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Abstract: Considering the Poincaré group ISO(d− 1, 1) in any dimension d > 3 , we characterise
the coadjoint orbits that are associated with massive and massless particles of discrete spin. We also
comment on how our analysis extends to the case of continuous spin.
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1. Introduction

The Unitary Irreducible Representations (UIRs) of the Poincaré group in four dimen-
sions ISO(3, 1) were classified by Wigner in his seminal paper [1]. Later, with Bargmann
in [2] they associated, with every UIR of ISO(3, 1) , a linear and manifestly relativistic
field equation the solutions of which transform in the corresponding UIR. Concerning
the UIRs of the Poincaré group in dimensions d > 3 , the first classification was obtained
by Siegel and Zwiebach in [3,4]. The three-dimensional case had been treated in [5]. By
following a different approach that generalises to any dimension, the Bargmann–Wigner
treatment [2], a classification of linear and manifestly relativistic field equations giving rise
to a classification of the UIRs of the Poincaré group in arbitrary dimension was obtained
in [6–8]. For a pedagogical review of these classifications and their equivalence (together
with related works including the recent paper [9] that uses what one could call the “Casimir
approach”), see the lecture notes in [10].

Yet another way to study the UIRs of the Poincaré group in any dimension is via
Kirillov’s coadjoint orbit method [11], although the Poincaré group is neither nilpotent nor
compact. The coadjoint orbits of the Poincaré group in any dimensions have been classified
in the mathematical literature [12]. Still, a physicist-friendly approach appears desirable to
us, with a particular focus on the orbits that correspond to massive and massless particles
with discrete spin or helicity. In four dimensions, this was done in [13] for the massive
case and in the papers [14,15] by Andrzejewski, Kosiński, Maślanka and collaborators
for massive and massless particles of discrete spin, with a review presented in [16]. The
original scope of the latter analysis was to reconstruct the dynamics of spinning particles
directly from Poincaré invariance by identifying the appropriate coadjoint orbit of the
Poincaré group with the phase space associated with a given spinning particle. In the
current paper, we want to pursue the study of coadjoint orbits associated with massive
and massless particles and push it to the Poincaré group for Minkowski spacetime in any
dimension d > 3 . The coadjoint orbit method was already applied to the groups ISO(2, 1)
and SO(2, 2) and various infinite-dimensional extensions of them in, e.g., [17–20]. We refer
to these works and to [21–23] for another illustration of the interest in the study of coadjoint
orbits of a Lie group G , even in the cases where the classification of the UIRs of G is already
known. The interest precisely lies in the connection between the coadjoint orbits on the
one hand and the UIRs of the Lie group on the other hand.
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In the rest of this introduction, we recall some elementary notions that establish our
notation and give definitions that are necessary for the following sections.

First of all, let us recall that, given a Lie group G and its Lie algebra g of dimension n ,
the adjoint representation of G is Ad:G → Aut(g) such that G 3 g 7→ Adg where Adg(x) :=
gxg−1 , for all x ∈ g . Introducing the dual algebra g∗ with the pairing 〈θ I , eJ〉 = δI

J between
a basis (eI)I=1,...,n of g and the dual basis (θ I)I=1,...,n of g∗ , the coadjoint representation
of G is defined by Ad*:G → Aut(g∗) such that G 3 g 7→ Ad∗g where 〈Ad∗g(η), x〉 =
〈η, Adg−1(x)〉 for all x ∈ g and for all η ∈ g∗ .

The Poincaré group ISO(d− 1, 1) ∼= SO(d− 1, 1)n Td is the relevant group for rela-
tivistic physics in Minkowski spacetime of dimension d . It is the semi-direct product of
the group of (proper) Lorentz transformations with the abelian group of spacetime transla-
tions. The elements of SO(d− 1, 1) have a unit determinant and preserve the Minkowski
metric η ; i.e., for any Λ ∈ SO(d− 1, 1) one has ΛtηΛ = η and det(Λ) = 1 . We work
in inertial coordinates where η = diag(+1,−1, . . . ,−1) . In the following, we implicitly
restrict the proper Lorentz group SO(d− 1, 1) to its subgroup of orthochronous transfor-
mations, where Λ0

0 > 1 on top of the previous constraints. The multiplication law in the
Poincaré group is defined as (Λ1, a1)(Λ2, a2) = (Λ1Λ2, Λ1a2 + a1) , while the inverse is
given by (Λ, a)−1 = (Λ−1,−Λ−1a) . An infinitesimal Lorentz transformation is given by
ΛA

B = δA
B + vA

B where vAB is an infinitesimal antisymmetric tensor and the indices
A, B, C, . . . run over the values 0, 1, . . . , d− 1 . An element g ∈ ISO(d− 1, 1) close to the
identity is presented by

g = 1 + i εAPA −
i
2

vAB MAB , (1)

where the factors i and the signs are purely conventional. Here, PA and MAB are the
generators of the Poincaré group, meaning that our basis for g is (eI)I=1,...,n = (PA, MAB) .
The dimension of the algebra g ∼= iso(d − 1, 1) is n = d(d+1)

2 . Our conventions for the
commutators of the generators of the Poincaré group are given by

[PA, PB] = 0 , (2a)

[MAB, PC] = i(ηBCPA − ηACPB) , (2b)

[MAB, MCD] = i(ηAD MBC + ηBC MAD − ηAC MBD − ηBD MAC) . (2c)

If a generic element x ∈ g is written as x = εI eI = εA PA + 1
2 vAB MAB , in the dual

algebra g∗ of the Poincaré group, we have η = ζ I θ I ∈ g∗ and (ζ I) = (ζA, ζAB) ∈ (g∗)∗ ∼= g

are the coordinates of a generic element η ∈ g∗ . The dual space is equipped with the
following Poisson structure:

{ζA, ζB} = 0 , (3a)

{ζAB, ζC} = ηBCζA − ηACζB , (3b)

{ζAB, ζCD} = ηADζBC + ηBCζAD − ηACζBD − ηBDζAC . (3c)

2. Massive Case in Five Dimensions

The Poincaré algebra in 5 dimensions contains 15 generators: 5 translations collected
in PA and 10 Lorentz transformations collected in the antisymmetric tensor MAB. The com-
mutation relations are those recalled in Equation (2), and there are three Casimir operators:

C1 := PAPA , C2 := WABWAB , C3 := H = WAB MAB , (4)

where WAB is the analogue of the four-dimensional Pauli–Lubanski vector, which is defined as

WAB :=
1
2

εABCDE MCD PE . (5)

In this section, capital Latin indices take values in {0, 1, . . . , 4} .
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Irreducible massive representations of ISO(4, 1) are characterised by the
following conditions:

PAPA = m2 I , (6a)
1
8

(
WABWAB + mH

)
= −m2s1(s1 + 1) I , (6b)

1
8

(
WABWAB −mH

)
= −m2s2(s2 + 1) I . (6c)

The little group of a massive particle in five dimensions is SO(4) ; that is, the product
of two SU(2) factors. The two (half) integers s1 and s2 thus label the irreducible represen-
tations of the two SU(2) subgroups of SO(4) . In the dual algebra, as in (3), we denote
by ζA and ζAB , respectively, the dual coordinates associated with PA and MAB . We also
introduce the dual of the Pauli–Lubanski tensor:

ωAB :=
1
2

εABCDEζCD ζE . (7)

The constraints (6) imply the following constraints in the dual algebra:

ζAζA = m2 , (8a)
1
8

(
ωABωAB + m ωABζAB

)
= −m2 s1(s1 + 1) , (8b)

1
8

(
ωABωAB −m ωABζAB

)
= −m2 s2(s2 + 1) . (8c)

We are imposing 3 independent constraints on our 15 coordinates, implying that the
orbit for a massive particle is 12-dimensional. Actually, with (8), we are imposing the
constraint that the three independent Casimir operators are proportional to the identity
with a given eigenvalue. As recalled, e.g., in [16], this operation identifies a generic
coadjoint orbit of the Poincaré group.

We now wish to find a convenient parametrisation of these orbits in terms of a set
of independent coordinates. We shall thus identify a canonical point on the orbit and
characterise the whole orbit by acting on it with the Poincaré group. To begin with, it is
convenient to solve the mass-shell condition (8a) by choosing the coordinate ζA as

ζA = (m, 0, 0, 0, 0) , (9)

which is the momentum of a massive, positive-energy particle in its rest frame. With such a
representative for the coordinates ζA , the non-zero components of the tensor ωAB defined
in (7) are

ω12 = m ζ34 , ω13 = m ζ42 , ω14 = m ζ23 , ω23 = m ζ14 , ω24 = m ζ31 , ω34 = m ζ12 (10)

and the last two equations of (8) become:

1
8

[
(ζ34 + ζ12)

2 + (ζ42 + ζ13)
2 + (ζ14 + ζ23)

2
]
= s1(s1 + 1) , (11a)

1
8

[
(ζ34 − ζ12)

2 + (ζ42 − ζ13)
2 + (ζ14 − ζ23)

2
]
= s2(s2 + 1) . (11b)

Defining

J1 = −1
2
(ζ34 + ζ12) , J2 = −1

2
(ζ42 + ζ13) , J3 = −1

2
(ζ14 + ζ23) ,

J
′
1 = −1

2
(ζ34 − ζ12) , J

′
2 = −1

2
(ζ42 − ζ13) , J

′
3 = −1

2
(ζ14 − ζ23) ,

(12)
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then, Equation (11) gives

1
2 (J2

1 + J2
2 + J2

3 ) = s1(s1 + 1) , 1
2 (J2′

1 + J2′
2 + J2′

3 ) = s2(s2 + 1) . (13)

This reconstructs the Casimir operator of each factor of SO(4) ∼= SU(2)× SU(2).
As we recalled in the Introduction, the commutation relations of the Lie algebra

g ∼= iso(4, 1) endow the dual algebra g∗ with a Poisson structure. The Poisson bracket be-
tween the six variables {Ji, J′i} (where the indices i, j here and below belong to {1, 2, 3}) read
as follows:

{Ji, J′j} = 0 , {Ji, Jj} = −εijk Jk , {J′i, J′j} = −εijk J′ k . (14)

Those relations show that the two sets Ji and J
′
i are the generators of the two SU(2)

factors of SO(4) .
We can now complete the identification of the canonical point of the orbit by applying

the same reasoning as in the four-dimensional case studied in [15,16], to which we refer
readers for more details. The constraints (8) discussed above are indeed compatible with
the following choice for the canonical point:

ζ̄A = (m, 0, 0, 0, 0) , ζ̄0a = 0 , ζ̄ab =
1
2

Scd εabcd , (15)

where a, b, c, . . . ∈ {1, 2, 3, 4} and Sab is an antisymmetric tensor whose components have
to obey the constraints in (11). Imposing the constraint that all components of Sab but S12

and S34 vanish and considering the sum and the difference of Equations (11a) and (11b)
yields the following system of constraints on the nonzero components of Sab :

(S12)2 + (S34)2 = s1(s1 + 1) + s2(s2 + 1) , 2 S12S34 = s1(s1 + 1)− s2(s2 + 1) . (16)

We solve this system by

Sab =


0 if (a, b) 6= (1, 2), (3, 4)

1√
2
(α1 − α2) if (a, b) = (1, 2)

1√
2
(α1 + α2) if (a, b) = (3, 4)

(17)

where the real numbers α1 and α2 are such that α2
1 = s1(s1 + 1) and α2

2 = s2(s2 + 1) .
To determine the coordinate of a generic point of the orbit, one must act via the

coadjoint action with a generic Poincaré transformation (Λ, a) on the canonical point. We
use the same type of parametrisation for a generic element of the Poincaré group as in [16].
This means that we impose

Λ = L R with R = R B , (18)

where R is a rotation, L a boost and B an element of SO(4) that stabilises the canonical
point. The components of R and L are given as

L0
A ≡ L0

A = ΛA
0 , La

b = δa
b −

Λa
0Λb

0

1 + Λ00
, R0

A ≡ R0
A = δA

0 , Ra
b = Λa

b −
Λa

0Λ0
b

1 + Λ00
, (19)

while we take

B =


1 0 0 0 0
0 cos α − sin α 0 0
0 sin α cos α 0 0
0 0 0 cos β − sin β
0 0 0 sin β cos β

 . (20)
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Then, we can use the same parametrisation of the proper orthochronous Lorentz
group as was done in [16] for d = 4 :

(Λ, a) = (1, y)(L, 0)(R, 0)(B, z) = (LRB, LRz + y) , (21)

where y and z are five vectors such that y0 = 0 and za = 0 . The Poincaré transformation
(B, z) stabilises our canonical point. Now, we are able to show how the translations are
expressed in this parametrisation:

aA = LA
B RB

C zC . (22)

As recalled above, in order to read off the expression for a generic point of our orbit
for a positive-energy massive particle, we act on our canonical point (ζ̄A, ζ̄AB) with the
coadjoint action

Ad∗(Λ,a)(ζ̄A) = ΛA
B ζ̄B = ΛA

0 m =: pA , (23a)

Ad∗(Λ,a)(ζ̄0b) = Λ A
0 Λ B

b ζ̄AB − (Λ A
0 ab −Λ A

b a0)ζ̄A , (23b)

Ad∗(Λ,a)(ζ̄bc) = Λ A
b Λ B

c ζ̄AB − (Λ A
b ac −Λ A

c ab)ζ̄A , (23c)

which yields

ζ0b = −p0yb +
peScdεbcde

2m
, ζbc = −pbyc + pcyb +

1
2 Se f εe f bc +

Se f [pb εce f d − pc εbe f d] pd

2m(m + p0)
. (24)

We can make this clearer by performing the following change of variables:

xa := ya −
εabcdSbc pd

2(m + p0)
, Jab := 1

2 Scdεabcd . (25)

Then, the coordinates parametrising the coadjoint orbit for a massive particle read as
follows:

ζab = −pa xb + pb xa + Jab , ζ0a = −p0 xa −
pb Jab

m + p0 . (26)

The Poisson structure for the dual algebra of the Poincaré group induces the following
non-degenerate Poisson structure on the coadjoint orbit, as is guaranteed by a well-known
general result (see, e.g., [24]):

{Jab, Jcd} = δac Jbd + δbd Jac − δad Jbc − δbc Jad , {xa, p0} =
pa

p0
,

{pa, pb} = 0 , {xa, xb} = 0 , {xa, pb} = δab , {xa, Jbc} = 0 , {pa, Jbc} = 0 .
(27)

We can now reconstruct the “quantum” algebra by quantising the system above
following the same process as in the d = 4 case studied in [16]. To this end, we work with
the momentum representation and consider wave-functions depending on the momentum
coordinate pa and on the little-group quantum numbers of each particle. In the case of
scalar wave-functions, we can introduce the scalar product

( f , g) =
∫ d4 p

2p0
f (p)g(p) , (28)

where p0 is the function of the four classical variables pa that solves the mass-shell relation
pA pA = m2 . We refer readers to [10] for the generalisation of the scalar product (28) to
wave-functions carrying a non-trivial spin, as we do not need this for our current analysis.
Looking at the Poisson bracket (27), we see that the four quantities xa essentially become
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derivative operators with respect to pa . However, we should enforce the hermiticity of
these four operators with respect to the inner product defined above, which gives

x̂a = i
(
− ∂

∂pa −
pa

2(p0)2

)
I , (29)

while Sab is turned into the operator Ŝab obeying the commutation relations of so(4) , as
is clear from the first equation of (27) and the relation (25) between Sab and Jab . We also
have to replace p0 xa by 1

2 (P̂0 x̂a + x̂a P̂0) to take care of the ordering of operators. Then, the
generators of the Poincaré algebra take the form

P̂A = pA I , (30a)

M̂0a = −ip0
∂

∂pa I−
pd Ŝbc εabcd
2(m + p0)

, (30b)

M̂ab = −i
(

pb
∂

∂pa − pa
∂

∂pb

)
I + 1

2 Ŝcdεabcd . (30c)

3. Massless Case in Five Dimensions

For massless particles, the first two Casimir operators in (4) must vanish and the orbit
must be non-generic with a dimension smaller than that of a massive particle. To identify
the additional constraints on the orbit, inspired by [9], we characterise massless irreducible
representations with fixed helicity by

PAPA = 0 , (31a)

εABCDE PC WDE = 0 , (31b)

SA = s(s + 1) PA , (31c)

where we have introduced the spin operator

SA := −1
4

εABCDE MBC WDE . (32)

The constraints (31b) and (31c) can be consistently imposed since

[PA,SB] =
i
2

εABCDEPCWDE (33)

and they both imply WABWAB = 0 , which is readily seen upon contracting the first condi-
tion with MAB or the second with PA (in d = 4 , the analogues of the constraints (31) are

PAPA = 0 , εABCD PC WD = 0 , SA = s2 PA ,

where
WA :=

1
2

εABCD MBC PD , SA :=
1
2

εABCD MBC WD .

The second constraint implies WAWA = 0 , while PAWA = 0 by construction. Being
a null vector orthogonal to the null vector PA , the Pauli–Lubanski vector WA must be pro-
portional to the latter. The condition on SA then fixes the proportionality factor, meaning
that one recovers the standard relation WA = s PA characterising a massless particle with
helicity s in d = 4). These conditions are translated into the following constraints on g∗ :

ζAζA = 0 , (34a)

εABCDE ζC ωDE = 0 , (34b)

−1
4

εABCDE ζBC ωDE = s(s + 1) ζA , (34c)
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where the second equation is called the helicity condition [9].
To identify the precise number of independent constraints, we begin by choosing

our standard momentum coordinates as ζA = (k, 0, 0, 0,−k) . From (7), we find that the
non-zero components of the Pauli–Lubanski tensor are

ω01 = ω41 = −k ζ23 , ω02 = ω42 = −k ζ31 , ω03 = ω43 = −k ζ12 , ω04 = 0 ,

ω12 = k(ζ30 + ζ34) , ω23 = k(ζ10 + ζ14) , ω31 = k(ζ20 + ζ24) . (35)

The helicity condition (34b) then yields

ζi0 = −ζi4 , i = 1, 2, 3 . (36)

Considering this result, Equation (34c) eventually gives

[(ζ12)
2 + (ζ31)

2 + (ζ32)
2] = s(s + 1) . (37)

This extra constraint tells us that the Casimir operator of the little group SO(3) of
a massless particle with fixed helicity in d = 5 is constrained to be s(s + 1)I , therefore
identifying the label s with the helicity of the particle. Finally, we have five independent
constraints on the orbit: three of them come from Equation (36), the fourth condition is
the mass-shell constraint (34a), while the fifth and last constraint is (37). Altogether, this
means that our orbit is 10(= 15− 5) dimensional.

By looking at the coadjoint action of the Poincaré group on a generic point of the orbit,
we see that we can take ζ̄0a = 0 for our canonical point. The coadjoint action also tells us
that ζab has to transform as an antisymmetric tensor under the rotation group SO(4) . This
means that we can take

ζ̄ab = 1
2 Scd εabcd , (38)

where Sab are the components of an antisymmetric SO(4) tensor. To summarise, the
coordinates of our canonical point can be chosen as

ζ̄A = (k, 0, 0, 0,−k) , ζ̄0a = 0 , ζ̄ab = 1
2 Scdεabcd . (39)

To find the generic point of the orbit, we use the same type of parametrisation of a
generic Poincaré element as was done for the d = 4 massless case in [14]. The only require-
ment for this parametrisation comes from the decomposition Λ = BDR for the Lorentz
matrix, where the matrices D and R are in the stability subgroup Gs ⊂ ISO(4, 1) of our
canonical point. We take the matrices B , D and R as follows, in the light-conecoordinates
(x+, x−, xi) :

B =


Λ+

+ 0 0 0 0

Λ−+ 1
Λ+

+

Λ1
+

Λ+
+

Λ2
+

Λ+
+

Λ3
+

Λ+
+

Λ1
+ 0 1 0 0

Λ2
+ 0 0 1 0

Λ3
+ 0 0 0 1

 , D =


1 Λ+−

Λ+
+

d1 d2 d3

0 1 0 0 0
0 d1 1 0 0
0 d2 0 1 0
0 d3 0 0 1

 , R =


1 0 0 0 0
0 1 0 0 0
0 0 b1 b2 b3
0 0 c1 c2 c3
0 0 e1 e2 e3

 . (40)

One can readily determine the expressions for the four three-vectors bi , ci , di and ei
in term of the entries of Λ by computing Λ = BDR . We do not need these expressions.
Then, a generic element of the Poincaré group can be written as

(Λ, a) = (B, y)(DR, h) , (41)

where the matrix DR and the five-vector h are elements of Gs . In the original Minkowskian
coordinates xA = (x0, xa) , the five-vector y has a vanishing time component: y0 = 0 . Then,
the coadjoint action of the Poincaré group on our canonical point for a massless particle



Symmetry 2021, 13, 1749 8 of 13

in d = 5 gives the following coordinates for a generic point of the coadjoint orbit, in an
arbitrary inertial coordinate system:

ζij = Jij + pjyi − piyj , ζ4i = piy4 − p4yj −
pk Jki√

2(p0 − p4)
,

ζ0i = −yi p0 −
pk Jki√

2(p0 − p4)
, ζA = pA , ζ04 = −y4 p0 ,

(42)

where we introduced Jab := 1
2 Scd εabcd as in the massive case, with the difference that now

Ja4 = 0, as a result of the constraints, meaning that we can work with a tensor Jij with i, j ∈
{1, 2, 3}. We see that our general point is a function of the variables {pa, ya, Jij} including
the four independent momentum variables pa , four coordinates ya and three variables Jij .
Still, we have to impose (37). As a result, Jij has only 2 independent components, which
gives in total 10 independent parameters for our coadjoint orbit.

As in the massive case, we can now deduce the expressions for the Poisson brackets
on the coadjoint orbit by projecting the original Poisson bracket of g∗ on it. We find

{Jkl , Jij} = δki Jl j + δl j Jki − δkj Jli − δli Jkj , {ya, p0} = −
pa

p0
,

{pa, pb} = 0 , {ya, yb} = 0 , {ya, pb} = δab , {ya, Jjk} = 0 , {pa, Jik} = 0 .
(43)

To quantise our system, we use the same approach as for a massive particle. In
particular, one can introduce the same scalar product on the momentum space as in (28),
and requiring hermiticity with respect to it fixes the form of the operator ŷa as

ŷa = i
(
− ∂

∂pa −
pa

2p0

)
I , (44)

while Jij is turned into the operator Ĵij obeying the commutation relations of so(3) , as is
clear from the first equation of (43). We also have to replace p0 ya by 1

2 (P̂0ŷi + ŷi P̂0) to
consider the ordering of operators. In this framework, the momentum operators still take
the form P̂A = pA I as in the massive case while one can compute the generators of Lorentz
group, which gives

M̂04 = ip0
∂

∂p4 I , (45a)

M̂ij = Ĵij − i
(

pj
∂

∂pi − pi
∂

∂pj

)
I , (45b)

M̂0i = ip0
∂

∂pi I−
pk Ĵki

p0 + p4 , (45c)

M̂4i = −i
(
−p4

∂

∂pi + pi
∂

∂p4

)
I− pk Ĵki

p0 + p4 . (45d)

4. Massive Case in Any Dimension

In Minkowski spacetimes of arbitrary dimension d > 3 , massive particles are charac-
terised by the mass-shell condition PAPA = m2 and by additional mutually independent
constraints obtained by fixing the eigenvalues of the other Casimir operators, whose num-
ber depends on the dimension of spacetime. These additional independent constraints
generalise Equation (6) and fix a set of quantum numbers that play a role analogous to that
of the spin in four dimensions. The total number of Casimir operators of ISO(d− 1, 1) is
equal to b d+1

2 c [25], which for a massive representation fixes the dimension of the coadjoint
orbit to be

dimO =
d(d + 1)

2
−
⌊

d + 1
2

⌋
. (46)
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For d = 4, we recover dimO = 8 , while for d = 5, we recover dimO = 12 and the
dimension is always even, as it should be. One can identify a canonical point for the orbit
of a massive particle following the same procedure as in Section 2:

ζ̄A = (m,~0) , ζ̄0a = 0 , ζ̄bc =
1

(d−3)! Sa1···ad−3 εbca1···ad−3
, (47)

where the components of the fully anti-symmetric tensor Sa1···ad−3 have to obey the con-
straints that come from having fixed the eigenvalues of the higher-order Casimir operators.
As detailed in Section 2 for the d = 5 case, these constraints also fix the eigenvalues of all
Casimir operators of the little group SO(d− 1) for a massive particle.

To identify the generic point on the orbit, we can also generalise the parametrisation
of [16] as in Section 2. This means that we decompose an arbitrary element of the Lorentz
group as Λ = LR, where L is a boost and R a rotation in d spacetime dimensions. We
also decompose a generic translation vector in terms of two d-dimensional vectors z and y
satisfying the following properties:

z = (z0,~0) , y = (0,~y) . (48)

As a result, we find the following parameterisation for a generic point on the orbit:

ζA = ΛA
0m := pA , (49a)

ζ0a = −p0ya +
pe

(d− 3)!m
Sb1···bd−3 εaeb1···d−3 , (49b)

ζa f =
1

(d− 3)!
Sb1···bd εa f b1···bd−3

+
Sb1···bd−3 pe

m(m + p0)(d− 3)!

(
ε f b1···bd−3e pa − εab1···bd−3e p f

)
. (49c)

We can present this parameterisation in a more compact form by changing the variables,

xa = ya −
1

(d− 3)!
pc Sb1···bd−3 εacb1···bd−3

m(m + p0)
and Jac =

1
(d−3)! Sb1···bd−3 εacb1···bd−3

, (50)

which leads to

ζA = ΛA
0m := pA , ζ0a = −p0 xa −

pb Jab
m + p0 , ζab = pb xa − pa xb + Jab . (51)

A generic point is thus expressed as a function of the parameters pa , xa , Jab as in four
and five dimensions. We have d− 1 independent momentum variables, d− 1 coordinate
variables xa and the tensor Jab has a priori (d−1)(d−2)

2 independent components. However,
we have to take into account the constraints on our coadjoint orbit: the mass-shell condition
implies that only d− 1 variables p are independent, while the other constraints reduce the
number of independent components of J to (d−1)(d−2)

2 − b d−1
2 c. The Poisson brackets thus

take the same form as in the case of d = 5 displayed in (27), with the only change being
that the indices a, b, . . . now run from 1 to d− 1 .

Following the same quantisation procedure as in Section 2, we promote the coordinates
ζ’s on our phase space to operators in a Hilbert space. For this purpose, we introduce
the inner product on scalar wave-functions in momentum space (and refer readers to the
review [10] for the general case with non-zero spin),

( f , g) =
∫ dd−1 p

2p0
f (p)g(p), (52)

which allows one to identify the Hermitian operators x̂a corresponding to the variables xa :

x̂a = i
(
− ∂

∂pa −
i pa

2p02

)
. (53)
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The antisymmetric tensor Jab is promoted to an operator satisfying the so(d − 1)
algebra, meaning that we eventually obtain

M̂0a = −ip0
∂

∂pa I−
pb Ĵab

m + p0 , M̂ab = −i
(

pb
∂

∂pa − pa
∂

∂pb

)
I+ Ĵab . (54)

5. Massless Case in Any Dimension

In order to generalise the analysis of five-dimensional massless particles of fixed
helicity, we impose

PAPA = 0 (55)

and we generalise the helicity condition (31b) as [9]

P[AWB1···Bd−3] = 0 , (56)

where WA1···Ad−3 denotes the generalised Pauli-Lubanski tensor

WA1···Ad−3 =
1
2

εA1···Ad−3BCE MBCPE . (57)

Notice that contracting (56) with εAB1···Bd−3CD MCD one obtains WA1···Ad−3W
A1···Ad−3 = 0

which is a condition that holds true for massless particles of discrete helicity in any dimen-
sion [10].

Working in the frame in which the standard d-momentum takes the form ζA =
(k, 0, . . . , 0,−k) , the helicity condition implies ζi 0 = −ζi d−1 . Drawing from [9], we can
also generalise the spin Equation (6), obtaining conditions that involve the (higher-order)
Casimir operators of the little group SO(d− 2) of a discrete-helicity massless particle:

d odd : S(n)A = c(n)PA , 1 6 n 6
d− 3

2
, (58a)

d even : S(n)A = c(n)PA and W( d
2−1)

A = λ( d
2−1) PA , 1 6 n 6

d− 4
2

, (58b)

where

S(n)A =
(−1)d

2(d− 2n− 1)!
εE1···Ed ME2E3 · · ·ME2nE2n+1W(n)E2n+2···Ed , (59a)

W(n)
A1···Ad−2n−1

=
1
2n εA1···Ad MAd−2n Ad−2n+1 · · ·MAd−2 Ad−1 PAd . (59b)

The real numbers c(n) denote the eigenvalues of the SO(d − 2) Casimir operators—
eigenvalues that are in bijection with the Dynkin labels or the Young diagram labels
corresponding to the irrep of SO(d − 2) that characterises the particle. The order-2n
Casimir operator of SO(d− 2) reads as

C(n) =
(2n)!
2n+1 Mi1i2 · · ·Mi2n−1i2n M[i1i2 · · ·Mi2n−1i2n ]

, (60)

while for an even d, the real number λ( d
2−1) is the eigenvalue taken by the following

operator [9]:

Λ( d
2−1) = − 1

2
d
2−1

ε0i1···id−2 d−1 Mi1i2 · · ·Mid−3id−2 . (61)

To study massless coadjoint orbits with finite spin, we thus have to fix PAPA = 0
and impose the helicity condition (56). We also have to specify a representation of the
little group SO(d− 2) via Equation (58), which corresponds to fixing the eigenvalues of all
Casimir operators of SO(d− 2) . This fixes the dimensions of the coadjoint orbit as follows:
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the dimension of the Poincaré group is d(d+1)
2 , and there is one condition which comes

from the mass-shell condition (55), together with d− 2 constraints coming from the helicity
condition (56) and r =

⌊
d−2

2

⌋
constraints coming from (58). Eventually, we obtain

dimO =
d(d + 1)

2
− (1 + d− 2 + r) , (62)

where r is the rank of so(d− 2) . For d = 4 we find an orbit with 6 dimensions, while for
d = 5, we find an orbit with 10 dimensions, which agrees with the result discussed above
(in the continuous-spin case for which the constraint (55) is still in order, we certainly cannot
impose the helicity condition (56) since it would lead to WA1···Ad−3W

A1···Ad−3 = 0 that does
not apply for continuous-spin particles; see, e.g., [26,27] and the reviews [10,28]. Instead,
we have to impose the constraint 1

(d−3)! WA1···Ad−3W
A1···Ad−3 = µ2 (with µ 6= 0 ) together

with r extra constraints where r = b d−3
2 c is the rank of the short little group SO(d− 3) for

a continuous-spin particle. These r constraints read as in (58), except for the changes that
have to be introduced in order to take the substitution SO(d− 2)→ SO(d− 3) into account.
As a result, for a continuous-spin particle, there are as many independent constraints as
for a massive particle, which implies that the dimensions of the corresponding coadjoint
orbits are the same. See the recent paper [29] and references therein for relevant works on
continuous-spin particles in arbitrary dimensions).

Now, we have to determine our canonical point and, to this end, we can apply the
same strategy as in d = 5, obtaining

ζ̄A = (k, . . . ,−k) , ζ̄0a = 0 , ζ̄ab =
1

(d− 3)!
Sc1···cd−3 εabc1···cd−3

. (63)

where the components of S have to satisfy the constraints imposed by fixing the SO(d− 2)
Casimirs. We also employ the same parameterisation as in d = 5 for the Poincaré generators
to find a generic point of the orbit. The matrices B, D and R take the following form in
arbitrary dimensions:

B =



Λ+
+ 0 · · · · · · 0

Λ+−
1

Λ+
+

Λ1
+

Λ+
+
· · · Λd−2

+
Λ+

+

Λ1
+ 0 1 · · · 0

...
... · · · . . . 0

Λd−2
+ 0 · · · 0 1

 , D =


1 Λ+−

Λ+
+

d1 · · · dd−2

0 1 0 · · · 0
0 d1 1 · · · 0
...

... · · · . . . 0
0 dd−2 · · · 0 1

 , R =

 1 0
0 1

0d−2×d−2

0d−2×d−2 Ad−2×d−2

 .

After acting on the canonical point and returning to Minkowski coordinates, we find
the following parametrisation for a generic point of the orbit:

ζij = Jij + pjyi − piyj , ζd−1i = piyd−1 − pd−1yi −
pk Jki√

2(p0 − pd−1)
,

ζ0i = −yi p0 −
pk Jki√

2(p0 − pd−1)
, ζA = pA ,

(64)

where Jij = 1
(d−3)! S

c1···cd−3 εijc1···cd−3
, while i, j, k, . . . ∈ {1, 2, 3, . . . , d − 2}. The Poisson

brackets thus take the same form as in the case of d = 5 displayed in (43).
By applying the same steps as in the quantisation of a massive particle, one can also

identify the operators corresponding to each variable on the orbit and obtain the following
expressions for the Lorentz generators:

M0 d−1 = ip0
∂

∂pd−1 I , Mij = Ĵij − i
(

pj
∂

∂pi − pi
∂

∂pj

)
I , (65a)

M0i = ip0
∂

∂pi I−
pk Ĵki

p0 + pd−1 , Md−1 i = −i
(
−pd−1

∂

∂pi + pi
∂

∂pd−1

)
I− pk Ĵki

p0 + pd−1 . (65b)
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6. Conclusions

The coadjoint orbits of the four-dimensional Poincaré group ISO(3, 1) associated with
massive and massless particles with discrete spin were characterised in [13–16]. In this
paper, we extended this characterisation to the Poincaré group ISO(d− 1, 1) of isometries
of the Minkowski spacetime in arbitrary dimensions d > 3 . Following [14,15], for each
type of particle, we first identified the constraints on the dual Lie algebra that define the
coadjoint orbit, and then we selected a set of independent coordinates parametrising the
orbit. We eventually checked that they define a non-degenerate symplectic manifold and
recovered the Poincaré algebra via the canonical quantisation of the resulting phase-space
variables. In analogy with the four-dimensional case, we stressed that massive particles
correspond to generic coadjoint orbits—identified by specifying the values of all Casimir
operators of the Poincaré algebra—while massless particles with discrete spin correspond
to non-generic orbits of lower dimension. Let us stress that, when d > 5 , the effective
little group SO(d− 2) of massless helicity-type particles has rank r > 1 . In these cases, we
identified the additional constraints on the coadjoint orbit and explained how to recover
the quantum numbers of the SO(d− 2) little group in a covariant manner with respect
to the Lorentz group SO(d− 1, 1) . We also commented on how to identify the coadjoint
orbits associated with continuous-spin particles and noticed that the orbits associated with
such particles have the same dimension as those of massive particles, which is consistent
with the possibility to recover the corresponding continuous-spin UIRs from massive ones
with the limits of infinite spin and vanishing mass [30].
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15. Andrzejewski, K.; Gonera, C.; Goner, J.; Kosiński, P.; Maslanka, P. Spinning particles, coadjoint orbits and Hamiltonian formalism.
arXiv 2020, arXiv:2008.09478.
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