge sector. The above implementations

may be useful in solidifying the Gaberdiel–Gopakumar (GG) conjecture [9]. In particular, radia-

tive corrections may be of importance in matching symmetry algebras [34] beyond the realm of

CS actions; for reviews of the CS approximation, see [35], and for existing works beyond the CS
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approximation, see [36, 37, 18].

As for alternatives to the PV system, an interesting action for matter coupled higher spin

gravity has been presented in [12]. Its four-dimensional covariant Hamiltonian reformulation is

given by the BF-like action

S =

∫

X4

STr
(
T ⋆ (F +B ⋆ B̃ + 1

2
T )− T̃ ⋆ (F̃ + B̃ ⋆ B) + S̃ ⋆ DB + S ⋆ D̃B̃

)
, (5.1)

where (A, Ã, B, B̃;T, T̃ , S̃, S) are forms of degrees (1, 1, 0, 2; 2, 2, 3, 1) valued in Aq+(2) ∼= hs(1
2
)

and

F = dA+ A ⋆ A , DB = dB + A ⋆ B − B ⋆ Ã , (5.2)

F̃ = dÃ+ Ã ⋆ Ã , D̃B̃ = dB̃ + Ã ⋆ B̃ − B̃ ⋆ A . (5.3)

The action, with its dynamical two-form B̃, cannot be obtained from the six-dimensional master

action (3.27), as there is an obstruction due to the presence of the central term h. Instead, it is

natural to seek a connection between (5.1) and the PV system via a six-dimensional model on

X4 × Z2 built along the same lines as the nine-dimensional Frobenius–Chern–Simons model in

[17]. The construction of such a model will be presented elsewhere.

Comparing higher spin gravities in three and four dimensions, the latter admit covariant

Hamiltonian actions in nine dimensions [16, 17], though it remains unclear whether they contain

the standard symplectic structure for Fronsdal fields [38] 16. Essentially, this is due to the presence

of extra auxiliary fields in the unfolded description of Fronsdal fields on-shell, whose inclusion

into a strictly four-dimensional off-shell formulation remains problematic. However, the on-shell

actions receive contributions as well from boundary terms [21, 27] given by topological invariants

that reduce on-shell to higher spin invariants [21]. These invariance, which are inserted on the

eight-dimensional boundaries, are given by integrals over closed p-cycles in spacetime of on-shell

(de Rham) closed p-forms in their turn given by integrals over twistor space of constructs built

from spacetime curvatures. In terms of these observables, spacetime emerges in limits where

physical states labelled by spacetime points become separated from each other [39]; see also the

Conclusions of [23]. In particular, for p = 0, the resulting zero-form charges [40] of the (minimal

bosonic) Type A and Type B models [41, 20] were shown in [42, 43] to provide free theory

16 A related issue is whether four-dimensional higher spin gravity contains boundary states arising in its gauge

sector, corresponding to an enhancement of the rigid higher spin symmetry algebra to the algebra of conformal

higher spin currents.
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correlation functions at the leading classical order, in accordance with the proposal made in

[44, 45, 46, 47]. For boundary conditions corresponding to free fields, this proposal requires that

correlation functions with separated points do not receive any radiative corrections, in agreement

with the covariant Hamiltonian approach [16]17; for a similar usage of zero-form charges in 3D,

see [12].

To conclude, we view higher spin gravity as a useful laboratory for exploring the treatment

of quantum field theory with local degrees of freedom by combining the AKSZ approach [26] to

topological field theories on manifolds with boundaries and Cartan and Vasiliev’s formulation of

nonlinear partial differential equations as free differential algebras with infinite zero-form towers.

To question its universality, it would be desirable to treat models in which nontrivial radiative

corrections arise in an as simple context as possible. To this end, three-dimensional models might

prove to be fruitful and we hope that our action will be helpful in this endeavour.
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A Massive vacuum of PV system

In this Appendix, we rewrite the massive vacuum of the PV system [13] using the Clifford algebra

variables. The vacuum solution reads

B(0) = ν Γ , A(0) =W (0) + V (0) , ν ∈ R , Γ = Γ† ∈ C+
4 , (A.1)

obeying

dXW
(0) +W (0) ⋆ W (0) = 0 , dXS

(0)
α + [W (0), S(0)

α ]⋆ = 0 , (A.2)

[Γ,W (0)] = 0 , [Γ, S(0)
α ]⋆ = 0 , [S(0)

α , S
(0)
β ]⋆ = −2i ǫαβ

(
1− ν Γκ

)
, (A.3)

where S
(0)
α = zα − 2iV

(0)
α . The constraints along M3 can be solved using a gauge function that

commutes to Γ, viz.

W (0) = L−1 ⋆ dL , S(0)
α = L−1 ⋆ z̃α ⋆ L , [Γ, L]⋆ = 0 , (A.4)

where z̃α obeys

dX z̃α = 0 , [Γ, z̃α]⋆ = 0 [z̃α, z̃β]⋆ = −2i ǫαβ
(
1− ν Γκ

)
. (A.5)

The integrability on Z2 implies the existence of a double ỹα obeying

[ỹα, z̃β ]⋆ = 0 , {Γ, ỹα} = 0 , ỹα|ν=0 = Ayα , {A,Γ} = 0 , (A.6)

for some matrix A ∈ C4 . Thus one can take

L = L(ỹα,Γij) , S(0)
α = z̃α . (A.7)

Remarkably, as found in [13], the solution obeys

[ỹα, ỹβ]⋆ = 2iǫαβ
(
1− ν Γ

)
. (A.8)

At the level of the complexified algebra, a solution is given by

z̃Cα = X zα + Y σα , ỹCα = Ayα +B τα , (A.9)

where X , Y , A and B are built out of gamma matrices Γi and the building blocks

σα := ν

∫ 1

0

dt t eityz(yα + zα) , τα := ν

∫ 1

0

dt (t− 1) eityz(yα + zα) , (A.10)
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with yz := yαzα, obey

[z[α, σβ]]⋆ = −iν ǫαβ κ , [σα, σβ]⋆ = 0 , {σα, τβ}⋆ = 0 ,

[zα, τβ]⋆ = {σα, yβ}⋆ , {y[α, τβ]}⋆ = iν ǫαβ , [τα, τβ ]⋆ = 0 .
(A.11)

For the above Ansatz, Eqs. (A.5), (A.6) and (A.8), respectively, are equivalent to

X2 = 1 , XY = Y X = −Γ , [Γ, X ] = 0 = [Γ, Y ] , (A.12)

[A,X ] = {A, Y } = [B,X ] = {B, Y } = 0 , {Γ, X} = 0 = {Γ, Y } , (A.13)

A2 = 1 , AB = −BA = −Γ . (A.14)

A solution for z̃α that commutes to C+
4 is obtained by taking [13]18

Γ = Γ1234 , X = 1 , Y = −Γ , A = Γ1 , B = −Γ234 = −Γ1Γ , (A.15)

where Γi1..ik := Γ[i1..Γik ], and the relation between the PV generators and ours is given in (2.31),

which yields

z̃α = zα − ν(yα + zα)

∫ 1

0

dt t eit yz Γ , ỹα = Γ1

[
yα − ν(yα + zα)

∫ 1

0

dt (t− 1) eit yz Γ
]
, (A.16)

This solution, however, does not satisfy the required reality conditions, i.e. ((ỹCα)
†, (z̃Cα )

†) form a

set of deformed oscillators that is linearly independent from (ỹCα , z̃
C
α) This is remedied by a highly

nontrivial modification found in [13] given by

z̃symα = zα +
ν

8

∫ 1

−1

ds(1− s)
[
e

i
2
(s+1)yz(yα + zα) ⋆ Φ(

1
2
, 2;−Γκ ln|s|−ν)

+ e
i
2
(s+1)yz(yα − zα) ⋆ Φ(

1
2
, 2; Γκ ln|s|−ν)

]
⋆ κΓ

ỹsymα = Γ1

[
yα + Γ

ν

8

∫ 1

−1

ds(1− s) e
i
2
(s+1)yz

(
(yα + zα) Φ(

1
2
, 2;−Γ ln|s|−ν)

− (yα − zα) Φ(
1
2
, 2; Γ ln|s|−ν)

)]
,

(A.17)

where Φ(a, b; z) is the confluent hypergeometric function.

18 Using the gauge function, the first order fluctuation B(1) can be written as B(1) = L−1 ⋆ B′(1) ⋆ L where

dXB′(1) = 0 and [z̃α, B′(1)]⋆ = 0. Thus, if z̃α commutes to C+
4 then B′(1) = B′(1)(ỹα,Γij). Otherwise, as

z̃α = zα − 2iV
′(0)
α where V ′(0) = L ⋆ (dZ + V (0)) ⋆ L−1, one may equivalently solve dZB

′(1) + [V ′(0), B′(1)]⋆ = 0

iteratively using a homotopy contractor in Z2-space.
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B BF-like formulation of modified Blencowe action

In this Appendix, modulo a technical assumption on a normalization coefficient (given in Eq.

(B.22)), we present a consistent truncation of the master action (3.27) for nontrivial vacuum

expectation value of B leading to a model on X4 in which the gauge fields and the Lagrange

multipliers belong non-isomorphic dual spaces.

To this end, we observe that the equations of motion (3.32) admit a consistent truncation

given by

B = νΓ ∈ R , (B.1)

as can be seen from the fact that the resulting field equations,

F + νΓh + g − h ⋆ µ ⋆ T = 0 , DT = 0 , DS + h ⋆ T + µ ⋆ S ⋆ S = 0 , (B.2)

form a Cartan integrable system. Inserting (B.1) into the master action (3.27), the resulting

consistently truncated action is given by

Sred[A;T ] =

∫

M6

TrA⊗C4T ⋆ (F + νΓh+ g − 1
2
h ⋆ µ ⋆ T ) . (B.3)

Its gauge symmetries take the form

δA = Dǫ+ µ ⋆ h ⋆ η , δT = Dη − [ǫ, T ]⋆ , (B.4)

and the equations of motion and boundary conditions are given by

F + νΓh+ g − µ ⋆ h ⋆ T = 0 , DT = 0 , T |∂M6
= 0 . (B.5)

To reach a Blencowe type action, we assume Eq. (4.11) and make the reduction

A = V
(0)
[1] + W̃[1] − K̃[1] − µ0J ⋆ K̃[1] , (B.6)

T = T̃[2] + K̃[1] ⋆ K̃[1] − µ0J ⋆ T̃[2] , (B.7)

where the subscripts indicating the form degree will be suppressed henceforth, and V (0) is a

twistor space background connection obeying

dV (0) + V (0) ⋆ V + νΓJ = 0 , V (0)|ν=0 = 0 , (B.8)

and the reduced fields

f̃ ∈ Ω(X4)⊗ Ã ⊗ C̃4 , (B.9)
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where Ã is an associative algebra generated by the deformed oscillator ỹα obeying

dỹα + [V (0), ỹα]⋆ = 0 , [ỹα, ỹβ]⋆ = 2iǫαβ(1− νΓ) , ỹα|ν=0 = Γ1yα ; (B.10)

see the Appendix A for further details. Thus,

π(f̃) = f̃ , df̃ + [V (0), f̃ ]⋆ = dX f̃ , (B.11)

and the reduced equations of motion and boundary conditions are given by the counterparts of

Eqs. (4.17)–(4.19) with all quantities now valued in (B.9), which form a Cartan integrable system.

The consistently reduced action reads

S̃red[W̃ , T̃ ] = −µ0

∫

X4

∫

Z2

TrA⊗C4J ⋆ T̃
(
F̃ + ǧ + ǧ′ + 1

2
T̃
)
. (B.12)

To obtain the alternative model, we make the choice

TrA⊗C4 =

∫

Y2

d2y

2π
TrC4Γ , (B.13)

corresponding to m = 1 in Section 4.1. We also take

W̃ ∈ Ω[1](X4)⊗Aq+(2; ν)⊗ C+
4 , (B.14)

T̃ ∈ Ω[2](X4)⊗ ρ(End+(Fσ
ν ))⊗ C+

4 , (B.15)

where Fσ
ν is the Fock representation space of Aq(2; ν) with ground state having eigenvalue σ of

the Klein operator −Γ, and

ρ : End(Fσ
ν ) → Aq(2; ν) (B.16)

is a monomorphism given by the deformed oscillator realization of End(Fσ
ν ). The space End

+(Fσ
ν )

consists of the endomorphisms that commute to Γ. Its oscillator realization

ρ(End+(Fσ
ν )) =

⊕

σ′=±

Aqσ
′

(2; ν) ⋆ P σ
ν ⋆ Aq

σ′

(2; ν) , (B.17)

where

Aqσ(2; ν) =
⊕

σ′=±

Πσ′

Γ ⋆ Aq(2; ν) ⋆ Πσσ′

Γ , (B.18)

and

P σ
ν =

2

1 + νσ
Π−σ

Γ ⋆
[
1F1(

3
2
; 3+νσ

2
;−2w)

]W
, (B.19)
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where

w = {a+, a−}⋆ , a± = u±αy
α , u−αu+α = i

2
, (B.20)

is the symbol of the oscillator realization of the ground state projector in End(Fσ
ν ) given in Weyl

order; for details, see [25, 31]. The reduced action reads

ŠIIν = −µ0

∫

X4

∫

Z2×Y2

d2y

2π
TrC4ΓJ ⋆ T̃ ⋆ (F̃ + g + g′ + 1

2
T̃ ) , (B.21)

where T̃ ⋆ (F̃ + g + g′) and T̃ ⋆ T̃ lie in ρ(End+(Fν)). The Lagrangian is finite provided that

N σ
ν =

∫

Z2×Y2

d2y

2π
TrC4ΓJ ⋆ P

σ
ν , (B.22)

is finite. If so, the dual pairing displayed in (B.14) and (B.15) is non-degenerate, and the equations

of motion and boundary conditions read

F̃ + g + g′ + T̃ ≈ 0 , D̃T̃ ≈ 0 , T̃ |∂X4
= 0 , (B.23)

where the first equation is valued in Aq+(2; ν) and the second equation in ρ(End+(Fν)). Elimi-

nating Ť via the first equation (by inverting the monomorphism), yields

ŠIIν ≈
1

2
µ0

∫

X4

∫

Z2×Y2

d2y

2π
TrC4ΓJ ⋆ (F̃ + g + g′) ⋆ (F̃ + g + g′) , (B.24)

which is formally divergent for gauge fields given by finite polynomials, unless

F̃ + g + g′ ≈ 0 . (B.25)

It is possible to construct a deformation of Blencowe’s action by making use of Vasilievs

(graded cyclic) supertrace operation STrν on the Weyl algebra Aq(2; ν) of the deformed oscillator

algebra (B.10) [15], which is uniquely characterized by STrν1 = 1 and STrνΓ = ν (and hence

differs from the trace operation proposed above). Using this operation, it straightforward to

deform Blencowe’s action in X3 and uplift it to BF-type model in X4 with action

ŠIν = −µ0

∫

X4

STrν TrC+
4
Γ T̃ ⋆ (F̃ + g + g′ + 1

2
T̃ ) , (B.26)

where T̃ and W̃ are valued in Aq+(2; ν)⊗ C+
4 .

Whether there exists a modification of (B.13) that yields the STrν operation starting from the

master action in six dimensions, possibly by using the trace operation (4.23) for m = 0, remains

to be seen19.
19 The operation

∫
Y2

TrC4
is formally graded cyclic on Aq(2; ν), but since it sends 1 and Γ to 1 and 0, respectively,

it cannot be proportional to STrν and hence it must be ill-defined.
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Thus, provided that N σ
ν is finite, we have found a covariant Hamiltonian action in which the

gauge fields and the Lagrange multipliers belong non-isomorphic dual spaces that is an alternative

to ν-deformed Blencowe’s action. Whether this action admits a coupling to matter is unknown,

while the action presented above appears to be amenable to such couplings on M.

References

[1] A. Achucarro and P. Townsend, “A Chern-Simons Action for Three-Dimensional anti-De

Sitter Supergravity Theories,” Phys.Lett. B180 (1986) 89.

[2] E. Witten, “(2+1)-Dimensional Gravity as an Exactly Soluble System,”

Nucl.Phys. B311 (1988) 46.

[3] M. Banados, C. Teitelboim, and J. Zanelli, “The Black hole in three-dimensional

space-time,” Phys. Rev. Lett. 69 (1992) 1849–1851, arXiv:hep-th/9204099 [hep-th].

[4] J. D. Brown and M. Henneaux, “Central Charges in the Canonical Realization of

Asymptotic Symmetries: An Example from Three-Dimensional Gravity,”

Commun. Math. Phys. 104 (1986) 207–226.

[5] A. Strominger, “Black hole entropy from near horizon microstates,” JHEP 02 (1998) 009,

arXiv:hep-th/9712251 [hep-th].

[6] S. Carlip, “Conformal field theory, (2+1)-dimensional gravity, and the BTZ black hole,”

Class. Quant. Grav. 22 (2005) R85–R124, arXiv:gr-qc/0503022 [gr-qc].

[7] M. Henneaux and S.-J. Rey, “Nonlinear Winfinity as Asymptotic Symmetry of

Three-Dimensional Higher Spin Anti-de Sitter Gravity,” JHEP 1012 (2010) 007,

arXiv:1008.4579 [hep-th].

[8] A. Campoleoni, S. Fredenhagen, S. Pfenninger, and S. Theisen, “Asymptotic symmetries of

three-dimensional gravity coupled to higher-spin fields,” JHEP 1011 (2010) 007,

arXiv:1008.4744 [hep-th].

[9] M. R. Gaberdiel and R. Gopakumar, “An AdS3 Dual for Minimal Model CFTs,”

Phys.Rev. D83 (2011) 066007, arXiv:1011.2986 [hep-th].

29

http://dx.doi.org/10.1016/0370-2693(86)90140-1
http://dx.doi.org/10.1016/0550-3213(88)90143-5
http://dx.doi.org/10.1103/PhysRevLett.69.1849
http://arxiv.org/abs/hep-th/9204099
http://dx.doi.org/10.1007/BF01211590
http://dx.doi.org/10.1088/1126-6708/1998/02/009
http://arxiv.org/abs/hep-th/9712251
http://dx.doi.org/10.1088/0264-9381/22/12/R01
http://arxiv.org/abs/gr-qc/0503022
http://dx.doi.org/10.1007/JHEP12(2010)007
http://arxiv.org/abs/1008.4579
http://dx.doi.org/10.1007/JHEP11(2010)007
http://arxiv.org/abs/1008.4744
http://dx.doi.org/10.1103/PhysRevD.83.066007
http://arxiv.org/abs/1011.2986


[10] M. P. Blencowe, “A Consistent Interacting Massless Higher Spin Field Theory in D =

(2+1),” Class. Quant. Grav. 6 (1989) 443.

[11] E. Bergshoeff, M. Blencowe, and K. Stelle, “Area preserving diffeomorphisms and higher

spin algebra,” Commun.Math.Phys. 128 (1990) 213.

[12] I. Fujisawa, K. Nakagawa, and R. Nakayama, “AdS/CFT for 3D Higher-Spin Gravity

Coupled to Matter Fields,” Class.Quant.Grav. 31 (2014) 065006,

arXiv:1311.4714 [hep-th].

[13] S. F. Prokushkin and M. A. Vasiliev, “Higher-spin gauge interactions for massive matter

fields in 3D AdS space-time,” Nucl. Phys. B545 (1999) 385, arXiv:hep-th/9806236.

[14] S. F. Prokushkin, A. Y. Segal, and M. A. Vasiliev, “Coordinate free action for AdS(3)

higher spin matter systems,” Phys.Lett. B478 (2000) 333–342,

arXiv:hep-th/9912280 [hep-th].

[15] M. A. Vasiliev, “Higher spin algebras and quantization on the sphere and hyperboloid,”

Int.J.Mod.Phys. A6 (1991) 1115–1135.

[16] N. Boulanger and P. Sundell, “An action principle for Vasiliev’s four-dimensional

higher-spin gravity,” J.Phys. A44 (2011) 495402, arXiv:1102.2219 [hep-th].

[17] N. Boulanger, E. Sezgin, and P. Sundell, “4D Higher Spin Gravity with Dynamical

Two-Form as a Frobenius–Chern–Simons Gauge Theory,” arXiv:1505.04957 [hep-th].
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