

High Power Impulse Magnetron Sputtering for the growth of functional metal oxide thin films

stephanos.konstantinidis@umons.ac.be

1

1. High Power Impulse Magnetron Sputtering, why and how ?

2. What happens if we implement HiPIMS for the synthesis of transition metal oxide thin films ?

Conventional DC magnetron sputter deposition

Magnetron sputtering in the Industry

Filling trenches by magnetron sputtering ...

Hamaguchi and Rossnagel, J. Vac. Sci. Technol. (1995).

Advantages brought by the ionization of the sputtered metal atoms

Metal ions (+ negative bias on the substrate) allows :

- 1. Controlling the **trajectory** of the film forming species
- Conformal deposition
- 2. Controlling the **kinetic energy** of the film forming species
- Crystallinity, micro/nanostructure, roughness,... are modified

Sarakinos, Alami, Konstantinidis, Surf. Coat. Technol 2010

How can we do that?

Promote ionization by electron impact
« Heat » the electrons of the plasma

Architecture of an HiPIMS generator

- The power supply delivers:
 - Voltage up to 1 2 kV
 - Peak current (power) equal to ~A/cm² (~kW/cm²)
- Pulsed discharge to avoid overheating the target/magnets

Current-Voltage-Time waveforms

Average sputter power 300W / 1.3 Pa / 5 cm in diam. Ti target

Towards the production of ionized metal atoms

Konstantinidis, J.Appl. Phys. (2006)

Andersson et al. Appl. Phys. Lett. (2008)

Plasma dynamics

Palmucci et al, J. Phys. D: Appl. Phys. (2013)

Towards a « definition » of HiPIMS

- 1. Magnetron plasma
 - Glow discharge in ExB fields, at low pressure (~Pa range)
- 2. Electric pulses
 - Duty cycle $\leq 1\%$
- 3. High power/peak current
 - ~kW / A cm⁻²
 - $\Rightarrow N_e \simeq 10^{12-13} \text{ cm}^{-3}$
- 4. High ionization rate of the sputtered material

Sarakinos, Alami, Konstantinidis, Surf. Coat. Technol, 2010.

Enabling conformal deposition on complex-shape objects ...

FIG. 1. SEM images of Ta films grown by HPPMS sputtering and dcMS near the opening of the trench (a) and (b), and approximately half way along the wall of the trench (c) and (d). Both films were grown at room temperature with a substrate bias of -50 V.

Kouznetsov et al, Surf. Coat. Technol. (1999)

Alami et al, JVST A (2007)

... and providing more knobs to tune film properties

- Energy deposition during film growth
- More knobs for tuning the thin film properties
 - Pressure & gas mixture
 - Magnetic & chamber geometry
 - Average power
 - Pulse duration & frequency
 - Pulse voltage

On the synthesis of functional metal oxide thin films by HiPIMS

- 1. Titanium dioxide
- 2. Aluminum-doped zinc oxide
- 3. Vanadium dioxide

Titanium dioxide

Applications in optics, catalysis

Growing high-temperature phase of TiO₂ by HiPIMS

Konstantinidis et al, Thin Solid Films (2006)

Modulating the phase constitution through peak power

Aiempanakit et al, Surf. Coat. Technol. (2011)

A too large ion flux may lead to amorphization

Alami et al, J. Phys. D: Appl. Phys. 2009

Increased compactness thanks to HiPIMS

Konstantinidis et al, Thin Solid Films (2006)

Increased refractive index of TiO₂ films

Anatase films deposited on glass 2.8 2.7 2.6 Refractive index 2.5 HiPIMS, glass 2.4 2.3 2.2 DCMS, glass 2.1 2.0 1.9 500 400 600 700 800 900 1000 1100 Wavelength (nm)

Konstantinidis et al, Thin Solid Films (2006)

Efficiency of photocatalytic TiO₂ films deposited on polymers

Fig. 7. First rate order constant value for the process of photodegradation of MB of the coatings deposited onto various substrate types under optimised conditions.

Pressure 3.0 Pulse width Pulse frequency 2.5 k_a x 10⁵, s⁻¹ 2.0 .5 1 1.0 0.5 0.0 0.4 0.6 0.8 0.2 Pressure, Pa 50 75 100 125 150 175 200 Pulse width, µs 100 150 200 250 300

3.5

Fig. 5. First rate order constant value for the process of photodegradation of MB as a func-

tion of sputtering parameters (pressure, pulse width, pulse frequency).

Pulse frequency. Hz

Ratova et al, Surf. Coatings Technol. (2014).

Al-doped ZnO

Transparent Conducting Oxide

Transmittance of Al-doped ZnO

Sputtering from an **alloy target** (Zn+Al) in Ar/O₂ atmosphere

Deposition at **room temperature**

Mickan et al, Sol. Energy Mater. Sol. Cells (2016).

					iiiii aepooitea	abing the this at	
Table	S2:	Hall effect	measurement	results of the AZO	film deposited	using HiPIMS at	570 V

Position	Resistivity	Mobility	Charge carrier con-
(cm)	$(\Omega \mathrm{cm})$	$({ m cm^2/Vs})$	centration (cm^{-3})
3	2.05×10^{-3}	4.09	7.47×10^{20}
4	7.50×10^{-4}	7.38	$1.13{ imes}10^{21}$
5	7.21×10^{-4}	10.5	8.24×10^{20}
6	8.17×10^{-4}	7.07	1.09×10^{21}
7	1.23×10^{-3}	8.84	5.76×10^{20}

Mickan et al, Sol. En. Mater. Sol. Cells (2016).

Enhanced conductivity of ZnO:Al

- HiPIMS leads to:
 - Lower resistivity $(10^{-4} \Omega \text{ cm})$
 - Improved spatial homogeneity

Thermochromism e.g., for smart window applications

Synthesis of thermochromic VO₂ at low temperature

T_{critical} ~68°C

S. Loquai et al, Sol. Energy Mater. Sol. Cells (2016).

Similar results were obtained by

- A. Aijaz et al, Sol. Energy Mater. Sol. Cells (2016).
- J. Houska et al, Thin Solid Films (2018).

Recent developments in HiPIMS technology

- Peak curent controlled reactive HiPIMS
- Bipolar HiPIMS

Peak curent controlled Reactive HiPIMS

The peak curent increases as the reactive gas pressure increases

T. Shimizu et al., J. Phy. D (2016)

Hafnium nitride deposition

Controlling discharge conditions, working inside the unstable transition zone

Shimizu et al., Intern. Conference on Reactive Sputter Deposition, Gent (Belgium), 2018.

How can we control the metal ion energy without substrate bias ?

Konstantinidis et al, J. Appl. Phys (2006) Britun et al, Appl. Phys. Lett. (2018).

33

Controling the ion energy by the + voltage applied on the cathode

Michiels et al, manuscript in preparation

Comparison of the XRD data

Low resistivity Si substrates

Positive pulse on cathode as the same effect as applying a negative bias on the substrate

Konstantinidis et al, Thin Solid Films (2006)

Topography and cross-section SEM images

Low resistivity Si substrates

500 nm

Microstructure of TiO₂ films deposited by B-HiPIMS on glass

Michiels et al, manuscript in preparation

Optimization of the properties of TiO₂ films on glass

- 1. HiPIMS enables coating complex objects
- 2. HiPIMS promotes intense ion bombardment during deposition which modifies the growth process and film properties
 - Increased density
 - Modified crystallinity (high-temp. phase, texture, crystallite size)
 - Lower roughness
- 3. HiPIMS may facilitate the deposition of functional oxides onto temperature sensitive materials like polymers
- 4. Recent developments aim at providing even more control on the film growth process

Sputtering onto liquid substrates for the synthesis of nanoparticles, the role of HiPIMS

A. Sergievskaya et al., Coll. Surf. A Physicochem. Eng. Asp. **615** (2021).

A. Segievskaya et al., manuscript in preparation

5 6

Diameter (nm)

4

5.2 ± 0.8 nn

HIPIMS

7 8