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Abstract: As a result of the increased penetration of stochastic renewable generation, power systems have a growing need 
of flexibility for compensating real-time mismatches between production and consumption of electricity. This flexibility can 
be efficiently provided by underground pumped hydro energy storage (UPHES), a new solution where end-of-life quarries 
or mines are rehabilitated as natural reservoirs. However, the operation of UPHES is significantly different from existing 
facilities, and is characterized by multiple nonlinear effects with fast dynamics mainly arising from the complex geometry of 
the unit, and water exchanges between the porous reservoirs and their surrounding aquifers. This paper aims thus at 
integrating these complex effects within the co-optimization of a UPHES system in the European day-ahead energy and 
reserve markets. To that end, we leverage a hybrid iterative approach combining an optimization tool with an advanced 
simulation model. The results from a real-world case study demonstrate that accurately considering these nonlinear effects 
is a key component to fully extract the economic potential of merchant UPHES, and suggest that the proposed tool offers 
an effective solution for the scheduling of UPHES owners. 
 

1. Nomenclature 

Sets and indexes 
optt T  Time steps of the optimization tool  

simT   Time steps of the simulation model 

  Stochastic scenarios 

h H  UPHES units 

r R  Operating reserve products 

R R+   Upward reserve products 

R R−   Downward reserve products 

 

Decisions variables (Step 1) 
DA

te  Energy exchanged on the day-ahead 

market, MWh 

,t rres  Total reserve capacity allocated in 

reserve category r, MW 
P

, , ,h t rres 
 Allocated reserve in pump (P), MW 

T

, , ,h t rres   Allocated reserve in turbine (T), MW 

P T

, , , ,,h t h tp p 
 Output power in pump (P) and turbine 

(T) modes, MW 
P T

, , , ,,h t h tz z 
 Binary variables indicating the pump (P) 

and turbine (T) status. 

, ,h tsoc   State-of-charge (energy content), MWh 
op

, ,h tc   Operating costs, €  

SU,P SU,T

, , , ,,h t h tc c 
 Start-up costs in pump (P) and turbine 

(T) modes, € 
SD,P SD,T

, , , ,,h t h tc c 
 Shut-down costs in pump (P) and 

turbine (T) modes, € 

 
State variables (Step 2) 

P,res T,res

, ,,h hp p   Actual power in pump (P) and turbine (T) 

modes, accounting for the real-time 

activation of reserves, MW 

low up

, ,,h hh h   Water level in the lower/upper basin, m 

net

,hh   Net hydraulic head, m 

loss

,hh   Penstock head losses, m 

low up

, ,,h hv v   Water volume in the lower/upper basins, 

m3 
P T

, ,,h hq q   Water flow rates in pump (P) and turbine 

(T) modes, m³/s 
low,grd up,grd

, ,,h hq q   Groundwater flows in the lower/upper 

reservoirs, m3/s 

 

Functions 
UPC,P UPC,T,h hf f

 

Unit performance curves in pump (P) and 

turbine (T) modes 

low up,h hf f  Geometry-dependent function of water 

levels in the lower/upper reservoirs with 

respect to water volumes  
low,grd low,grd

1, 2,,h hf f

 

Groundwater interactions between the 

phreatic table and the lower reservoir  

up,grd up,grd

1, 2,,h hf f  Groundwater interactions between the 

phreatic table and the upper reservoir 

 

Fixed parameters 
,t    Time resolution of the optimization tool 

[0.25 h], and simulation model [10 s] 

  Probability of occurrence of scenario ω 

res

r  Price for availability of reserve capacity 

in reserve category r, €/MW 
DA

,t  Electricity price in the day-ahead market, 

€/MWh 
low,grd up,grd,H H

 

Height of the groundwater (phreatic) table 

surrounding the lower/upper basin, m 

SU,P SU,T,h hC C  Start-up costs in pump (P) and turbine (T) 

modes, € 
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SD,P SD,T,h hC C  Shut-down costs in pump (P) and turbine 

(T) modes, € 

 
Parameters varying among iterations 

PP
, ,, , , h th tP P   

Minimum/maximum safe output power in 

pump (P) mode, MW 
TT

, ,, , , h th tP P   
Minimum/maximum safe output power in 

turbine (T) mode, MW 
P T

, , , ,,h t h t    Efficiency of the UPHES system in pump 

(P) and turbine (T) modes 

, ,SOCh t
 Lower bound of state-of-charge, MWh 

, ,SOCh t  Upper bound of state-of-charge, MWh 

target

,SOCh 
 Targeted state-of-charge, MWh 

2. Introduction 

To achieve a more sustainable and less carbon-

intensive system, the electricity generation increasingly 

relies on renewable energy sources, mainly wind and solar. 

In order to efficiently hedge against the variability and 

uncertainty of these resources, there is a growing need of 

flexibility in power systems that can be provided by pumped 

hydro energy storage (PHES) due to their ability to quickly 

and cost-effectively respond to imbalances between 

generation and consumption. PHES plants can indeed store 

large amount of energy with low operating costs, and recent 

progresses in power electronics enable these units to widen 

their output range through a variable-speed operation in both 

pump and turbine modes [1].  

However, the potential of conventional PHES 

installations is constrained by the necessity to have large 

available areas as well as a minimum height difference 

between reservoirs. By contrast, new solutions, in which the 

reservoirs are located into the ground, e.g. when end-of-life 

mines or quarries are exploited as natural basins for saving 

civil engineering expenses, are viable alternatives in flat 

regions. Such underground PHES (or UPHES) have very 

limited impacts on landscape, vegetation and wildlife, and 

can be easily dismantled at the end of their service with a 

very low ecological footprint. The potential in the Walloon 

Region in Belgium (which has no significant vertical drop) 

has been estimated at 815 MW for 5000 MWh, distributed 

on 76 operable sites [2]. 

One of the main difficulties related to the scheduling 

of traditional PHES arises from the need to model the 

nonlinear pump/turbine performance curves [3], which 

characterize the relationship among the output power (MW), 

the water discharge flow (m³/s), and the net head between 

both reservoirs (m). To account for these complex water-

power conversion curves (and thus to obtain a feasible and 

realistic UPHES dispatch), researchers have deployed a 

wide range of techniques. Dynamic programming has been 

tested but its practical application is hampered due to the 

curse of dimensionality [4], [5]. As an alternative, 

Lagrangian relaxation has been applied in [6], but was 

associated with convergence issues. Then, a nonlinear 

programming model with some simplified assumptions is 

proposed in [7]. However, such a nonlinear formulation is 

intrinsically very complex to solve, and its applicability is 

limited to small-sized problems [8]. Metaheuristics-based 

algorithms have also been presented, but such algorithms are 

not efficient in high-dimensionality in the presence of binary 

decision variables [9], [10]. Recently, piecewise linear 

approximation-based formulations, which rely on mixed-

integer linear programming (MILP), gained a lot of attention 

[11]-[16]. Reaching an acceptable approximation of the 

original nonlinear function may necessitates to considerably 

increase the number of linear segments. To avoid the 

associated tractability issues, approximation errors are then 

inevitably encountered, and may lead to infeasible solutions 

[17]. This problem is exacerbated for underground plants. 

Indeed, in addition to the pump/turbine performance curves, 

the UPHES operation is also governed by additional 

nonlinearities. The latter mainly arise from (i) the 

(potentially intricate) geometry of the natural cavities used 

as reservoirs, and (ii) the water exchanges between the 

porous reservoirs and their surrounding aquifers, e.g. when 

the waterproofing work of such cavities is not feasible or 

uneconomical [18].  

In the context of deregulated electricity markets, 

where the UPHES owner aims at maximizing its revenues, 

disregarding these nonlinear dependencies may lead to 

suboptimal solutions that do not fully extract the UPHES 

economic value, or even to infeasible scheduling (resulting 

in severe imbalance penalties). Modeling all these nonlinear 

effects within the UPHES scheduling problem requires a 

great computational effort (especially in the context of 

aggregation of several assets optimized over a multi-step 

ahead horizon in an uncertain environment). Therefore, we 

propose to decompose the problem into two complementary 

modules, i.e. a simplified optimization tool and an advanced 

simulation model of UPHES plants, which are embedded 

within an iterative learning procedure. Such iterative 

schemes have already been studied (for different purposes) 

in the literature. In [19], the coordination between medium 

and short terms is ensured through a feedback loop where 

the short-term scheduling is used as a constraint to be added 

into the mid-term strategy. A similar approach has been 

proposed in [20] to properly represent the performance 

curves of head-sensitive plants. Each iteration solves the 

PHES scheduling using a fixed head, which is successively 

updated until convergence. Outcomes tend to demonstrate 

that the model is suitable for scheduling real hydro chains. 

However, as highlighted in [21], depending on the design of 

the updating strategy, the algorithm did not converge in 

some cases, which is why they propose a new nonlinear 

programming based model. More generally, the suitability 

of this type of iterative approaches has been questioned in 

[22]-[23] since they are empiric and case-dependent, with no 

guarantee that the convergence can be achieved. 

Nonetheless, such an iterative “optimization-

simulation” methodology is very useful for our application 

since, in contrast to other approaches [4]-[17], the 

simulation model is able to fully represent the quick 

dynamics inherent to the UPHES operation (e.g. due to 

groundwater exchanges). Moreover, the iterative nature of 

the method allows to better manage the simulation time (the 

algorithm can be stopped at any iteration, and we can then 

use the approximated solution given by the simplified 

optimization). Finally, regarding this convergence issue, we 

develop a strategy to determine (ex-ante) the best learning 

rates between two iterations, and it is empirically observed 

that the proposed scheme is suitable for our case study. 

The main contribution of this work is to thus to 

analyze the (hydraulic, electro-mechanical and geological 
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constraints) UPHES constraints, and take into full 

consideration these (nonlinear) characteristics within the 

day-ahead UPHES scheduling (i.e. the joint participation in 

energy, reserve and balancing markets). To that end, we rely 

on an iterative process, in which decisions are first 

optimized with a quarter-hourly time step, using a simplified 

(mixed-integer linear) formulation that can be efficiently 

solved. Then, a holistic simulation model, encompassing all 

nonlinear aspects with a high time resolution (10 seconds), 

is used to evaluate the resulting UPHES scheduling. If the 

simulation model identifies inaccuracies in the optimized 

scheduling (such as a violation of water levels within 

reservoirs), a feedback adjustment under the form of 

tightened constraints integrated within the simplified 

optimization is carried out, and the procedure is reiterated 

until reaching a feasible solution.  

The proposed architecture is independent of the 

underlying tools used for the optimization (scenario-based, 

robust, chance-constrained formulations, etc.), and for the 

UPHES simulator. The procedure is therefore very robust to 

changes in the portfolio configuration (e.g. if the UPHES 

aggregator integrates new units such as to be considered as a 

price-maker instead of price-taker) as well as easily 

adaptable in case of evolutions of the market regulation 

policy. Results from a Belgian case study highlight that 

accurately considering nonlinear effects is a key component 

to extract the full economic potential of UPHES units, and 

suggest that the proposed hybrid tool is an effective 

approach to achieve this goal. 

The paper is organized as follows. First, we describe 

(in Section 3) the specificities of underground PHES plants, 

and how they differ from traditional facilities, with a 

particular focus on the associated modeling challenges. 

Based on these considerations, the sequential approach to 

solve the UPHES scheduling problem is presented in 

Section 4, along with the design and sizing of each of its 

constitutive blocks. Section 5 then analyses the practical 

value of the optimization tool by means of relevant case 

studies. Finally, conclusions and perspectives are exposed. 

3. Underground UPHES operation 

As depicted in Fig. 1, a UPHES plant is composed of 

two reservoirs, located at different height levels, which are 

coupled through a hydraulic machine (a reversible Francis 

pump-turbine in the present study). The pump-turbine is 

linked to an electrical machine (operating as a generator 

when the unit is in turbine mode, and as a motor when the 

unit is pumping water), which is connected to the grid.  

 

 
Fig. 1. Typical underground pumped hydro energy storage 

(UPHES) system 

 

The UPHES efficiency in both pump and turbine 

modes, i.e. water flow requirements to yield a given output 

power, is a complex function that also depends on the net 

head value (since the latter defines the pressure conditions 

across the hydraulic machine). As the head increases, the 

volume of water required for a given power is reduced. The 

resulting (three-dimensional) nonlinear relationships in 

pump (P) and turbine (T) are referred to as unit performance 

curves (1)-(2). 

 ( )P P net P P net,t water t t t t tp g q h q h t =        (1) 

 ( )T T net T T net,t water t t t t tp g q h q h t =        (2) 

where ρwater is the density of water (1000 kg/m³), g is the 

gravitational acceleration (9.81 m/s²), q is the water flow 

(m³/s), hnet is the net head (m), and η refers to the system 

efficiency (which itself depends on the net head and water 

flow, and includes losses in the hydraulic machine, the 

variable-speed drive and the electrical generator). 

Additionally, the net head value also influences the 

stability margins of the pump-turbine. Indeed, traditional 

hydraulic machines are characterized by forbidden zones 

(the pump is technically limited to a single working point), 

in which their safe operation is not guaranteed due to 

undesired flow phenomena that lead to severe erosion of the 

machinery. To extend this limited UPHES flexibility, one 

 
Fig. 2.  Head-dependent UPHES operation in pump (a) and turbine modes (b), where the forbidden (unstable) zones are 

indicated by the white areas, and the iso-efficiency curves are differentiated through color bar 
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solution is to rely on variable speed drives. Practically, this 

technology allows increasing the available power range, i.e. 

extent low and high capacity levels where cavitation and/or 

mechanical vibrations can occur.  

Overall, these head effects, i.e. the nonlinear water-

power conversion functions and the safe operating ranges 

(in term of output power), are illustrated in Fig. 2 for a 

typical reversible variable-speed Francis machine [24]. It 

can be seen that the range of allowed power is respectively 

around 20 % and 45 % in pump and turbine modes for head 

values between 0.7-0.9 pu. Increasing the net head allow to 

reach higher power values, thereby shifting the safe 

operation zone (which will impact market decisions).  

In parallel, two additional (nonlinear) dependencies 

inherent in the UPHES operation need to be considered. 

Firstly, the geometry of the reservoirs depends on the 

topological conditions and can potentially take any complex 

form (e.g. sandstone quarries are traditionally shaped like 

truncated pyramids). Such geometries result in highly 

nonlinear relationships between the water volumes stored in 

the reservoirs and the corresponding net head value.  

Secondly, UPHES units may interact with the 

surrounding aquifers due to natural permeability of the 

reservoirs. In this way, when the water level in the reservoir 

is lower than the surrounding groundwater table, 

groundwater infiltrates (flows in) by leaking through the 

reservoir walls, whereas groundwater flows out in the 

opposite situation. These water interactions are quite 

complex (dependent on hydrogeological dynamics), and are 

constantly affecting the energy capacity of the site (since the 

water volumes are varying even when the unit is not in 

operation). It is very important to emphasize that both the 

direction and the flow of groundwater exchanges vary 

endogenously with respect to the water volumes within 

reservoirs. They differ thus from exogenous water flows 

(originating from rainfall, snowmelt, natural evaporation, 

etc.) that can be independently forecasted. 

Properly modeling these effects (in order to rely on 

an accurate evolution of the system state over time) is a 

challenging task, not only regarding the development of 

efficient and representative mathematical equations but also 

regarding the quick dynamics associated with water levels 

variations (that necessitates a model with a high time 

resolution). However, this task is essential to ensure that the 

UPHES model leads to a reliable, feasible operating 

schedule and, thus, a profit-maximizing market participation. 

4. Methodology 

In this Section, we formulate the day-ahead 

operational scheduling problem (i.e. quarter-hourly power 

output dispatch) faced by an operator of UPHES plants. The 

price-taker operator maximizes its profit through a joint 

participation in the day-ahead energy and reserve markets, 

while considering the real-time balancing market outcomes 

through scenarios of the activation of reserves in real-time. 

However, accurately representing the operation of 

traditional PHES involves high computational requirements 

[25]. Here, the additional complexity associated with 

exploiting underground cavities as reservoirs is addressed 

using the iterative hybrid approach presented in Fig. 3. The 

principle is to split the modeling complexity (arising from 

all nonlinear effects) between a simplified optimization tool 

and an advanced simulation model. 

Once uncertainties have been characterized (Step 0 

described in Section 4.1), the scheduling strategy is 

optimized using a simplified (stochastic mixed-integer 

linear) formulation that can be efficiently solved with off-

the-shelf solvers (Step 1 described in Section 4.2). The daily 

horizon is divided into 96 quarter-hourly periods. At this 

stage, nonlinear effects (i.e. head dependencies, 

groundwater exchanges and geometry of the reservoirs) are 

simplified to avoid both modeling and tractability issues 

associated with a single mathematical formulation.  

Each of the resulting scenario-dependent UPHES 

schedules (power profiles) is thereafter integrated into a 

simulation model encompassing hydraulic, electro-

mechanical and geological constraints (Step 2 described in 

Section 4.3). This simulator emulates the actual nonlinear 

UPHES operation with a high time-resolution (10 seconds to 

fully consider variations in the operating conditions), which 

yields the complete system state (hydraulic efficiencies, 

water volumes in each reservoir, net head, etc.) at each time 

step. Hence, the simulator can thus highlight whether the 

decisions (obtained in Step 1) lead to infeasible schedules or 

are based on unrealistic parameters that can mislead the 

solver towards a suboptimal point. In such cases, more 

informed (i.e. relaxed) constraints are introduced in the 

optimization (Step 1) through a feedback mechanism (Step 3 

described in Section 4.4), and the procedure (Steps 1-2-3) is 

iterated until convergence is achieved. 

However, the heuristic nature of the procedure makes 

it difficult to guarantee the convergence of the algorithm, 

and hence the optimality of the final solution. The 

 
Fig. 3. Iterative hybrid approach for the day-ahead UPHES scheduling 
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possibility of not reaching convergence is alleviated in the 

control loop (Sections 4.4 and 5.1) by relying on smooth 

steps between iterations. Then, the global optimum can be 

better approximated by setting up a multi-start local search 

algorithm consisting in launching the first optimization 

(Step 1) under different initial configurations of UPHES 

parameters. The proposed hybrid sequential tool can then be 

used (in parallel to keep the computational time in the same 

range) for the different starting points. Each initial point 

may potentially lead to a different solution, resulting overall 

in a higher probability to reach the global optimum, 

provided that the search space is well covered. 

 

4.1. Step 0: Uncertainty characterization 
The quality of the UPHES scheduling depends on the 

quality of the scenarios representing the sources of 

uncertainty, i.e. day-ahead market prices (Step 1) and the 

real-time activation of operating reserves (Step 2). In Step 1, 

the predictive scenarios ω are generated with a time 

resolution of 15 minutes (i.e. 96 sequential values over the 

next day), whereas a smaller time step (down to 10 seconds) 

is used in the simulation model (Step 2) in order to properly 

represent the variability of the activation of reserves.  

The scenarios are here predicted with the two-stage 

procedure presented in [26]. Firstly, multivariate 

probabilistic forecasts (under the form of densities) are 

generated for each time step of the scheduling horizon using 

recurrent neural networks [27]. Secondly, a copula-based 

sampling strategy (from the forecasted densities) is 

implemented to obtain time trajectories that embody both 

the temporal information of individual variables (e.g. 

autocorrelation structure, regime switching, etc.) as well as 

the cross-variable dependencies (statistical relationships 

between uncertain variables). 

Both the optimization (Step 1) and the simulation 

(Step 2) are fed and guided by these scenarios, thereby 

robustifying the UPHES scheduling with respect to the 

different sources of uncertainty. It should be noted that, 

since the time granularity differs between optimization and 

simulation models, we need to ensure the coherence of the 

scenarios. This is achieved by aggregation/disaggregation 

mechanisms where the 10 seconds scenarios are averaged 

into a single quarter-hourly value, while 15 minutes values 

are simple duplicated within each 10 seconds interval. 

 

4.2. Step 1: Day-ahead UPHES scheduling 
The considered market structure arises from the 

European energy-only and reserve capacity markets, which 

are cleared sequentially through independent auctions [28]. 

As represented in Fig. 4, the reserve capacity is cleared on a 

daily basis, shortly before the energy market.  

 

 
Fig. 4. Decisions sequences in European market structure 

Considering the short delay between the clearing of 

both market floors and the strong link between arbitrage and 

reserve opportunities, the UPHES participation in these day-

ahead markets is considered as a single stage problem. By 

incorporating the UPHES real-time dispatch into the 

decision process, the resulting profit-maximization problem 

is formulated as a two-stage stochastic problem [29]-[30].  

In the first stage, facing future uncertainties, the 

UPHES operator has to decide for the 24 hours of the 

following day on the optimal bidding strategy to adopt in the 

day-ahead energy 𝑒𝑡
DAand reserve rest,r markets (here-and-

now decisions). Energy prices are uncertain, and thereby 

modeled via NΩ different scenarios weighted in accordance 

with their probability πω of occurrence. The price of reserve 

capacity, however, is treated as a constant parameter that 

does not vary throughout the day. Hence, the second stage 

of the model corresponds to intraday operation that aims at 

avoiding energy imbalances while providing the energy 

requested for operating reserves. These second-stage 

decisions (output power of UPHES plants) can be adjusted 

according to the realization of uncertainties, and differ 

between scenarios.  

The profit ΦA of the UPHES (3) depends on: (i) the 

revenues for the availability (capacity) of operating reserves 

over the 24 hours of the scheduling horizon, (ii) the 

revenues associated with energy arbitrage (sell electricity 

when prices are high, and purchase at low prices) in the day-

ahead energy market, and (iii) the operating costs of the 

units. In this mixed-integer linear program (MILP) 

formulation, the participation in the reserves is budget-

neutral, i.e., the expected revenues are offset by the UPHES 

operating costs. 

 

A res

,

(i)

DA DA op

, , ,

(iii)(ii)

max 24 r t r

t T r R h H

t t h t

h H

res

e c  




 

  

 

 =



 + −
 

 

  

 
  (3) 

 

This optimization is subject to a number of 

constraints. First, we ensure that the energy sold and bought 

in the day-ahead electricity market is actually delivered at 

the corresponding delivery period (4):  

 ( )DA T P

, , , , ,t h t h t

h H

e t p p t  


=  −    (4) 

The flexibility of the UPHES units can be valued in 

the reserve market, by offering capacity in the different 

products r ∊ R over the scheduling horizon (5). Upward 

reserve capacity can be supplied either by increasing the 

turbine output power or by reducing the pump contribution. 

Similarly, downward reserves are provided by lowering the 

turbine power or by increasing the pump output power [31]:  

 ( )T P

, , , , , ,t r h t r h t r

h H

res res res t r


= +   (5) 

Then, as presented in Section 3 (see Fig. 2), UPHES 

plants are characterized by forbidden operating zones (in 

term of output power), defined by stability and cavitation 

limits of the hydraulic pump/turbine machine. These 

restricted zones (which are often disregarded in the literature) 

lead to a discontinuous operating domain that requires two 

binary variables 𝑧ℎ,𝑡
P  and 𝑧ℎ,𝑡

T  to discriminate operation 

modes, i.e. pump (P), turbine (T) and idle, at each time step t. 
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 T P

, , , , 1 , ,h t h tz z h t  +     (6) 

In addition, these safe UPHES operating ranges must 

account for the capacity margins offered to reserves (7)-(10). 

Specifically, the UPHES power may not be simultaneously 

allocated to provide both energy arbitrage and regulation 

services (i.e. the activation of the scheduled reserve capacity 

must be always guaranteed). In this simplified model (Step 1 

of the hybrid tool), head effects (and thus the complex 

geometry of reservoirs) are neglected, so that both the safe 

operation range (minimum and maximum output power) and 

the UPHES efficiency are treated as constant parameters 

over each time step t ∊ Topt  of the scheduling horizon. 

 
PP P P

, ,, , , , , , , ,h th t h t h t r

r R

p z P res h t  
+

 +    (7) 

 
P

P P P
, ,, , , , , , , ,h th t h t h t r

r R

p z P res h t  
−

 −    (8) 

 
TT T T

, ,, , , , , , , ,h th t h t h t r

r R

p z P res h t  
−

 +    (9) 

 
T

T T T
, ,, , , , , , , ,h th t h t h t r

r R

p z P res h t  
+

 −    (10) 

Then, limits on the energy content (11) have to be 

respected at each time step. The state-of-charge (SOC) 

accounts for energy losses originating from pump and 

turbine inefficiencies, as well as the impact of activating 

reserves in real-time. Indeed, when scheduling reserves, one 

should ensure that sufficient energy is stored in the UPHES 

(for upward reserves), or that one can store the absorbed 

energy (for downward reserves). In this formulation, we 

ensure the robustness of the UPHES scheduling in the 

worst-case scenario, i.e. in case of full deployment of all 

reserves in one direction (12)-(13). Furthermore, the final 

energy content stored at the end of the day is imposed in 

order to account for the economic value of the energy during 

following days (14). 

  

T

, ,P P

, , , , 1 , , , , T

, ,

, ,
h t

h t h t h t h t

h t

p
soc soc t p h t



   



 


−

 
= + −   

 

    (11) 

P P T

, , , , ' , ', , ',T
' 1 ' 1 , , '

1

SOC , ,

t t

h t h t h t r h t r

t tr R r R h t

h

soc t res res

h t

 








− −= = 

 
+  +  

 

 

 
(12)

P P T

, , , , ' , ', , ',T
' 1 ' 1 , , '

1

SOC , ,

t t

h t h t h t r h t r

t tr R r R h t

h

soc t res res

h t

 








+ += = 

 
−  +  

 

 

 
 (13) 

 opt

target

, ,
SOC ,hh t T

soc h



=

    (14) 

Finally, operating costs are incorporated (15). These 

are composed of running costs as well as transition costs, i.e. 

start-up  (16) and shut-down  (17) costs in both pump and 

turbine modes, to properly consider water losses as well as 

wear and tear of hydraulic and electrical equipment.  

 
( )

 

op run T P

, , , , , ,

SU, SD,

, , , , , , , , T, P

h t h h t h t

i i

h t h t

c tC p p

c c h t i

  

  

=  +

+ +  
  (15) 

 ( )  SU, SU,

, , , , , , 1 , , , , T, Pi i i i

h t h h t h tc C z z h t i   − −     (16) 

 ( )  SD, SD,

, , , , 1 , , , , , , T, Pi i i i

h t h h t h tc C z z h t i   − −     (17) 

 

4.3. Step 2: UPHES simulation model 
The day-ahead scheduling problem (Step 1) is 

formulated with modeling approximations regarding head 

effects and groundwater exchanges. To avoid suboptimal or 

even infeasible outcomes, the optimization is thus embedded 

within an iterative approach (Fig. 3), in which a simulation 

model (Step 2) is used to validate the UPHES scheduling 

decisions. In this way, at the end of Step 1, each of the NΩ 

UPHES power profiles are evaluated using the simulation 

model, which takes into full consideration the impact of all 

geo-mechanical, hydrogeological and electrical parameters, 

thereby yielding an accurate evolution of the system state 

for each time step of the scheduling horizon. The resulting 

model of the UPHES operation is implemented in RAO 

(Resource-Action-Operation), an object-oriented language 

dedicated to the modeling and simulation of complex 

systems [32]. Practically, for each scenario ω, the procedure 

(18)-(27) is sequentially applied for each 10 seconds 

interval. All nonlinear functions (18), (19), (22), (23), (24) 

and (25) are encoded as arrays, which allows representing 

all effects empirically with a high accuracy without 

mathematical approximations.  

First, the actual UPHES output power is computed by 

accounting for the activation of reserves (in accordance with 

the scenarios ω ∊ Ω defined in Step 0). Then, the 

characteristics of the hydraulic pump/turbine machine can 

be used to identify the corresponding water flows. Indeed, as 

described in Section 3 (and illustrated in Fig. 2), hydraulic 

machines are constrained by three-dimensional nonlinear 

relations, i.e. unit performance curves (UPC), linking the net 

head, the output power, and the unit outflow. At each time 

period τ of the simulation horizon, the water flow in both 

pump (18) and turbine (19) modes are computed as follows:  

 ( )P UPC,P P,res net

, , , 1, ,h h h hq f p h h   −=    (18) 

 ( )T UPC,T T,res net

, , , 1, ,h h h hq f p h h   −=    (19) 

Moreover, these performance curves are also 

exploited to identify the actual efficiency values as well as 

the boundary (safe) power conditions (interface between 

colored and white areas in Fig. 2), which allows determining 

the correctness of the parameters used in Step 1. 

The water volumes in the upper (20) and lower (21) 

reservoirs (reflecting the UPHES energy content), are not 

only affected by the charge and discharge decisions across 

the scheduling horizon, but also by interactions with the 

surrounding aquifers. After computing these water volumes, 

it is checked whether they comply with the limitations 

imposed by the UPHES sizing. If not, it means that the 

power scheduling (of Step 1) is infeasible, and energy 

bounds in (12)-(13) are then updated in the next iteration of 

the hybrid tool (see Section 4.4). 

 ( )up up P T up,grd

, , 1 , , , ,h h h h hv v q q q h      −= + −  +     (20) 

 ( )low low T P low,grd

, , 1 , , , ,h h h h hv v q q q h      −= + −  +     (21) 

Groundwater exchanges, as explained in Section 3, 

are water flows that vary endogenously with respect to the 

height difference between the water level in the reservoir 

and the surrounding phreatic table. These water exchanges 

are determined using advanced hydro-geological models 

[33]. In a nutshell, when the water level in the reservoir is 

lower than the groundwater table, then groundwater 

infiltrates the reservoir by leaking through the porous walls 
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(in accordance with f1 in (22)), whereas some water flows 

out of the reservoir (in accordance with f2 in (23)) in the 

opposite case.  

 
( )

( )

up,grd up up up,grd

1, , 1 , 1up,grd

, up,grd up up up,grd

2, , 1 , 1

if
,

if

h h h h

h

h h h h

f h h H
q h

f h h H

 



 


− −

− −

 
= 



  (22) 

 
( )

( )

low,grd low low low,grd

1, , 1 , 1low,grd

, low,grd low low low,grd

2, , 1 , 1

if
,

if

h h h h

h

h h h h

f h h H
q h

f h h H

 



 


− −

− −

 
= 



  (23)  

Finally, the height of the water column in the upper 

(24) and lower (25) reservoirs is a function of the water 

volume in the corresponding reservoir, which depends on 

the geometry of the natural cavity. Complex geometries 

thereby result in highly nonlinear functions. Due to friction 

and turbulence within the penstock, the net head is always 

lower than the gross head (27). This penstock head loss (26) 

is usually modeled as a quadratic function of the water flow, 

whose coefficient depend on the pipe characteristics [34]: 

 ( )up up up

, , ,h h hh f v h  =    (24) 

 ( )low low low

, , ,h h hh f v h  =    (25) 

 ( )
2

loss loss T P

, , , ,h h h hh c q q h   = +    (26) 

 net up low loss

, , , ,

gross head

,h h h hh h h h h    = − −    (27) 

 

4.4. Step 3: Control loop 
The aim of the control loop (Fig. 5) is to drive the 

iterative procedure towards a converged UPHES state in 

both optimization and simulation steps. 

 

 
Fig. 5. Principle of the control loop 

The day-ahead scheduling is carried out (in Step 1) 

with a simplified model of the UPHES operation. Practically, 

important state variables (such as the net head and 

groundwater exchanges) are treated as constant parameters 

to avoid the associated modeling complexity. Hence, the 

UPHES power scheduling obtained at the end of this step 

may be suboptimal in practice, or even infeasible. The 

resulting UPHES scheduling solution is therefore tested in 

an advanced simulation model. At the end of this simulation 

(Step 2), the actual evolution of the UPHES state for each 

scenario ω is computed, which allows identifying 

inaccuracies in the UPHES scenario-dependent schedules 

obtained in Step 1.  

When discrepancies between the parameters uv used 

in the optimization (Step 1) and the actual UPHES state sv 

(Step 2) are observed, these parameters uv need to be 

updated with the objective to prevent infeasible schedules in 

future iterations. Since the parameters sv may fluctuate (with 

10 seconds resolution) within the 15 minutes optimization 

intervals, the most conservative values sv are selected to 

ensure the feasibility of the power scheduling at each point 

in time. In practice, the UPHES state variables uv 

approximated in Step 1, and listed in (28), can be grouped 

into four different sets. 

 

P TP T
, , , ,, , , ,

(i)

target P T
, ,, , , , , , ,

(ii) (iii) (iv)

, , , ,

SOC ,SOC ,SOC , ,

v h t h th t h t

h th t h h t h t

u P P P P  

    

= 







 (28) 

First, since head effects are disregarded in Step 1, the 

safe power limits (i) in both pump and turbine modes are 

approximated in (7)-(10), and these values need to be 

adjusted (in accordance with the UPHES state). Similarly, 

the water levels within reservoirs are not directly modeled, 

but are represented through the energy content (in MWh). 

This approximation can lead to infeasible solution (negative 

water volumes or undesired spillage). When such a case is 

revealed by the simulation model, the energy limitations (ii) 

in (12)-(13) are tightened/relaxed in Step 1 to drive the 

scheduling towards its feasible set in the next iteration. Then, 

it is also checked whether the amount of energy stored at the 

end of the scheduling horizon (iii) complies with the 

targeted value in (14). Finally, the hydraulic efficiency in 

both pump and turbine (iv) fluctuates over time (according 

to efficiency curves represented in Fig. 2), which impacts 

the UPHES optimal scheduling. These parameters are thus 

refined when deviations between Steps 1 and 2 exceed a 

given threshold. 

In practice, to avoid undesirable diverging 

oscillations (and guarantee a smooth and efficient 

convergence of the hybrid tool), the model parameters are 

adjusted through an iterative learning process of the form: 

 ( )1iter iter iter

v v v v vu u s u+ = + −  (29) 

where 𝑢𝑣
𝑖𝑡𝑒𝑟  is the value of the model parameter v during 

iteration iter of Step 1, while sv is the actual value 

determined by the simulation model, and λv is the 

corresponding learning rate. When λv = 1, it amounts to 

enforce the output of the simulation model as the new value 

of the UPHES parameter for the next iteration of the hybrid 

tool. Such a strategy has shown to give suboptimal results 

[22], in which diverging oscillations are likely to occur. 
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In that regard, the performance of the hybrid tool 

strongly depends on the choice of an appropriate learning 

rate (i.e. magnitude of the refinement of model parameters at 

each iteration). An important step consists thus in tuning this 

learning rate such that the hybrid tool converges quickly and 

reliably towards a feasible solution. This procedure is 

performed offline (see Section 5.1), so that it does not 

hamper the daily operation of the tool. 

5. Case study 

The methodology is applied to an existing Belgian 

topology (Maizeret), for which the lower reservoir is a 

former open pit mine. The surface of both reservoirs 

(~30.000 m2) is relatively limited, which incurs significant 

head variations. The upper reservoir is rectangular-shaped 

so that (24) is linear, whereas the lower reservoir has a 

slightly more complex (pyramidal) geometry. The nominal 

output power of the UPHES is equal to 8 MW in both pump 

and turbine modes. The energy capacity is of 80 MWh. 

Throughout this study, it is imposed that the targeted 

amount of water stored in the upper reservoir at the end of 

the day is identical to its initial value (i.e. 15 MWh). 

Practically, this final stored energy can be determined 

through a medium-term (e.g. week-ahead) analysis [35]. The 

pump and turbine operating costs are equal to 4 €/MWh, the 

start-up costs are 5 €, and the shut-down costs are neglected. 

Electricity prices in the day-ahead market are 

modeled from BELPEX data. In terms of operating reserves 

r ∊ R, frequency containment reserves, FCR (10 €/MW/h), 

are automatically activated to alleviate momentary 

frequency deviations. Then, automatic frequency restoration 

reserves, aFRR (20 €/MW/h), are dispatched to take over the 

actions of FCR. If the problem persists, the system operator 

requests the activation of manual frequency restoration 

reserves, mFRR (5 €/MW/h), which remain online until the 

situation is resolved. FCR must be fully activated in 0.5 

minutes, aFRR in 7.5 minutes and mFRR in 15 minutes. 

In what follows, we first focus in Section 5.1 on the 

sizing of the control loop (i.e. determination of the learning 

rates within the iterative procedure). In Section 5.2, we 

analyze the impact the UPHES nonlinear effects on the 

quality of the day-ahead scheduling, and show the added 

value of the proposed hybrid tool. In order to focus on the 

interpretability of results, the procedure is carried out for a 

single typical day of July. The convergence of the procedure 

is studied in Section 5.3. Finally, the validity of the 

approach is evaluated in Section 5.4, where the proposed 

tool is validated on 8 representative days (one per season 

with a differentiation between week and weekend days), in 

which results are compared with those obtained with a 

genetic algorithm. The scalability is then evaluated with the 

aggregation of three UPHES plants. For all these 

simulations, the stochastic MILP optimization (Step 1) is 

run with NΩ = 5 scenarios (0.1 % relative optimality gap). 

 

5.1. Design of the control loop 
In order to avoid that the outcomes of the hybrid tool 

diverge at each iteration, the key point lies in the proper 

selection of the learning rates λv in (29). In this work, 4 

different learning rates λv (v = 1, 2, 3, 4) are used (one for 

each type of parameters presented in Fig. 5). This sizing is 

performed in pre-processing, and does not impact the 

computation time during the daily use of the decision tool.  

Firstly, a sensitivity analysis is carried out to analyze 

the effect of the learning rates on both the convergence and 

optimality of the solution. The convergence criteria, for each 

scenario of the global hybrid tool, are the following: 

1) Obtain a feasible scheduling (in terms of output 

power and water volumes within reservoirs). 

2) Restrict the relative difference between the final 

targeted energy content (at the end of the scheduling horizon) 

and the actual value below 1%, so as not lowering the 

UPHES economic value for the next days.    

3) Restrict the relative difference between values of 

efficiencies (used in Steps 1 and 2) beneath 1% so that the 

feasibility and accuracy of the solution is guaranteed. 

Practically, the hybrid tool is run for different sets of 

the 4 learning rates (by relying on a grid search). For each 

(4-dimensional) point of the grid search, the optimization 

outcomes are averaged over 8 representative days (one per 

season, differentiated between week and weekend days), 

which are generated using [36] with 5 years of historical 

market data (from 2013 to 2017), in order to properly cover 

possible scenarios over a typical year. Based on these 

results, we represent the influence of learning rates 

(associated with the update of power (i) and energy (ii) 

limitations) on the convergence speed (Fig. 6a) and final 

expected profit (Fig. 6b).  

Overall, if the learning rate is too small, the 

convergence of the optimization will necessitate many 

iterations, which is time-consuming. On the other hand, with 

an oversized learning rate (significant changes in parameters 

 
Fig. 6. Impact of the design parameters of the control loop on the number of iterations of the hybrid tool (a), and on the 

expected profit (b).  
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between two consecutive optimizations), instabilities 

(divergence) in the learning phase can occur. Furthermore, 

from Fig. 6b, it is also observed that high learning rates 

often lead to conservative solutions, resulting in loss of 

revenues. Indeed, the large step sizes between iterations lead 

to excessively tightened operating ranges, which prevents 

the UPHES flexibility to be fully exploited.  

Based on these observations, a two-step procedure is 

implemented to achieve the best trade-off between 

convergence speed and quality of the final scheduling 

solution. At the first stage, the different (4-dimensional) sets 

of learning rates λv (among all sets of the grid search) that 

lead (in average) to the lowest number of iterations are 

identified. Indeed, different sets of learning rates can result 

into similar convergence properties (Fig. 6a). Then, for the 

selected sets, the one that leads to the highest expected profit 

(best quality of the solution) is chosen (Fig. 6b). Globally, in 

accordance with [20], we conclude that learning rates 

between 0.7 and 0.9 lead to the best results. 

 

5.2. Impacts of the UPHES nonlinear effects 
In this part, we study the effects of disregarding the 

nonlinear effects of UPHES units in terms of operational 

profit and tractability. To that end, the simulations are 

carried out for a typical day of July with three different 

formulations, which differ by their level of complexity.  

In variant #1, all UPHES nonlinear effects are 

neglected, including the discontinuous operating domain 

(due to the forbidden zones of the hydraulic machines) 

characterized by constraints (7) and (9). Hence, the binary 

state variables (to discriminate pump-turbine-offline 

operation modes) are not necessary, and the simplified 

model (Step 1) boils down to a continuous linear program. 

Moreover, the hybrid methodology is reduced to a single run 

of the optimization program (Step 1).  

In variant #2, the discontinuous UPHES operating 

ranges are integrated into the simplified scheduling problem 

(the formulation is the one presented in Section 4.2). In this 

variant, the simulator is still not exploited, such that the 

complex geometry of reservoirs, head dependencies and 

groundwater exchanges are still neglected.  

In variant #3, all nonlinearities are included into the 

simulator, and the resulting iterative formulation therefore 

yields the solution of reference. 

For each of the three variants, at the end of the day-

ahead optimization procedure, the UPHES unit will 

participate in the day-ahead (energy and reserve) markets in 

accordance with the outcome of the decision tool. Then, the 

next day, for variants #1 and #2, it may happen that the 

UPHES unit is not able to fulfill the schedule in real-time 

because some nonlinear effects were inaccurately modeled 

during the decision procedure. In such a case, the unit will 

stay in its safe operation zone (to avoid damage on the 

hydraulic machine), and consequently deviate from its 

balanced position (in the energy market), which will result 

in financial penalties. Such energy imbalances are penalized 

at 100 €/MWh. Moreover, the final amount of energy stored 

at the end of the day may differ from the targeted value. To 

quantify this effect, the final UPHES energy content is 

valued at 40 €/MWh. These situations are quantified in 

Table 1, which includes the total simulation time as well as 

the ex-ante profit E(Φinit) that is expected at the end of the 

optimization procedure, and the ex-post profit E(Φfinal) that 

is actually generated after accounting for the imbalance 

penalties and the economic value of the final stored energy. 

The last column E(socfinal) is the amount of energy stored in 

the upper reservoir at the end of the day. 
 

Table 1 Comparison of formulations of varying complexity 

in terms of simulation time and profit distribution 

 Time ( )init   ( )final   ( )finalE soc  

variant #1 < 1 sec 1395.9 € 273.1 € 11.9 MWh 

variant #2 74 sec 1079.6 € 813.4 € 13.3 MWh 

variant #3 

(reference) 
294 sec 873.1 € 873.1 € 15.1 MWh 

 

Results show that, at the end of the optimization, 

variant #1 expects a profit of 1395.9 €, whereas it will only 

generate 273.1 € in reality, mainly due to the financial 

penalties arising from inabilities to fulfill the day-ahead 

commitment in the energy market. Variant #2 leads to a 

more cost-effective solution, but at the expense of higher 

computation times (due to the inclusion of binary variables 

to model the discontinuous operating ranges).  Both variants 

#1 and #2 do not comply with the targeted amount of energy 

stored at the end of the time horizon, which will hinder the 

UPHES strategy for the following days. 

In general, ignoring the nonlinear effects during the 

optimization process results into a systematic error between 

the expected and actual profits. Such discrepancies are 

exacerbated when important effects are disregarded. In this 

way, the difference between ex-post profits in variants #1 

and #2 strongly highlights the importance of accurately 

modeling forbidden zones (7)-(10). Moreover, it should be 

reminded that the considered UPHES plant is characterized 

by reservoirs with simple (close to rectangular) geometries. 

For more complex geometries (such as former mines), head 

dependencies can be significantly amplified, which will 

decrease the performance of simplified decision tools. These 

results thus highlight the importance of developing new 

nonlinear tools such as the one implemented in this paper. 

The solution of variant #2 for the first stochastic 

scenario is represented in Fig. 7 (for the 86,400 seconds of 

the day). It can be observed that the schedule is not feasible 

since the output power profile is often outside its safe 

operating range. Similarly, when analyzing the evolution of 

the water level in the upper reservoir, it is observed that 

water volume violations at the end of the day are also 

observed (lack of 1.7 MWh of energy). These inaccuracies 

lead to a loss of profit of 6.84 % in comparison with the 

reference solution #3 (in which the scheduled energy can be 

fully delivered in real-time). The solution of variant #3 is 

achieved after 4 iterations (of around 73.5 seconds).  
 

 
Fig. 7.  UPHES schedule in variant #2 where the nonlinear 

effects are approximated. 
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The final schedule obtained with variant #3 is 

illustrated in Fig. 8. It can be seen that the proposed hybrid 

method does not lead to infeasible solutions. Overall, the 

proposed methodology enables to immunize the scheduling 

of underground PHES against modeling inaccuracies used 

for approximating the nonlinear effects of the unit. 

 

 
Fig. 8.  UPHES schedule in variant #3 where all nonlinear 

effects are considered 

 

More generally, we observe that the UPHES 

profitability is extracted from the joint participation in 

energy arbitrage (discharging electricity at high prices, and 

charging when prices are low) and procurement of reserves. 

If price spreads in the energy market are not sufficiently 

important, the UPHES will stay in idle mode since the 

associated revenues are not sufficient to compensate the 

UPHES inefficiencies and operation costs. However, such 

situations are not often encountered in practice due to the 

additional benefit that can be leveraged from reserves. 

Providing these operating reserve involves that the UPHES 

is operating far from the zero output, which results in 

frequent switches between pump and turbine modes. 

Interestingly, we also observe that, at the very end of the day, 

water is pumped into the upper reservoir in order to satisfy 

the final volume target. 

 

5.3. Convergence of the method 
The evolution of the solution (of variant #3) across 

iterations is illustrated in Table 2. Practically, the evolution 

of the expected profit is presented, along with those of the 4 

types of parameters that need to achieve convergence 

(which are defined in Section 4.4 and summarized in Fig. 5): 

(i) the energy (aggregated over the day) that is scheduled 

outside the safe operating ranges, (ii) the aggregated water 

volumes violating the reservoirs capacity (in m³), (iii) the 

deviation with respect to the targeted final value of stored 

energy (in MWh) as well as (iv) inaccuracies in values used 

(in Step 1) to define turbine and pump efficiencies (in %). 

 

Table 2 Evolution of the error term across iterations 

 
( )init   

[€] 

Power 

limits 

[MWh] 

Water 

Volumes 

[m³] 

Final 

Energy 

[MWh] 

T  

[%] 

P  

[%] 

1 1079.6  8.61 5.8*10³ 1.72 1.3 < 1 

2 886.8 0 3.8*10³ 0 1.3 <1 

3 881.3 0 1.4*103 0 1.2 <1 

4 873.1  0 0 0 <1 <1 

 

It is important to notice that, the first iteration of the 

hybrid tool corresponds to variant #2 (which is characterized 

by infeasible power and energy schedules, and a loss of 1.7 

MWh with respect to the targeted final energy content). It 

can be seen that, based on this first solution, the 

implemented iterative procedure allows to smoothly 

converge (in 4 iterations) towards a feasible and realistic 

outcome without significantly affecting the UPHES profit. 

Indeed, the solution is progressively driven towards its 

feasible range (with no diverging oscillations between 

iterations). Specifically, after one iteration, the algorithm is 

already close to a stable solution (i.e. no more power 

deviations are observed). 

 

5.4. Scalability of the model and benchmark with a 
meta-heuristic approach  

In this subsection, the proposed hybrid approach is 

applied for the 8 representative days (defined in Section 5.1) 

in order to analyze more thoroughly the practical 

applicability of the tool. In parallel, all these cases have 

been solved by applying a single optimization problem 

(considering all the linear and nonlinear constraints). To that 

end, a genetic algorithm is selected since it provides a very 

general framework and thus serves as a good foundation for 

comparison. To account for the complex UPHES behavior 

into the single formulation, the UPHES internal state needs 

to be accurately represented, leading to some modifications 

of the (Step 1) decision problem (3)-(17). Practically, the net 

head, water flows and water volumes within reservoirs must 

be explicitly incorporated as decision variables into the 

model. First, the constraints (11)-(14) related to the UPHES 

energy content are replaced by (20)-(23), which directly 

integrate water volumes, taking into account groundwater 

exchanges (22)-(23). The latter, which are depicted in Fig. 9 

for an actual Belgian cavity (located in Maizeret), are 

approximated by third degree polynomials. In addition, it is 

necessary to accurately model both head variations (which 

depend on the geometry of reservoirs) using (24)-(27), and 

unit performance curves (18)-(19). Finally, since genetic 

algorithms cannot handle simultaneously integer variables 

and equality constraints, the latter need to be transformed 

into two inequality constraints. Overall, the optimization is 

performed with a 15-minutes time step (higher dynamics are 

disregarded) to keep the problem tractable, hence, 

infeasibilities can still occur. 

 

 
Fig. 9.  Groundwater exchanges for the lower reservoir of 

the considered Belgian site 

 

The outcomes given by the three variants and the 

genetic algorithm (GA) are summarized in Table 3. We 

focus on the (ex-ante) profit expected at the end of the 

optimization, and the (ex-post) actual revenues (decomposed 

into the minimum, average and maximum values for the 8 

representative days). 
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Table 3 Comparison of different formulations in terms of 

simulation time and profit distribution 

 

Average  

ex-ante 

profit 

Average  

ex-post 

profit 

Min.  

ex-post 

profit 

Max.  

ex-post 

profit 

variant #1 1513.2 € 345.7 € 273.1 € 402.3 € 

variant #2 1271.6 € 844.6 € 813.4 € 912.0 € 

variant #3 

(reference) 
963.0 € 963.0 € 873.1 € 1104.6 € 

GA 1118.5 € 902.2 € 799.1 € 988.9 € 

 

It is important to point out that the proposed tool 

(variant #3) achieves convergence in all the tested scenarios, 

with a number of iterations varying between 2 and 5 

(resulting in a simulation time of maximum 8 minutes). 

Those results were obtained with the tight tolerance 

parameters (convergence criteria) described in Section 5.1, 

which tends to prove the validity of the approach. 

As expected, meta-heuristics are not efficient in high-

dimensionality, especially in the presence of integer 

decision variables (and thus generate lower revenues). The 

increase in revenue obtained with respect to the genetic 

algorithm ranges from 2.1% to 10.4%, with an average 

value of 6.3%, which corresponds to 60.8 € per day (i.e. 

around 22,200 € per year). However, since nonlinear effects 

are better represented, the genetic algorithm leads to a lower 

mismatch (than variants #1 and #2) between the value of the 

objective function and the actual UPHES revenues.  

In general, summer months are characterized by 

lower price spreads compared to other months of the year. 

Consequently, the mean yearly profits (in Table 3) are 

higher than those observed for the month of July. Moreover, 

we see that variant #2 often yields a good initial policy, so 

that the proposed model (variant #3) can exploit this initial 

solution to efficiently improve (at each iteration) the 

operational decisions (until convergence). Interestingly, we 

also observe that, for 1 scenario, variant #2 generates 

slightly higher revenues than the proposed hybrid tool. This 

can be explained by the fact that, in this particular case, the 

hybrid approach leads to an overly conservative outcome, i.e. 

loss of revenues that exceeds the financial penalties 

associated with the aggressive strategy of variant #2. 

Finally, the scalability of the methodology is studied 

through a pool-commitment of 3 similar UPHES units (for 

the typical day of July). If the nonlinear effects had to be 

added directly to this formulation, the problem would 

quickly become intractable. However, for the hybrid tool, 

the variant #3 still requires 4 iterations to obtain the optimal 

solution, which shows that the convergence speed is not 

affected by the portfolio effect (aggregation of assets). The 

total simulation time, however, now reaches 25 minutes, due 

to the resulting increased complexity of the MILP 

optimization problem (Step 1). It should be noted that the 

calculation load of the RAO simulation model (Step 2) is 

not analyzed since it takes less than 1 second. 

6. Conclusions 

In this paper, we propose a methodology to robustify 

the scheduling problem faced by UPHES owners against the 

approximation errors arising when representing the 

nonlinear operation of these units. Indeed, we highlight that 

disregarding the nonlinear behaviors may mislead the 

UPHES operator into believing that the scheduling obtained 

at the end of the optimization is efficient and reliable, while 

it may actually lead to infeasible and sub-optimal strategic 

positions. It can thus be concluded that adequately 

considering such nonlinear effects constitutes an important 

step to optimally exploit the economic value of UPHES 

units. However, even convexification or linearization 

procedures are intrinsically onerous computationally, which 

prevents them to consider the proper dynamics of the system 

(with an optimization step lower than 1 minute). Moreover, 

these techniques are also associated with modeling 

approximations that may lead to infeasible solutions. 

To address these issue, we implement a hybrid 

procedure, which consists in the sequential operation of a 

simplified optimization tool and an advanced simulator, 

both included into a control loop ensuring the convergence 

towards a feasible and realistic solution. Although the 

convergence of the procedure cannot be theoretically 

guaranteed, the proposed iterative procedure has led to 

satisfactory results in the tested cases. 

Overall, the proposed methodology enables to 

immunize the scheduling of UPHES against modeling 

inaccuracies used for approximating the nonlinear effects of 

the unit, thereby avoiding the associated market penalties for 

non-delivered energy. The model may thus be used as a 

decision tool in the UPHES daily scheduling, or may help 

regulators and system operators to better estimate the 

available flexibility from these new UPHES resources. 
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