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ABSTRACT

Robotic machining is a fast-growing technology in the field of mechanical manu-

facturing. Indeed, it is generally accepted that for the same working space, a fully

equipped robotic machining cell can cost 30 to 50 % less than a conventional machine

tool. However, inaccuracies resulting either from vibrations or deflections occur while

the robot is subjected to cutting forces, inherent to its flexible structure. As an order

of magnitude, the stiffness at the tool-tip is about 1N/µm for industrial robots against

more than 50N/µm for CNC machine tools. The flexibility source has been investi-

gated and appears to be caused by the robot articulations in a proportion of 80% while

the remaining flexibility issues from the structural elasticity. In order to improve the

accuracy of robotic machining operations, several approaches have been carried out

such as the study of stable cutting conditions and the online/offline compensation of

the tool trajectory.

Two aspects of the operation must be modeled, on the one hand the model of the

cutting machine, being an industrial robot in robotic machining, and on the other hand,

the machining model including the resulting geometry of the workpiece. A coupled

model is then proposed with the multi-body model of the robot subjected to machining

forces. The multi-body model includes the flexibility induced by the structure and the

articulations. In order to compensate the deviations, a solution is proposed where the

trajectory is discretized in nodes with a compensation taking the system dynamics into

account by successive simulations of the operation. The algorithm involves two steps,

firstly it aims to detect critical locations of the path and add or reposition nodes to

reduce the deviation and secondly an optimization layer modifies nodes positions and

velocities for a finer reduction. The method is deployed for three systems of increasing

complexity for a face milling operation, showing a machining error reduction.
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NOMENCLATURE

α = t,r,a Respectively the tangential, radial

and axial directions

γ Weighting coefficient [.]

Jω,i,Base Rotational Jacobian matrix (3,ndo f )

JS,i,Base Translational Jacobian matrix (3,ndo f )

ui i:x,y,z unit vector

F(t) Vector of applied forces (ndo f ,1)

hq Vector gathering the Coriolis, gyro-

scopic and centrifugal forces (ndo f ,1)

Hi Homogeneous transformation matrix of

the trajectory node i

Mq Mass matrix (ndo f ,ndo f )

Ri,j Rotation matrix ∈ SO3 from frame i to

frame j

ω Rotational velocity [rad/s]



τθ Joint torque

Fα Machining forces [N] in direction α

p,v,a Translational position [m], velocity

[m/s], acceleration [m/s2]

pTCP Tool center point position [m]

pt Target position [m]

q Vector of degrees of freedom in gener-

alized coordinates

qa Set of actuated degrees of freedom

qu Set of unactuated degree of freedom

d∆,x,i represents the difference between the

dexel i along the k axis obtained from

the simulation with the corresponding

one from the ideal workpiece

h,dz,ds The chip thickness, the height of ele-

mentary tool slice, local cutter edge [m]

Kα,e,c The cutting coefficients

mi Mass of body i [kg]

nB Number of bodies

ndo f Number of degrees of freedom

TCP Tool center point

1 INTRODUCTION

Robotic machining is a fast-growing technology in the field of mechanical manufacturing. Indeed,

it is generally accepted that for the same working space, a fully equipped robotic machining cell

can cost 30 to 50% less than a conventional machine tool. Furthermore, robotic machining enables

an interesting agility in the cutter motion to deal with complex workpieces geometry. However,

inaccuracies resulting either from vibrations or deflections occur while the robot is subjected to

cutting forces. As an order of magnitude, the stiffness at the tool-tip is about 1N/µm for industrial

robots against more than 50N/µm for CNC machine tools [1].

The causes of these issues are numerous and have been identified then classified according to their

nature [2]. Among the deviations sources, a major contribution appears to be the flexibility of the

robot, caused by its articulations in a proportion of 80% while the remaining flexibility issues from

the structural elasticity of the links [3].

In order to improve the accuracy of robotic machining operations, several approaches have been

carried out such as the study of stable cutting conditions and the online/offline compensation of

the tool trajectory [2]. Within the frame of industry 4.0 and the concept of virtual twin, offline

models can be developed in order to predict instabilities and compensate deviations. However,

for the offline compensation, it is necessary to model both aspects of the operation, on the one

hand the model of the cutting machine, being an industrial robot in robotic machining, and on the

other hand, the machining model including the resulting geometry of the workpiece [4]. Offline

compensation methods are closely related to modeling of the robot flexibility. The static deflection

is directly computed from the identified stiffness matrix and the estimation of the milling forces.

The existing models mostly locate the flexibility at the articulations (precisely in the gearbox and

bearings) and at links (presenting significant bending depending on their shape). Several offline

compensation approaches are developed in the literature depending on the parameters chosen for

the flexibility modeling [2]. These approaches propose to determine an equivalent torsional stiff-

ness value at the articulation and to use it to calculate the corresponding deflection of the tool

center point [5, 6].

The more sophisticated the flexibility modeling the better the static deflection evaluation, with for

example a complete identification at the articulation level [5] or with simpler torsional model such

as the virtual joint modeling approach [7]. In each case, an equivalent stiffness value is computed

(with for example the Conservative Congruence Transformation [8]) and used to calculate the

corresponding static deflection of the tool center point [1]. This deflection is used to shift the

initial trajectory, also called the mirroring method [9].

Even though the stiffness-based deviation estimation presents a important error reduction, the



dynamic deflection has not been addressed [4] and may cause non-negligible deviations. The dy-

namical behavior is significant at different moments of the operation for example when the tool

enters or leaves the matter or even while performing small amplitude back and forth movements

(changing the direction of motors torques) [10].

The optimal trajectory generation for underactuated flexible robots is an active research topic

where optimal trajectory generation and control are central issues [11]. However, the perturba-

tions generated by machining forces make these algorithms complex to apply in our context. An

other reason requiring dynamic models is the presence of damping. It has indeed been shown that

the articular flexibility modeling is improved by adding a damping contribution [3].

A robot performing a machining operation can be considered as a multibody chain with perturba-

tion forces applied on the tool center point (TCP). In order to be able to simulate 5-axis operations,

it is necessary to include a machining force module that can compute these forces from the tool

motion. Concerning the modeling of machining operation, several approaches exist depending

on the expected inputs of the simulation [12]. The most appropriate candidates for time-based

simulation of 5-axis operations where the cutting forces and workpiece geometry are needed at

each time-step are the voxel and the dexel approaches [12]. Models based on voxels have been

developed for model-based compensation [6]. However, the complexity of voxel model is up to

O(n3) against O(n2) for dexel. Besides, for 2.5D operations, the stack of slices approach is faster

and reliable [13].

This paper first describes the flexibility model of the robot. Afterwards, the repositioning algo-

rithm is presented and applied on several multibody systems. Three models of increasing com-

plexity are addressed. In the first place, a minimal case, being the tool-mass body fixed with linear

spring/damper to a support whose motion is prescribed, is studied. Afterwards, non-linear robots

are a two-degree-of-freedom robot and the machining robot Stäubli TX200, with the introduction

of torsional spring/damper pairs at the articulations to model the flexibility. The repositioning of

the trajectory nodes is improved with an optimization layer considering nodes positions and veloc-

ities as design variables. Perspectives are discussed for the development, refinement and extension

for 5-axis operations of the proposed method.

2 MULTIBODY DYNAMIC MODEL

The equations of motions for a multiple-degree-of-freedom mechanical system are expressed as

follows

Mq(q)q̈(t)+hq(q, q̇) = F(t) (1)

where Mq(q), hq(q, q̇) and F(t) are defined in generalized coordinates, according to the virtual

power theorem, with equations (2,3,4), where Mq(q) the mass matrix, hq(q, q̇) the vector gather-

ing the Coriolis, gyroscopic and centrifugal forces and F(t) the vector of external forces applied on

the system are expressed in terms of the generalized coordinates q according to equations (2) to (4).

The vector q regroups the actuated degrees-of-freedom qa and the unactuated degrees-of-freedom

qu.

Mq(q) =
nB

∑
i=1

(

mi[JS,i]
T
Base · [JS,i]Base +[Jω,i]

T
Base ·RBase,i · [ΦG,i]i ·RT

Base,i · [Jω,i]Base

)

. (2)

hq(q, q̇) =
nB

∑
i=1

(

mi[JS,i]
T
Base · [J̇S,i]Base +[Jω,i]

T
Base ·RBase,i · [ΦG,i]i ·RT

Base,i · [J̇ω,i]Base

)

q̇

+[Jω,i]
T
Base ·

(

{ωi}Base×RBase,i · [ΦG,i]i ·RT
Base,i · {ωi}Base

)

.

(3)



Fq =
nB

∑
i=1

(

[JS,i]
T
Base · {Ri}Base +[Jω,i]

T
Base · {MG,i}Base

)

, (4)

where the subscript Base refers to the base frame, [JS,i]Base and [Jω,i]Base are the translational and

rotational Jacobian matrices of body i expressed in the base frame.

To model the gearbox flexibility, unactuated degrees-of-freedom are introduced at the articulation,

allowing a deflection introducing elastic and damping action/reaction torques on the bodies on

either side of the articulation. The torques between body i and j are expressed by

{MG,i}Base =−
(

kqu,l
·qu,l +dqu,l

· q̇u,l

)

·RBase,i ·ul (action),

{MG, j}Base =
(

kqu,l
·qu,l +dqu,l

· q̇u,l

)

·RBase,i ·ul (reaction)
(5)

where kqu,l
and dqu,l

are respectively the torsional stiffness and damping of the articulation along

local axis l. These values are identified from experimental modal analysis of the system.

The machining forces are computed considering the mechanistic approach [14]. Theses forces are

computed as the sum of elementary contributions along the tool axis as follows:

Fα =
ns

∑
k=1

Kα,c.h.dz+Kα,e.ds (6)

with h the uncut chip thickness, dz the height of the elementary slice, ns the number of tool slices

[14], α = t,r,a the tangential, radial and axial directions respectively, ds the local cutter edge

length and Kα,c, Kα,e the cutting coefficients identified from experimental data [15]. The forces

are then applied on the TCP. Their computation is the result of the coupling of two simulators,

on the one hand EasyDyn, an in-house multi-body solver and on the other hand DyStaMill, an

in-house solver as well, dedicated to the simulation of machining operations [13].

The global block diagram of the correction is shown in Fig. 1. The system is controlled with an

inverse dynamic controller [16] in which Mq(q),hq(q, q̇),Fq are computed with the rigid model of

the robot in order to provide the assumption that the robot controller is not aware of the flexibility.

The Cartesian trajectory [pt ṗt p̈t ]
T is first transposed in the joint space [qt q̇t q̈t ]

T with second

order inverse dynamics, also based on a hypothetical perfectly rigid robot, and tracked with the

controller generating the motor torques [u1,t . . .undo f ,t ]
T . The aim of this architecture is to reproduce

the conditions where the inner controller of the robot is not accessible and the input is the trajectory

sent to the system.
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ṗt

p̈t









qt

q̇t

q̈t











u1,t
...

undo f ,t











pTCP,t
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Figure 1: Block diagram of the off-line operational trajectory correction. With IK: Inverse

Kinematics, IDC: Inverse Dynamics Controller, EoM: Equations of Motion, DK: Direct Kine-

matics, RM: Rigid model, FM: Flexible Model. The initial trajectory based on the G-code is

[pInit ṗInit p̈Init ]
T
t0−→t f

. The simulated TCP position is [pTCP ṗTCP p̈TCP]
T
t0−→t f

and the corrected

trajectory [pmod ṗmod p̈mod ]
T
t0−→t f

.



3 DEVIATIONS COMPENSATION

The trajectory is discretized by nodes Hi between which an Hermite interpolation is carried out.

Each node includes a homogeneous transformation matrix and velocity requirements for the TCP.

Hi =

[

Rn,i pn,i

0 1

]

, Ḣi =
[

ωn,i vn,i

]

(7)

where Rn,i the rotation matrix of node i whose z axis correspond to the tool orientation, pn,i the

TCP position, ωn,i and vn,i the rotational and translational velocities respectively.

The aim is to model the trajectory using a minimal number of nodes. The first step of the com-

pensation method is to detect the areas where the deviation is problematic in order to act on the

existing nodes position to reduce the machining error and possibly place additional nodes. A first

correction is carried out using the mirroring approach for each node, which consists in applying at

the trajectory nodes the error between the actual TCP position and the node position. This correc-

tion intends to compensate mainly the deviations from static forces, such as the impact of gravity

on the structure.

Afterwards, the operation is simulated to determine the deviation at each time step. A correction is

then applied on the nodes having an impact on the machining, i.e. the nodes surrounding trajectory

sections where the robot is milling. The updated trajectory is the input for the following simulation.

This correction is computed as the mean machining error caused for the upcoming path section,

meaning that the node i is replaced depending on the machining error accumulated in path section

i −→ i+ 1. The deviations of a dynamical nature are thus taken into account since this error is

computed with the system response from the integration in time of the equation of motions. The

trajectory H is updated at each iteration k with the modified position of the nodes Hmod. It allows

to anticipate the deviation, in particular for the entry, and accept to deviate from the ideal trajectory

while the TCP is outside the matter if it is in the interest of reducing the machining error.

Once the nodes have been repositioned at best, the global machining error is compared to a thresh-

old and if the gap is still too important, a node is added in the critical position, being the location

presenting the highest deviation. Finally, when the error is under the threshold, the trajectory is

sent to the optimization layer where, in addition to the position, the velocity at each of the nodes

will be considered as a design variable. The node-repositioning algorithm is presented in Fig. 2.

4 TRAJECTORY NODES OPTIMIZATION

Once the nodes have been replaced based on successive simulations of the dynamical system, a

finer result can be obtained by acting on the velocity vn,i as well as the position pn,i of the nodes

linked to the machining. The optimization problem is given in the following equation:

min
pn,i,vn,i,pn,i+1,vn,i+1

cost =
N

∑
k=0

‖pTCP−pt‖
2
2 · γk (8)

where the parameters are successive nodes (ni,ni+1) positions and velocities, pTCP is the tool

center point position, pt the ideal path and γk is a weighting factor equal to 1 while machining and

0 else where and N is the number of observation points, i.e. the number of time steps to simulate

the process from t0 to t f . In order to reduce the design variables research horizon and remain

in feasible areas, boundaries [xl ; xu] are imposed by logarithmic barrier transformation tr(x) as

presented in Eq. 9. As stated before, a deterministic method is preferred, hence quasi-Newtonian

l-BFGS is selected.
tr(x) = ln(x− xl)− ln(xu− x)

tr−1(y) =
eyxu + xl

1+ ey

(9)

For the sake of readability, the legend of the curves used in Figs. 4a,5,7a,8 and 9b is detailed and

kept along the paper. The red dashed line with circles ( ) represents the trajectory sent to the
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Figure 2: Trajectory nodes repositioning algorithm.

system and the without symbol one ( ) gives the system response. The blue dashed line with

triangles ( ) shows the trajectory after the node repositioning algorithm and the corresponding

tool motion without symbols ( ) .The final compensated trajectory sent to system is presented

with the green dashed line with squares ( ) and the full line ( ) represent the final tool mo-

tion. Finally, the dotted line ( ) line shows the moments the tool enters and leaves the matter.

The machining operation performed by the aforementioned systems is the face milling of a Al6060

block with a flat-end mill of diameter Dtool = 10 mm with 2 teeth presenting a 30◦ helix angle in

half-immersion over a cutting dept of 2 mm. The spindle rotation speed is 11250 RPM for a feed

per tooth of 0.13 mm/tooth. The trajectory is limited to a single pass along the y axis. The nodes

added are then the ones surrounding the entry and exit and one at the middle of the part (since the

section with the highest error is between entry and exit).

4.1 Tool mass system

In the first instance, the node replacement with optimization layer has been carried out for the

simplified tool-mass model represented in Fig. 3. This system is composed of a mass connected

to a support with a pair of spring/damper along the x and y directions. The motion of the support

is imposed by the trajectory. The inertia parameters as well as stiffness and damping values were

chosen such as the tool-mass exhibits a rather similar deflection behavior than the TX200 for this

kind of machining operations which results in M = 200kg, k = 100kN/m and c = 4kN.s/m.

The result of the repositioning algorithm and the optimization of the nodes positions and velocities

is presented in Fig. 4a, where the amplitude of the error is already strongly reduced in the milling

area with the first compensation stage ( ). The optimization layer managed to reduce the ampli-

tude of the gap at the entry and exit as shown in Fig. 5. The evolution of the cost function along

the corrections is displayed in Fig. 4b. The optimization layer does not bring strong improvement

since its contribution is mainly located around the entry and exit.



y

x c

c

k

k

ω
v

vnom

Figure 3: Simplified system, consisting of a tool attached, through spring-damper pairs, to a sup-

port moving along y direction and machining a workpiece in half-immersion.
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Figure 4: (a) Evolution of the tool trajectories along x direction throughout the correction proce-

dure for the tool-mass system. Legend is given in Sec. 4. (b) Evolution of the cost function. The

line ( ) symbolize the demarcation between the node repositioning and the optimization layer.
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Figure 5: Close-up views of the trajectories for the tool-mass system presented in Fig. 4a for entry

(a) and exit (b) of matter.



4.2 Two degree of freedom flexible system

The second system implemented is a two-degree-of-freedom system with additional flexibility at

the articulations presented in Fig. 6. This model introduces coupling between q1 and q2 and non-

linearity between the task space and the operational space since the actuated degrees of freedom

are the joints angular positions. The first body (s1) is linked to the ground through the motor

where the gearbox flexibility is modeled by a torsional spring-damper pair (Eq. 5). The motor

actuating the second link s2 is located at the tip of s1, with the gearbox flexibility modeled in the

same way. The unactuated degrees-of-freedom representing the articular deflection are gathered

in qu =
[

q3 q4

]T
. An additional mass s3 is placed at the tip of the body s2 in order to represent

the equivalent charge of the spindle. Just as the tool-mass model, the machining operation is the

surface milling in half-immersion of the tool along the y axis. The inertia properties are chosen to

behave the same way as the machining robot does.
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Figure 6: Two actuated degrees-of-freedom system with articular flexibility. Solids s1 and s2 are

the robot links and s3 is a mass supporting the tool. The articular flexibility is represented by the

deflections q3 and q4 with the torsional springs and dampers k and d.

Similarly to the tool-mass model, the tracking error is reduced within the machining part of the

trajectory. The compensated and final trajectories are shown in Fig. 7a and the evolution of the

cost value in Fig. 7b. The anticipation of the deviation at the entry and exit resulting from the

optimization layer is emphasized in Fig. 8.
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Figure 7: (a) Evolution of the tool trajectories along x direction throughout the correction pro-

cedure for the two-degree-of-freedom system. Legend is given in Sec. 4. (b) Evolution of the

cost function for the trajectory correction of the two-degree-of-freedom system. The line ( )

symbolize the demarcation between the node repositioning and the optimization layer.
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Figure 8: Close-up views of the trajectories presented in Fig. 4a for entry and exit of matter.

4.3 Anthropomorphic Robot

The anthropomorphic robot studied in this work is the TX200 from Stäubli illustrated in Fig.9a.

The multibody system is the result of the complete identification of the flexibility, with the tri-axial

torsional flexibility model from experimental modal analysis [3]. Additional degrees of freedom

are then induced at the articulations and links, leading to a multiple-degrees-of-freedom system

composed of six actuated degrees-of-freedom qa =
[

qa,1 . . .qa,6

]

and 34 others qu, modeling the

deflections [17]. The tri-axial method consists in three torsional spring/damper pairs consecutively

connected after the gearbox and oriented along each of the three local frame directions. The

unactuated degrees-of-freedom at the second joint qu,2 (qx,2, qy,2, qz,2) thus represent the joint

deflections and lead to the following formulation of the Body 2 center of mass (GBody 2) location

with respect to the base (OBase) on which the robot is mounted

HOBase,GBody 2
=HOBase,OBody 2

·Hrotz(qa,2) ·Hrotz(qz,2)·

Hrotx(qx,2) ·Hroty(qy,2) ·HOBody 2,GBody 2
.

(10)

Similarly to the two-degree-of-freedom planar robot detailed in Section 4.2, the rigid model of the

robot is used for the inverse dynamics controller as well as the second order inverse kinematics

(Fig. 1). As well as the previous systems, the robot is machining along the y direction, maintaining

the x position constant. The evolution of trajectories along the x direction is presented in Fig. 9b. At

the exit, the dynamic deflection is well compensated however the contribution of the optimization

for the entry is rather small. It can be improved by changing the weighting of the entry section in

the definition of the cost function.

5 PERSPECTIVES

As a perspective of development, a stronger contribution can be given to the optimization part. A

refinement of the cost function is to be considered, where, instead of using the accumulated posi-

tioning error obtained by the comparison of trajectories, the difference between the ideal workpiece

(in a dexel form) and the workpiece resulting from the simulation is proposed. The importance is

centered on the realization of the expected workpiece and no longer on the accomplishment of a

trajectory. Since the machining is preferred at constant velocity for stability and surface quality

reasons, a penalty in the norm of the TCP velocity may be added. The improved cost function is

presented as follows :

J =
Nx

∑
i=0

d∆,x,i +
Ny

∑
j=0

d∆,y, j +
Nz

∑
k=0

d∆,z,k +
Nt

∑
l=0

γl · ‖vTCP,sl
−vTCP,tl‖ ·dt (11)
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Figure 9: (a) Representation of the multibody modeling of a Stäubli TX200 robot dedicated to

machining. For readability reasons, the articular flexibility is only explicitly shown for the third

joint. (b) Evolution of the tool trajectories along x direction throughout the correction procedure

for the TX200 robot model. Legend is given in Sec. 4.

where d∆,x,i represents the difference between the dexel i along the x axis obtained from the sim-

ulation with the corresponding one from the ideal workpiece. The illustration of the difference

between dexels workpiece in given in Figure 10. The time code of the trajectory nodes can be

included in the design variables set in order to enable the nodes to be more moving.

Difference

Computed Dexel

Ideal Dexel

Expected

Workpiece

Deviation

Figure 10: Determination of difference between the ideal workpiece and the resulting workpiece

from the dynamic simulation.

Furthermore, a balance between the two correction layers (node-repositioning/introduction and

optimization) to define an optimal amount of nodes to be added for a sufficient pre-compensation.

Finally, further investigation and tests are being considered for complex multibody systems, such

as the TX200 robot model, to challenge the proposed method. For such applied case, experimental

validation is essential and planned. The compensation will be quantified by comparing the work-

pieces obtained with uncompensated and compensated trajectories. The dexel approach opens the

perspective of more complex trajectories to be simulated [18], the deployment of the method is

intended for 5-axis operations.



6 CONCLUSIONS

Robotic machining is a growing technology but suffers from the lack of accuracy for hard-material

machining, mainly caused by the overall structure flexibility. An in-dept studies of the phenomena

allowed to model the flexibilities. Using these models, it is then possible to estimate, up to a

certain accuracy, the deflections at the tool-tip caused by the machining forces. Within the frame

of Industry 4.0, these models are virtual twins of the operation, and can be used to predict the

behavior of the robot as well as the result. The machine models can be expressed as under-actuated

multibody systems, where some degrees-of-freedom are the articulations and others represents

deflections.

This article presents a method taking advantage of such models to build a tool trajectory, expressed

in the operational space, anticipating the deviations from static and dynamic nature while subjected

to machining forces. The method is employed on under-actuated multibody systems of increasing

complexity with flexibility. The reduction of the deviation can be improved by varying the cost

function as well as the amount of added nodes. For more complex systems as the one presented,

the simulation time becomes a constraint since the optimization layer requires several iterates

to propose improvements. Finally, the presented approach must be experimentally validated by

comparing machined parts.
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