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Abstract

We give a brief overview of some three-dimensional toy models for
higher-spin interactions. We first review the construction of pure
higher-spin gauge theories in terms of Chern-Simons theories. We
then discuss how this setup could be modified along the lines of the
known topologically massive theories.
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1 Introduction

The study of field theories for particles of arbitrary spin has a long and
variegated history,1 but in the last years most of the efforts focussed on
gauge theories, to wit on massless particles. The motivations come from
String Theory – whose higher-spin excitations could acquire their masses via
the breaking of a “hidden” gauge symmetry (see e.g. [2] and refs therein) –
and, more recently, from the study of holographic dualities [3]. We are still
far from having a full control on these proposals but – in spite of various
renowned no-go theorems (see e.g. [4] for a review) – we now have examples
of consistent interactions to analyse. The old negative results thus only
signal that higher-spin interactions are “unconventional”, mainly on account
of the higher-derivative nature of the couplings [5, 2]. In flat space the

1For a more complete overview on higher-spin field theories see, for instance, [1].

1

http://arxiv.org/abs/1110.5841v1


construction of a complete higher-spin gauge theory is still ongoing [6], but
in the presence of a cosmological constant we already have at our disposal
the Vasiliev equations [7], which are a set of non-linear field equations for an
infinite tower of gauge fields of increasing spin. The need for a cosmological
constant, however, makes it difficult to compare Vasiliev’s models with String
Theory. On the other hand, it suggested to consider them in the AdS/CFT
context [3]. In this case the comparison with the candidate boundary duals
has to face the “unconventional” formulation of the Vasiliev equations, and
thus often requires the development of ad hoc techniques (see e.g. [8] and
refs therein).

These open questions call for models where one can address at least some
of them in a simplified setup. Various low-dimensional field theories fit in
this scheme even if, at a first glance, they seem to have no chance to account
for higher spins. For instance, in a space-time of dimension D = 2 + 1 the
Poincaré group does not admit massless representations of arbitrary spin [9].
Nevertheless, one can still consider the Fronsdal equation2

✷ϕµ1... µs
− ∂(µ1

∂λϕµ2... µs)λ + ∂(µ1
∂µ2

ϕµ3... µs)λ
λ = 0 , (1.1)

whose solutions describe, for D > 3, the free propagation of a massless spin-s
particle [10]. Here ϕµ1... µs

is a symmetric tensor of rank s, and eq. (1.1) is
left invariant by the gauge transformations

δϕµ1... µs
= ∂(µ1

ξµ2... µs) with ξµ1... µs−3λ
λ = 0 , (1.2)

that are crucial to ensure the decoupling of unphysical polarisations. If one
wants to derive (1.1) from a Lagrangian, one also has to force the double
trace of ϕµ1... µs

to vanish, either directly or by adding a Lagrange multiplier
(see e.g. [1]). One of the main goals of the current research on higher spins is
the classification of the consistent non-linear deformations of (1.1) and (1.2),
and their comparison with Vasiliev’s models.3 One can pursue both tasks
even in D = 2 + 1: the price to pay is that (1.1) does not propagate local
degrees of freedom when s > 1, while the advantage is the opportunity to
deal with questions that are beyond reach in higher space-time dimensions.

2Here and in the following a couple of parentheses (brackets) denotes the
(anti)symmetrisation of the indices it encloses, with the minimum number of terms and
without any normalisation factor. Repeated indices denote a summation, and we adopt
the mostly plus convention for the space-time metric.

3We focussed on (1.1) for simplicity, but for D > 5 the description of all irreps of the
Poincaré group requires fields with multiple groups of symmetrised indices (see e.g. [11]).

2



The possible three-dimensional deformations include a class of models
that is particularly appealing for its simplicity: the full non-linear theory is
described by a Chern-Simons action [12] (see also [13]). In sect. 2 we review
how to select the relevant Chern-Simons actions and in sect. 3 we discuss
how one could extend this setup by adding topological mass terms. Along
the way we briefly recall some recent applications of these models.

2 Chern-Simons theories

For s = 2 the Fronsdal equation (1.1) imposes the vanishing of the linearised
Ricci tensor. The study of its deformations thus aims at understanding
higher-spin interactions along the lines of the metric formulation of gravity.
However, alternative descriptions of the free dynamics are available [1]. For
instance, one can mimic the frame formulation of gravity and associate to
each particle a couple of differential forms [14]. The second-order Fronsdal
action for the symmetric field ϕµ1... µs

is replaced with a first-order action for
a vielbein-like field

e a1... as−1 = eµ
a1... as−1 dxµ , (2.1)

and an auxiliary field

ω a1... as−1 , b = ωµ
a1... as−1 , b dxµ , (2.2)

which generalises the spin connection. The vielbein-like field is traceless and
fully symmetric in the fiber indices, while the auxiliary field is traceless and
satisfies the condition ω(a1...as−1 , b) = 0. For more details we refer to [13].
For the purpose of this note it is sufficient to recall that the free action is
invariant under the transformations

δ eµ
a1... as−1 = ∂µ ξ

a1... as−1 + ēµ , b Λ
a1... as−1 , b , (2.3a)

δ ωµ
a1... as−1 , b = ∂µ Λ

a1... as−1 , b , (2.3b)

where ēµ
a denotes the background vielbein. The gauge transformations gen-

erated by Λ allow one to recover the Fronsdal field by gauging away the
non-symmetric component of the vielbein. Those generated by ξ then repro-
duce the gauge transformations (1.2) (see e.g. [13]). Also in this context one
can classify the non-linear deformations of the free action that admit a gauge
symmetry reducing to (2.3) at the linearised level.
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In D = 2 + 1 there is a simple class of deformations that is not available
in higher space-time dimensions [12], and all ingredients to build it are al-
ready visible in the spin-two case. To spot them, it is convenient to combine
dreibein and spin connection in a one-form taking values in the algebra of
isometries of the maximally symmetric solution of the field equations,

A = e + ω :=

(
eµ

aPa +
1

2
ωµ

a,b Mab

)
dxµ . (2.4)

Here theMab denote the generators of the Lorentz group, while the Pa denote
the translation generators:

[Pa , Pb ] =
1

l2
Mab , [Pa , Mbc ] = ηa[bPc] ,

[Mab , Mcd ] = ηa[cMd]b − ηb[cMd]a .
(2.5)

The factor l is related to the cosmological constant by l = 1/
√
−Λ, so that

(2.5) gives the Poincaré algebra for l → ∞ and either the so(2, D − 1) or
so(1, D) algebras for positive or negative values of l2. A Poincaré – or (Anti)
de Sitter – gauge transformation δA = dλ+ [A, λ] then induces

δe = dξ + [ω , ξ ] + [ e , Λ ] = Dξ + [ e , Λ ] , (2.6a)

δω = dΛ + [ω , Λ ] + [ e , ξ ] = DΛ + [ e , ξ ] , (2.6b)

where we split the gauge parameter as

λ = ξ + Λ := ξaPa +
1

2
Λa,bMab , (2.7)

and we denoted by D the covariant exterior derivative. At the linearised level
(2.6) reduces to (2.3) or to its (A)dS counterpart. However, in a space-time of
generic dimension the Einstein-Hilbert action is not invariant under the full
set of transformations (2.6), but only under local Lorentz transformations.
The non-linear deformation of (2.3a) leads to diffeomorphisms rather than
local translations.

On the other hand, in D = 2 + 1 the Einstein-Hilbert action reads

SEH =
1

16πG

∫
ǫabc

(
ea ∧ Rbc +

1

3 l2
ea ∧ eb ∧ ec

)
, (2.8)

where we introduced the Riemann curvature

R := dω + ω ∧ ω . (2.9)
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Up to boundary terms, the variation of (2.8) under (2.6) is

δSEH = − 1

16πG

∫
ǫabc

(
ξaDRbc

)
= 0 . (2.10)

The remainder vanishes on account of the Bianchi identity, but setting the
dimension of space-time to D = 2 + 1 is instrumental in obtaining (2.10).
For instance, the variation of the Einstein-Hilbert action in D = 3 + 1 is

δSEH ∼
∫

ǫabcd Dξa ∧ eb ∧ Rcd = −
∫

ǫabcd ξ
a T b ∧Rcd 6= 0 , (2.11)

and does not vanish off shell due to the presence of the torsion two-form,

T := De = de + (ω ∧ e+ e ∧ ω ) . (2.12)

As a result, only in three dimensions Einstein gravity is a gauge theory
for the full group of isometries of the vacuum. Moreover, the field equations
following from (2.8) are

R +
1

l2
e ∧ e = 0 , T = 0 , (2.13)

and imply that the curvature of A vanishes. One can thus conclude that,
up to boundary terms, (2.8) should be equivalent to a Chern-Simons action
with gauge algebra (2.5). This was indeed realised more than twenty years
ago in [15], where (2.8) was recovered from

SCS =
k

4π

∫
tr

(
A ∧ dA +

2

3
A ∧ A ∧ A

)
with k =

1

4G
, (2.14)

using the following bilinear invariant form of (2.5):4

tr (PaPb) = 0 , tr (PaMbc) = ǫabc , tr (MabMcd) = 0 . (2.15)

The invariance of (2.8) under local translations (i.e. the transformations gen-
erated by ξ in (2.6)) does not imply that its gauge group is bigger than ex-
pected. In fact, on shell a local translation generated by ξa = vµeµ

a is equiv-
alent to the Lie derivative along vµ [15]. This is the key to three-dimensional

4This invariant form exists only in D = 2+ 1, where (2.5) is not simple even for finite
values of l [15].
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simplicity: one can trade diffeomorphisms for gauge translations! In the
higher-spin context it is not yet clear what the precise analogue of diffeo-
morphism invariance is, but it is relatively straightforward to extend the
Chern-Simons formulation of the dynamics [12].

To this end, one should notice that in D = 2+ 1 the higher-spin vielbein
and spin connection (2.1) and (2.2) have the same number of independent
components. For instance, in the s = 2 case this can be made manifest by

ωa =
1

2
ǫabc ωbc ↔ Ma = − 1

2
ǫabc M

bc , (2.16)

that induces a rewriting of (2.5) as

[Pa , Pb ] =
1

l2
ǫabc M

c, [Ma , Pb ] = ǫabc P
c, [Ma , Mb ] = ǫabc M

c. (2.17)

The possibility to deal with vielbeins and spin connections with the same
structure suggests to build higher-spin gauge theories out of Chern-Simons
theories with a non-compact gauge algebra of the form

[PA , PB ] =
1

l2
fAB

C MC , (2.18a)

[MA , PB ] = fAB
C PC , (2.18b)

[MA , MB ] = fAB
C MC . (2.18c)

The structure constants that appear in the three sets of commutators are
identical, and thus there is an equal number of PA and MA to be contracted
with (2.1) and (2.2). Any sl(2,R) subalgebra of (2.18c) can then play the
role of the Lorentz algebra since so(1, 2) ∼ sl(2,R). Once one chooses it,
the adjoint action of the Lorentz generators Ma ⊂ MA branches the PA and
MA into identical sl(2,R)-irreducible subsets.5 Each of them has dimen-
sion 2s + 1 with 2s ∈ N and, for integer s, this number corresponds to the
number of independent components of a traceless symmetric tensor of rank
s. This suffices to identify the corresponding vielbeins and spin connections
with (2.1) and (2.2). In the linearised regime (2.6) then induces the trans-
formations (2.3) on all fields emerging from this branching [13] (see also [16]

5This is the crucial condition that one has to impose on the gauge algebra. One can
generalise (2.18) provided the two sets of PA and MA are still branched into identical
sl(2,R)-irreducible subsets. An example can be found in sect. 2.3 of [13].
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for the treatment of half-integer values of s). This completes the argument
that any Chern-Simons action based on an algebra of the form (2.18) gives
a non-linear deformation of the free actions of a proper set of higher-spin
gauge fields.

A key feature of (2.18) is the enlargement of the Lorentz algebra to
(2.18c). A field ϕµ1... µs

must be invariant under Lorentz-like transforma-
tions since they do not have any counterpart in the Fronsdal approach. In
the case of the metric, the only combination of the vielbeins that is invariant
under generalised Lorentz transformations is

gµν ∼ l2 tr (eµeν) = l2 eµ
Aeν

B tr (PAPB) . (2.19)

Here e is the full higher-spin vielbein eAPA [13], so that the metric depends
on the higher-spin vielbeins! Unfortunately, requiring Lorentz-like invariance
does not suffice to fix the form of higher-rank fields, but additional results
can be found in [16]. In spite of this limitation, (2.19) already played a role
in the study of BTZ-like solutions with higher-spin hairs and of the effects of
higher-spin gauge transformations on the causal structure of space-time [17].

To conclude, let us recall that for l2 > 0 there is a simple way to satisfy
(2.18). It is sufficient to consider algebras of the form g⊕g and to define the
PA and MA as

PA =
1

l

(
TA − T̃A

)
, MA = TA + T̃A , (2.20)

where TA and T̃A denote the generators of the two copies of g. This setup was
used in [18, 13] to show that the asymptotic symmetries of three-dimensional
higher-spin gauge theories on asymptotically (A)dS backgrounds are given by
non-linear W-algebras (see also [19, 16]). In the previous discussion nothing
prevents the algebras g from having a finite dimension, so that in D = 2+ 1
one can “truncate” the spectra of higher-spin gauge theories. An example of
this type is given by g ≡ sl(N,R), where the Lorentz algebra is identified with
the principal embedding of sl(2,R) in the diagonal sl(N,R) generated by the
MA. In this case, the Chern-Simons theory describes the interactions of a
tower of symmetric tensors of ranks 2, 3, . . . , N (see also [20] for a discussion
of the quantum spectrum). On the other hand, it is possible to consider
infinite-dimensional algebras g so as to mimic the gauge algebras underlying
Vasiliev’s construction. In this context, Gaberdiel and Gopakumar proposed
a holographic duality between Vasiliev’s models inD = 2+1 [21] and suitable
limits of minimal model CFT’s with WN symmetry [22] (see also [23]).
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The construction (2.20) also allows an interesting rewriting of the action
(2.14). A generic bilinear invariant form on g⊕ g can be cast in the form

tr (TATB) = c1 ηAB , tr (TAT̃B) = 0 , tr (T̃AT̃B) = c2 ηAB , (2.21)

so that (2.14) can be rewritten as

Sg⊕g = c1 SCS[A] + c2 SCS[Ã] , (2.22)

where now both A and Ã take values in a single copy of g: A = ABTB and
Ã = ÃBTB. If one defines

e =
l

2

(
A− Ã

)
, ω =

1

2

(
A + Ã

)
, (2.23)

and chooses c1 = l and c2 = − l, one then obtains

Sg⊕g =
1

8πG

∫
tr

(
e ∧ R +

1

3l2
e ∧ e ∧ e

)
, (2.24)

where R is defined as in (2.9), all fields take values in a single copy of g and
the trace is defined by tr (TATB) = ηAB. This is the direct generalisation
of (2.8) for a generic higher-spin gauge theory. In this respect, the Chern-
Simons form of the action is just a convenient tool to handle these models,
but it is not crucial. One could also deal directly with (2.24), and this opens
the way to the generalisations of (2.14) that we shall briefly consider in the
following section.

3 Topologically massive theories

The actions (2.24) do not propagate local degrees of freedom, but in the
s = 2 case it is known how to make the graviton massive and propagating
without breaking diffeomorphism invariance [24]. In a first-order formalism
this goal is achieved with the action [25]

S = SEH +
µ−1

16πG

∫
tr

(
ω ∧ dω +

2

3
ω ∧ ω ∧ ω

)
+

∫
tr ( β ∧ T ) , (3.1)

where we continue to follow the notation introduced in (2.24). Therefore, all
fields are one-forms taking values in sl(2,R) ∼ so(1, 2). The one-form β is a
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Lagrange multiplier enforcing the torsion constraint, so that the elimination
of all auxiliary fields would lead to the three-derivative action of [24].6 More-
over, (3.1) is manifestly invariant under diffeomorphisms and local Lorentz
transformations.

It is thus natural to preserve the structure (3.1) and try and enlarge the
tangent algebra sl(2,R) to a generic semisimple g. However, the resulting ac-
tion is still manifestly invariant under diffeomorphisms and extended Lorentz
transformations of the form

δe = [ e , Λ ] , δω = DΛ , δβ = [ β , Λ ] , (3.2)

but it is not possible to tune the gauge variation of β to cancel the variation
of (3.1) under extended local translations of the form

δe = Dξ , δω =
1

l2
[ e , ξ ] . (3.3)

In both (3.2) and (3.3) fields and gauge parameters take values in g, so that
we had to exhibit the l-dependence in (3.3). The gauge variation of (3.1) is

δS =

∫
tr

(
δβ ∧ T + β ∧ [R +

1

l2
e ∧ e , ξ ]

)
. (3.4)

At the linearised level δβ = Dξ implies the vanishing of (3.4): the remainder
is proportional to the equations that are satisfied by the background dreibein
and spin connection. At the non-linear level, however, one has at least to
deform (3.3) and δβ = Dξ in order to preserve the linearised gauge sym-
metry. In the s = 2 case we know how: the non-linear deformation leads
to diffeomorphisms. In the higher-spin setup it is not clear whether (3.1)
admits a larger symmetry group with respect to diff×g and, possibly, what
its precise structure is.

The enhancement of sl(2,R) to sl(N,R) was already discussed in [28],
where the authors studied the linearised spectrum of the resulting theory. A
similar analysis was performed in [29] starting from the (A)dS generalisation
of a quadratic action first proposed in [30]. Since this is the most general

6Without the term β ∧ T the action (3.1) is instead equivalent to (2.24) [15]. On the
other hand, adding a term e∧T leads to a higher-spin generalisation of the Mielke-Baekler
model [26]. The resulting action is still expressible as the difference of two Chern-Simons
actions (by extending [27]), but the higher-spin torsion T no longer vanishes on shell.
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quadratic action with three derivatives displaying the Fronsdal gauge sym-
metry, the authors argued that it should be related to the linearisation of an
action of the type (3.1). A comparison of these results with a direct analysis
of the constraint algebra of (3.1) would further clarify the nature of the sym-
metries of (3.1), or open the way to possible completions preserving all gauge
symmetries of (2.24).7 The same result could be achieved by deforming the
symmetries (3.3) within the Noether procedure.

Higher-order gauge invariant massive theories for higher spins were also
considered in [32] in a metric-like formalism. In this case the linearised
gauge transformations still have the form (1.2), but the gauge parameter is
not traceless. As a result, this proposal is not directly related to (2.24), that
at the linearised level reproduces the Fronsdal action if one eliminates the
spin connections via the generalised torsion constraint [13].
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