Meet Your Expectations With Guarantees: Beyond Worst-Case Synthesis in Quantitative Games

V. Bruyère (UMONS) E. Filiot (ULB)
M. Randour (UMONS-ULB) J.-F. Raskin (ULB)

Valenciennes - 28.10.2013

Nord Pas de Calais / Belgium Congress of Mathematics 2013

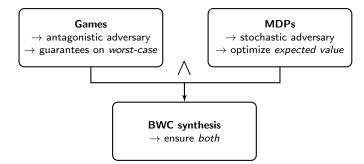
40 minutes in one slide

Games

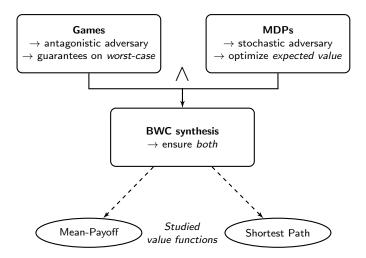
- \rightarrow antagonistic adversary
- \rightarrow guarantees on *worst-case*

MDPs

- \rightarrow stochastic adversary
- \rightarrow optimize expected value



40 minutes in one slide



Advertisement

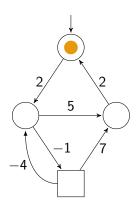
Context

Full paper available on arXiv: abs/1309.5439

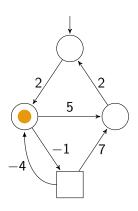
Shortest Path

- 1 Context
- 2 BWC Synthesis
- 3 Mean-Payoff
- 4 Shortest Path
- 5 Conclusion

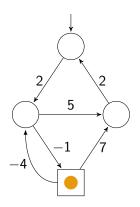
- 1 Context
- 2 BWC Synthesis
- 3 Mean-Payof
- 4 Shortest Path
- 5 Conclusion



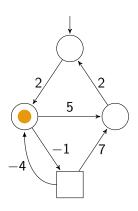
- Graph $\mathcal{G} = (S, E, w)$ with $w: E \to \mathbb{Z}$
- Two-player game $G = (G, S_1, S_2)$
 - $\triangleright \mathcal{P}_1 \text{ states} = \bigcirc$
 - $\triangleright \mathcal{P}_2$ states $= \square$
- Plays have values
 - $ightharpoonup f: \mathsf{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$
- Players follow strategies
 - $\triangleright \ \lambda_i \colon \mathsf{Prefs}_i(G) \to \mathcal{D}(S)$
 - ▷ Finite memory \Rightarrow stochastic Moore machine $\mathcal{M}(\lambda_i) = (\mathsf{Mem}, \mathsf{m_0}, \alpha_\mathsf{u}, \alpha_\mathsf{n})$



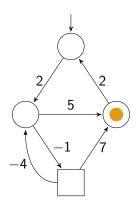
- Graph $\mathcal{G} = (S, E, w)$ with $w: E \to \mathbb{Z}$
- Two-player game $G = (G, S_1, S_2)$
 - $\triangleright \mathcal{P}_1 \text{ states} = \bigcirc$
 - $\triangleright \ \mathcal{P}_2$ states $= \square$
- Plays have values
 - \triangleright $f: \mathsf{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$
- Players follow strategies
 - $\triangleright \ \lambda_i \colon \mathsf{Prefs}_i(G) \to \mathcal{D}(S)$
 - ▷ Finite memory \Rightarrow stochastic Moore machine $\mathcal{M}(\lambda_i) = (\mathsf{Mem}, \mathsf{m_0}, \alpha_\mathsf{u}, \alpha_\mathsf{n})$



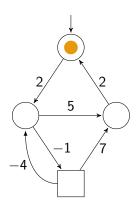
- Graph $\mathcal{G} = (S, E, w)$ with $w: E \to \mathbb{Z}$
- Two-player game $G = (G, S_1, S_2)$
 - $\triangleright \mathcal{P}_1 \text{ states} = \bigcirc$
 - $\triangleright \mathcal{P}_2 \text{ states} = \square$
- Plays have values
 - $ightharpoonup f: \mathsf{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$
- Players follow strategies
 - $\triangleright \ \lambda_i \colon \mathsf{Prefs}_i(G) \to \mathcal{D}(S)$
 - ▷ Finite memory \Rightarrow stochastic Moore machine $\mathcal{M}(\lambda_i) = (\mathsf{Mem}, \mathsf{m_0}, \alpha_\mathsf{u}, \alpha_\mathsf{n})$



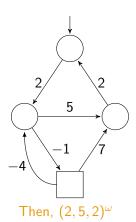
- Graph $\mathcal{G} = (S, E, w)$ with $w: E \to \mathbb{Z}$
- Two-player game $G = (G, S_1, S_2)$
 - $\triangleright \mathcal{P}_1 \text{ states} = \bigcirc$
 - $\triangleright \ \mathcal{P}_2$ states $= \square$
- Plays have values
 - \triangleright $f: \mathsf{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$
- Players follow strategies
 - $\triangleright \ \lambda_i \colon \mathsf{Prefs}_i(G) \to \mathcal{D}(S)$
 - ▷ Finite memory \Rightarrow stochastic Moore machine $\mathcal{M}(\lambda_i) = (\mathsf{Mem}, \mathsf{m_0}, \alpha_\mathsf{u}, \alpha_\mathsf{n})$



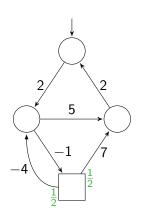
- Graph $\mathcal{G} = (S, E, w)$ with $w: E \to \mathbb{Z}$
- Two-player game $G = (G, S_1, S_2)$
 - $\triangleright \mathcal{P}_1 \text{ states} = \bigcirc$
 - $\triangleright \mathcal{P}_2$ states $= \square$
- Plays have values
 - $ightharpoonup f: \mathsf{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$
- Players follow strategies
 - $\triangleright \ \lambda_i \colon \mathsf{Prefs}_i(G) \to \mathcal{D}(S)$
 - ▷ Finite memory \Rightarrow stochastic Moore machine $\mathcal{M}(\lambda_i) = (\mathsf{Mem}, \mathsf{m_0}, \alpha_\mathsf{u}, \alpha_\mathsf{n})$



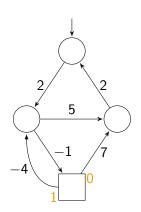
- Graph $\mathcal{G} = (S, E, w)$ with $w: E \to \mathbb{Z}$
- Two-player game $G = (G, S_1, S_2)$
 - $\triangleright \mathcal{P}_1 \text{ states} = \bigcirc$
 - $\triangleright \mathcal{P}_2$ states $= \square$
- Plays have values
 - $ightharpoonup f: \mathsf{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$
- Players follow strategies
 - $\triangleright \ \lambda_i \colon \mathsf{Prefs}_i(G) \to \mathcal{D}(S)$
 - ▷ Finite memory \Rightarrow stochastic Moore machine $\mathcal{M}(\lambda_i) = (\mathsf{Mem}, \mathsf{m_0}, \alpha_\mathsf{u}, \alpha_\mathsf{n})$



- Graph $\mathcal{G} = (S, E, w)$ with $w: E \to \mathbb{Z}$
- Two-player game $G = (G, S_1, S_2)$
 - $\triangleright \mathcal{P}_1 \text{ states} = \bigcirc$
 - $\triangleright \mathcal{P}_2$ states $= \square$
- Plays have values
 - $ightharpoonup f: \mathsf{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$
- Players follow strategies
 - $\triangleright \ \lambda_i \colon \mathsf{Prefs}_i(G) \to \mathcal{D}(S)$
 - \triangleright Finite memory \Rightarrow stochastic Moore machine $\mathcal{M}(\lambda_i) = (\mathsf{Mem}, \mathsf{m_0}, \alpha_\mathsf{u}, \alpha_\mathsf{n})$



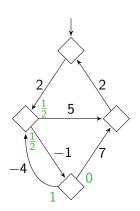
- MDP $P = (\mathcal{G}, S_1, S_{\Delta}, \Delta)$ with $\Delta \colon S_{\Delta} \to \mathcal{D}(S)$
 - $\triangleright \mathcal{P}_1 \text{ states} = \bigcirc$
 - \triangleright stochastic states = \square
- MDP = game + strategy of \mathcal{P}_2 ▷ $P = G[\lambda_2]$



- lacksquare MDP $P=(\mathcal{G}, \mathcal{S}_1, \mathcal{S}_\Delta, \Delta)$ with $\Delta\colon \mathcal{S}_\Delta o \mathcal{D}(\mathcal{S})$
 - $\triangleright \mathcal{P}_1 \text{ states} = \bigcirc$
- MDP = game + strategy of \mathcal{P}_2 $\triangleright P = G[\lambda_2]$
- Important: we allow $E \setminus E_{\Delta} \neq \emptyset$, $E_{\Delta} = \{(s_1, s_2) \in E \mid s_1 \in S_{\Delta} \Rightarrow \Delta(s_1)(s_2) > 0\}$

Markov chains

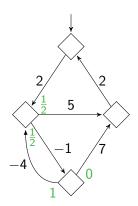
Context



■ MC
$$M = (\mathcal{G}, \delta)$$
 with $\delta \colon S \to \mathcal{D}(S)$

$$\begin{tabular}{l} \blacksquare \begin{tabular}{l} MC &= MDP + strategy of \mathcal{P}_1 \\ &= \mathsf{game} + \mathsf{both} \ \mathsf{strategies} \\ \end{tabular}$$

$$\triangleright$$
 $M = P[\lambda_1] = G[\lambda_1, \lambda_2]$



- MC $M = (\mathcal{G}, \delta)$ with $\delta \colon S \to \mathcal{D}(S)$
- MC = MDP + strategy of \mathcal{P}_1 = game + both strategies

$$\triangleright$$
 $M = P[\lambda_1] = G[\lambda_1, \lambda_2]$

- Event $\mathcal{A} \subseteq \mathsf{Plays}(\mathcal{G})$
 - ightharpoonup probability $\mathbb{P}^{M}_{s_{\text{init}}}(\mathcal{A})$
- Measurable f: Plays $(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$
 - \triangleright expected value $\mathbb{E}^{M}_{\text{Sinit}}(f)$

Shortest Path

Context

- **System** trying to ensure a specification = \mathcal{P}_1
 - whatever the actions of its environment

Classical interpretations

- **System** trying to ensure a specification $= \mathcal{P}_1$
 - whatever the actions of its environment
- The environment can be seen as
 - > antagonistic
 - lacktriangle two-player game, *worst-case* threshold problem for $\mu \in \mathbb{Q}$
 - \exists ? $\lambda_1 \in \Lambda_1, \forall \lambda_2 \in \Lambda_2, \forall \pi \in \mathsf{Outs}_G(s_{\mathsf{init}}, \lambda_1, \lambda_2), f(\pi) \geq \mu$

- **System** trying to ensure a specification $= \mathcal{P}_1$
 - > whatever the actions of its **environment**
- The environment can be seen as
 - > antagonistic
 - lacktriangle two-player game, *worst-case* threshold problem for $\mu \in \mathbb{Q}$
 - \exists ? $\lambda_1 \in \Lambda_1$, $\forall \lambda_2 \in \Lambda_2$, $\forall \pi \in \mathsf{Outs}_G(s_{\mathsf{init}}, \lambda_1, \lambda_2)$, $f(\pi) \geq \mu$
 - - MDP, expected value threshold problem for $\nu \in \mathbb{Q}$
 - $\exists ? \lambda_1 \in \Lambda_1, \mathbb{E}_{s_{\text{init}}}^{P[\lambda_1]}(f) \geq \nu$

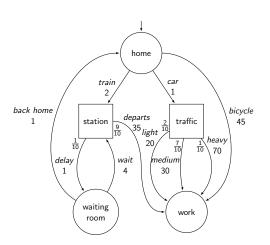
- 1 Context
- 2 BWC Synthesis
- 3 Mean-Payofl
- 4 Shortest Path
- 5 Conclusion

What if you want both?

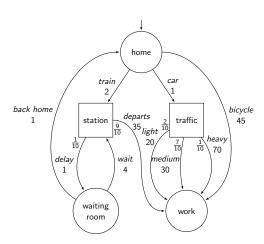
In practice, we want both

- 1 nice expected performance in the everyday situation,
- 2 strict (but relaxed) performance guarantees even in the event of very bad circumstances.

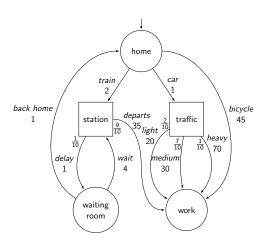
Example: going to work



- Soal: minimize our expected time to reach "work"
- > But, important meeting in one hour! Requires strict guarantees on the worst-case reaching time.



- Optimal expectation strategy: take the car.
 - $\mathbb{E} = 33$, WC = 71 > 60.
- ▷ Optimal worst-case strategy: bicycle.
 - $\mathbb{E} = WC = 45 < 60$.



- Optimal expectation strategy: take the car.
 - $\mathbb{E} = 33$, WC = 71 > 60.
- Optimal worst-case strategy: bicycle.
 - $\mathbb{E} = WC = 45 < 60$.
- Sample BWC strategy: try train up to 3 delays then switch to bicycle.
 - $\mathbb{E} \approx 37.56$, WC = 59 < 60.

Beyond worst-case synthesis

Formal definition

Given a game $G = (G, S_1, S_2)$, with G = (S, E, w) its underlying graph, an initial state $s_{\text{init}} \in S$, a finite-memory stochastic model $\lambda_2^{\text{stoch}} \in \Lambda_2^F$ of the adversary, represented by a stochastic Moore machine, a measurable value function $f: \mathsf{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$, and two rational thresholds $\mu, \nu \in \mathbb{Q}$, the beyond worst-case (BWC) problem asks to decide if \mathcal{P}_1 has a finite-memory strategy $\lambda_1 \in \Lambda_1^F$ such that

$$\begin{cases}
\forall \lambda_2 \in \Lambda_2, \forall \pi \in \mathsf{Outs}_G(s_{\mathsf{init}}, \lambda_1, \lambda_2), f(\pi) > \mu \\
\mathbb{E}_{s_{\mathsf{init}}}^{G[\lambda_1, \lambda_2^{\mathsf{stoch}}]}(f) > \nu
\end{cases} \tag{1}$$

$$\mathbb{E}_{s_{\text{init}}}^{G[\lambda_1, \lambda_2^{\text{stoch}}]}(f) > \nu \tag{2}$$

and the BWC synthesis problem asks to synthesize such a strategy if one exists.

Beyond worst-case synthesis

Formal definition

Given a game $G = (G, S_1, S_2)$, with G = (S, E, w) its underlying graph, an initial state $s_{\text{init}} \in S$, a finite-memory stochastic model $\lambda_2^{\text{stoch}} \in \Lambda_2^F$ of the adversary, represented by a stochastic Moore machine, a measurable value function $f: \mathsf{Plays}(\mathcal{G}) \to \mathbb{R} \cup \{-\infty, \infty\}$, and two rational thresholds $\mu, \nu \in \mathbb{Q}$, the beyond worst-case (BWC) problem asks to decide if \mathcal{P}_1 has a finite-memory strategy $\lambda_1 \in \Lambda_1^F$ such that

$$\begin{cases}
\forall \lambda_2 \in \Lambda_2, \forall \pi \in \mathsf{Outs}_G(\mathsf{s}_{\mathsf{init}}, \lambda_1, \lambda_2), f(\pi) > \mu \\
\mathbb{E}^{G[\lambda_1, \lambda_2^{\mathsf{stoch}}]}_{\mathsf{s}_{\mathsf{init}}}(f) > \nu
\end{cases} \tag{1}$$

$$\mathbb{E}_{s_{\text{init}}}^{G[\lambda_1,\lambda_2]}(f) > \nu \tag{2}$$

and the BWC synthesis problem asks to synthesize such a strategy if one exists.

Notice the highlighted parts!

- 1 Context
- 2 BWC Synthesis
- 3 Mean-Payoff
- 4 Shortest Path
- 5 Conclusion

Mean-payoff value function

- Sample play $\pi = 2, -1, -4, 5, (2, 2, 5)^{\omega}$
 - \triangleright MP(π) = 3 \rightsquigarrow prefix-independent

Mean-payoff value function

Context

$$\mathbf{MP}(\pi) = \liminf_{n \to \infty} \left[\frac{1}{n} \cdot \sum_{i=0}^{i=n-1} w((s_i, s_{i+1})) \right]$$

- Sample play $\pi = 2, -1, -4, 5, (2, 2, 5)^{\omega}$
 - \triangleright MP(π) = 3 \rightsquigarrow prefix-independent

Games: worst-case threshold problem [LL69, EM79, ZP96, Jur98, GS09]

Memoryless optimal strategies exist for both players and the problem is in $NP \cap coNP$.

MDPs: expected value threshold problem [Put94, FV97]

Memoryless optimal strategies exist and the problem is in P.

BWC MP problem: overview

Theorem (algorithm & complexity)

The BWC problem for the mean-payoff is in $NP \cap coNP$ and at least as hard as deciding the winner in mean-payoff games.

▷ Additional modeling power for free!

BWC MP problem: overview

Theorem (algorithm & complexity)

The BWC problem for the mean-payoff is in $NP \cap coNP$ and at least as hard as deciding the winner in mean-payoff games.

▷ Additional modeling power for free!

Theorem (memory bounds)

Memory of **pseudo-polynomial** size may be necessary and is always sufficient to satisfy the BWC problem for the mean-payoff: polynomial in the size of the game and the stochastic model, and polynomial in the weight and threshold values.

Algorithm: overview

Context

Algorithm 1 BWC_MP($G^i, \lambda_2^i, \mu^i, v^i, s_{init}^i$)

Require: $G^i = (G^i, S^i_1, S^i_2)$ a game, $G^i = (S^i, E^i, w^i)$ its underlying graph, $\lambda^i_1 \in \Lambda^F_2(G^i)$ a finite-memory stochastic model of the adversary, $\mathcal{M}(\lambda_i^j) = (\mathsf{Mem}, \mathsf{m}_0, \alpha_u, \alpha_n)$ its Moore machine, $\mu^i = \frac{a}{b}, v^i \in \mathbb{Q}, \mu^i < v^i$, resp. the worst-case and the expected value thresholds, and $s_{init}^i \in S^i$ the initial state

Ensure: The answer is YES if and only if \mathcal{P}_1 has a finite-memory strategy $\lambda_1 \in \Lambda_1^F(G^i)$ satisfying the BWC problem from $s_{i,n}^I$, for the thresholds pair (μ^i, v^i) and the mean-payoff value function

{Preprocessing}

- 1: if $\mu^i \neq 0$ then
- Modify the weight function of \mathcal{G}^i s.t. $\forall e \in E^i$, $w_{new}^i(e) := b \cdot w^i(e) a$, and consider the new thresholds pair $(0, v := b \cdot v^i a)$
- Compute S_{WC} := {s ∈ Sⁱ | ∃λ₁ ∈ Λ₁(Gⁱ), ∀λ₂ ∈ Λ₂(Gⁱ), ∀π ∈ Outs_{Cⁱ}(s, λ₁, λ₂), MP(π) > 0}
- if sⁱ_{init} ∉ S_{WC} then
- return No
- 6: else
- Let G^w := Gⁱ | S_{WC} be the subgame induced by worst-case winning states
- Build $G := G^w \otimes \mathcal{M}(\lambda_i^i) = (\mathcal{G}, S_1, S_2), \mathcal{G} = (S, E, w), S \subseteq (S_{WC} \times \mathsf{Mem}),$ the game obtained by product with the Moore machine, and $s_{init} := (s_{init}^T, m_0)$ the corresponding initial state
- Let $\lambda_2^{\text{stoch}} \in \Lambda_2^M(G)$ be the memoryless transcription of λ_2^i on G
- Let $P := G[\lambda_2^{\text{stoch}}] = (\mathcal{G}, S_1, S_A = S_2, \Delta = \lambda_2^{\text{stoch}})$ be the MDP obtained from G and λ_2^{stoch}

{Main algorithm}

- 11: Compute Uw the set of maximal winning end-components of P
- 12: Build $P' = (G', S_1, S_A, \Delta)$, where G' = (S, E, w') and w' is defined as follows:

$$\forall e = (s_1, s_2) \in E, w'(e) := \begin{cases} w(e) \text{ if } \exists U \in \mathcal{U}_W \text{ s.t. } \{s_1, s_2\} \subseteq U \\ 0 \text{ otherwise} \end{cases}$$

- Compute the maximal expected value v* from sinit in P'
- 14: if $v^* > v$ then
- 15: return YES
- 16: else

Beyond Worst-Case Synthesis

return No

Algorithm: overview

Context

Algorithm 1 BWC_MP($G^i, \lambda_2^i, \mu^i, v^i, s_{init}^i$)

Require: $G^i = (G^i, S^i_1, S^i_2)$ a game, $G^i = (S^i, E^i, w^i)$ its underlying graph, $\lambda^i_1 \in \Lambda^F_2(G^i)$ a finite-memory stochastic model of the adversary, $\mathcal{M}(\lambda_i^j) = (\mathsf{Mem}, \mathsf{m}_0, \alpha_u, \alpha_n)$ its Moore machine, $\mu^i = \frac{a}{b}, v^i \in \mathbb{Q}, \mu^i < v^i$, resp. the worst-case and the expected value thresholds, and $s_{init}^i \in S^i$ the initial state

Ensure: The answer is YES if and only if \mathcal{P}_1 has a finite-memory strategy $\lambda_1 \in \Lambda_1^F(G^i)$ satisfying the BWC problem from s_{i-i}^i . for the thresholds pair (μ^i, v^i) and the mean-payoff value function

{Preprocessing}

Boolean output + by-product strategy

- 1: if $\mu^i \neq 0$ then
- Modify the weight function of G^i s.t. $\forall e \in E^i$, $w_{new}^i(e) := b \cdot w^i(e) a$, and consider the new thresholds pair $(0, v := b \cdot v^i a)$
- Compute S_{WC} := {s ∈ Sⁱ | ∃λ₁ ∈ Λ₁(Gⁱ), ∀λ₂ ∈ Λ₂(Gⁱ), ∀π ∈ Outs_G(s, λ₁, λ₂), MP(π) > 0}
- if sⁱ_{init} ∉ S_{WC} then
- return No
- 6: else
- Let $G^w := G^i \mid S_{WC}$ be the subgame induced by worst-case winning states
- Build $G := G^w \otimes \mathcal{M}(\lambda_i^i) = (\mathcal{G}, S_1, S_2), \mathcal{G} = (S, E, w), S \subseteq (S_{WC} \times \mathsf{Mem}),$ the game obtained by product with the Moore machine, and $s_{init} := (s_{init}^T, m_0)$ the corresponding initial state
- Let $\lambda_2^{\text{stoch}} \in \Lambda_2^M(G)$ be the memoryless transcription of λ_2^i on G
- Let $P := G[\lambda_2^{\text{stoch}}] = (\mathcal{G}, S_1, S_A = S_2, \Delta = \lambda_2^{\text{stoch}})$ be the MDP obtained from G and λ_2^{stoch}

{Main algorithm}

- 11: Compute Uw the set of maximal winning end-components of P
- 12: Build $P' = (G', S_1, S_A, \Delta)$, where G' = (S, E, w') and w' is defined as follows:

$$\forall e = (s_1, s_2) \in E, w'(e) := \begin{cases} w(e) \text{ if } \exists U \in \mathcal{U}_W \text{ s.t. } \{s_1, s_2\} \subseteq U \\ 0 \text{ otherwise} \end{cases}$$

- Compute the maximal expected value v* from sinit in P'
- 14: if $v^* > v$ then
- 15: return YES
- 16: else

Beyond Worst-Case Synthesis

return No

Algorithm: overview

Context

Algorithm 1 BWC_MP($G^i, \lambda_2^i, \mu^i, v^i, s_{init}^i$)

Require: $G^i = (G^i, S^i_1, S^i_2)$ a game, $G^i = (S^i, E^i, w^i)$ its underlying graph, $\lambda^i_1 \in \Lambda^F_2(G^i)$ a finite-memory stochastic model of the adversary, $\mathcal{M}(\lambda_i^j) = (\mathsf{Mem}, \mathsf{m}_0, \alpha_u, \alpha_n)$ its Moore machine, $\mu^i = \frac{a}{b}, v^i \in \mathbb{Q}, \mu^i < v^i$, resp. the worst-case and the expected value thresholds, and $s_{init}^i \in S^i$ the initial state

Ensure: The answer is YES if and only if \mathcal{P}_1 has a finite-memory strategy $\lambda_1 \in \Lambda_1^F(G^i)$ satisfying the BWC problem from $s_{i,n}^I$, for the thresholds pair (μ^i, v^i) and the mean-payoff value function

{Preprocessing}

- 1: if $\mu^i \neq 0$ then
- Modify the weight function of \mathcal{G}^i s.t. $\forall e \in E^i$, $w_{new}^i(e) := b \cdot w^i(e) a$, and consider the new thresholds pair $(0, v := b \cdot v^i a)$
- Compute S_{WC} := {s ∈ Sⁱ | ∃λ₁ ∈ Λ₁(Gⁱ), ∀λ₂ ∈ Λ₂(Gⁱ), ∀π ∈ Outs_{Cⁱ}(s, λ₁, λ₂), MP(π) > 0}
- if sⁱ_{init} ∉ S_{WC} then
- return No
- 6: else Let $G^w := G^i \mid S_{WC}$ be the subgame induced by worst-case winning states
- Build $G := G^w \otimes \mathcal{M}(\lambda_i^i) = (\mathcal{G}, S_1, S_2), \mathcal{G} = (S, E, w), S \subseteq (S_{WC} \times \mathsf{Mem}),$ the game obtained by product with the Moore machine, and $s_{init} := (s_{init}^T, m_0)$ the corresponding initial state
- Let $\lambda_2^{\text{stoch}} \in \Lambda_2^M(G)$ be the memoryless transcription of λ_2^i on G
- Let $P := G[\lambda_2^{\text{stoch}}] = (\mathcal{G}, S_1, S_A = S_2, \Delta = \lambda_2^{\text{stoch}})$ be the MDP obtained from G and λ_2^{stoch}

{Main algorithm}

Preprocessing 11: Compute Uw the set of maximal winning end-components of P

- 12: Build $P' = (G', S_1, S_A, \Delta)$, where G' = (S, E, w') and w' is defined as follows:
 - $\forall e = (s_1, s_2) \in E, w'(e) := \begin{cases} w(e) \text{ if } \exists U \in \mathcal{U}_W \text{ s.t. } \{s_1, s_2\} \subseteq U \\ 0 \text{ otherwise} \end{cases}$
- Compute the maximal expected value v* from sinit in P'
- 14: if $v^* > v$ then
- 15: return YES
- 16: else

Beyond Worst-Case Synthesis

return No

Algorithm: overview

Context

Algorithm 1 BWC_MP($G^i, \lambda_2^i, \mu^i, v^i, s_{init}^i$)

Require: $G^i = (G^i, S^i_1, S^i_2)$ a game, $G^i = (S^i, E^i, w^i)$ its underlying graph, $\lambda^i_1 \in \Lambda^F_2(G^i)$ a finite-memory stochastic model of the adversary, $\mathcal{M}(\lambda_i^j) = (\mathsf{Mem}, \mathsf{m}_0, \alpha_u, \alpha_n)$ its Moore machine, $\mu^i = \frac{a}{b}, v^i \in \mathbb{Q}, \mu^i < v^i$, resp. the worst-case and the expected value thresholds, and $s_{init}^i \in S^i$ the initial state

Ensure: The answer is YES if and only if \mathcal{P}_1 has a finite-memory strategy $\lambda_1 \in \Lambda_1^F(G^i)$ satisfying the BWC problem from $s_{i,n}^I$, for the thresholds pair (μ^i, v^i) and the mean-payoff value function

{Preprocessing}

- 1: if $\mu^i \neq 0$ then
- Modify the weight function of \mathcal{G}^i s.t. $\forall e \in E^i$, $w_{new}^i(e) := b \cdot w^i(e) a$, and consider the new thresholds pair $(0, v := b \cdot v^i a)$
- Compute S_{WC} := {s ∈ Sⁱ | ∃λ₁ ∈ Λ₁(Gⁱ), ∀λ₂ ∈ Λ₂(Gⁱ), ∀π ∈ Outs_{Cⁱ}(s, λ₁, λ₂), MP(π) > 0}
- if sⁱ_{init} ∉ S_{WC} then
- return No
- 6: else
- Let G^w := Gⁱ | S_{WC} be the subgame induced by worst-case winning states
- Build $G := G^w \otimes \mathcal{M}(\lambda_i^i) = (\mathcal{G}, S_1, S_2), \mathcal{G} = (S, E, w), S \subseteq (S_{WC} \times \mathsf{Mem}),$ the game obtained by product with the Moore machine, and $s_{init} := (s_{init}^T, m_0)$ the corresponding initial state
- Let $\lambda_2^{\text{stoch}} \in \Lambda_2^M(G)$ be the memoryless transcription of λ_2^i on G
- Main algorithm Let $P := G[\lambda_2^{\text{stoch}}] = (\mathcal{G}, S_1, S_A = S_2, \Delta = \lambda_2^{\text{stoch}})$ be the MDP obtained from G and λ_2^{stoch}

{Main algorithm}

- 11: Compute Uw the set of maximal winning end-components of P
- 12: Build $P' = (G', S_1, S_A, \Delta)$, where G' = (S, E, w') and w' is defined as follows:

$$\forall e = (s_1, s_2) \in E, w'(e) :=$$

$$\begin{cases} w(e) \text{ if } \exists U \in \mathcal{U}_W \text{ s.t. } \{s_1, s_2\} \subseteq U \\ 0 \text{ otherwise} \end{cases}$$

- Compute the maximal expected value v* from sinit in P'
- 14: if $v^* > v$ then
- 15: return YES
- 16: else
- return No

Preprocessing: three steps

- $\ \ \, \textbf{I} \ \, \textbf{Modify weights and use thresholds} \ (\mu=0,\,\nu)$
 - > simple trick to ease the following technicalities

Preprocessing: three steps

- 1 Modify weights and use thresholds $(\mu=0,\,
 u)$
 - ▷ simple trick to ease the following technicalities
- 2 Remove all worst-case losing states

$$S_{WC} := \left\{ s \in S^i \mid \exists \, \lambda_1 \in \Lambda_1(G^i), \, \forall \, \lambda_2 \in \Lambda_2(G^i), \, \forall \, \pi \in \mathsf{Outs}_{G^i}(s, \lambda_1, \lambda_2), \, \mathsf{MP}(\pi) > 0
ight\}$$
 $G^w := G^i \mid S_{WC}$

- \triangleright BWC satisfying strategies must avoid $S \setminus S_{WC}$: an antagonistic adversary can force WC losing outcomes from there (due to prefix-independence)
- \triangleright Answer No if $s_{init} \notin S_{WC}$

Shortest Path

- 1 Modify weights and use thresholds $(\mu=0,\,
 u)$
 - > simple trick to ease the following technicalities
- **2** Remove all worst-case losing states

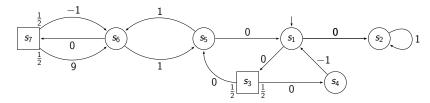
$$S_{WC} := \left\{ s \in S^i \mid \exists \, \lambda_1 \in \Lambda_1(G^i), \, \forall \, \lambda_2 \in \Lambda_2(G^i), \, \forall \, \pi \in \mathsf{Outs}_{G^i}(s, \lambda_1, \lambda_2), \, \mathsf{MP}(\pi) > 0 \right\}$$

$$G^w := G^i \mid S_{WC}$$

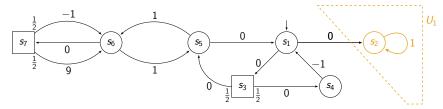
- \triangleright BWC satisfying strategies must avoid $S \setminus S_{WC}$: an antagonistic adversary can force WC losing outcomes from there (due to prefix-independence)
- \triangleright Answer No if $s_{init} \notin S_{WC}$
- ightharpoonup In G^w , \mathcal{P}_1 has a memoryless WC winning strategy from all states

- 3 Build $G := G^w \otimes \mathcal{M}(\lambda_2^i)$, the game obtained by **product** with the Moore machine
 - ightharpoonup Corresponding stochastic model $\lambda_2^{\mathsf{stoch}} \in \Lambda_2^M(G)$ is **memoryless**

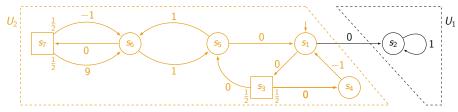
- 3 Build $G := G^w \otimes \mathcal{M}(\lambda_2^i)$, the game obtained by **product** with the Moore machine
 - ightharpoonup Corresponding stochastic model $\lambda_2^{\operatorname{stoch}} \in \Lambda_2^M(G)$ is **memoryless**
 - \triangleright Obtain the MDP $P := G[\lambda_2^{\text{stoch}}]$, sharing the same graph
 - helps for elegant proofs



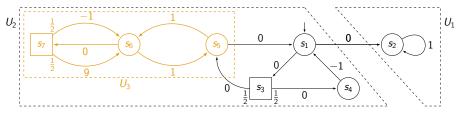
- ightharpoonup An **EC** of the MDP $P=G[\lambda_2^{\mathrm{stoch}}]$ is a subgraph in which \mathcal{P}_1 can ensure to stay despite stochastic states [dA97], i.e., a set $U\subset S$ s.t.
 - (i) $(U, E_{\Delta} \cap (U \times U))$ is strongly connected,
 - (ii) $\forall s \in U \cap S_{\Delta}$, Supp $(\Delta(s)) \subseteq U$, i.e., in stochastic states, all outgoing edges either stay in U or belong to $E \setminus E_{\Delta}$.
- \triangleright Beware arbitrary adversaries may use edges in $E \setminus E_{\Delta}!$



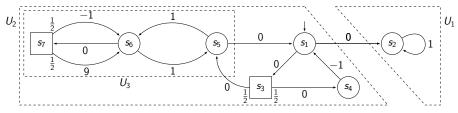
ECs:
$$\mathcal{E} = \{ \frac{U_1}{U_1} \}$$



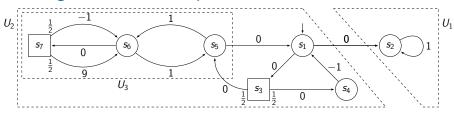
ECs:
$$\mathcal{E} = \{U_1, \frac{U_2}{U_2}\}$$



ECs:
$$\mathcal{E} = \{U_1, U_2, \frac{U_3}{U_3}\}$$



ECs:
$$\mathcal{E} = \{U_1, U_2, U_3, \{s_5, s_6\}, \{s_6, s_7\}, \{s_1, s_3, s_4, s_5\}\}$$



ECs:
$$\mathcal{E} = \{U_1, U_2, U_3, \{s_5, s_6\}, \{s_6, s_7\}, \{s_1, s_3, s_4, s_5\}\}$$

Lemma (Long-run appearance of ECs [CY95, dA97])

Let $\lambda_1 \in \Lambda_1(P)$ be an **arbitrary strategy** of \mathcal{P}_1 . Then, we have that

$$\mathbb{P}^{P[\lambda_1]}_{\mathsf{s}_{\mathsf{init}}}\left(\{\pi\in\mathsf{Outs}_{P[\lambda_1]}(\mathsf{s}_{\mathsf{init}})\mid\mathsf{Inf}(\pi)\in\mathcal{E}\}\right)=1.$$

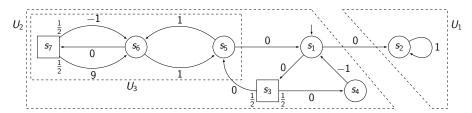
\triangleright The expectation on $P[\lambda_1]$ depends uniquely on ECs

How to satisfy the BWC problem?

■ Expected value requirement: reach ECs with the highest achievable expectations and stay in them (optimal expected value in EC [FV97])

How to satisfy the BWC problem?

- Expected value requirement: reach ECs with the highest achievable expectations and stay in them (optimal expected value in EC [FV97])
- Worst-case requirement: some ECs may need to be eventually avoided because risky!

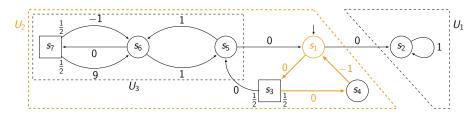


 \triangleright $U \in \mathcal{W}$, **the winning ECs**, if \mathcal{P}_1 can win in $G_{\triangle} \mid U$, from all states:

 $\exists \, \lambda_1 \in \Lambda_1(\underline{G_{\Delta}} \mid U), \, \forall \, \lambda_2 \in \Lambda_2(\underline{G_{\Delta}} \mid U), \, \forall \, s \in U, \, \forall \, \pi \in \mathsf{Outs}_{(\underline{G_{\Delta}} \mid U)}(s, \lambda_1, \lambda_2), \, \mathsf{MP}(\pi) > 0$

Conclusion

Classification of ECs



 $\lor U \in \mathcal{W}$, **the winning ECs**, if \mathcal{P}_1 can win in $G_{\Delta} \downarrow U$, from all states:

$$\exists\, \lambda_1 \in \Lambda_1({\color{red}G_{\!\Delta}} \ | \ {\color{blue}U}), \, \forall\, \lambda_2 \in \Lambda_2({\color{red}G_{\!\Delta}} \ | \ {\color{blue}U}), \, \forall\, s \in {\color{blue}U}, \, \forall\, \pi \in \mathsf{Outs}_{({\color{red}G_{\!\Delta}} \ | \ {\color{blue}U})}(s,\lambda_1,\lambda_2), \, \mathsf{MP}(\pi) > 0$$

- $\triangleright \mathcal{W} = \{U_1, U_3, \{s_5, s_6\}, \{s_6, s_7\}\}$
- \triangleright U_2 **losing**: from state s_1 , \mathcal{P}_2 can force the outcome $\pi = (s_1 s_3 s_4)^{\omega}$ of MP(π) = -1/3 < 0

Lemma (Long-run appearance of winning ECs)

Let $\lambda_1^f \in \Lambda_1^F$ be a **finite-memory** strategy of \mathcal{P}_1 that **satisfies** the BWC problem for thresholds $(0, \nu) \in \mathbb{Q}^2$. Then, we have that

$$\mathbb{P}^{P[\lambda_1^f]}_{\mathsf{s}_{\mathsf{init}}}\left(\left\{\pi\in\mathsf{Outs}_{P[\lambda_1^f]}(s_{\mathsf{init}})\mid\mathsf{Inf}(\pi)\in\mathcal{W}\right\}\right)=1.$$

Winning ECs: usefulness

Lemma (Long-run appearance of winning ECs)

Let $\lambda_1^f \in \Lambda_1^F$ be a **finite-memory** strategy of \mathcal{P}_1 that **satisfies** the BWC problem for thresholds $(0, \nu) \in \mathbb{Q}^2$. Then, we have that

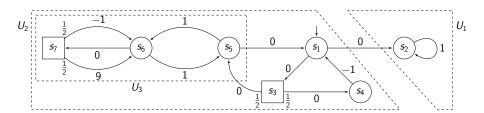
$$\mathbb{P}_{s_{\mathsf{init}}}^{P[\lambda_1^f]}\left(\left\{\pi\in\mathsf{Outs}_{P[\lambda_1^f]}(s_{\mathsf{init}})\mid\mathsf{Inf}(\pi)\in\mathcal{W}\right\}\right)=1.$$

A good finite-memory strategy for the BWC problem should
 maximize the expected value achievable through winning ECs

- \triangleright Deciding if an EC is winning or not is in NP \cap coNP (worst-case threshold problem)
- $|\mathcal{E}| \le 2^{|S|} \rightsquigarrow \text{exponential } \# \text{ of ECs}$

Winning ECs: computation

- \triangleright Deciding if an EC is winning or not is in NP \cap coNP (worst-case threshold problem)
- $|\mathcal{E}| \le 2^{|S|} \rightsquigarrow \text{exponential } \# \text{ of ECs}$
- \triangleright Considering the maximal ECs **does not** suffice! See $U_3 \subset U_2$



Winning ECs: computation

- \triangleright Deciding if an EC is winning or not is in NP \cap coNP (worst-case threshold problem)
- $\triangleright |\mathcal{E}| \le 2^{|\mathcal{S}|} \leadsto \text{exponential } \# \text{ of ECs}$
- \triangleright Considering the maximal ECs **does not** suffice! See $U_3 \subset U_2$

But,

- ightharpoonup possible to define a recursive algorithm computing the **maximal winning ECs**, such that $|\mathcal{U}_{w}| \leq |\mathcal{S}|$, in NP \cap coNP.
- - max. EC decomp. of sub-MDPs (each in $\mathcal{O}(|S|^2)$ [CH12]),
 - worst-case threshold problem (NP \cap coNP).
- ▷ Critical complexity gain for the overall algorithm BWC_MP!

Winning ECs: what can we expect?

We know we can only benefit from the expectation of winning ECs. But how can we compute it?

Winning ECs: what can we expect?

We know we can only benefit from the expectation of winning ECs. But how can we compute it?

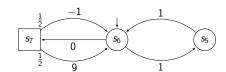
Theorem (BWC satisfaction from winning ECs)

Let $U \in \mathcal{W}$ a winning EC, $s_{\text{init}} \in U$ an initial state inside the EC, and $\nu^* \in \mathbb{Q}$ the maximal expected value achievable by \mathcal{P}_1 in $P \mid U$. Then, for all $\varepsilon > 0$, there exists a finite-memory strategy of \mathcal{P}_1 that satisfies the BWC problem for the thresholds pair $(0, \nu^* - \varepsilon)$.

Shortest Path

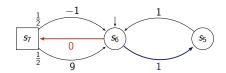
Inside a WEC: combined strategy

Consider the WEC $U_3 \subseteq S$ and $E \setminus E_{\Delta} = \emptyset$



Inside a WEC: combined strategy

Consider the WEC $U_3 \subseteq S$ and $E \setminus E_{\Lambda} = \emptyset$



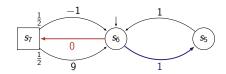
Two particular memoryless strategies exist:

- **1** Optimal expected value strategy $\lambda_1^e \in \Lambda_1^{PM}(P)$, yielding $\mathbb{E} = 2$
- 2 Optimal worst-case strategy $\lambda_1^{wc} \in \Lambda_1^{PM}(G)$, ensuring MP = 1 > 0

Remark: $\nu^* = 2 > \mu^* = 1$

Conclusion

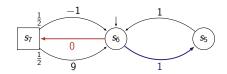
Consider the WEC $U_3 \subseteq S$ and $E \setminus E_{\Lambda} = \emptyset$



We define $\lambda_1^{cmb} \in \Lambda_1^{PF}$ as follows, for some well-chosen $K, L \in \mathbb{N}$.

- (a) Play λ_1^e for K steps and memorize Sum $\in \mathbb{Z}$, the sum of weights encountered during these K steps.
- (b) If Sum > 0, then go to (a). Else, play λ_1^{wc} during L steps then go to (a).

Consider the WEC $U_3 \subseteq S$ and $E \setminus E_{\Lambda} = \emptyset$



- → Phase (a): try to increase the expectation and approach the optimal one
- Phase (b): compensate, if needed, losses that occurred in (a)

Combined strategy: parameters

Key result: $\exists K, L \in \mathbb{N}$ for any thresholds pair $(0, \nu^* - \varepsilon)$

plays = sequences of periods starting with phase (a)

Key result: $\exists K, L \in \mathbb{N}$ for any thresholds pair $(0, \nu^* - \varepsilon)$

- plays = sequences of periods starting with phase (a)
- Worst-case requirement
 - $\triangleright \forall K, \exists L(K) \text{ s.t. } (a) + (b) \text{ has } MP > 1/(K+L) > 0$
 - \triangleright Periods (a) induce MP > 1/K (not followed by (b))
 - ▶ Weights are integers and period length bounded ~ inequality remains strict for play

Combined strategy: parameters

Key result: $\exists K, L \in \mathbb{N}$ for any thresholds pair $(0, \nu^* - \varepsilon)$

- plays = sequences of periods starting with phase (a)
- Worst-case requirement
 - $\triangleright \forall K, \exists L(K) \text{ s.t. } (a) + (b) \text{ has } MP \ge 1/(K+L) > 0$
 - \triangleright Periods (a) induce MP $\ge 1/K$ (not followed by (b))
 - ▶ Weights are integers and period length bounded ~ inequality remains strict for play
- Expected value requirement
 - ightharpoonup When $K o \infty$, $\mathbb{E}_{(a)} o
 u^*$
 - ightharpoonup We need the *overall contribution* of *(b)* to tend to zero when $K o \infty$
 - $\mathbb{P}_{(b)}$ decreases faster than increase of L(K): exponential vs. polynomial
 - proved using results related to Chernoff bounds and Hoeffding's inequality on MCs [Tra09, GO02]: bound on the probability of being far from the optimal after K steps of (a)

Witness-and-secure strategy

What if $E \setminus E_{\Delta} \neq \emptyset$?

- arbitrary adversaries can produce bad behaviors
- add the possibility to react using a worst-case winning strategy (existing everywhere thanks to the preprocessing)
 - guarantees worst-case
 - □ no impact on expected value (probability zero)

Back to the algorithm

Context

So we know we should only use WECs and we know how to play ε -optimally when starting in a WEC. What remains to settle?

Back to the algorithm

Context

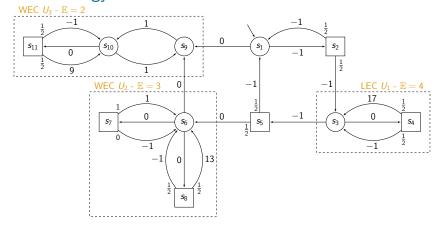
So we know we should only use WECs and we know how to play ε -optimally when starting in a WEC. What remains to settle?

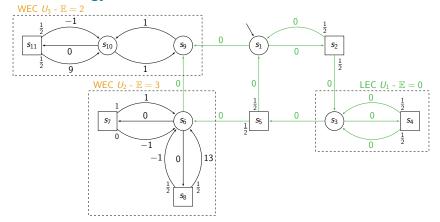
Determine which WECs to reach and how!

Back to the algorithm

So we know we should only use WECs and we know how to play ε -optimally when starting in a WEC. What remains to settle?

- ▶ Determine which WECs to reach and how!
- ▶ Key idea: define a global strategy that will go towards the highest valued WECs and avoid LECs

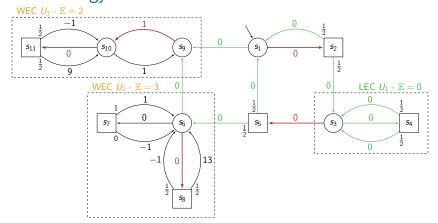




Modify weights:

$$\forall e = (s_1, s_2) \in E, \ w'(e) := egin{cases} w(e) \ \text{if} \ \exists \ U \in \mathcal{U}_{\scriptscriptstyle{W}} \ \text{s.t.} \ \{s_1, s_2\} \subseteq U, \ 0 \ \text{otherwise}. \end{cases}$$

Context



- 2 Compute memoryless optimal expectation strategy λ_1^e on P'
 - ightharpoonup the probability to be in a good WEC (here, U_2) after N steps tends to one when $N o \infty$

 $\lambda_1^{glb} \in \Lambda_1^{PF}(G)$:

Context

- (a) Play $\lambda_1^e \in \Lambda_1^{PM}(G)$ for N steps.
- (b) Let $s \in S$ be the reached state.
 - (b.1) If $s \in U \in \mathcal{U}_{w}$, play corresponding $\lambda_{1}^{wns} \in \Lambda_{1}^{PF}(G)$ forever.
 - (b.2) Else play $\lambda_1^{wc} \in \Lambda_1^{PM}(G)$ forever.
- ightharpoonup Parameter $N \in \mathbb{N}$ can be chosen so that overall expectation is arbitrarily close to optimal in P', or equivalently, optimal for BWC strategies in P
- \triangleright Algorithm BWC_MP answers YES iff $\nu^* > \nu$

Correctness and completeness

Algorithm BWC_MP is

- **correct**: if answer is YES, then λ_1^{glb} satisfies the BWC problem for the given thresholds
- **complete**: if answer is No, then the BWC problem cannot be satisfied by a finite-memory strategy

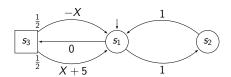
BWC MP problem: bounds

- Complexity
 - \triangleright algorithm in NP \cap coNP (P if MP games proved in P)

BWC MP problem: bounds

Complexity

- \triangleright algorithm in NP \cap coNP (P if MP games proved in P)



Memory

- pseudo-polynomial upper bound via global strategy
- matching lower bound via family $(G(X))_{X \in \mathbb{N}_0}$ requiring polynomial memory in W = X + 5 to satisfy the BWC problem for thresholds $(0, \nu \in]1, 5/4[)$
 - \sim need to use (s_1, s_3) infinitely often for $\mathbb E$ but need pseudo-poly. memory to counteract -X for the WC requirement

- 1 Context
- 2 BWC Synthesis
- 3 Mean-Payofl
- 4 Shortest Path
- 5 Conclusion

00000000

Shortest path - truncated sum

- Assume strictly positive integer weights, $w: E \to \mathbb{N}_0$
- Let $T \subseteq S$ be a *target set* that \mathcal{P}_1 wants to reach with a path of bounded value (cf. introductory example)
 - \triangleright inequalities are reversed, $\nu < \mu$
- $\mathsf{TS}_T(\pi = s_0 s_1 s_2 \dots) = \sum_{i=0}^{n-1} w((s_i, s_{i+1}))$, with n the first index such that $s_n \in T$, and $\mathsf{TS}_T(\pi) = \infty$ if $\forall n, s_n \notin T$

Shortest path - truncated sum

- Assume strictly positive integer weights, $w: E \to \mathbb{N}_0$
- Let $T \subseteq S$ be a target set that \mathcal{P}_1 wants to reach with a path of bounded value (cf. introductory example)
 - \triangleright inequalities are reversed, $\nu < \mu$
- TS_T $(\pi = s_0 s_1 s_2 ...) = \sum_{i=0}^{n-1} w((s_i, s_{i+1}))$, with *n* the first index such that $s_n \in T$, and $\mathsf{TS}_T(\pi) = \infty$ if $\forall n, s_n \notin T$

Games: worst-case threshold problem

Memoryless optimal strategies as cycles are to be avoided, and the problem is in P, solvable using attractors and computation of the worst cost.

MDPs: expected value threshold problem [BT91, dA99]

Memoryless optimal strategies exist and the problem is in P.

BWC SP problem: overview

Theorem (algorithm)

The BWC problem for the shortest path can be solved in **pseudo-polynomial** time: polynomial in the size of the game graph, the Moore machine for the stochastic model of the adversary and the encoding of the expected value threshold, and polynomial in the value of the worst-case threshold.

Theorem (memory bounds)

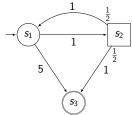
Pseudo-polynomial memory may be necessary and is always sufficient to satisfy the BWC problem for the shortest path.

Theorem (complexity lower bound)

The BWC problem for the shortest path is NP-hard.

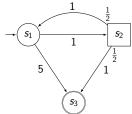
Context

Pseudo-polynomial algorithm: sketch

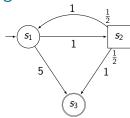


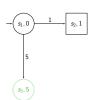
1 Start from $G = (\mathcal{G}, S_1, S_2)$, $\mathcal{G} = (S, E, w)$, $T = \{s_3\}$, $\mathcal{M}(\lambda_2^{\mathrm{stoch}})$, $\mu = 8$, and $\nu \in \mathbb{Q}$

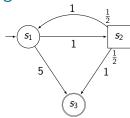
Context

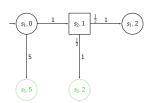


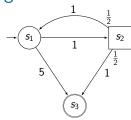
- I Start from $G = (\mathcal{G}, S_1, S_2)$, $\mathcal{G} = (S, E, w)$, $T = \{s_3\}$, $\mathcal{M}(\lambda_2^{\mathsf{stoch}})$, $\mu = 8$, and $\nu \in \mathbb{O}$
- 2 Build G' by unfolding G, tracking the current sum *up to the* worst-case threshold μ , and integrating it in the states of G'.

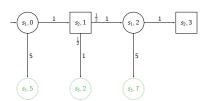


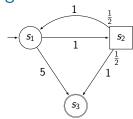


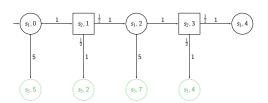


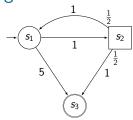


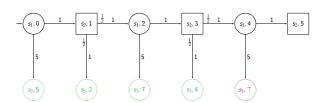


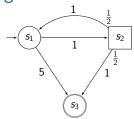


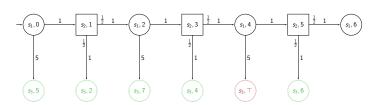




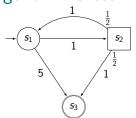


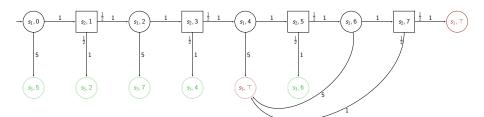




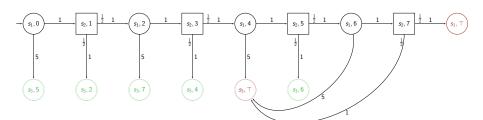


Context

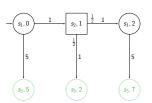




- **3** Compute R, the attractor of T with cost $< \mu = 8$
- 4 Consider $G_{\mu} = G' \mid R$

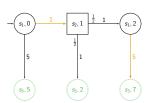


- **3** Compute R, the attractor of T with cost $< \mu = 8$
- 4 Consider $G_{\mu} = G' \mid R$



Context

- **5** Consider $P = G_{\mu} \otimes \mathcal{M}(\lambda_2^{\mathsf{stoch}})$
- 6 Compute memoryless optimal expectation strategy
- 7 If $\nu^* < \nu$, answer YES, otherwise answer No



Here, $\nu^* = 9/2$

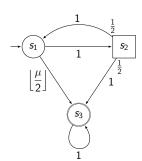
Shortest Path

000000000

Memory bounds

Context

- □ Upper bound provided by synthesized strategy
- ▷ Lower bound given by family of games $(G(\mu))_{\mu \in \{13+k\cdot 4|k\in \mathbb{N}\}}$ requiring memory linear in μ
 - \rightarrow play (s_1, s_2) exactly $\lfloor \frac{\mu}{4} \rfloor$ times and then switch to (s_1, s_3) to minimize expected value while ensuring the worst-case



Complexity lower bound: NP-hardness

- Truly-polynomial algorithm very unlikely...
- Reduction from the Kth largest subset problem
 - commonly thought to be outside NP as natural certificates are larger than polynomial [JK78, GJ79]

Complexity lower bound: NP-hardness

- Truly-polynomial algorithm very unlikely...
- Reduction from the Kth largest subset problem
 - □ commonly thought to be outside NP as natural certificates are larger than polynomial [JK78, GJ79]

Kth largest subset problem

Given a finite set A, a size function $h \colon A \to \mathbb{N}_0$ assigning strictly positive integer values to elements of A, and two naturals $K, L \in \mathbb{N}$, decide if there exist K distinct subsets $C_i \subseteq A$, $1 \le i \le K$, such that $h(C_i) = \sum_{a \in C_i} h(a) \le L$ for all K subsets.

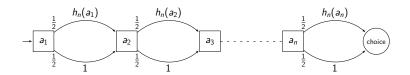
■ Build a game composed of two gadgets

Context

Shortest Path

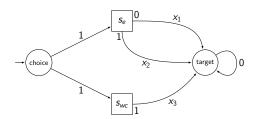
000000000

Random subset selection gadget



- ▶ Stochastically generates paths representing subsets of A: an element is selected in the subset if the upper edge is taken when leaving the corresponding state
- All subsets are equiprobable

Choice gadget



- \triangleright $s_{\rm e}$ leads to lower expected values but may be dangerous for the worst-case requirement
- \triangleright s_{wc} is always safe but induces an higher expected cost

Crux of the reduction

Context

Establish that there exist values for thresholds and weights s.t.

- (i) an optimal (i.e., minimizing the expectation while guaranteeing a given worst-case threshold) strategy for \mathcal{P}_1 consists in choosing state s_e only when the randomly generated subset $C \subseteq A$ satisfies $h(C) \le L$;
- (ii) this strategy satisfies the BWC problem *if and only if* there exist *K* distinct subsets that verify this bound.

- 1 Context
- 2 BWC Synthesis
- 3 Mean-Payof
- 4 Shortest Path
- 5 Conclusion

In a nutshell

- BWC framework combines worst-case and expected value requirements
 - > a natural wish in many practical applications

In a nutshell

- BWC framework combines worst-case and expected value requirements
 - > a natural wish in many practical applications
- Mean-payoff: additional modeling power for no complexity cost (decision-wise)
- Shortest path: harder than the worst-case, pseudo-polynomial with NP-hardness result

In a nutshell

- BWC framework combines worst-case and expected value requirements
 - > a natural wish in many practical applications
- Mean-payoff: additional modeling power for no complexity cost (decision-wise)
- Shortest path: harder than the worst-case, pseudo-polynomial with NP-hardness result
- In both cases, pseudo-polynomial memory is both sufficient and necessary
 - but strategies have natural representations based on states of the game and simple integer counters

Context

Possible future works include

- study of other quantitative objectives,
- extension of our results to more general settings (multi-dimension [CDHR10, CRR12], decidable classes of games with imperfect information [DDG+10], etc),
- application of the BWC problem to various practical cases.

Beyond BWC synthesis?

Context

Possible future works include

- study of other quantitative objectives,
- extension of our results to more general settings (multi-dimension [CDHR10, CRR12], decidable classes of games with imperfect information [DDG+10], etc),
- application of the BWC problem to various practical cases.

Thanks!

Do not hesitate to discuss with us!

References I

D.P. Bertsekas and J.N. Tsitsiklis.

An analysis of stochastic shortest path problems.

Mathematics of Operations Research, 16:580–595, 1991.

K. Chatterjee, L. Doyen, T.A. Henzinger, and J.-F. Raskin.

Generalized mean-payoff and energy games. In Proc. of FSTTCS, LIPIcs 8, pages 505–516. Schloss Dagstuhl - LZI, 2010.

K. Chatterjee, L. Doyen, M. Randour, and J.-F. Raskin.

Looking at mean-payoff and total-payoff through windows. In Proc. of ATVA, LNCS 8172, pages 118–132. Springer, 2013.

In Proc. of ATVA, LNCS 8172, pages 118–132. Springer, 2013

K. Chatterjee and M. Henzinger.

An $\mathcal{O}(n^2)$ time algorithm for alternating Büchi games. In Proc. of SODA, pages 1386–1399. SIAM, 2012.

K. Chatteriee, M. Randour, and J.-F. Raskin,

Strategy synthesis for multi-dimensional quantitative objectives. In Proc. of CONCUR, LNCS 7454, pages 115–131, Springer, 2012.

C. Courcoubetis and M. Yannakakis.

The complexity of probabilistic verification. J. ACM, 42(4):857–907, 1995.

References II

L. de Alfaro.

Formal verification of probabilistic systems. PhD thesis, Stanford University, 1997.

L. de Alfaro.

Computing minimum and maximum reachability times in probabilistic systems. In Proc. of CONCUR, LNCS 1664, pages 66–81. Springer, 1999.

A. Degorre, L. Doyen, R. Gentilini, J.-F. Raskin, and S. Torunczyk.

Energy and mean-payoff games with imperfect information. In <u>Proc. of CSL</u>, LNCS 6247, pages 260–274. Springer, 2010.

A. Ehrenfeucht and J. Mycielski.

Positional strategies for mean payoff games. Int. Journal of Game Theory, 8(2):109–113, 1979.

J. Filar and K. Vrieze.

Competitive Markov Decision Processes. Springer, 1997.

M.R. Garey and D.S. Johnson.

Computers and intractability: a guide to the Theory of NP-Completeness.

P.W. Glynn and D. Ormoneit.

Hoeffding's inequality for uniformly ergodic Markov chains. Statistics & Probability Letters, 56(2):143–146, 2002.

References III

T. Gawlitza and H. Seidl.

Games through nested fixpoints.

In Proc. of CAV, LNCS 5643, pages 291-305. Springer, 2009.

D.B. Johnson and S.D. Kashdan.

Lower bounds for selection in X + Y and other multisets. Journal of the ACM, 25(4):556-570, 1978.

M. Jurdziński.

Deciding the winner in parity games is in UP \cap co-UP. Inf. Process. Lett., 68(3):119–124, 1998.

T.M. Liggett and S.A. Lippman.

Stochastic games with perfect information and time average payoff. Siam Review, 11(4):604–607, 1969.

M.L. Puterman.

Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1994.

M. Tracol.

Fast convergence to state-action frequency polytopes for MDPs. Oper. Res. Lett., 37(2):123–126, 2009.

U. Zwick and M. Paterson.

The complexity of mean payoff games on graphs. Theoretical Computer Science, 158:343–359, 1996,

References IV