

HiPIMS Today

On the synthesis of Titanium Dioxide, from DCMS to Bipolar HiPIMS

stephanos.konstantinidis@umons.ac.be

In the last century...

N. Martin et al, Thin Solid Films 300, **1997**, 113

Annealing DC MS TiO₂ films

YESTERDAY Reactive HiPIMS of TiO₂ thin films

Growth of TiO₂ films, DCBPMS vs HiPIMS

HiPIMS discharge in $Ar - O_2$ (40% O_2) at 1 Pa (7mTorr)

Pulse characteristics :

- Duration : Short pulses of 7µs
- Voltage : 900V → peak current : 200A
- Repetition frequency : 1 3 kHz
- Average power : 1.5 2 kW
- 450 x 150 mm rectangular Ti target

DC Bipolar Pulsed Magnetron discharge (DCBPM): • Frequency : 150 kHz • Positive pulse duration : 2016 ns • Same average power

Substrates : - Glass (4 mm thick) - Steel foils (0.2 mm thick).

Thickness and morphology

Sputtering Technique	Film Thickness			
	(mechanical profilometer - Films on glass)			
DC-BPM	1350 nm			
HiPIMS	660 nm			

Films deposited (Power = 1.7 kW, 6 h duration)

Morphology, HiPIMS deposited TiO₂ films on glass

X-ray Fluorescence measurements have shown HiPIMS films are **denser** than DCBPMS ones (~20%)

Morphology of TiO₂ films on steel substrates

Acc.V Spot Magn Det WD 2 μm 20.0 kV 3.2 20000x 52 12.8 TiO2 sur acier MPHP 02/08

8

Crystalline structure of HiPIMS TiO₂ coatings

What if the steel substrate is floating ?

Steel foil at **FLOATING** potential → **ANATASE** structure like on glass

Comparing DC-BPMS and HiPIMS sputtering

Refractive index, TiO₂ on glass

On glass, both films are anatase.

 \rightarrow Higher index could be attributed to film **densification by HiPIMS**

Influence of substrate, summary

TiO₂ films deposited by HiPIMS

- are denser
- have a different crystalline structure (RUTILE on steel)
- have a higher refractive index

Ionization degree induced by short pulse is enough to modify film properties

Capacitance of substrate is an influential factor regarding the energy deposition during film growth

Energy flux measurements during TiO₂ deposition

Various contributions to the energy flux at the substrate

The energy flux at the substrate

Thermopile – based probe

- \rightarrow Allows to distinguish:
 - 1. **Rapid processes**
 - Plasma related contributions
 - 2. Slow processes
 - IR emitted by slowly heated body \rightarrow Target bombarded by plasma ions.

500 Thermal processes 15 % Energy flux density (mW/cm²) 00 00 00 00 00 00 (Qradeq)

Energy Flux vs time

- P.-A. Cormier et al, J. Appl. Phys. 113, 013305 (2013). 1.
- P.-A. Cormier et al, Thin Solid Films 545, 44 (2013). 2.
- 3. A. Thomann, Surf. Coat. Technol. 377, 124887 (2019).

Energy flux at the substrate surface, metallic vs oxide modes

• Increased energy deposition comes from high energy O⁻ negative ions

IR emission from a heated sputter target

Discharge type	Power (W)	Magnetic geometry	Energy flux (mW/cm ²)			NEF (keV/Ti at)	% of IR
			Plasma	IR	Total flux		
HIPIMS	800	UB	682	165	847	45.4	19
HIPIMS	400	UB	223	33	256	16.3	13
DC	800	В	346	548	894	12.8	61
DC	400	В	223	127	350	10.9	36
DC	800	UB	423	88	511	6.9	17

XRD vs Energy per adparticle

TODAY Reactive bipolar HiPIMS of TiO₂ thin films

Michiels et al, manuscript in preparation

I & V waveforms

Ion Energy Distribution Functions, $U_{+} = 300V$

IEDFs for O⁻ ions, HiPIMS vs B-HiPIMS

Charge collection at the substrate

24

Comparison of the XRD data

Low resistivity Si substrates

Topography and cross-section SEM images

Ar/Ti+O ~ 2,5%

Ar/Ti+O ~ 2,5%

Refractive index

Process	Density (g/cm ³)	Crystallinity	n (Ellipsometry)
DCMS	3,6	Amorphous	2,41
HiPIMS_26Amp	3,9	rutile	2,53
BPH_26_300V	3,4	rutile	2,49
BPH_70_300V	3,5	rutile	2,60

Bipolar HiPIMS of TiO₂ on glass

Summary

- 1. Energy deposition is increased when running a HiPIMS plasma
 - Pay attention to the substrate electric connection (floating vs grounded) espescially for classic HiPIMS
 - Optimization of the magnetic field is necessary to allow ions to do their job otherwise (balanced field) the target surface may become a radiator and the film is annealed in situ.
- 2. HiPIMS films are usually found to be well crystallized while DCMS films are amorphous or contain anatase nanocrystals
- 3. Refractive index is higher in HiPIMS based deposition processes
- 4. During Bipolar HiPIMS, the positive pulse controls the energy and the amounts of positive ions collected at the substrate
 - Argon is incoporated in the film
- 5. HiPIMS was tested sucessfully on a (small scale) rotating magnetron

W.P. Leroy et al, J. Phys. D. Appl. Phys. 44, 115201 (2011).

What about HiPIMS tomorrow ?

Acknowledgements

- D. Depla & Co (Universiteit Gent)
- A.-L. Thomann and A. Caillard & Co (Université d'Orléans)
- S. Lucas & Co (Université de Namur)
- M. Michiels, N. Britun, ... (Université de Mons/Materia Nova R&D center)

