Planning a Journey in an Uncertain Environment

Mickael Randour
ULB, Computer Science Department
UMONS, Theoretical Computer Science Unit, Complexys

$$
28.01 .2016
$$

Energie / Complexys - Sixième Journée Thématique :
Modélisation \& Simulation

U M Oniversité de Mons

Aim of this talk

Flavor of \neq types of useful strategies in stochastic environments. \triangleright Joint paper ${ }^{1}$ with J.-F. Raskin (ULB) and O. Sankur (IRISA, Rennes) [RRS15b]
\triangleright Full paper available on arXiv: abs/1411.0835

[^0]
Aim of this talk

Flavor of \neq types of useful strategies in stochastic environments. \triangleright Joint paper ${ }^{1}$ with J.-F. Raskin (ULB) and O. Sankur (IRISA, Rennes) [RRS15b]
\triangleright Full paper available on arXiv: abs/1411.0835
Applications to the shortest path problem.

\hookrightarrow Find a path of minimal length in a weighted graph (Dijkstra, Bellman-Ford, etc) [CGR96].

[^1]
Aim of this talk

Flavor of \neq types of useful strategies in stochastic environments. \triangleright Joint paper ${ }^{1}$ with J.-F. Raskin (ULB) and O. Sankur (IRISA, Rennes) [RRS15b]
\triangleright Full paper available on arXiv: abs/1411.0835
Applications to the shortest path problem.

What if the environment is uncertain? E.g., in case of heavy traffic, some roads may be crowded.

[^2]
Planning a journey in an uncertain environment

Each action takes time, target $=$ work.
\triangleright What kind of strategies are we looking for when the environment is stochastic (MDP)?

Solution 1: minimize the expected time to work

\triangleright "Average" performance: meaningful when you journey often.
\triangleright Simple strategies suffice: no memory, no randomness.
\triangleright Taking the car is optimal: $\mathbb{E}_{D}^{\sigma}\left(\mathrm{TS}^{\text {work }}\right)=33$.

Solution 2: traveling without taking too many risks

Minimizing the expected time to destination makes sense if we travel often and it is not a problem to be late.
With car, in 10% of the cases, the journey takes 71 minutes.

Solution 2: traveling without taking too many risks

Most bosses will not be happy if we are late too often. . .
\sim what if we are risk-averse and want to avoid that?

Solution 2: maximize the probability to be on time

Specification: reach work within 40 minutes with 0.95 probability

Solution 2: maximize the probability to be on time

Specification: reach work within 40 minutes with 0.95 probability
Sample strategy: take the train $\sim \mathbb{P}_{D}^{\sigma}\left[\mathrm{TS}^{\text {work }} \leq 40\right]=0.99$
Bad choices: car (0.9) and bike (0.0)

Solution 3: strict worst-case guarantees

Specification: guarantee that work is reached within 60 minutes (to avoid missing an important meeting)

Solution 3: strict worst-case guarantees

Specification: guarantee that work is reached within 60 minutes (to avoid missing an important meeting)
Sample strategy: bike \sim worst-case reaching time $=45$ minutes.
Bad choices: train $(w c=\infty)$ and car $(w c=71)$

Solution 3: strict worst-case guarantees

Worst-case analysis \sim two-player game against an antagonistic adversary (bad guy)
\triangleright forget about probabilities and give the choice of transitions to the adversary

Solution 4: minimize the expected time under strict worst-case guarantees

■ Expected time: car $\sim \mathbb{E}=33$ but $w c=71>60$
■ Worst-case: bike $\sim w c=45<60$ but $\mathbb{E}=45 \ggg 33$

Solution 4: minimize the expected time under strict worst-case guarantees

In practice, we want both! Can we do better?
\triangleright Beyond worst-case synthesis [BFRR14b, BFRR14a]: minimize the expected time under the worst-case constraint.

Solution 4: minimize the expected time under strict worst-case guarantees

Sample strategy: try train up to 3 delays then switch to bike.
$\sim w c=58<60$ and $\mathbb{E} \approx 37.34 \ll 45$
\sim Strategies need memory \leadsto more complex!

Solution 5: multiple objectives \Rightarrow trade-offs

Two-dimensional weights on actions: time and cost.
Often necessary to consider trade-offs: e.g., between the probability to reach work in due time and the risks of an expensive journey.

Solution 5: multiple objectives \Rightarrow trade-offs

Solution 2 (probability) can only ensure a single constraint.

- C1: 80% of runs reach work in at most 40 minutes.
\triangleright Taxi $\sim \leq 10$ minutes with probability $0.99>0.8$.

Solution 5: multiple objectives \Rightarrow trade-offs

Solution 2 (probability) can only ensure a single constraint.

- C1: 80% of runs reach work in at most 40 minutes.
\triangleright Taxi $\leadsto \leq 10$ minutes with probability $0.99>0.8$.
■ C2: 50% of them cost at most $10 \$$ to reach work.
\triangleright Bus $\sim \geq 70 \%$ of the runs reach work for $3 \$$.

Solution 5: multiple objectives \Rightarrow trade-offs

Solution 2 (probability) can only ensure a single constraint.

- C1: 80% of runs reach work in at most 40 minutes.
\triangleright Taxi $\sim \leq 10$ minutes with probability $0.99>0.8$.
■ C2: 50% of them cost at most $10 \$$ to reach work.
\triangleright Bus $\sim \geq 70 \%$ of the runs reach work for $3 \$$.
Taxi $\not \vDash \mathrm{C} 2$, bus $\not \vDash \mathrm{C} 1$. What if we want $\mathrm{C} 1 \wedge \mathrm{C} 2$?

Solution 5: multiple objectives \Rightarrow trade-offs

- C1: 80% of runs reach work in at most 40 minutes.

■ C2: 50% of them cost at most $10 \$$ to reach work.
Study of multi-constraint percentile queries [RRS15a].
\triangleright Sample strategy: bus once, then taxi. Requires memory.
\triangleright Another strategy: bus with probability $3 / 5$, taxi with probability $2 / 5$. Requires randomness.

Solution 5: multiple objectives \Rightarrow trade-offs

- C1: 80% of runs reach work in at most 40 minutes.

■ C2: 50% of them cost at most $10 \$$ to reach work.
Study of multi-constraint percentile queries [RRS15a].
In general, both memory and randomness are required.
\neq previous problems \leadsto more complex!

Conclusion (1/2)

This talk was about shortest path objectives, but there are many more! Some examples based on energy applications.
\triangleright Energy: operate with a (bounded) fuel tank and never run out of fuel $\left[\mathrm{BFL}^{+} 08\right]$.
\triangleright Mean-payoff: average cost/reward (or energy consumption) per action in the long run [EM79].
\triangleright Average-energy: energy objective + optimize the long-run average amount of fuel in the tank $\left[\mathrm{BMR}^{+} 15\right]$.

Conclusion (2/2)

Our research aims at:

- defining meaningful strategy concepts,

■ providing algorithms and tools to compute those strategies,

- classifying the complexity of the different problems from a theoretical standpoint.
\hookrightarrow Is it mathematically possible to obtain efficient algorithms?

Conclusion (2/2)

Our research aims at:

- defining meaningful strategy concepts,
- providing algorithms and tools to compute those strategies,
- classifying the complexity of the different problems from a theoretical standpoint.
\hookrightarrow Is it mathematically possible to obtain efficient algorithms?

Thank you! Any question?

References I

P. Bouyer, U. Fahrenberg, K.G. Larsen, N. Markey, and J. Srba.

Infinite runs in weighted timed automata with energy constraints.
In Proc. of FORMATS, LNCS 5215, pages 33-47. Springer, 2008.
V. Bruyère, E. Filiot, M. Randour, and J.-F. Raskin.

Expectations or guarantees? I want it all! A crossroad between games and MDPs.
In Proc. of SR, EPTCS 146, pages 1-8, 2014.
V. Bruyère, E. Filiot, M. Randour, and J.-F. Raskin.

Meet your expectations with guarantees: Beyond worst-case synthesis in quantitative games.
In Proc. of STACS, LIPIcs 25, pages 199-213. Schloss Dagstuhl - LZI, 2014.
P. Bouyer, N. Markey, M. Randour, K.G. Larsen, and S. Laursen.

Average-energy games.
In Proc. of GandALF, EPTCS 193, pages 1-15, 2015.
B.V. Cherkassky, A.V. Goldberg, and T. Radzik.

Shortest paths algorithms: Theory and experimental evaluation.
Math. programming, 73(2):129-174, 1996.
A. Ehrenfeucht and J. Mycielski.

Positional strategies for mean payoff games.
International Journal of Game Theory, 8:109-113, 1979.
M. Randour, J.-F. Raskin, and O. Sankur.

Percentile queries in multi-dimensional Markov decision processes.
In Proc. of CAV, LNCS 9206, pages 123-139. Springer, 2015.

References II

M. Randour, J.-F. Raskin, and O. Sankur.

Variations on the stochastic shortest path problem.
In Proc. of VMCAI, LNCS 8931, pages 1-18. Springer, 2015.

[^0]: ${ }^{1}$ Invited talk in VMCAI 2015-16th International Conference on Verification, Model Checking, and Abstract Interpretation.

[^1]: ${ }^{1}$ Invited talk in VMCAI 2015-16th International Conference on Verification, Model Checking, and Abstract Interpretation.

[^2]: ${ }^{1}$ Invited talk in VMCAI 2015-16th International Conference on Verification, Model Checking, and Abstract Interpretation.

