

CH. DE FRUYTIER

O. VERLINDEN

D. WATTIAUX

Thales Alenia Space ETCA

POLYTECH. MONS

Date : 14/05/08

□ Introduction

Pyroshock testing methods

□ ETCA pyroshock test facilties

□ Usual way to perform nominal shocks

Pyroshock model

□ Finite element model of the test facilities

□ Model Validation

□ Parametric Analysis

Sensitive components of electronic units

- Structural parts are not sensitive
- Sensitive components

- * Relays
 - Chatter, transfer
 - Permanent damage

* Magnetic components: brittle failure, cracks

* Crystals, brittle epoxies, glass diodes, wires, leads

- Brittle failures, cracks
- Bond fracture
- Broken wires

All rights reserved © 2007, Thales Alenia Space

Thales Alenia Space ETCA

- - Drop tables

- * Velocity step instead of acceleration step (bad at low frequency)
- * One axis/one direction: six shocks instead of one
- Electrodynamic shaker
 - * input to the test item is spatially overcorrelated, as opposed to the real uncorrelated shock excitation caused by pyro separations
 - * 200 300 g max in time domain; one order of magnitude too low
- Mechanically excited ringing structures
- Pyrotechnically excited ringing structures
 - * Plate testing using explosives is the best method of simulating pyro shock events where fullscale flight hardware are not available or too costly.

□ Mechanical structure: - Double plate (aluminium, steel)

- Simple plate (aluminium, steel)
- Simple plate + square (aluminium, steel)
- More complex set-up...

Excitation devices:

- Explosive (nominal)
- Dropping hammer
- Pneumatical jack

- □ Measurements:
- Acceleration
- Quick Calculation of the SRS's

Excitation – Explosive charge

□ Using of Non-electric detonator

Detonator and explosive charge are fixed on a steel plate

□ A gun causes the explosion of the detonator and so, of the explosive charge

Thales Alenia Space ETCA

Date: 14/05/08

Charge fixed with tape to the set-up

Cordon NONEL

THALES All rights reserved © 2007, Thales Alenia Space

6

Some standard configurations...

□ Double plate set-up

Some standard configurations...

□ Double plate set-up

Some results of double plate set-up...

Some results of double plate set-up...

S2 In plane

S2 Out of plane

□ Main parameters to tune on double plate set-up:

- Quantity of explosive charge
- □ Material of base plate and mounting plate
- Dimensions of mounting plate
- Number of damping devices between the plate
- Location of damping devices
- □ Location of explosive charge
- ...

□ Drawback of double plate set-up:

Out of plane axis is over-tested

Some specific configurations...

Some specific configurations...

Some results of specific configurations...

With Aluminium square

14	Thales Alenia Space ETCA
	Date : 14/05/08

Some results of specific configurations...

One high level axis set-up

With Aluminium square

Usual way to perform a pyroshock test campaign

Specified level and unit (through mass and dimension mainly)

□ ETCA pyroshocks data base (more than 3000 pyroshocks) is the main tool to choose a test fixture to start a calibration stage

□ Calibration stage to reach specified levels is a very empiric process (tuning of parameters of the test facilities based mainly on ETCA knowhow)

□ To reduce time and cost of a pyroshock test campaign, interest to use models of the test facilities to know influence of set-up parameters

 $\Box \rightarrow$ Collaboration between TAS ETCA and FPMs

Goal: develop a pyroshock model of the test facilities used by Thales Alenia Space Etca (Belgium – Charleroi) in order to predict the influence of some operating parameters on the SRS calculations

Used configuration:

square steel plate vertically suspended

Detonating cord length: 0, 4, 10, 20, 30, 50 cm **Acquisition parameters:** $F_{sample} = 100 \text{ kHz}$ N_{sample}= 8192 pts Low pass filter with a cutoff frequency of 10 kHz **Characteristics of the plate:** Steel material Area= 1 m^2 Thickness= 15 mm THALES

20

Main experimental results

Model validation in the modal domain

Relative frequency difference

$$\Delta_k = \frac{\left|f_k^E - f_k^S\right|}{f_k^S}$$

Modal Assurance Criterion (MAC):

$$MAC_{k} = \frac{\left(\left\{\psi_{k}^{E}\right\}^{T}\left\{\psi_{k}^{S}\right\}\right)^{2}}{\left(\left\{\psi_{k}^{E}\right\}^{T}\left\{\psi_{k}^{E}\right\}\right)\left(\left\{\psi_{k}^{S}\right\}^{T}\left\{\psi_{k}^{S}\right\}\right)}$$

f^E (Hz)	f^S (Hz)	Δ_k (%)	MAC
47	49	3.4	0.98
92	89	3.7	0.85
124	127	2.5	0.69
231	224	2.4	0.88
282	282	0.6	0.98
457	445	2.6	0.83
488	477	2.2	0.77
493	498	1.2	0.84
564	560	0.73	0.98
622	635	2.1	0.80
738	730	1.0	0.64
790	771	2.5	0.85
796	803	0.9	0.73
897	919	2.4	0.68
898	899	0.1	0.66

Modal identification with LSCE method (TestLab – LMS)

The FE model have been validated and updated until 1000 Hz \Rightarrow Extrapolation at higher frequencies (until 10 kHz)

Thales Alenia Space ETCA Date : 14/05/08

22

Model validation in the temporal domain

Comparison between experimental and simulated accelerations

Definition: EMS corresponds to the mechanical force which has to be applied to the FE model to generate equivalent acceleration fields

EMS is definied by two parameters

 $\hfill\square$ The intensity $\hfill {\it F}_{\rm max}$ of the impact

 \Box The duration τ of the impact

The parameters F_{max} and τ of the EMS are deduced by an optimization process that minimize the gap between experimental and numerical results in terms of SRS :

$$\epsilon = \min_{F_{Max}, \tau} \sum_{f=0}^{10 \text{ kHz}} \sum_{j=1}^{N_{SRS}} \left| SRS_j^{\text{Measured}} - SRS_j^{\text{Simulated}}(F_{Max}, \tau) \right|^2$$

→ Identification process costly in calculation time

In practice,

- Quantification of τ : [20:20:200] μ s
- For each τ , calculation of the SRS to an unitary intensity \Rightarrow SRS^{ref}

$$\epsilon(\tau) = \min_{F_{Max}} \sum_{f=0}^{10 \text{ kHz}} \sum_{j=1}^{N_{SRS}} |SRS_j^{Measured} - F_{max} SRS_j^{ref}|^2$$

Thates Alenia Space ETCA

Date: 14/05/08

THALES

All rights reserved @ 2007, Thales Alenia Space

Statistical indicators to compare SRS

$$\Delta_i(f) = \left| SRS_i^{simulated}(f) - SRS_i^{Measured}(f) \right|$$

 $\mu(\Delta_i)$ et $\sigma(\Delta_i)$: correspond to the mean and the standard deviation of the indicator $\Delta_i(f)$ along the frequency range [1 – 10 kHz]

$$egin{aligned} \mu(\Delta_i) &=& rac{\sum\limits_f |\Delta_i(f)|}{N} \ \sigma(\Delta_i) &=& \sqrt{rac{1}{N} \sum\limits_f (\Delta_i(f) - \mu(\Delta_i))^2} \end{aligned}$$

 μ_{G} et σ_{G} : represent to the mean and the standard deviation respectively of the frequency difference between experimental and simulated SRS considered on the **whole set of measured nodes**.

Thales Alenia Space ETCA Date : 14/05/08

Influence of the damping ratio ξ

EMS identified from a zero detonating cord length						
	ξ%	F_{max} (N)	$ au$ (μ S)	$F_{max} * \tau$ (Ns)	μ_G (dB)	σ_G (dB)
	0	60612	80	4.85	0.82	0.64
	0.1	83518	60	5.01	0.80	0.61
_	0.2	88344	60	5.3	0.84	0.61
	0.3	92091	60	5.52	0.87	0.61
	1	112070	60	6.72	1.07	0.98

Damping ration ξ corresponds to the mean value measured during the experimental modal analysis in the frequency range [0-1000 Hz].

THALES All rights reserved © 2007, Thales Alenia Space

27

Thales Alenia Space ETCA

Identification of the EMS

Damping ratio ξ = 0.1%							
-		F_{max} (N) $ au$	(µs)	$F_{max} * \tau$	(Ns)	μ_G (dB)	σ_G (dB)
-	0 cm	83518	60	5.01		0.80	0.62
	4 cm	129830	60	7.79		0.76	0.57
	10 cm	203980	60	12.24	1	0.88	0.68
	20 cm	199260	80	15.94	1	0.84	0.67
	30 cm	191210	100	19.12	2	1.32	1.83
	50 cm	240870	100	24.09	9	1.27	1.16
		length cord		0 cm) cm	
			$\mu(\Delta)$	i) $\sigma(\Delta_i)$	$\mu(\Delta_i)$) $\sigma(\Delta_i)$	
		node 1	1.30	0.89	3.13	4.02	
		node 14	0.70	0.52	0.86	0.61	
		node 11	0.67	7 0.44	0.83	0.54	
		node 6	0.76	5 0.48	1.15	0.94	
		node 15	0.67	7 0.53	0.88	0.65	
		node 12	0.70	0.66	0.83	0.63	
		node 5	0.91	L 0.65	1.58	0.98	

EMS reproduces in a satisfactory way, in terms of SRS, the dynamic behaviour of the plate in the orthogonal direction because the mean frequency difference is inferior than the usual tolerances (< 3 dB)

Thales Alenia Space ETCA

Date : 14/05/08

28

29

Energy injected by the EMS

Accelerations measured in orthogonal direction of the plate

Accelerations measured in the plane of the plate

At node 6 At node 11 10^{4} 10 10³ Acceleration [g] 10³ Acceleration [g] 10 10^{2} - Experimental SRS Experimental SRS Simulated SRS Simulated SRS 10^{1} 10¹ 10^{-3} 10^{3} 10^{4} 10^{4} Frequency [Hz] Frequency [Hz]

The moment arm induced by the measure cube amplifies acceleration levels inplane directions ⇒ introduction of the dynamic effects of the cube in the FE model

Thales Alenia Space ETCA

Date : 14/05/08

31

Modelling of the measure cube (1)

- Modelling of the moment arm with help of CERIG elements
- Cube has been represented by an undeformable pyramid having equivalent geometric dimensions (same base and same height)

Characteristics of the cube

- M_{cube} = 47 g (steel)
- h_{cube} = 20 mm
- S_{cube} = 400 mm²

ThalesAlenia

A Theles / Finmeccanica Company Space

Thales Alenia Space ETCA

Accelerations measured in the plane of the plate

Application to other configurations

Configuration 1

Configuration 2

Configuration 3

		U		U	
	F_{max} (N)	$ au$ (μ S)	$F_{max} * \tau$ (Ns)	μ_G (dB)	σ_G (dB)
Configuration 1	58580	80	4.69	2.43	1.53
Configuration 2	89092	60	5.34	3.36	2.35
Configuration 3	65500	80	5.24	3.35	2.88

When we apply to these 3 configurations the EMS identified on the reference test facility, we obtain similar results.

→ Close to 5 Ns

POLYTEC

All rights reserved © 2007, Thales Alenia Space

Date : 14/05/08

34

Thales Alenia Space ETCA

35 Thales Alenia Space ETCA Date : 14/05/08

Configuration 2

Parametric analysis

□ Ability of Thales Alenia Space ETCA pyroshock test facilities to cover a large range of SRS

□ Equivalent mechanical shock + FEM of the test facilities = new way to reduce time spent during calibration stage

□ Parametric analysis can be performed to know the influence of main parameters of the test set-up

□ Development of new mechanical tools to reach high level specifications in, at least, two axes simultaneously, with reduced overtesting

CONTACTS

Ch. De Fruytier

Thales Alenia Space ETCA Industrial Department / Mechanical conception 101 rue Chapelle Beaussart, 6032 Mont-Sur-Marchienne, Belgium : christophe.defruytier@thalesaleniaspace.com

D. Wattiaux, O. Verlinden

Faculté Polytechnique de Mons Department of Theoretical Mechanics, Dynamics and Vibrations 31 Boulevard Dolez, 7000 MONS, Belgium

⊠: <u>david.wattiaux@fpms.ac.be</u>; <u>olivier.verlinden@fpms.ac.be</u>

Date : 14/05/08

All rights reserved © 2007, Thales Alenia Space

THALES