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Abstract—The single imbalance pricing is an emerging mecha-
nism in European electricity markets where all positive and nega-
tive imbalances are settled at a unique price. This real-time scheme
thereby stimulates market participants to deviate from their sched-
ule to restore the power system balance. However, exploiting this
market opportunity is very risky due to the extreme volatility of
the real-time power system conditions. In order to address this
issue, we implement a new tailored deep-learning model, named
encoder-decoder, to generate improved probabilistic forecasts of
the imbalance signal, by efficiently capturing its complex spatio-
temporal dynamics. The predicted distributions are then used
to quantify and optimize the risk associated with the real-time
participation of market players, acting as price-makers, in the
imbalance settlement. This leads to an integrated forecast-driven
strategy, modeled as a robust bi-level optimization. Results show
that our probabilistic forecaster achieves better performance than
other state of the art tools, and that the subsequent risk-aware
robust dispatch tool allows finding a tradeoff between conservative
and risk-seeking policies, leading to improved economic benefits.
Moreover, we show that the model is computationally efficient and
can thus be incorporated in the very-short-term dispatch of market
players with flexible resources.

Index Terms—Deep learning, electricity markets, encoder-
decoder, robust optimization, single imbalance pricing.

NOMENCLATURE

A. Sets and Indices

R+ Set of up-regulation blocks offered in the
imbalance settlement, index r+

R− Set of down-regulation blocks offered in
the imbalance settlement, index r−

Υ Set of flexible units, index υ
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B. Upper-level Decision Variables: ΘU

eimb,+, eimb,− Positive (negative) imbalance energy of
the market participant, [MWh]

Δp+υ ,Δp−υ Real-time upward (downward) power
deviation of unit υ, [MW]

C. Lower-level Decision Variables: Primal ΘL1 and Dual ΘL2

sr+ , sr− Dispatch of upward (downward) regula-
tion power, pertaining to block r+ (r −),
[MWh]

λSI Dual variable reflecting the market clear-
ing imbalance price, [€ /MWh]

μr+ , μ r− Dual variable reflecting the economic
surplus associated with block r+ (r −),
[€ /MWh]

D. Parameters

Δt Time resolution, [15 minutes]
Λr+ ,Λr− Activation price corresponding to up

(down) regulation block r+ (r −),
[€ /MWh]

Sr+ , Sr− Upward (downward) regulation limit for
block r+ (r −), [MWh]

SÎ Predicted system imbalance, decomposed

into its positive ̂SI
+

and negative ̂SI
−

components, [MWh]
C+

υ , C−
υ Up (down) costs of unit υ, [€ /MWh]

ΔPP
υ ,ΔPE

υ ,ΔPR
υ Limits in terms of power P, energy E and

ramping ability R of unit υ, converted into
the maximum deviation of the power level
at each time step, [MW]

I. INTRODUCTION

D ECARBONISATION of the electricity sector is an es-
sential milestone to respond to the climate change threat.

Henceforth, policy makers are setting up ambitious targets for
integrating large shares of renewables, such as solar and wind
energies, into the electricity generation mix. These resources are
weather-dependent, and thus uncertain and intermittent, which
results in an increased need of flexibility to alleviate imbalances
between load and generation in power systems [1].
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In this context, properly gathering and valorizing the flexibil-
ity available within all layers of the grid is becoming crucial in
order to ensure the transition towards a low-carbon system at a
reasonable cost [2]. Up until now, much effort has been made to
improve the optimal allocation of flexibility on a medium-term
to day-ahead horizon, with a joint participation in both (com-
petitive) energy and reserve markets [3]–[8].

However, as the electricity exchanges are becoming more
and more short-term oriented due to increased uncertainties,
adjustment strategies near to real-time are growing in signifi-
cance. Traditionally, European market rules are such that they
encourage market players to adopt a risk-averse policy, where
their only objective is to exploit their real-time flexible resources
to alleviate their own residual imbalances [9]–[13]. By over-
incentivizing market parties to be in balance, such an approach
prevents them to share the cost-savings with the market in case
of helpful imbalances (that restore the energy balance within
the power system). To address this issue, the single imbalance
pricing is currently emerging as a more efficient mechanism
[14]. In this way, the European Agency for the Cooperation of
Energy Regulators, which coordinates national energy regula-
tors and works towards the harmonization of market rules at the
European level, has explicitly opted for such a single pricing
as the preferred approach to monetize imbalances [15]. This
mechanism has indeed proved its superior efficiency in countries
where it has been adopted (e.g., Belgium, Germany) [16]. In this
specific design, all imbalance positions are settled at a single
price, thus stimulating parties to deviate from their schedule (to
counterbalance the global grid imbalance) in order to help the
system operator in maintaining the equality between the total
generation and consumption in its control area (see Section II).

Practically, the participation of market players in this single
pricing settlement is very challenging due to two obstacles:

i) The risk associated with the extreme volatility and un-
predictability of the system imbalance. Indeed, in case
of a misestimation of the future system state, the actor
can adopt a position that aggravates the imbalance of
the power system, thereby suffering important financial
penalties. Hence, a market player needs to accurately
anticipate the future aggregated position of all its rivals,
while considering its own impact on the system (i.e.,
price-maker assumption).

ii) The time constraint when solving this near real-time op-
timization procedure. In this way, in order to benefit from
the latest updated value of the system imbalance given
by the system operator, the optimization should start no
later than the beginning of the imbalance settlement period
(which has a 15 minutes time span). The computation time
for the decision-making process must thus not exceed 5
minutes, to give time to fast flexible resources to adjust
their output power.

Because of these challenges, as well as the current sparse
adoption of the single imbalance pricing, the literature is still
at a very primitive stage. In [17], the participation of a wind
power producer in the day-ahead market considering its price-
maker contribution in the imbalance settlement is formulated
as a mathematical program with equilibrium constraints. This

formulation is extended in [18] where the wind player partici-
pates and behaves as a price-maker in both the day-ahead and
balancing markets. However, the uncertainty is modeled through
scenarios, so that the computational burden can be an issue
for operational decisions. Moreover, although this approach
allows to make informed day-ahead decisions in view of possible
forecast errors, they do not define the player’s actual real-time
operation. In contrast, risk-neutral approaches are developed in
[19], [20] to enable an aggregator to participate in the balancing
market, showing the economic interest of such real-time strate-
gies in a one-pricing scheme.

Overall, none of these pioneering works attempts to operate
with a risk-aware perspective in the single-price imbalance
settlement. In this paper, we therefore propose a forecast-driven
tool, in which state-of-the-art probabilistic forecasts of the fu-
ture system imbalance are integrated within the very-short-term
dispatch of market actors.

In recent years, an impressive amount of work has been done
on probabilistic forecasting methods for better informing the
decision-making tools related to power systems and electricity
markets [21]–[24]. Two distinct philosophies can be found [25]:
two-step procedures based on the addition of a probabilistic
forecast error to a deterministic forecasting model [26]–[29],
and methods directly providing probabilistic predictions of the
variable of interest [30]–[32]. In the latter approach, in a non-
parametric setting, two methods have been widely applied in the
power systems literature, namely kernel density estimators [33],
[34] and direct quantile regression models [35], [36].

In this paper, a tailored quantile regression tool is firstly
developed, which is one of the original contributions of the
work. This model generates improved probabilistic predictions
that fully characterize, in a non-parametric way, the uncertainty
of the future system imbalance (in MW). Traditionally, the
system imbalance was assumed to be equal to load and/or wind
forecasting errors [37], [38] whereas, in practice, its variability
is much more complex (which is mainly due to the aggregated
effect of the individual errors of all market actors, potentially
acting strategically).

In a second step, the predicted quantiles are used to quantify
risks and optimize the participation of a market player in the
imbalance settlement. Such an integrated procedure allows to
directly quantify the potential of realistic forecasts on the per-
formance of actual optimization strategies.

In this respect, the contributions of this work are three-fold:
i) Implement a decision-making tool, based on a bi-level

model, aiming at adjusting the real-time position of a
market player acting as a price-maker (i.e., its own im-
balance affects the overall system position, and thus the
imbalance tariff). The procedure is embedded within a
robust optimization framework, to ensure that the so-
lution is resilient to forecast uncertainty. Indeed, such
an approach is intrinsically designed to hedge against
the risk associated with extreme scenarios (arising from
the high variability of system positions). The resulting
model is a mixed-integer linear program (MILP) that
is computationally efficient (compact) in comparison
with alternatives such as scenario-based optimization, to
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enable the practical utilization of the tool within very
short timeframes.

ii) Generate reliable predictions of the future system im-
balance, under the form of probabilistic intervals, to
properly guide the robust optimization tool. Specifically,
the goal is to implement an improved forecaster, named
encoder-decoder, which is built upon our previous work
[39] and recent breakthroughs in sequence-to-sequence
recurrent neural networks, with the goal of optimally
extracting the complex dynamic characteristics of the
system imbalance. Forecasting this variable is a new and
challenging task, and our results show that the proposed
tool provides accurate forecasts (with sharp intervals)
in comparison with 8 state-of-the-art techniques such
as ensemble methods (XGBoost and quantile regression
forests) and deep neural networks.

iii) Offer a probabilistic guarantee for the robust solution,
using the predicted quantiles of the system imbalance.
Indeed, these quantiles enable the market player to choose
the level of risk during the optimization, thereby provid-
ing a user-defined trade-off between conservatism and
economic efficiency [40].

The proposed integrated approach combines therefore the
strengths of probabilistic forecasting and robust optimization
to form an efficient, fast, risk-aware decision procedure. Out-
comes from a numerical out-of-sample analysis show that the
proposed forecast-driven methodology allows to increase the
benefits of market players with flexible resources available
in real-time, thereby enhancing the value of flexibility. Such
improved dispatch procedures may thus help to valorize new
flexible resources such as load-shifting capabilities.

The rest of the paper is organized as follows. Section II
introduces the market environment and motivates the proposed
approach. Section III firstly describes the new deep learning
based tool to generate very short-term probabilistic predictions
of the system imbalance signal. Then, we present the bi-level
robust optimization framework for a risk-aware participation in
the single price imbalance settlement. The results in terms of
both prediction accuracy and quality of operational decisions are
discussed in Section IV. Finally, conclusions and perspectives
for future research are provided in Section V.

II. MOTIVATION

Following the liberalization of the European electricity sector,
the task of balancing electricity generation and consumption (to
guarantee the stability of the power system) is supported by
market actors, which are named Balance Responsible Parties
(BRPs). To help them in achieving this objective, the European
market architecture is organized into separate energy-only and
operating reserves services, which are traded sequentially via
independent auctions (Fig. 1).

In this system, BRPs are responsible to continuously equalize
their own load and generation, taking into account the electricity
traded with other BRPs in the different energy-only market
floors (i.e., long-term, day-ahead and intraday stages). Then, the
real-time residual imbalance at the system level is compensated

Fig. 1. Structure of the considered European market design.

TABLE I
SINGLE PRICE IMBALANCE SETTLEMENT

through a balancing mechanism, in which the system operator
uses power reserves made available by some BRPs (box A. in
Fig. 1) through the reserve capacity market.

The costs incurred by the real-time activation of reserves
are covered by applying a charge to each unbalanced BRP.
These charges, computed (averaged) on a quarter-hourly ba-
sis, are applied as soon as an imbalance occurs (box B. in
Fig. 1). Therefore, this mechanism is not a market per se (with
bids/offers in a competitive environment), and is referred to as
imbalance settlement. European regulatory bodies have recently
defined guidelines to penalize such imbalances using a single
pricing settlement [15]. In this paper, we thereby consider this
single price imbalance settlement design, where all imbalance
positions are settled at a unique price. This system favors BRPs
that help at restoring the imbalance of the system (green boxes
in Table I), while penalizing those who are aggravating the
imbalance situation (red boxes in Table I).

In general, the (single) imbalance price λSI depends on the ac-
tual amount of reserves activated by the system operator. When
there is a generation shortage in the grid, the system operator
must activate upward reserves, the cost of which is defined as
the marginal incremental price (MIP). The BRPs which are
responsible of this shortage must pay this MIP (which is typically
higher than the day-ahead market price, and thus less economic),
whereas actors with an excess of generation receive this (very
attractive) MIP. Similarly, when there is a generation surplus at
the system level, the subsequent activation of downward reserve
results in the marginal decremental price (MDP). The BRPs in
generation surplus receive this MDP (which is typically lower,
and thus, less profitable than the day-ahead energy price) for
their surplus, whereas BRPs in generation shortage will pay
this (attractive) small MDP fee for their corresponding negative
imbalance, since they help at restoring the system balance.

The imbalance price λSI is thus subject to abrupt regime
switching between MDP and MIP (as further discussed in
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Fig. 3 in Section III.B), which makes its prediction very un-
stable and difficult. This work thereby focuses on the imbalance
volume prediction (in MW) in Section III.A, which is subse-
quently interlinked with its corresponding price within the robust
optimization procedure in Section III.B.

III. MODEL DESCRIPTION

A. Probabilistic Forecasts

The objective of this part is to generate predictions of the
system imbalance (residual imbalance of all market participants)
in order to help a market player guiding its robust optimal dis-
patch strategy. In [41], a methodology which combines classical
and data mining techniques is used to provide deterministic
forecasts of the system imbalance volumes. This work puts
into light the vital need of improved forecasting tools to better
manage the high uncertainty of the imbalance signal. Here, prob-
abilistic predictions are developed to endogenously capture and
characterize the uncertainty associated with point predictions,
originating from both the noise in explanatory variables (e.g.,
due to the chaotic nature of weather conditions) and the model
misspecifications. In this way, we want to solve the following
time series probabilistic regression problem:

p
(

yt:| y:t, x(h)
:t,i , x

(s)
i , x

(f)
t:,i

)

(1)

where yt: is the system imbalance to forecast (and yt its past
observed values), x(h)

:t,i are the past values of explanatory vari-
ables (e.g., recent forecast errors of renewable generation),
x
(s)
i are the static time-invariant features (e.g., the location of

renewable sources), and x
(f)
t:,i is the known future information.

This knowledge on the future contains both seasonal features
(e.g., the hour of the day, the day of the week, or holidays), and
known events (e.g., commitment/schedules of power plants).

Generally, four types of forecasting models are proposed
in the literature [42]: (i) persistence methods, which simply
consider that future observations will have the same values as
the current instance, (ii) physical methods, which are based on a
detailed mathematical description of the environment governing
the variable of interest (e.g., full modeling of the market rules and
participant’s behaviors to predict market prices), (iii) statistical
methods, which build mathematical models of predefined com-
plexity based on the inference (from historical observations) of
basic statistics such as autocorrelation, and (iv) machine learning
methods, which are based on generic nonlinear models that are
trained using historical data through a self-learning procedure
(without being explicitly programmed to achieve the prediction
task, with no arbitrary assumptions on the model complexity).

Overall, persistence methods are very naïve and do not
provide useful information for decision-making. Physical
models, on the other hand, are characterized by a high compu-
tational complexity, which hinders their practical utilization for
very-short-term predictions. Moreover, they require to explicitly
model the behavior of all involved market parties, which cannot
be easily estimated. Statistical models are usually much simpler
linear forecasters, but this prevents them from capturing nonlin-
ear dependencies and from properly representing high frequency

effects (such as fast ramping events). For these reasons, machine
learning approaches have recently achieved much better results
than the other models, which was further fostered by the
increase of reliable databases and of computer capabilities.

This work focuses on neural networks (although the case study
in Section IV.A integrates and compares other state-of-the-art
approaches). Indeed, in addition to their theoretical ability to
capture and represent hidden mechanisms of any complexity
between inputs-outputs, neural networks are flexible tools that
can be tailored to the specificities of the problem, thereby
improving their performance [43]. This property has seen the
emergence of recurrent neural networks, advanced deep learning
structures that are characterized by architectural features specif-
ically designed to propagate relevant information from past
inputs (through a powerful dynamical memory). Such recurrent
networks have shown a high potential in processing and predict-
ing complex times series data with multi-scale dynamics (akin
to the system imbalance). This type of neural networks relies on
a hidden (memory) state h, which captures and propagates the
dynamics of the variable over the time horizon T. In this way,
at each time step t, given an input sequence x = (x1, . . ., xT) of
length T, the hidden state ht is updated by:

ht = f
(

ht−1,xt

)

(2)

where f is a nonlinear activation function (e.g., a logistic sigmoid
function). It should be noted that such models can be efficiently
trained using parallel calculation. Moreover, once the learning
phase is achieved, the computational burden to yield real-time
predictions can be neglected (<1 second).

However, recurrent networks are known to struggle in ac-
cessing time dependencies more than a few time steps long. The
problem, commonly known as the vanishing gradient problem,
arises from the fact that back-propagated errors during the train-
ing stage either fades or blows up over time. Two state-of-the-art
recurrent networks, i.e., Long Short-Term Memory (LSTM) and
gated recurrent units (GRU) networks, tackle this problem by us-
ing internal memory cells, whose content is controlled by gating
units, thereby optimally regulating the flow of information that
is propagated through time [44], [45]. Both variants rely on the
same principle, but GRU networks have a simpler structure for
equivalent performance levels [46].

Despite its superior accuracy in the current literature [47],
the GRU architecture still suffers from two main drawbacks.
Firstly, it intrinsically requires time sequential data as inputs,
whereas some explanatory variables are time-invariant by na-
ture, which prevents the GRU from fully exploiting this valuable
information. Secondly, GRU networks are designed to process
a fixed-size input vector for each time step, and it is thus
very complex and inefficient to encode both past and future
information into the model (without resorting to coding tricks
that degrade the predictive accuracy).

Both these issues can be efficiently handled using an innova-
tive architecture, referred to as encoder-decoder [48]. As repre-
sented in Fig. 2, this tool is composed of two different networks,
and has recently shown promising results for translation tasks
and speech recognition applications [48].
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Fig. 2. Encoder-decoder architecture to provide time series prediction.

The temporal nature of the encoder is used to process the past
observed values yt and x

(h)
:t,i , as well as the horizon-agnostic

context x(s)
i in order to extract the relevant historical informa-

tion. Practically, this information is contained into a reduced
vector c of fixed dimensions, based on the last hidden state henc

t .
Then, the decoder leverages this representation c, along with
the known future x

(f)
t:,i information, to generate K (multi-step

ahead) predictions. Overall, the hidden state of the decoder and
the output sequence at time t are computed by:

hdec
t+k = fGRU

(

hdec
t+k−1, x

(f)
t+k,i, c

)

(3)

ŷt+k = g
(

hdec
t+k

)

(4)

where K is the length of the multi-horizon forecast (i.e., the
number of look-ahead times k), fGRU is the nonlinear function
representing the GRU neural network, and g is a linear transfor-
mation of the GRU outputs hdec

t+k.
Then, the model has to be adjusted to obtain distributions

characterizing the prediction uncertainty. In this work, we use
quantile regression to predict the specified quantiles q ∈ Q of
the target distribution, i.e.,:

q = P
(

yt+k ≤ ŷ
(q)
t+k

∣

∣

∣y:t, x
(h)
:t,i , x

(s)
i , x

(f)
t+k,i

)

, ∀k ∈ K (5)

Practically, the model is trained with the historical database
to minimize the quantile loss that provides the values ŷ(q) corre-
sponding to the different quantiles q of interest. However, in case
of perfect prediction, the quantile loss cannot be differentiated.
To address this issue, we construct a smooth approximation of
the pinball loss [49], by including the Huber norm within the
loss function [50]. The idea is to replace the L1 norm by the
(continuously differentiable) L2 norm when the error is lower
than a (preferably small) user-defined threshold ε (in this paper,
we arbitrarily use ε = 10−6):

H(yk, ŷ
(q)
k ) =

⎧

⎪

⎨

⎪

⎩

(ŷ
(q)
k −yk)

2

2ε

∣

∣

∣ŷ
(q)
k − yk

∣

∣

∣ ≤ ε
∣

∣

∣ŷ
(q)
k − yk

∣

∣

∣− ε
2

∣

∣

∣ŷ
(q)
k − yk

∣

∣

∣ > ε
(6)

where the values ŷ(q) are the outputs of the forecaster, and y the
actual (ground truth) observations. The approximated pinball

loss EQ can then be calculated as:

EQ =
∑

k∈K

∑

q∈Q

⎧

⎪

⎨

⎪

⎩

q ·H
(

yk, ŷ
(q)
k

)

ŷ
(q)
k < yk

(1− q) ·H
(

yk, ŷ
(q)
k

)

ŷ
(q)
k ≥ yk

(7)

As the resulting loss function is differentiable, the neural net-
works can be trained using efficient gradient-based algorithms.
The conditional quantiles provided by the developed methods
will give the possibility to select different levels of probabilis-
tic guarantees as input parameters for the robust optimization
framework.

B. Robust Optimization Formulation

Once the predicted distributions are obtained, the purpose is
to adequately exploit them to feed the optimization tool for the
strategic participation of a Balance Responsible Party (BRP, i.e.,
a merchant energy storage actor), in the imbalance settlement.
This near-real-time stage consists in evaluating whether it is
profitable for the market actor (under risk-constraints) to deviate
from its balanced position by increasing or decreasing the output
power of its flexible resources. It should be noted that even
if a unit is operating at its maximum output power, flexibil-
ity is still available in the opposite direction (i.e., reduction
of power). This situation allows, e.g., selling at a high price
in the day-ahead market, while buying low in the imbalance
settlement.

In order to properly consider the fact that the player can
affect imbalance prices (and thus its own profit) through its
contribution, the market-clearing process is explicitly included
in the agent’s optimization problem. The resulting approach is
formulated as a bi-level model, which is characterized by an
upper-level problem that maximizes the profit of the market
player by identifying its optimal strategic imbalance position,
and a lower-level problem that simulates the (single price)
quarter-hourly settlement of energy imbalances.

Overall, the market participant optimizes its position by an-
ticipating what could be the system imbalance (at the end of the
considered quarter of an hour), given its own decisions and the
(exogenous) residual deviation of all its rivals ̂SI . In turn, the
system imbalance is cleared with the knowledge of the player’s
contribution. This (single time-step) bi-level optimization is
run sequentially (96 times a day) at the beginning of each 15
minutes imbalance settlement period, in order to use the last
measured values of the system imbalance communicated by the
system operator. The deterministic formulation is summarized
in (8)–(9):

max
ΘU

λSI
(

eimb,+ − eimb,−)−
∑

υ∈Υ

(

C+
υ Δp+υ − C−

υ Δp−υ
)

Δt

(8a)
subject to:

eimb,+ =
∑

υ∈Υ
Δp+υ Δt ≤ SÎ− (8b)

eimb,− =
∑

υ∈Υ
Δp−υΔt ≤ SÎ+ (8c)
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̂SI
+
= ̂SI if ̂SI > 0, and ̂SI

+
= 0 if ̂SI < 0

̂SI
−
= ̂SI if ̂SI < 0, and ̂SI

−
= 0 if ̂SI > 0 (8d)

0 ≤ Δp+υ ≤ min
(

ΔPP+
υ ,ΔPE+

υ ,ΔPR+
υ

) ∀υ (8e)

0 ≤ Δp−υ ≤ min
(

ΔPP−
υ ,ΔPE−

υ ,ΔPR−
υ

) ∀υ (8f)

Technology−specific constraints (8g)

argmin
ΘL1

{

∑

r+∈R+

Λr+sr+ −
∑

r−∈R−
Λr−sr−

}

(9a)

subject to:
∑

r+∈R+

sr+ −
∑

r−∈R−
sr− = −(

eimb,+ − eimb,−)− SÎ : λSI

(9b)

0 ≥ −sr+ ≥ −Sr+ : μr+ , ∀r+ (9c)

0 ≥ −sr− ≥ −Sr− : μr− , ∀r− (9d)

with ΘU , the set of decision variables eimb,+, eimb,−, Δp+υ
and Δp−υ of the upper-level problem, and ΘL1, the decision
variables sr+ and sr− of the (primal) lower-level problem. The
dual variables ΘL2 of the lower-level, i.e., λSI , μr+ and μr−,
are indicated after each constraint, preceded by a colon.

The objective function (8a) is the maximization of the rev-
enues from the imbalance settlement (i.e., by multiplying the
single imbalance price λSI with the imbalance volumes eimb,+

and eimb,− of the market player), considering the intrinsic costs
C+

υ and C−
υ of all its units. Constraints (8b)–(8c) allow to obtain

a cost-optimal allocation of the available resources, by activating
the most cost-effective units. For instance, extra power will
be provided by units with low marginal costs, whereas power
reduction will be performed by expensive units (to save their
high operating costs). Together with (8d), these constraints also
ensure that the actor’s contribution helps at restoring the system
balance. The upward (8e) and downward (8f) flexibility that can
be provided by each unit υ is limited by operational constraints
in terms of available output power ΔPP

υ , energy capacity ΔPE
υ

and ramping abilityΔPR
υ . Then, technology-specific constraints

(8g), such as the minimum up/down times of conventional gener-
ators, have also to be integrated to ensure the global consistency
of the formulation.

The lower-level problem (9) represents the quarter-hourly
market clearing of energy imbalances. The objective (9a) re-
flects the costs incurred by the real-time activation of operating
reserves (following the merit order in Fig. 3). The parameter
Λr+ is the price for activating the upward reserve Sr+ (in case
of negative system imbalance). This marginal incremental price
increases with respect to the imbalance severity, which reflects
the necessity for the system operator to activate more expensive
reserves (far in the merit order) to fully restore the system
frequency. In general, Λr+ is higher than the day-ahead market
price for all r+, which stimulates market players to increase
their generation (or decrease their consumption) to sell energy
at a high price. Similarly, Λr− is the imbalance price, typically
lower than the day-ahead price, associated with the activation of

Fig. 3. Single imbalance prices per volume levels for one quarter-of-an-hour,
made publicly available by the system operator.

downward reserves Sr− (in case of positive system imbalance).
This marginal decremental price decreases (possibly down to
negative values) for large surplus of generation, reflecting the
temporary low value of electricity.

Following the European guidelines to promote a transparent
and more competitive market, the Belgian system operator pub-
lishes, on a day-ahead basis with updates in intraday, information
about the imbalance prices per volume level for each 15-min
period [51]. Henceforth, the parameters Λr+, Λr−, Sr+ and
Sr− can be retrieved from these data, and are considered as
parameters in the optimization.

Constraint (9b) guarantees that the activated amount of up-
ward (sr+) and downward (sr−) reserves exactly offset the
strategic imbalance volumes of the market participant (eimb,+

and eimb,−) and the expected aggregated deviation of all its rivals
(̂SI). The dual variable associated with these balance constraints
is the imbalance price λSI , which reflects the system cost to
compensate one more MW in imbalance.

Constraints (9c) and (9d) ensure that reserves are activated in
accordance with the merit order (Fig. 3), accounting for the vol-
ume limitations of the different block offers. The dual variables
μr+ (and μr−) associated with these constraints correspond to
the economic surplus, i.e., the monetary gain of the system if
the block Sr+ (or Sr−) offers one more MW of reserve. They
represent thus the difference between the imbalance price λSI

and the price of Λr+ (or Λr−). Hence, μr+ (and μr−) are equal
to zero if the system imbalance is such that reserves of level r+

(or r−) are not activated.
Overall, the formulation (7)–(8) cannot be solved directly by

a linear optimization solver, due to the nested optimization, and
to the bilinear terms λSI (eimb,+− eimb,−) in (7a). The first
issue is addressed by replacing the lower-level problem (8) by its
Karush-Kuhn-Tucker (KKT) conditions (since this lower-level
is convex and the constitutive constraints satisfy some regularity
conditions), resulting in a mathematical program with equilib-
rium constraints (MPEC). This set of KKT conditions includes
complementary conditions, which implies nonlinearities. The
latter can be linearized using a Big-M approach that relies on bi-
nary variables, which yields the mixed-integer linear conditions
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Fig. 4. Integrated (forecast-driven) bi-level robust optimization framework.

(10c)–(10l), where the M-parameters are large enough positive
constants [17]. The selection of appropriate M-values can be
a challenging task in the context of our optimization problem,
since improper values can lead to excessively high simulation
times, or even numerical ill-conditioning and violations of
complementary conditions. However, practical bounds of
the M-values can be determined based on the economical or
physical interpretation of their corresponding constraints. For
instance, the constraints (10h) and (10j) respectively related
to the dispatch of upward sr+ (or downward sr−) regulation
power are bounded by their corresponding limits Sr+ (or Sr−).
Consequently, the associated M-valuesM3

r+ (orM3
r−) can be set

to these limits Sr+ (or Sr−). The same logic can be applied for
the activation prices in (10i) and (10k). Interestingly, in the case
study presented in Section IV (run on 5472 different time steps),
this approach has led to adequate results in all cases (i.e., no
infeasible outcomes nor unfulfilled complementary conditions).
The second source of nonlinearity, which arises from the
bilinear terms in the upper-level objective function (8a), can
also be expressed as a sum of linear terms (10a) by applying
the strong duality equality on the market clearing problem.

In parallel, since the future system imbalance is unknown, the
optimization approach must hedge against the risk of erroneous
decisions that lead to severe financial penalties. This is achieved
by relying on a robust formulation that immunizes the operation
strategy against the worst-case realization of the system imbal-
ance in an uncertainty set (given by the probabilistic forecasts of
Section III.A). As our prediction tool provides non-parametric
quantiles of the future system imbalance, the methodology al-
lows to select a specified level of probabilistic guarantee, thereby
quantifying and controlling the risk of the procedure.

Consequently, the reformulated MILP robust optimization
framework (Fig. 4) can be expressed as follows:

max
Θ

min
SÎ

−λSI
̂SI −

∑

υ∈Υ

(

C+
υ Δp+υ − C−

υ Δp−υ
)

Δt

−
∑

r+∈R+

(Sr+μr+ + Λr+sr+) +
∑

r−∈R−
(−Sr−μr− + Λr−sr−)

(10a)

subject to:
Market actor constraints:(8b), (8c), (8d), (8e), (8f), (8g)

̂SI = ̂SI
+ − ̂SI

− ∈
[

ŷ(q), ŷ(1−q)
]

(10b)

0 ≤ Λr+ − λSI + μr+ ≤ M1
r+(1− z1r+), ∀r+ (10c)

0 ≤ sr+ ≤ M2
r+z

1
r+ , ∀r+ (10d)

0 ≤ −Λr− + λSI + μr− ≤ M1
r−(1− z1r−), ∀r− (10e)

0 ≤ sr− ≤ M2
r−z

1
r− , ∀r− (10f)

∑

r+∈R+

sr+−
∑

r−∈R−
sr− = −(

eimb,+ − eimb,−)− SÎ (10g)

0 ≤ Sr+ − sr+ ≤ M3
r+z

2
r+ , ∀r+ (10h)

0 ≤ μr+ ≤ M4
r+(1− z2r+), ∀r+ (10i)

0 ≤ Sr− − sr− ≤ M3
r−z

2
r− , ∀r− (10j)

0 ≤ μr− ≤ M4
r−(1− z2r−), ∀r− (10k)

z1r+ , z
1
r− , z

2
r+ , z

2
r− ∈ {0, 1} (10l)

with Θ, the set of all decision variables ΘU , ΘL1 and ΘL2 of
(8)–(9), to which are added the binary variables from (10l), needed
for linearizing the KKT-related complementary conditions.

It can be shown that, for linear programming with a polyhedral
uncertainty set, the optimal solution is located at one of the ver-
tices of the uncertainty set [52]. The max-min formulation (10a)
can thus be solved by an off-the-shelf optimization software that
enumerates all the vertices defined by probabilistic quantiles ŷ(q)

and ŷ(1−q), which allows to determine the risk-aware dispatch
Δp+υ and Δp−υ .

IV. CASE STUDY

Firstly, the quality of probabilistic forecasts (of the system
imbalance) is estimated using different evaluation criteria, and a
representative benchmark is built to compare the performances
of both classical and state-of-the-art methods (Section IV.A).
Once these probabilistic forecasts are obtained, the appropriate
quantiles are integrated into the very-short-term dispatch proce-
dure (Section IV.B). In this work, different bounds (each one be-
ing associated to a different risk-attitude) are tested to determine
the optimal risk policy. The integrated (forecast & optimization)
procedure is performed on actual data (2014–2018), obtained
from Elia, the Belgian transmission system operator [53]. To
favor reproducibility of the results, a pre-processed (cleaned)
database, i.e., historical data of the system imbalance along
with all its available explanatory variables used in this paper,
is provided in [54].

A. Numerical Results of Probabilistic Forecasts

This subsection intends to evaluate the performance of the
proposed probabilistic forecasting tool, and to compare it to
other state-of-the-art techniques. All predictions (performed at
the beginning of every quarter of an hour) focus on the Belgian
system imbalance. Practically, a benchmark using Python 3.6.0
and the Keras library (along with the TensorFlow backend)
has been implemented for the neural networks, whereas the
scikit-learn library has been employed for ensemble models.
The following 8 models have been tested:

- Probabilistic persistence method, where the forecast error
is assumed to be random and normally distributed. Both
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the mean and variance are adjusted with the last available
measurements of the system imbalance.

- Auto-Regressive Integrated Moving Average (ARIMA)
model (with confidence intervals), which assumes a con-
stant variance, while time correlation is linearly repre-
sented.

- Quantile regression forest (QRF), an ensemble method
that generalizes random forests1 for estimating quantiles
instead of the conditional mean [55], is used with 100 trees.

- eXtreme Gradient Boosting (XGBoost), a (multi-stage)
decision tree ensemble method in which new models are
sequentially created to forecast the residuals (i.e., errors) of
the models optimized at the previous stage. At each stage,
all models are trained (updated) together (using a gradient
descent algorithm) to make the final prediction [56].

- Shallow Multi-Layer Perceptron (MLP), the traditional
architecture of feedforward neural networks with 1 hidden
layer, containing 450 neurons with rectifier linear units
(ReLUs) as activation function.

- 3-MLP, a MLP with 3 hidden layers containing respectively
220, 300, 90 ReLUs neurons.

- Hybrid model combining a MLP with a GRU model to bet-
ter capture time dependencies, with 7 cells in the recursive
layer and 10 ReLUs units in the MLP layer.

- Encoder-decoder, both GRU networks with 1 hidden layer
containing 12 cells.

For machine learning models, a sensitivity study (hyper-
parameter optimization) was performed on several input con-
figurations (to choose the most relevant set of explanatory
variables among all publicly available information provided
by the system operator) and specific parameters (to select the
optimal complexity of the model) in order to ensure that the
predictive potential of the different models is fully exploited. To
that end, we have employed the tree-structured Parzen estimator,
a sequential model-based optimization algorithm [57]. For each
of the studied architectures, the neural networks are trained using
the Adam algorithm [58], a stochastic gradient descent method
that relies on adaptive learning rates for escaping local optima
within the learning phase. In addition, all models are stabilized
with regularization techniques (e.g., early stopping), to avoid
overfitting.

Concerning the input configuration, a sensitivity study con-
cludes that the past 12 historical observations of both the system
imbalance yt and historical explanatory variables x

(h)
:t,i are the

most suited to capture recent dynamics for this particular task. In
particular, the most relevant ones are the past measured values of
the total grid load, the aggregated power generation in Belgium,
as well as its individual components, i.e., wind, photovoltaic
(PV), nuclear and gas generation. In addition, relevant future
information x

(f)
t:,i is also included into the model, i.e., the same

electrical quantities (grid load, wind, PV, nuclear and gas gener-
ation) forecasted (and published in intraday) by the system oper-
ator. Moreover, the models also integrate spot prices (cleared in

1A random forest is an ensemble model in which different random trees (i.e.,
learners) are constructed independently using a different subsample of the data.
For prediction tasks, the output is the averaged sum of all trees.

the day-ahead market) and temporal aspects (quarter-of-an-hour
of the day and day of the week). This calendar information
is introduced by a mutually exclusive binary representation.
For instance, 96 binary inputs are used to represent all daily
quarters-of-an-hour. With such a representation, when one input
is equal to 1, all others are set to 0.

All models are trained to capture the system conditions hidden
in the explanatory variables, and to generate the appropriate fore-
cast accordingly. There is therefore no need of systematically
re-training the models on a short time-frame to continuously
adapt to changes in operating conditions.

In this way, prediction models are trained only once using
historical data from 2014 until end of December 2016 (no
measurements are available before this period). The year 2017
(validation set) is used to select the hyper-parameters of the dif-
ferent models. Then, an error metric (performance indicator) is
computed between forecasts and real data for each quarter of an
hour of January and February 2018 (test set), and the results are
represented in Table I. Consequently, the training, validation and
test sets are respectively composed of 103872, 35040 and 5472
data points. This results (for the encoder-decoder model) into a
training time around 20 minutes (for one configuration). Once
the model is trained, its online utilization time (for generating
the predictions that are integrated into the robust optimization
tool) is around 10−6 s.

When dealing with probabilistic forecasting, two (potentially
conflicting) notions are important to consider, i.e., calibration
(or reliability) and sharpness [59]. Calibration refers to the
statistical correctness between the predicted quantiles and the
true distribution (i.e., actual observations). Sharpness is a simple
measure of the concentration (width) of the predictive distri-
butions. Powerful forecasts must thus find a trade-off between
maximizing the sharpness (concentrated intervals), while en-
suring that the reliability of the predicted intervals is preserved.
To comprehensively assess this compromise between reliability
and sharpness, two probabilistic scoring tools are employed.

Firstly, we use the pinball lossEN , i.e., the mean of the pinball
losses, averaged across all quantiles q of interest (in this paper,
q = 5, 15, 25, 35, 45, 50, 55, 65, 75, 85 and 95%), and throughout
the length of the test set (n = 5472).

EN =
1

n

n
∑

t=1

∑

q∈Q
qmax

(

0, yt − ŷ
(q)
t

)

+ (1− q)max
(

0, ŷ
(q)
t − yt

)

(11)

where ŷ(q) are the forecasted quantiles, and y the actual obser-
vations of the system imbalance (in MW). A lower EN score
indicates a better probabilistic forecast.

However, by averaging all quantiles in the final score, the
pinball loss may hide low reliability levels for extreme quantiles.
For instance, even if the 5% quantile forecasts can completely
fail, it may have a very limited impact on the total score. To
address this issue, the Winkler score is used since it is intrin-
sically associated with a confidence interval [60]. In this way,
for a confidence interval of (1 − α). 100%, the Winkler score is
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TABLE II
COMPARISON OF DIFFERENT PREDICTION TOOLS FOR JANUARY AND FEBRUARY 2018 ON DIFFERENT METRICS

defined as:

Winkler =
1

n

n
∑

t=1

⎧

⎪

⎪

⎨

⎪

⎪

⎩

δt Lt ≤ yt ≤ Ut

δt + 2 (Lt − yt) /α yt < Lt

δt + 2 (Lt − Ut) /α yt < Ut

(12)
where Lt and Ut are respectively the lower and upper bounds
of the prediction interval (defined by the confidence level α), δt
= Ut − Lt is the predicted interval width. In this way, if the
actual observation falls into the predicted interval, the Winkler
score is a direct measure of sharpness (and a lower score indi-
cates a better probabilistic forecast). Otherwise, a penalty term
is added if an actual value lies outside the constructed interval.
The penalty value depends on the severity of the forecast error,
and is thus a measure of calibration.

In this paper, the Winkler score is calculated for confidence
levelsα that correspond to the different risk-attitudes that will be
tested into the subsequent robust optimization procedure, i.e., α
= 0.1, 0.3, 0.5, 0.7 and 0.9. This allows confronting the predic-
tion accuracy in regards with the final purpose of the proposed
forecast-driven optimization methodology.Besides, these two
metrics are supported by an empirical measure of the coverage of
prediction intervals. To that end, we compute (over the test set)
the actual percentage of observations below the quantile q, and
we compare this value to the corresponding quantile nominal
probability q.

In Table II, it can be observed that all neural network models
strongly outperform both the probabilistic persistence method
and the ARIMA statistical model. It shows that such simple mod-
els are poorly suited for modeling the nonlinear behavior (with
quick variations) of the system imbalance. Random forests are
providing a more reliable framework (that can be implemented
in a short period of time), but they also lack the processing power
of more complex models.

Another interesting result is that the 3-MLP (3 hidden layers)
obtains better results than the shallow MLP, which highlights the
importance of depth for leveraging the full potential of neural
networks. Moreover, in accordance with [47], the hybrid GRU-
MLP model has comparable performances than the simpler 3-
MLP model, which illustrates the difficulty to design tailored
architectures that improve the prediction accuracy. However, the
proposed encoder-decoder, whose temporal nature is designed
to optimally exploit both dynamic and static variables, seems to
achieve this objective by outperforming all other neural networks

Fig. 5. Probabilistic forecasts of the Belgian system imbalance performed
sequentially for the 96 quarters-of-an-hour of the 8th January 2018.

for the challenging task of predicting the one-step ahead system
imbalance.

Interestingly, XGBoost yields similar results than the MLP
(according to the Winkler score) for extreme quantiles, which
may be harmful when predictions are intended to be embedded
within risk-aware optimization strategies. However, its accuracy
increases for large confidence levelsα (i.e.,α= 0.3, 0.5, 0.7 and
0.9), which emphasizes its good ability to predict values close
to the mean.

It should also be noted that the empirical coverage (computed
over a representative test set of 5472 points) shows that all
tools give consistent quantiles (e.g., 94.1% of the actual system
imbalances are below the predicted quantile q = 0.95 for the
encoder-decoder), which demonstrates the reliability of using
quantile regression (7) for probabilistic forecasting.

For illustrating the quality of the results obtained using the
encoder-decoder network with the (non-parametric) quantile
loss function, probabilistic forecasts of the system imbalance
carried out sequentially (one step-ahead) for the 96 quarters-of-
an-hour of the 8th January 2018 are shown in Fig. 5.

One can see that the predicted intervals tend to properly
encompass the actual realizations of uncertainties (i.e., the
volatility of the system imbalance is well captured). More
interestingly, we observe for certain time periods (e.g., around
quarters of an hour 4 and 72) that the prediction intervals are
sufficiently sharp so that all quantiles are positive or negative.
Those moments correspond thus to ideal situations for deviating
from the balanced position (with the necessary security margins)

Authorized licensed use limited to: Olivier Deblecker. Downloaded on February 21,2020 at 08:15:59 UTC from IEEE Xplore.  Restrictions apply. 



BOTTIEAU et al.: VERY-SHORT-TERM PROBABILISTIC FORECASTING FOR A RISK-AWARE PARTICIPATION 1227

TABLE III
IMPACT OF DIFFERENT FORECASTERS AND DIFFERENT RISK-ATTITUDE STRATEGIES IN THE PARTICIPATION IN THE SINGLE PRICE IMBALANCE SETTLEMENT

to make profit in the imbalance settlement. This observation will
be verified and quantified in the next Subsection IV.B, where the
probabilistic forecasts will be fed into a robust optimization tool.

B. Numerical Results of the Real-Time Market Optimization

In this work, an aggregated battery storage system is stud-
ied, whose technical parameters are borrowed from [61]. This
energy storage system (ESS) is characterized by a symmet-
ric and continuous variation range for the output power (120
MW), with good ramping (60 MW/min) and energy capabilities
(240 MWh). The power limitations (8e)–(8f) and technology-
specific constraints (8g) associated with the ESS can be found
in the Appendix (Section VI). The costs C+ and C− are 50
and 30 € /MWh respectively, and ensure that the unit will
exploit only profitable price spreads between the charged and
discharged energy, accounting for the operating costs and effi-
ciency losses of the unit [62]. Practically, the ESS will adopt a
long position only if λSI>50€/MWh, and a short position only
if λSI<30€/MWh.

We consider that no contracts were agreed in advance, and that
the whole flexibility is thus available in real-time. The resulting
MILP model is implemented in Python, using the Pulp library,
and solved with CPLEX, on an Intel Core i7-2630 CPU @ 2.0
GHz with 8GB RAM.

The developed procedure (probabilistic forecasts of the sys-
tem imbalance, which are then used into the robust optimization
tool) is run sequentially over the entire test set horizon (at the
start of each quarter-of-an-hour of January and February 2018).
The storage system is initially half-charged, but this value is
adjusted between consecutive time steps based on the real-time
dispatch of the unit.

An ex-post out-of-sample analysis is then carried out, which
consists in confronting, at each quarter-of-an-hour, the decisions
eimb,+ and eimb,− (obtained at the end of the optimization)
with the actual realizations of the system deviation. This al-
lows computing the actual (ex-post) profit of the market player,
which allows to quantify the value of advanced predictions on
actual field operations. This analysis is performed in parallel
for different configurations, in order to quantify the impact on
the operational profit of: (i) improved forecasts of the system
imbalance, and (ii) the risk-attitude strategy (which is defined
through different bounds of the uncertainty set, taken from the
different quantiles of the probabilistic forecasts). Practically, the
outcomes from each prediction tool for each risk-policy are

incorporated into the robust dispatch strategy, and the quality
of the resulting decisions is compared in Table III.

As a measure of the upper bound of the profit that can be
generated, the optimization problem was firstly run with the per-
fect knowledge of the system imbalance. Then, the aggregated
profits (summed over all quarters-of-an-hour of the 2-months
test set period) that were expected at the end of the optimization
procedure (left part of Table III) are put into perspective with the
actual profits given by the (ex-post) clearing of the imbalance
settlement, based on the optimized position eimb,+ and eimb,−

of the market participant. From these results, several trends can
be identified.

Firstly, it is important to mention that the computational
time is always lower than 1 minute (whereas the forecasting
tool necessitates less than 1 second to provide the probabilistic
forecasts of interest), which enables our robust formulation
with probabilistic guarantees to be exploited in the real-time
operation of market players with flexible resources.

Secondly, it is observed that the quality of predictions consti-
tutes a prominent factor to take reliable decisions. In this way,
using the risk-optimal predictions from our encoder-decoder
model is here associated with an increase of profit between
40 k€ (compared to the second best model, i.e., XGBoost)
and 298 k€ (for quantile regression forest), which corresponds
to relative increases of respectively 2.8% and 21% throughout
the test period of January-February 2018. In this way, even
small improvements in the prediction accuracy can result into
significant additional profits. This strongly paves the way to
further research to enhance prediction tools. In this way, the best
predictor yields a risk-optimal profit of 1429 k€ , whereas perfect
forecasts would generate 4201 k€ . Moreover, in accordance
with its forecast (Section IV.A), XGBoost is very competitive for
risky strategies, but leads to lesser performance for conservative
approaches (since its extreme quantiles are then less accurate).

Thirdly, the robust formulation ensures that the portfolio never
participates in the imbalance settlement when the bounds of
the uncertainty set (i.e., the selected quantiles of the predicted
system imbalance) are of different signs. On the contrary, when
the predicted bounds are sign-consistent, the market player may
deviate from its balanced position with the objective to help
at restoring the power system balance. For this to happen, the
flexibility margins have to be still available in real-time, and
the imbalance price must be sufficiently attractive to cover all
intrinsic costs of the unit (which is true in most cases due to the
extreme nature of the imbalance settlement). In this way, in the
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TABLE IV
COMPARISON OF THE PROFIT GENERATED BY PRICE-MAKER AND PRICE-TAKER

ASSUMPTIONS FOR DIFFERENT RISK-ATTITUDES

risk-neutral strategy (where a single bound of the uncertainty set
is considered), the market player almost systematically partici-
pates in the imbalance settlement, which represents an amount of
75255 MWh over the test set period (when the encoder-decoder
is used as forecaster). By contrast, the associated risk-averse
policy (05–95 quantiles) leads to a moderate contribution of
16352 MWh (which are played 27% of the time, i.e., an average
of 25 times a day for the 96 daily settlement periods).

Fourthly, we see that the expected and actual profits can
be very different. Such discrepancies are exacerbated for risky
attitudes since the decisions are then based on forecasts with
low reliability. Such risky approaches tend to overestimate the
profit that will be actually generated, leading to ex-post disap-
pointment when the actual outcome is revealed. For instance,
the approach with the 45–55 quantiles represents a reliability
of 10% that the actual system imbalance lies in the prediction
interval, which ultimately jeopardizes the performance of the
optimization. This illustrates the need to rely on risk-aware
approaches to hedge against such situations.

In our case, the risk-optimal approach is the optimization
performed with the 15–85 quantiles (obtained with the encoder-
decoder), since this tool leads to the highest actual profits,
and therefore to the best tradeoff between conservativeness and
economic performance. This strategy is sufficiently audacious to
properly take advantage of favorable situations, while hedging
against the market volatility, by avoiding to participate when
the conditions are unsure. Indeed, results highlight that this
risk-optimal policy leads to erroneous offers (that infer financial
penalties) occurring 6.5% of the time. In comparison, the deter-
ministic (quantile 50) and risk-seeking policies (45–55, 35–65
and 25–75 quantiles) result in respectively 38%, 32%, 22%
and 14% of erroneous offers, while such misinformed decisions
happen respectively 1% of the time for the more risk-averse
strategies (05–95 quantiles).

Finally, we study the impact of the price-maker assumption
on the performance of the dispatch procedure. To that end, the
optimization is performed in the same conditions (based on
the predictions given by the encoder-decoder), in a price-taker
setting. Practically, the lower-level (9) is cleared independently
(disregarding the actions of the market player), and the resulting
imbalance price is then treated as an exogenous variable in the
subsequent (single-stage) optimization. The outcomes (in terms
of expected and actual profits) for different risk-attitudes are
shown in Table IV.

Results indicate that the price-taker assumption is not
appropriate to model the very-short-term participation of market
players in the imbalance settlement. Indeed, when the forecasted
quantiles of the system imbalance are of the same sign, the actor
provides its full capacity (regardless of its impact on the system
state), which often results in switching the system conditions.
The ESS then charges at high prices, and discharges for low
prices, which ultimately leads to negative profit (especially
for risky policies). In this way, the price-taker assumption is
systematically over-optimistic, which results in very inefficient
strategies when the actual outcome (profit) is revealed. The
price-maker assumption, on the other hand, allows to better
hedge against the real-time volatility of the power system condi-
tions, by properly considering the actions of the market player.

V. CONCLUSION

In this paper, we propose an integrated forecast-driven
methodology for the risk-aware participation in the single price
imbalance settlement of European electricity markets. Exploit-
ing this real-time market opportunity is challenging due to the
extreme variability and very limited predictability of the system
conditions. In order to incorporate this system uncertainty into
the decision procedure, we have developed improved probabilis-
tic predictions of the system imbalance, based on a promising
deep-learning model named encoder-decoder. It should be noted
that such predictions of the system imbalance could also be
useful for the system operator in order to help him in activating
the adequate amount of operating reserves. Results demonstrate
that the temporal nature of the encoder-decoder tool allows
to generate more accurate (tightened) quantiles in comparison
with the other state-of-the-art models, which ultimately results
in a more efficient (informed) participation in the imbalance
settlement.

In a second step, these probabilistic forecasts are used as
inputs into the subsequent decision procedure, allowing to op-
timize the risk-attitude through different characterizations of
the uncertainty set. In parallel, fast actions are required to
manage such an unstable environment. A computationally effi-
cient decision-making process is therefore implemented, based
on robust optimization, in order to efficiently capture market
opportunities and maximize the player’s profit in a price-maker
setting (to account of his market power). Interestingly, it has
been shown that the profit can be significantly increased, not
only by relying on an optimal policy to manage and optimize
the risk, but also by improving (even slightly) the quality of the
underlying predictions.

As a perspective, this near real-time formulation could be
integrated into the day-ahead horizon framework such that the
remaining flexibility margins available in real-time are fully
optimized with regard to other previous market opportunities.

APPENDIX

This appendix contains the technology specific constraints
associated with the aggregated battery storage system. This
energy storage system (ESS) can deviate from its balanced
position in four different ways [63]:
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- Upward deviation (i.e., positive imbalance), either by
reducing the charging power Δpc,+υ , or by increasing the
discharging power Δpd,+υ .

- Downward deviation (i.e., negative imbalance), either by
increasing the charging power Δpc,−υ , or by increasing the
discharging power: Δpd,−υ .

These ESS-based power deviations are constrained by the
power limitations are constrained by the power limitations and
the initially planned (scheduled) output of the ESS for the
considered quarter-of-an-hour:

0 ≤ Δpc,+υ ≤ P c
υ , ∀υ (A1)

0 ≤ Δpc,−υ ≤ Pmax
υ − P c

υ , ∀υ (A2)

0 ≤ Δpd,−υ ≤ P d
υ , ∀υ (A3)

0 ≤ Δpd,+υ ≤ Pmax
υ − P d

υ , ∀υ (A4)

where P c
υ and P d

υ are the scheduled power of ESS υ in charging
and discharging operating modes respectively, while Pmax

υ is
the installed capacity (in MW).

Then, limits on the energy content (A5) and (A6) have to
be respected at each time step. The state-of-charge (SOC)
is updated at each time step based on previous actions, and
accounts for energy losses originating from charge and discharge
inefficiencies (ευ is the round trip efficiency of the ESS). The
energy content limitations (Emin

υ,t , Emax
υ,t ) can be adapted for

each quarter-of-an hour t to guarantee that sufficient energy can
be stored or discharged by the ESS to meet the needs associated
with the following time steps.

SOCυ,t −Δt

(

Δpc,+υ

√
ευ +

Δpd,+υ√
ευ

)

≥ Emin
υ,t , ∀υ, t (A5)

SOCυ,t +Δt

(

Δpc,−υ

√
ευ +

Δpd,−υ√
ευ

)

≤ Emax
υ,t , ∀υ, t (A6)

where Δt is the time period (here, 0.25 hour). Finally, constraint
(A7) ensures that real-time power deviations satisfy the ESS’s
ramping limits:

Δpc,+υ ,Δpd,+υ ,Δpc,−υ ,Δpd,−υ ≤ 60Δt ·Rυ, ∀υ (A7)

where Rυ,t is the available ramping ability (in MW/min).
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