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Reduction of CO, emissions from different industries by
but lack of data concerning its specific application to the

Two capture technologies adapted to the cement industry, namely:
(currently tested at pilot scale in the cement industry):
the CO, in the pretreated flue gas (containing from 20 to 30% CO,) is conventionally captured thanks to an
absorption-regeneration process where it is absorbed in a solvent (such as MEA 30 wt.%) which is then
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(undergoing selection of a cement plant for pilot tests):
the combustion is performed with pure oxygen, leading to flue gases highly concentrated in CO, (>80%)
needing to be purified (de-SO,, de-NO,, etc.) prior to conversion.

Another innovative option envisaged by the cement industry = “
hybrid process which combines the combustion with O,-enriched air (CO, contents in the flue gas between
20% and 60%) and post-combustion CO, capture by the absorption-regeneration process.

”,

ECRA Academic Chair Framework
CO, Capture & Purification CO, Conversion
A Air Protﬂucts CO, Purification Unit (CPU)
Oxy-fuel Sour _ Dehydration Cryogenic
— CO, capture — | Compression Unit - Unit
Yoo > 70% " Unit
cement plants Partial Dw_fuel G I NN EEEEEEEEEEEEEEEEEE Mudehng and Optlmlzatlun
s ——» CO, capture rTTTooTTT - TTTTTTT T ST T
B}_ g - 35 < Yo, < 70% R »! Adsorptlin—ﬂegeneratlon ]
| e [D_clefs __________ : CO, Catalytic
Post-combustion Modeling and Experiments > | Conversion
Ly O, capture . (materials screening)......... . into methanol
2 . n
Yoz < 35% : Abssirien-RereneEiie : Modeling and Experiments
r : u g m
- Process: conventional solvents : (effect of !mpurltles
- on catalytic process)
Modeling and Experiments
: B (solvents screening) Other CO;,
R I e eIl eI T i T el T = e =i Te =il Conversion
routes
Absorption-Regeneration
> .. .
Process: demixing sofvents Modeling and
Technico-economic analysis
Modeling and Experiments
> Absorption-Regeneration
Process: other configurations
Modeling and Technico-economic analysis
Trondhelm CCS Conference - .
This poster Oral communication
TCCS 9 of N. Meunier

A: Full oxy-fuel Combustion
-> CO, PURIFICATION PROCESS (CPU)

Aspen Plus™ simulation flowsheet of the CPU

| Flue gas in (FULL OXYFUEL): :
I I
Ycoz,in= 83% Yno,in= 861 ppm :
| Yno2,in=96 ppm Ysoz,in= 156 ppm |

T=50°C
P=1 bar

FLUEGAS

COMP-1 COMP-2

GOUT-F1

FLASH-1

ECHS

B: Conventional and Partial Oxy-fuel Combustions
-> POST-COMBUSTION CO, CAPTURE PROCESS
BY ABSORPTION-REGENERATION
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solvent regeneration energy

Application of post-combustion CO, capture to partial oxy-fuel combustion in a cement plant = good option that will be more deeply investigated

\/Comprehensive modelling of the SCU process (1 or 2 columns) and prediction of performances
SCU configurations determination for required SOx and NOXx purity levels (transport, CPU followed by conversion...) and economic evaluations
periments in micro-pilot unit and simulations with MEA 30 wt.%: increasing the CO, content in the gas to treat allowing a significant decrease of the
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