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Gravity in 3D: an old love story with A

- Key developments that stimulated research on 3D gravity
» 1984: Deser, Jackiw, 't Hooft; particle dynamics in 3D
» 1986: Achucarro, Townsend; Chern-Simons formulation of AdS sugra i

- 1988: Witten; Chern-Simons formulation of gravity for any A

Most of these papers discussed both flat space and (A)dS
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- Key developments that stimulated research on 3D gravity

» 1984: Deser, Jackiw, 't Hooft, particle dynamics in 3D

» 1986: Achucarro, Townsend; Chern-Simons formulation of AdS sugra

- 1988: Witten; Chern-Simons formulation of gravity for any A
Most of these papers discussed both flat space and (A)dS

- Then the BTZ black hole and AdS/CFT appeared...

+ 1992: BTZ black holes when A <0

» 1986—1998: Brown-Henneaux asymptotic symmetries & AdS/CFT

and flat space disappeared from hep-th!



Why coming back to flat space?

Strong opinions against flat space until recently... 0 e oo,

» For A = 0, above three dimensions there is a precise observable in
quantum gravity, the S-matrix. However, in the three-dimensional case,
there is no S-matrix in the usual sense [...]. There are no gravitons in
three dimensions, and there are also no black holes unless A < 0. So
again, we do not have a clear picture of what we would aim for to
solve three-dimensional gravity with zero cosmological constant.
(Witten, Three-dimensional gravity reconsidered, 2007)
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» For A = 0, above three dimensions there is a precise observable In
quantum gravity, the S-matrix. However, in the three-dimensional case,
there is no S-matrix in the usual sense [...]. There are no gravitons in
three dimensions, and there are also no black holes unless A < 0. So
again, we do not have a clear picture of what we would aim for to
solve three-dimensional gravity with zero cosmological constant.
(Witten, Three-dimensional gravity reconsidered, 2007)

and new hopes to understand what we would aim for!

» 2010: Barnich, Troessaert; BMS/CFT correspondence

» 2014: Strominger; BMS symmetries, soft theorems and memory effects

. ta balW
see Dario? ko

» 2016: Hawking, Perry, Strominger; soft hairs for black holes

hese developments pertain to 4D, but 3D gravity helps...



OK... but why flat space in 3D?

Most of the recent developments in flat space are based on
the infinite-dimensional asymptotic BMS symmetry

» Conformal 2D subalgebra of BMSs < rewriting of the S-matrix in terms
of CFT correlators Pasterski, Shao, Strominger (2017)

» Infinite dimensional symmetry of the S-matrix < leading and subleading
soft theorems as Ward identities Strominger (2014)

No S-matrix in 3D, but a great opportunity to understand
better flat-space holography (and soft hairs)

- The BMS algebra is a contraction of the 2D conformal algebra!

Afshar, Detournay, Grumiller, Merbis, Perez,
Tempo, Troncoso (2016) and further
developments

»  Simple models for the study of soft hairs



BMS3; as a contraction

of the Virasoro algebra




Asymptotic symmetries in AdS;

Brown, Henneaux (1986)

(-5 +0(1)  O@?) O(1)
- Fix boundary conditions:  gu ~ 5 +0rt)  or)
\ r2 + O(1)

- Look for gauge transf. that preserve them
° 5gw/ = V(Mfy) ~ Juv

- define charges (canonical generators): 6:F = {Q(¢), F'}

- Asymptotic symmetries. Poisson brackets of charges

(L(0), (6 =— (66 —06)L' () + 266 —0)L(0)) — ﬁ 50 — 0
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Asymptotic symmetries in flat space

- Asymptotic symmetries at spatial infinity in AdS3

c
L, L) = (m—n)Lyin+ D m(m?* — 1)0m-n.0

L C
L, L] = (m—n)Lysn+ 5 m(m2 — 1)0mn.0
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Asymptotic symmetries in flat space

- Asymptotic symmetries at null infinity in Minkowskis

_ C

(s Il = (m —n)Jpmgn + é m(m2 — 1) 6mtno
_ c

T, Pl = (m—n)P., + 1—; m(m2 — 1) dimtno

[Pma Pn = 0 )



Asymptotic symmetries in flat space

- Asymptotic symmetries at null infinity in Minkowskis

_ C

(s Il = (m—n)Jpmin + é m(m2 — 1) 6mtno
_ c

[T, P] = (nz—70f%H%—%1%7n0n2—CD5m+mo,

[Pma Pn = 0 9

- Same result directly from flat gravity

AdSs
- Everything extends to higher spins {

flat

Barnich, Compere (2007)

Henneaux, Rey; A.C., Pfenninger,
Fredenhagen, Theisen (2010)

Afshar, Bagchi, Fareghbal, Grumiller,
Rosseel; Gonzalez, Matulich, Pino,
Troncoso (2013)



Higher spins in 3D flat space




The road to higher spins in D = 2+1

- Einstein-Hilbert action
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» Dreibein & spin-connection: e = §(A — A) w==(A+A)

» Rewriting of the action:




The road to higher spins in D = 2+1

- Einstein-Hilbert action

1 1
I = | Ith
167TG/tr<e/\R 3l2€/\6/\6> Wi $

- Chern-Simons action

k 2
SeslA] = - /Tr(A/\dA + gA/\A/\A)

- Yet another trick: Einstein-Hilbert < Chern-Simons

4
» Dreibein & spin-connection: e = §(A — A) w==(A+A)

» Rewriting of the action:




“Higher spins” in D = 2+1

- What happens using other gauge algebras in /Igrav? sl(3,R)?

= (eMaJa -+ euab Tab) dxt

1 1
]:  ——
167TG/131'<6/\R—|—3€26/\6/\6> < b

sl(3,R) algebra: 0o Jo] = €aped

[Jcm Tbc: — 6ma(btz—'c)fm

m
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“Higher spins” in D = 2+1

- What happens using other gauge algebras in /Igrav? sl(3,R)?

= (eMaJa -+ euab Tab) dxt

1 1
[ = 167?G_/tr<€/\R <

LW = (wua’Ja + wu“b Tab> dxzt

no problems in defining the
flat limit

sl(3,R) algebra: T, T

[Jaa Tbc: — 6mob(biz—vc)m

[Taba Tcd] — = (na(ced)bm T 77b(c€d)a,m) J"
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- What happens using other gauge algebras in /Igrav? sl(3,R)?

= (eMaJa -+ euab Tab) dxt

LW = (wua’Ja + wu“b Tab> dxzt

- Einstein-Hilbert «& Chern-Simons

» AdS: so0(2,2) = sl(2,R) @ sl(2,R) Chern-Simons action Achucarro, Townsend (1986)

» Flat space: iso(2,1) = sl(2,R) & sl(2,R)ab Chern-Simons action witten (1988)

» Higher spins: sI(N,R) "‘AsI(N,R) Chern-Simons theories Blencowe (1989)




A quick recap

- Gravity in flat space looks cool even if you like AdS/CFT!

© In 4D the infinite-dimensional BMS asymptotic symmetry
Isn’t just a curiosity: it has interesting conseqguences

~ Not easy to control the flat limit of AdS/CFT

© In 3D the BMS symmetry emerges as a contraction of
the asymptotic 2D conformal symmetry

- In 3D the limiting procedure can also involve higher spins
(more structures — more control)
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- Gravity in flat space looks cool even if you like AdS/CFT!

© In 4D the infinite-dimensional BMS asymptotic symmetry
Isn’t just a curiosity: it has interesting conseqguences

see, however, Ciambelli,

© Not easy to control the flat limit of AAS/CFT  Marteau, Petkou, Petropoulos,

Siampos (2018)

© In 3D the BMS symmetry emerges as a contraction of
the asymptotic 2D conformal symmetry

- In 3D the limiting procedure can also involve higher spins
(more structures — more control)



More on the A—0 limit:

representation theory




The bms3 algebra

- The centrally extended bmss algebra (m € Z)

C1

Ty Il = (m—n)Jpmin + D m(m2 — 1) dmtno
T, Pl = (m—n)Pin + f—; m(m2 — 1) 0imtno
[Pm, Pn: = 0

© c2 plays an important role in representation theory

and doesn’t vanish in gravity: ¢ = %



The bms3 algebra

-~ The Poincareé subalgebra (m = —1,0,1)

(I, Jn] = (M —=n)Jmin « Lorentz
[Jmapn: — (m_n)Pm+n
[Pma Pn = 0

|

O RRA ORI —

- Pm — translations; J+1 and J-1 = boosts; Jo — rotations



Poincare unitary irreps in a nutshell

- lrreps of Poincaré group classified by orbits of momenta

- all p# that satisfy p* = —M? for some mass M

- Po gives the energy and P1,P-1 commute with it

» build a basis of eigenstates of momentum: |p*,s)

- All plane waves can be obtained from a given one via

U(w) =exp|i(wJ +w*J_1)] is a unitary operator



Rest-frame state & Poincaré modules

- Massive representations

» Representative for the momentum orbit k* = (M, 0,0)

» The corresponding plane wave | M, s) satisfies

» | M, s) is annihilated by all P, aside Po!



Rest-frame state & Poincaré modules

- Massive representations
» Representative for the momentum orbit k* = (M, 0,0)

» The corresponding plane wave | M, s) satisfies




Rest-frame state & Poincaré modules

- Rest-frame state:

| PO‘M78>:M’M78>7 P—1’M7S>:P1‘M7S>:O’

|
V&{

- lIrreps of the Poincaré algebra built upon|M, s)

P» and J, act linearly on these states

Irreducible? Yes, Casimirs commute with all Jn

Unitary? Change basis! |p",s) = U(A)|M,s) — (p",s|¢",s) = 0,.(p,q)




bmsis modules

- Representation theory of BMS3 group Barnich, Oblak (2014)
» Irreps again classified by orbits of supermomentum p(y) = Z D,
nez

» It exists a basis [p(p), s) of eigenstates of supermomentum

» Orbits with a constant p(¢) = M — ¢3/24 — rest-frame state!



bmss modules

- Representation theory of BMS3 group Barnich, Oblak (2014)
» Irreps again classified by orbits of supermomentum p(y) = Z D,
nez

» It exists a basis [p(p), s) of eigenstates of supermomentum

» Orbits with a constant p(¢) = M — ¢3/24 — rest-frame state!

- @Given the rest-frame state A.C., Gonzalez, Oblak, Riegler (2016)

.-
,I
l; Py|M,s) = M|M,s), P,|M,s)=0form=#0,
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© Inthe limit £ — oo the conformal algebra becomes bmss
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Ultrarelativistic limit

New generators:

In the limit ¢ — oo the conformal algebra becomes bmss

- What happens to highest-weight representations??
» HW state: Lolh,h) =0,  Lylh,h) =0 whenn >0

- Vermamodule: L£_,, - L L s -+ L gz |h,h)

h+h

h—h
g )

» New quantum numbers of the HW state: M = s

- Rewrite £L_,,, -+ L_,, L_5,---L_z |h,h) inthe new basis as

Jn1Jn2 JnN‘M, S> with T 2 o Z Z N

» Jp don’t annihilate the vacuum — invertible change of basis!



Ultrarelativistic limit

- Matrix elements of P, and J, A.C., Gonzalez, Oblak, Riegler (2016)

Pn|k17"'7kN> — Z P](;Z;)kj(M,S,Z) ‘k/177k./7\7>
k'

Jn|k17"'7kN> — Z Jl(c?,)kj(Mvs) ’k/177k.,7\7>
k'

|

1
- ¢ comes from the “old" CFT HW conditions: (P:I:n + ZJ:I:n> h,h) =0

- only negative powers of ¢ appear: limit exists!

M _
I b= g;s FA+ O, h= FA+ O

the highest-weight state |k, h) satisfies in the limit

Po|M,s) = M|\M,s), P,|M,s)=0form=#0, Jy|M,s)=s|M,s)



Galilean limit

Bagchi, Gopakumar,

- Alternative contraction conformal =@ bmss Mandal, Miwa (2010)

Ly, L,] = (m—mn) Ly, + B m(m® — 1) Smgn.o
(L, M| = (m—mn) M1, + 01_1\24 m(m2 — 1) dmtno

(M, My = 62("')

- What happens to highest-weight reps?
A=h+h, {=e(h—h)
L,|AE) =0, MuIA &y =0, n>0
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Galilean limit

Bagchi, Gopakumar,

- Alternative contraction conformal =@ bmss Mandal, Miwa (2010)

- What happens to highest-weight reps?
A=h+h, §=e(h—h)
Lo|A€) =0, M,|A ) =0, n>0

‘{[z}, {m]}> = L_[l c e L_[iM_ml c. M_mj‘A, §>

HW reps are mapped into other HW reps
- Cool! We can define a scalar product using (M,,)" = M_,,, (L)'= L_,,
» These reps are typically non-unitary and reducible

» Ok for condensed matter applications but bad for gravity!



bms3 representation theory: key facts

- The bms; algebra can be recovered via two different contractions of the
2D conformal algebra

- The resulting algebra is the same, but the limit of highest-weight
representations is very different

» Ultrarelativistic (Carrollian) contraction: unitary induced representations

» Non-relativistic (Galilean) contraction: non-unitary highest-weight representations

- The latter representations are "easier" to handle: basis of recent
developments

» Holographic entanglement entropy Bagchi, Basu, Grumiller, Riegler (2014)
» BMS bootstrap Bagchi, Gary, Zodinmawia (2016)

» BMS conformal blocks Hijano; Lodato, Merbis, Zodinmawia (2018)



More on the A—0 limit:

boundary conditions




Boundary conditions: AdS vs flat

The limit A—0 cannot be taken naively in Fefferman-Graham

coordinates ;
l
ds? = ?dp2 + gag(p,x)dz?dz? = oo ?

The limits of a spacetime may depend on the coordinates

- To describe the limit A—0 one has to change gauge

28V

—du® —2*dudr +r(dg — Udu)® G000

- BMS gauge: ds°=c¢

9 8tG
- Fluid/gravity gauge: ds’> = 2 U (dr 4+ rA) + ridsiy + 24

u(eu+ x *xu)

2 B 4
< u=—k(Qdt — (b +p)d) +O(K) | defined flat limit

A = 0Qdt+ (ay+6y)dx+O (kz) Ciambelli, Marteau, Petkou,
- Petropoulos, Siampos (2018)



The A—0 limit for higher spins




Asymptotic symmetries reloaded

Coussaert, Henneaux, van Driel (1995)

~ AdSs Chern-Simons connection: A =b"ta,bdz™ + b db

et ST 0, = Ly~ T L(a") Loy — o W(aT) W
sl(3,R) algebra:
Li, Lj| = (¢ — ) Liy;
Ly, Wil = (20 — m)Wp,
Won Wal = " 2m? + 20 = mn = 8) L
-1<i,j<1and -2<m,n<2 |

B



Asymptotic symmetries reloaded

Coussaert, Henneaux, van Driel (1995)

~ AdSs3 Chern-Simons connection: A =0b""a,bdz™ + b db

2T 78
Henneaux, Rey; A.C., Pfenninger, L =7 + o +
Fredenhagen, Theisen (2010) A4 = Ll L(Qf ) L—l W(.CC ) W—2

k 2k

- QGauge transformations preserving boundary conditions

» generated by A =b"1(p)|e(0) L1 + x(0) Wa + A(e, x) } b(p)

- Asymptotic symmetries

5.L=cl +2e0 4

oW =eW' +3W,

5XW _ %<2X£///_|_9X/£//_|_15X//£/_|_1OX///£_|_4_X(5)
7"' \




Spin-3 extension of the conformal algebra

Lons La] = (m = 1) Lorin + 15 (0° = 1) i
[£m7 Wn — (2772 — TL) Wm—l—n 7
W, Wy] = (m —n)(2m* + 2n* — mn — 8) Lyjn y _?_62 (m—mn):LL: hin
5

- < (m* —4)(m° —m) Omtn, 0 ;



Spin-3 extension of the conformal algebra

Lo, L0

)V

m n |

Wi, Wi,
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- 9 6 / o 3
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+ E (m* — 4)(m° — m) gm0,

- Normal ordering how needed:
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Spin-3 extension of the conformal algebra

Lons La] = (m = 1) Ly + 55 (m* =) G0
[Lma Wn — (2m — n) Wm—l—n 7
_ 96
Wi, Wh] = (m —n)(2m2 + 2n% — mn — 8) Lynsn P (m—mn):LL: in
5
C
+ 3 (m? —4)(m> —m) Omin 0 »

- Normal ordering now needed:

=Y Loply+ ¥ Lyl p—— (m =+ 3)(m+2)L,,

p>—1 p<—1

- Ultrarelativistic contraction:




Spin-3 extension of bmss

- Limit ¢ — oc: bmssz algebra plus...

96
(Won, Wa] = (m —n)(2m?* +2n% — mn — 8)Jpman + — (M — 1) A s,
C2
96
— 201 (m —n)Opin + a (m* — 4)(m?® —m) Smn.o,
c5 12

96

Win, Qn] = (m —n)(2m* 4+ 2n* — mn — 8) P4y + — (m —n)Oin
2

- % (m2 — 4)(m3 — M) Ot 0 5

[Qma Qn] — Oa

- Non-linearities survive in the limit!
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C Ny
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Spin-3 extension of bmss

- Limit ¢ — oc: bmssz algebra plus...

W, Wil = (m

[Wma Qn] — (m
+ = (m?* —4)(m> —m) Sy,
[Qma Qn] — Oa

Galilean |imjt
. " L - | differentirde ing!
- Non-linearities survive in the limit! \mg-_]

Grumiller, Riegler,
Rosseel (2014)




Higher-spin modules

Representations as for bmssz and Poincarée

» Introduce a rest-frame state P,,|M,qy) =0, Qm|M,q0) =0 for m # 0

» Build the vector space which carries the representation as

Wk1kaJllL]ln‘M7qO> /ﬁZZk’m llZZln

» No problems with non-linearities (construction based on the
universal enveloping algebra)

Construction compatible with normal ordering:

. {0]©,,]0) = (0[A,]0) = 0

» Not true if one uses “Galilean” highest-weight reps!



Comparison with dimension

four and higher




Boundary conditions for spin 3 in D = n+2

AC, Francia, Heissenberg (2017)

-~ Minkowski background: ds* = — du® — 2dudr + r?v;; (2" )dx'da’

- Bondi-like “gauge’: orag =0, g 0up =0
- Boundary conditions =, o

in any dimension: P = 2T > BY M A

= |
Pijk — T—§+30ijk + - Puui — Z T—a—l_HUi() T Tl—n'/\/"i T
| [=0
14 , 5]
= Aimeinsion oﬂf | Ouis = Z e arArAY Ll
the celestial sphem ’ —0 Y ’
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Boundary conditions for spin 3 in D = n+2

AC, Francia, Heissenberg (2017)

-~ Minkowski background: ds* = — du® — 2dudr + r?v;; (2" )dx'da’

See
- Bondi-like “gauge”: prag =0, 90 =0  Dariog
talle
- Boundary conditions =, oo
in any dimension: | Puuu = Pt roa B A M
= «
%gk _ T—§+30ijk + ... Oyui = Z 7’_§_l+1Ui() - Tl—n,/\/,;' + ..
| [=0
" , 5]
= Aimeinsion oﬂf | Ouis = Z e arArAY Ll
the celestial sphem ’ —0 K ’

[ —

Radiakion —



Higher-spin super-translations & -rotations

Residual “gauge” symmetry

€’ = [K” +;7;J(K)+ (;) E](K)] T U1J(P)‘|‘%Z/{3J(P)] ‘|‘pV2‘7(T)>
w_ % Ipgi- " pippr|l_{i " pip,|+ L pir
€ — . — . . — — . -

n+ 2 2(n + 1) TS Pl T or =

2
2
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Comparison with Chern-Simons

- Al BY, U and Vi are fixed in terms of Ciy,
while M, N; and Pj; are "integration constants”

- Apparently, there are many more ingredients than in the
Chern-Simons computation

- In 3D, however, "radiation” become subleading, Ni has
only one independent component and Pj vanishes

Puws = M(@) +O(), Guugp = N(9) + 53 M(9) + O

- Eventually one recovers the same boundary conditions as in
the Chern-Simons theory!



Back to the “motivational” summary

- Gravity in flat space looks cool even if you like AdS/CFT!

 In 4D the infinite-dimensional BMS asymptotic symmetry
Isn’t just a curiosity: it has interesting conseqguences

- In 3D the BMS symmetry emerges as a contraction of
the asymptotic 2D conformal symmetry

~ In 3D the limiting procedure can also involve higher spins
(more structures — more control)

- The flat limit can be controlled in the fluid/gravity setup



