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Time dependence in photonic structures leads to a number of intriguing and useful phenomena
such as optical isolation, topological states of light and frequency conversion. Here we present
a mechanism to achieve efficient and selective frequency conversion using a system of two time-
modulated cavities. This setup allows to fine-tune the conversion process by controlling important
parameters such as the inter-cavity coupling and the external excitation frequency. Both symmetric
and asymmetric (up- or down-conversion) outputs can be targeted at will. We describe the processes
extensively, with for example a leading role for the dynamic modes of the coupled system, the Floquet
modes.

I. INTRODUCTION

Temporal or dynamic modulation in photonic struc-
tures has been a topic of increasing interest, as it can
induce unique optical functions. For example, time mod-
ulation can break reciprocity in various devices1,2, lead-
ing to optical isolation without magnetic materials3,4.
This isolation mechanism is quite general, and can be
applied to various contexts such as acoustics5, graphene
plasmonics6 and so on. Furthermore, dynamic modula-
tion can achieve frequency conversion without resorting
to traditional nonlinear effects7–10. Recently, there are
various developments to exploit the novel physical effects
related to temporal symmetry breaking, for example to
produce effective magnetic fields11,12, to implement topo-
logical states of light13,14 or for time crystals15–17.
These time modulation effects are aided by photonic

confinement, such as in high-index contrast cavities18,19.
Therefore, subwavelength confined plasmonic resonances
can also be exploited, achieving e.g. efficient frequency
conversion20. In this setting, graphene can be highlighted
as an interesting platform for tailorable plasmonics21–24,
since its conductivity can be effectively tuned25,26, lead-
ing to time-modulated plasmonic modes in graphene
structures.
Ginis et al. examined the possibility to produce a fre-

quency comb by modulating the conductivity of a planar
graphene sheet27. However, the efficiency of this process
is hampered because of the large change in conductivity
needed to obtain a significant modulation in the trans-
mission. In previous work we presented a way to over-
come this limitation using a graphene ribbon array28,
with interaction between a single time-modulated reso-
nance and the incident light. A plasmonic resonance in
such an array allows to produce combs with a greatly en-
hanced efficiency, and with a fairly good control29. Typi-
cally, frequency comb generation is implemented by four-
wave mixing30, with effective implementation in micro-
ring resonators for example31.
In this work we extend the system to two time-

modulated coupled resonances, instead of a single one.
Importantly, this system turns out to be effective for se-
lective frequency conversion, so that instead of an ex-

tensive frequency comb, we are targeting conversion to-
wards specific frequencies, by exploiting the interference
processes in play. The mechanism and our description
are quite general, so that in practice various dielectric
or plasmonic implementations, such as graphene ribbons
with different widths, can be considered.
We mainly optimize the asymmetric conversion to-

wards a single sideband, and the symmetric conversion
towards two equally spaced sidebands. We consider the
specific degenerate case first (when the two cavity res-
onance frequencies are equal), and then compare with
the more general non-degenerate case. We elucidate
the crucial role of the intermodal coupling constant and
the source frequency, using various semi-analytical ap-
proaches. It is very interesting that the so-called ‘Flo-
quet modes’ play an important role in these processes.
We determine the band structure of these modes of the
dynamic system, and observe for example that the con-
version efficiency is greatly enhanced in the neighborhood
of Floquet band anti-crossings.
We study the system using the well-established

Coupled Mode Theory (CMT) equations for coupled
cavities32–34. We employ this method with time-
dependent resonance frequencies in Sec. II. We show
that this system supports Floquet modes in Sec. III, and
provide a method to obtain their frequencies. We then
discuss how to achieve selective frequency conversion in
Sec. IV, with an extensive evaluation of the process effi-
ciency. In addition, Sec. V explains how a simple three-
frequency analysis can determine the system parameters
to achieve the desired conversion. Finally, in Sec. VI we
derive an analytic approximation of the band structure
of the Floquet modes using a perturbation analysis.

II. SETUP AND COUPLED MODE THEORY

We study a system of two coupled resonances, which
can be created for example by two nearby cavities. Here,
the resonance frequency of one of the cavities will be
time-modulated, leading to the generation of new fre-
quency components. A sketch of the system is depicted
in Fig. 1(a). A possible way to physically implement this
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setup could consist of two graphene ribbon arrays with
different widths35,36 (Fig. 1(b)), as the conductivity can
be dynamically modulated37 in graphene.
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FIG. 1. (a) Representation of the system of coupled reso-
nances. (b) Possible implementation using two coupled ar-
rays of graphene ribbons. Each cavity corresponds to a plas-
monic resonance in the graphene array, where different ribbon
widths (D1 and D2) provide different resonance frequencies.
The ribbons are repeated in the horizontal direction creating
two vertically offset gratings.

To limit the number of parameters, we consider di-
rect injection (amplitude s(t)) into one of the modes,
which does not radiate (the so-called dark mode, am-
plitude a(t)), whereas the other mode (the bright one,
b(t)) radiates, providing the output. We describe this
two-cavity setup by a system of coupled equations with
CMT34:

da(t)

dt
= iω1a(t) + iκb(t) + s(t) (1)

db(t)

dt
= iω2(t)b(t) + iκa(t)− γb(t) (2)

where a(t) and b(t) are respectively the dark and bright
mode amplitudes, γ is the outcoupling coefficient, κ is the
coupling coefficient between the two cavities, ω1,2 are the
(potentially time modulated) resonance frequencies, and
s(t) is the input, for which we use a nearly monochro-
matic gaussian pulse (with central frequency ω0).
Here the source s(t) can be considered as a dipolar

emitter coupling to the field of the dark mode a(t), in
the weak-coupling limit. For systems with one or more
input waveguides the model can be extended to take ex-
ternal interferences with reflection and transmission into
account.
In this model the κ values are real so energy conserva-

tion is ensured. In order to get realistic parameter values

for the CMT model, we ran Finite-Element Method sim-
ulations of a graphene ribbon array28. This allowed us
to connect the CMT parameters to the physical proper-
ties of graphene arrays. We determined that the plasmon
absorption rate in a typical setting can be one order of
magnitude smaller than the plasmon outcoupling time,
so for simplicity we do not consider these losses in this
model.
Usually the resonant frequencies are constants, but

here for time-modulation they become functions of time,
and we will consider a periodic modulation. In this pa-
per we focus on the case where only the bright mode
resonance is modulated:

ω2(t) = ω2 + δ sin (Ωt) (3)

with ω2 the ‘static’ resonance frequency, δ the modu-
lation amplitude and Ω the modulation frequency. The
modulation amplitudes δ we consider here are of the same
order of magnitude as Ω. This modulation amplitude
can be achieved with modest EF changes28, because res-
onance frequencies in graphene ribbons strongly depend
on EF and because we consider modulation frequencies
such that ω1,2 ≫ Ω. The phenomena are similar if we
modulate the other mode, or if we modulate both modes.
Other modulation functions38, such as step-functions or
shocks39,40, could also be considered in future work.
This work is distinct from the effects in most modula-

tors: Typically, the modulation frequency is slow and the
modulation amplitude is not too high compared to the
outcoupling rate29. In those cases (the adiabatic limit),
the approximation of a time-dependent transmission, ne-
glecting the interaction with the cavity modulation, is
often used. However, here the time-dependence is non-
trivial, and the light stays trapped in the cavity for a
few modulation cycles. In this high-frequency limit, new
frequencies are generated and the parameters governing
this frequency conversion are investigated in detail fur-
ther on.
In previous work28, with a single-cavity system that

is time modulated, it was observed that one obtains a
wide frequency comb, with components separated by the
modulation frequency Ω. While that setup is useful for
generating a wide range of new frequencies, it is more
difficult to obtain an efficient conversion to a specific fre-
quency. With the two-cavity setup described here, it be-
comes possible to obtain more focused features, such as
selective frequency conversion.

III. FLOQUET MODES

In this section we introduce Floquet modes, as they
play an important role to understand and optimize the
frequency conversion process further on. Floquet modes
are the time analogues of Bloch modes in space, with a
time-periodic modulation of the index, instead of a space-
periodic index distribution for Bloch modes. In our setup
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the optical potential (via the resonance frequency ω2(t))
is periodic in time so the Floquet modes can be defined.
The static non-driven coupled system (i.e. constant

frequencies ω1,2) has two modes with frequencies ω± =

ω1+ω2

2 ±
1

2

√

(ω1 − ω2)2 + 4κ2. In the degenerate case

where ω1 = ω2 = ω1,2, the two mode frequencies take
the simple form ω± = ω1,2 ± κ (see red dashed lines in
Fig. 2).
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FIG. 2. Blue lines: Floquet modes of the system for the
degenerate case, where ω1,2 = 2π×1013 rad/s, Ω = 2π×2.5×
1011 rad/s and δ = Ω/2. Dashed red lines: static resonance
frequencies for the degenerate case (ω± = ω1,2 ± κ). The
four arrows near κ = Ω/2 represent the transitions of interest
that we study in Sec. IVA while the two arrows near κ = Ω
represent the transitions that we study in Sec. IVB. An anti-
crossing appears at κ = Ω/2 where the static modes intersect.

With the introduction of time modulation, these fre-
quencies are adjusted, and have multiple Floquet mode
branches with frequency difference Ω (see blue solid lines
in Fig. 2). Interestingly, when these branches meet as a
function of κ they can lead to anti-crossings (see around
κ = Ω/2 in Fig. 2). This is a different effect than
bandgaps that appear for propagative Floquet modes41.
Here we study two coupled localized resonances so no
true bandgap is opened.
One way to compute the Floquet mode frequencies is

to write Eqs 1 and 2 (without the source term) in matrix
form42:

−i
dF (t)

dt
= H(t)F (t) (4)

where F (t) is a matrix of eigenvectors and H(t) is the
time-modulated Hamiltonian. Floquet’s theorem insures
that a solution exists in the form

F (t) = Φ(t)eiQt (5)

where Φ(t) is a matrix of periodic functions and Q is a
constant diagonal matrix containing the Floquet eigen-
values (compare with the typical Bloch mode form).
Since Φ(t) and H(t) are matrices of periodic functions,

it is convenient to expand them in Fourier series:

Fab(t) =
∑

n

Fn
abe

inΩteiqbt (6)

Hab(t) =
∑

n

Hn
abe

inΩt (7)

where qb are the diagonal elements of Q, Ω = 2π/T , and
T is the period of Φ(t) (see Eq. 3). The indices a and b
denote a cavity mode, while index n (and also m in the
following equations) represents Fourier components. By
injecting these forms into Eq. 4, one obtains an eigenvalue
equation for the (column) eigenvectors F:b and eigenval-
ues qb

HFF:b = QF:b (8)

with HF called the Floquet Hamiltonian defined by:

〈an|HF |bm〉 = Hn−m
ab + nΩδabδnm. (9)

This infinite Floquet Hamiltonian for our case (only ω2(t)
modulated as in Eq. 3) has the following form:

HF =
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... ω1 − Ω κ 0 0 0 0
...

... κ ω2 − Ω 0 δ/2 0 0
...
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...
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...

... 0 0 0 δ/2 κ ω2 +Ω
...
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(10)

This time-independent matrix is ordered in a special way:
the indices go through a and b before each change in
n and m. In that representation, it is clear that the
coupling coefficient κ is responsible for the coupling be-
tween Floquet modes ‘inside’ a Fourier component, while
the temporal modulation (represented by δ) couples Flo-
quet modes across Fourier components. In other words
the coupling between Floquet modes takes the form of a
‘cascaded’ nearest neighbor transition. For example this
means that in order to couple from one Floquet mode to
another mode separated by 3Ω, three successive transi-
tions need to occur. This explains why frequency comb
components typically decay as they are further away from
the source frequency (see example in Fig. 3).
In order to get an estimate of the Floquet eigenvalues,

one truncates the time-independent matrix HF and nu-
merically computes its eigenvalues. An example is shown
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in Fig. 2, where the solid blue lines represent four Flo-
quet mode frequencies in the degenerate case (ω1 = ω2),
as a function of the coupling constant κ. As mentioned,
the red dashed lines represent the static eigenfrequencies
of the degenerate system (ω± = ω1 ± κ). The Floquet
frequencies form a band structure and can exhibit anti-
crossings, leading to bandgap-like features. The modu-
lation amplitude δ is the parameter responsible for the
anti-crossing size: a larger δ yields a wider anti-crossing.

IV. SELECTIVE FREQUENCY CONVERSION

In this central section we examine the structure of
the generated frequency combs, and discuss the relevant
shaping parameters for interesting cases. Fig. 3 shows
a typical comb produced by the coupled cavities, with
the frequency components separated by the modulation
frequency Ω. Furthermore, the sideband amplitudes de-
crease rapidly further away from the excitation frequency
ω0, as the conversion is a cascade process (see e.g. the in-
finite Floquet matrix of Eq. 10). In this work we mainly
focus on the left and right immediate sidebands (ω0±Ω),
as they are expected to yield a better conversion effi-
ciency, but some of the results can be generalized to other
frequency components as well.
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FIG. 3. Typical frequency comb produced by a time-
modulated two-cavity setup. Here ω1 = ω2 and only the
bright cavity is modulated. The parameters are such that no
particular enhancement is achieved (ω0 = ω1,2 = 2π × 1012

rad/s, Ω = ω0/40, κ = Ω/2, δ = Ω/4 and γ = 2×1011 rad/s).

The reason why the Floquet modes are so useful here is
that the conversion efficiency is much more efficient when
we excite a Floquet mode. This holds both for the exci-
tation frequency ω0, and for the ‘destination’ frequencies
ω0 ± Ω (one statement leads to the other as the modes
are spaced Ω apart). This means that if we excite a com-
bination of κ and ω0 values directly on a Floquet branch
(so a point on the blue lines in Fig. 2), we are bound to
have strong interactions between the components.
This intuition leads to two important cases, which we

discuss in detail in the following subsections. The first

case corresponds with a κ value around the first anti-
crossing (κ ≈ Ω/2) and when ω0 is equal to a Floquet
mode frequency. This leads to ‘transitions’ indicated by
the four arrows at κ ≈ Ω/2 in Fig. 2 (from ω0 to ω0±Ω).
Each of these arrows corresponds to a frequency conver-
sion from a Floquet mode to another Floquet mode. We
call this case (around κ ≈ Ω/2) the ‘asymmetric con-
version’ case, as it will be efficient in one direction only,
leading to a single large sideband.
The second case (or regime) corresponds with a κ value

around the first band crossing (κ ≈ Ω), and when ω0 is
equal to a Floquet mode frequency. The transitions of
interest here are represented by the two arrows in Fig. 2
around κ ≈ Ω. This is the ‘symmetric conversion’ case,
as both sidebands (at ω0±Ω) will be generated efficiently.
Furthermore, one expects that the coupling of the

source to Floquet modes close to the static modes of the
system will be more efficient. This is because the other
Floquet harmonics are introduced in the system only via
the time perturbation, whereas the two 0-order Floquet
modes are connected to the static modes of the system
(see numbers in Fig. 2 for the mode orders). In the end
we typically observe a lower conversion efficiency for tran-
sitions that originate from (or transition to) higher order
Floquet modes.

A. Asymmetric conversion

The first interesting case is the asymmetric one, as in
extreme cases it leads to a highly selective conversion,
where the excitation is efficiently converted towards a
single new frequency. Interestingly, we will show that this
is most effective at the first bandgap condition (where
κ = Ω/2). For simplicity we here discuss the degenerate
case where ω1 = ω2.
In order to characterize the conversion efficiency, we

calculate two figures of merit (FOMs) Γ± = γ|b(ω0±Ω)|
|s(ω0)|

,

which indicate the fraction of excitation converted to the
two direct sidebands. Here b(ω) and s(ω) are the Fourier
components of the bright mode amplitude b(t) and gaus-
sian source s(t), respectively. This FOM is the ratio of
mode amplitudes converted from the source to a different
frequency component. This fraction is useful to establish
the conversion efficiency inside the coupled mode system.
Note that the decay rate γ affects the FOMs. However,
for relatively small values of γ (as in this paper) the FOM
is proportional to γ. In contrast, too large values lead to
a decrease of the FOM, as light is outcoupled too fast for
intercavity interference and conversion to operate. This
trade-off is also discussed in28.
Fig. 4 shows the FOMs Γ± as a function of ω0 at

the anti-crossing (κ = Ω/2). In detail, this means we
monitor Γ± along a vertical line (κ = Ω/2) in Fig. 2.
The increased efficiency for four ω0 values (four peaks
for both Γ+ and Γ−) is due to the presence of the Flo-
quet modes: the excitation ω0 sweep cuts through four
Floquet branches in this range.
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In addition, there is a strong dependence concerning
the direction of the transition in Fig. 4: Γ+ is large for
the two low-frequency peaks, and small for the two high-
frequency peaks (and vice versa for Γ−). This can be
understood from Fig. 2: The two strong up-conversion
peaks (Γ+ is up-conversion) correspond to the blue and
black arrows, leading to transitions with 0-order modes
involved. The two weak up-conversion peaks at high fre-
quencies actually mean transitions that go upwards be-
yond the data in Fig. 4, so concerning higher order modes
as destination. Similarly, the two large down-conversion
peaks (Γ−, so red in Fig. 4) correspond to the green and
red arrows in Fig. 2. Clearly, the coupling of the source
to higher order modes is less efficient since these modes
only exist because of the perturbation introduced by the
time dependence.
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FIG. 4. Figures of merit Γ± as a function of the incident
frequency ω0. The frequency conversion is asymmetric at the
anti-crossing (when κ = Ω/2). When ω0 is equal to a Floquet
mode frequency, the conversion efficiency is enhanced. The
difference in conversion efficiency depends on the initial and
final mode order: the coupling between source and Floquet
modes is better for lower order modes.

The frequency conversion is indeed highly asymmet-
ric and selective in this case, see the example in Fig. 5,
with the comb for parameters corresponding to the sec-
ond peak in Fig. 4 (ω0 = 0.9891 ω1,2). The light is effi-
ciently converted to the upper frequency sideband, with
few energy in the lower sideband.
Thus, Floquet modes play an important role in the con-

version process: when the incident frequency ω0 matches
a Floquet mode frequency, the conversion process is en-
hanced. Now we describe ways of improving the conver-
sion efficiency when the incident frequency is on a Flo-
quet branch. In this way, we try to exploit the Floquet
mode band structure.
To find where the conversion process is most efficient,

we monitor the FOMs for a few transitions of interest
(see arrows in Fig. 2). In detail, we move the incident
frequency along a Floquet band by changing the cou-
pling coefficient κ, and we plot the corresponding FOMs
in Fig. 6. This means that we follow the blue lines in
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FIG. 5. Comb produced by a set of parameters corresponding
to the second peak of Fig. 4 (ω0 = 0.9890 ω1,2). The conver-
sion to the upper sideband (ω0+Ω) is more efficient than the
conversion to the lower sideband (ω0 −Ω) and as a result the
comb is asymmetric.

Fig.2 (mainly around κ = Ω/2), so for Fig. 6 the incident
frequency is always equal to a Floquet frequency. The
main trend is that all four transitions have a maximum
around κ = Ω/2: clearly the conversion is most efficient
when one operates at the edge of the anti-crossing. Fur-
thermore, one observes that the blue and red transitions
are always somewhat stronger than the green and black
transitions. This reflects their different mode order com-
binations (see the corresponding arrows in Fig. 2): the
blue/red transitions start from modes closest to the cen-
ter frequency (ω1,2), and arrive at modes away from the
center. For the green/black transitions this is inverted,
leading to a less efficient process.
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FIG. 6. Figures of merit Γ± for the four transitions high-
lighted in Fig. 2 around the bandgap. The conversion effi-
ciency is greater when the incident mode is a 0-order mode
and at the band edge (for κ = Ω/2).
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B. Symmetric conversion

Another useful regime in the two-cavity system leads
to a ‘symmetric’ frequency conversion, where the two first
sidebands are favored and have a similar amplitude. This
type of frequency conversion occurs efficiently at the first
band crossing (around κ ≈ Ω), see the arrows in Fig. 2.
The up- and down-conversion FOMs (Γ±) are shown

in Fig. 7, so we follow a vertical line in Fig. 2, around
the central frequency. When ω0 is equal to the Floquet
mode frequency (in this degenerate case the modes cross),
the conversion efficiency is strongly enhanced (a strong
peak for both FOMs). The conversion is quite symmetric,
as Γ+ ≈ Γ−. Due to the perturbation introduced by
the time-modulation, the bands bend and do not cross
exactly at κ = Ω, but slightly before. The perturbation
analysis of Section VI gives a good estimate of the correct
κ value that we use in Fig. 7 (κ = 0.9948 Ω).
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FIG. 7. Figures of merit Γ± as a function of the incident
frequency ω0. In this case, δ = Ω/4 and ω1 = ω2. At the first
band crossing (κ ≈ Ω), the frequency conversion is efficient
and symmetric.

Fig. 8 shows a comb produced by the parameters cor-
responding to the central peak of Fig. 7. Conversion to
both sidebands is enhanced, as the two sidebands corre-
spond to Floquet mode frequencies (see band diagram of
Fig. 2 at κ ≈ Ω). In this case, the incident frequency cor-
responds to a first-order mode while the two sidebands
are zeroth order.

C. Non-degenerate case

In the above discussions we presented the degenerate
case where ω1 = ω2. Here we briefly discuss the non-
degenerate case to show that the same general conclu-
sions apply. Firstly, the band structure is similar, which
we can compare in Fig. 9: the solid line is the degener-
ate situation, the dashed line is non-degenerate. Clearly,
in the non-degenerate case, the Floquet bands no longer
cross at κ = 0 as they did in the degenerate case, as the
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FIG. 8. Comb produced by a set of parameters corresponding
to the central peak of Fig. 7. The conversion to the upper
sideband (ω0 + Ω) is nearly as efficient as the conversion to
the lower sideband (ω0 −Ω).

two cavities now have different resonance frequencies.
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FIG. 9. Solid blue lines: Floquet modes of the system for the
degenerate case (same as in Fig. 2). Dashed blue lines: non-
degenerate case (ω1 6= ω2). We chose these two frequencies
such that ω1 − ω2 = 2Ω/5.

We then consider the FOMs in the case where ω1 6= ω2

around the first anti-crossing (κ = Ω/2), see Fig. 10,
in order to compare it with the degenerate case (Sec-
tion IVA, Fig. 4). Note that in the non-degenerate case,
the Floquet bands are slightly shifted towards smaller κ
values (compare solid and dashed lines in Fig. 9). Here
as well the conversion efficiency is improved when the
source frequency is equal to a Floquet mode. The exact
efficiency is different than in the degenerate case (Fig. 4),
because of the slight difference in resonance frequencies.
We will see in the next section that this can be predicted
by a simple model.
We also computed the FOMs for the symmetric regime

(κ ≈ Ω) in the non-degenerate case, see Fig. 11. Whereas
in the degenerate case the two FOM peaks Γ± are max-
imal at the same frequency (Fig. 7), here a small gap
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FIG. 10. Figures of merit Γ± as a function of the incident
frequency ω0. In this case, δ = Ω, ω2 − ω1 = 2Ω/5 and
κ = Ω/2 (around the anti-crossing).

appears, meaning that the two Floquet modes do not
have the same frequency, hence the peak position dif-
ference in Fig. 11. This difference is not simply due to
the slight shift of the band structure seen in Fig. 9, here
an anti-crossing opens whereas the two non-degenerate
bands cross.
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FIG. 11. Figures of merit Γ± as a function of the incident
frequency ω0. In this case, δ = Ω, ω1 −ω2 = 2Ω/5 and κ ≈ Ω
(around the second anti-crossing).

V. THREE-FREQUENCY MODEL

In order to find the correct system parameters that
enable selective frequency conversion, we can use a sim-
plified model, where we only consider three frequen-
cies for the two cavity mode amplitudes a(ω) and b(ω):
at the source frequency ω0 and at the two sidebands
(ω0 − Ω) and (ω0 + Ω). In detail, we consider solutions
of the form f(ω) = f−δ [ω − (ω0 − Ω)] + f0δ [ω − ω0] +
f+δ [ω − (ω0 + Ω)], where f represents the two mode am-
plitudes a and b. With these assumptions the CMT

Eqs. 1-3 become:

i(ω0 − Ω)a− = iω1a− + iκb− (11)

iω0a0 = iω1a0 + iκb0 + s0 (12)

i(ω0 +Ω)a+ = iω1a+ + iκb+ (13)

i(ω0 − Ω)b− = iω2b− +
δ

2
b0 − γb− + iκa− (14)

iω0b0 = iω2b0 +
δ

2
b− +

δ

2
b+ − γb0 + iκa0 (15)

i(ω0 +Ω)b+ = iω2b+ +
δ

2
b0 − γb+ + iκa+ (16)

As seen in Eqs. 11-16, the coupling coefficient κ ac-
counts for the coupling between dark and bright mode
at the same frequency, while the modulation amplitude δ
accounts for the coupling between the different frequency
components of the bright mode b. Note that this equation
system actually corresponds to the 6 × 6 central part of
the Floquet matrix of Eq. 10. This model has the advan-
tage of being an algebraic system, whereas the previous
results were obtained through the numerical resolution of
the differential equation system of Eqs. 1 and 2. It can
be used to rapidly explore various situations, for exam-
ple the non-degenerate case. However, since we only take
into account three frequency components per mode, this
model is an approximation, but it can lead to quantita-
tively correct results, especially in our selective cases.
We compare the results of this simple model with the

numerical resolution of Eqs. 1 and 2 for two specific cases.
The first case is symmetric around ω0, so we impose
b− = b+ in Eqs. 11-16. A set of parameters found with
that constraint is κ = Ω, δ = Ω/4 and ω0 = ω1 = ω2.
This specific case is represented in Fig. 12(a). In the sec-
ond case, the parameters are chosen such that the con-
version to the lower frequency sideband is maximized.
Parameters can be found by imposing b0 = b+ = 0 in
Eqs. 11-16, giving for example κ = Ω/2, ω1 = ω0 − κ,
δ = Ω/4. The results for this second set of parameters
are represented in Fig. 12(b). In both cases a satisfactory
agreement is found, taking the simplicity of the model
into account.
This simple model allows for a more systematic ap-

proach in tuning the output spectrum: one can impose
constraints in Eqs. 11-16, and solve for the system pa-
rameters that will give a desired response (as we did for
Fig. 12). It also allows to understand the interference ef-
fects between the frequency components, as in some cases
terms in Eqs. 11-16 cancel out, giving a single frequency
output, as in Fig. 12(b). Moreover it is a useful ana-
lytic alternative to the numerical resolution of the CMT
equations.

VI. TWO-LEVEL PERTURBATION

To obtain an analytical expression for the Floquet
bands we can use a two-level perturbation theory42–44.
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FIG. 12. Red circles are the results of the three-frequency
model while the blue line is the full numerical solution. In (a)
we imposed the constraint b− = b+ so the comb generated is
perfectly symmetric. In (b) we imposed the constraint b0 =
b+ = 0, so the frequency conversion is asymmetric.

This is useful to obtain a simple expression for the Flo-
quet bands, so one knows which frequencies are bound
to provide a good potential conversion. For simplicity
we only discuss the degenerate case.

We approximate the initial Floquet Hamiltonian by a
2 × 2 Hamiltonian, where the contribution of the other
Floquet modes is treated as a perturbation44. To do
so, we separate the Floquet Hamiltonian of Eq. 10 into a
static matrix H0 and a perturbation matrix V containing
only δ terms. We apply a transformation to H0 and V so
that H0 is diagonal and write out the eigenvalue equation
component by component. Then we solve for the eigen-
vector components and find that they are the solution of
an implicit equation involving the sum of the eigenvector
components. We identify two large terms (correspond-
ing to the crossing of static modes) and separate them
from the rest of the sum. Then by iteration and by con-
sidering the first order of the perturbation, we find the
two resonance frequencies of the nearly degenerate states.
As seen in Fig. 2, the unperturbed bands ω1,2 + κ and
ω1,2 +Ω− κ cross at κ = Ω/2, and open an anti-crossing
in the Floquet bands. We choose these bands as the two
unperturbed states for the perturbation analysis. After a

few manipulations, the perturbed Hamiltonian becomes:

H2 =

[

ω1,2 +Ω− κ+∆(κ) δ/4
δ/4 ω1,2 + κ−∆(κ)

]

(17)

where ∆(κ) =
δ2

16(2κ+Ω)
is the correction to the ‘static’

levels induced by the time modulation. The eigenvalues
of H2 are approximations of the Floquet mode frequen-
cies, and are given by:

ω± = ω1,2 +
Ω

2
±

√

δ4 + 64δ2κ(Ω + 2κ) + 64(Ω2 − 4κ2)2

16(2κ+Ω)
(18)

Since the potential has a periodicity Ω, it is possible
to completely describe all the eigenvalues of the infi-
nite Floquet Hamiltonian with the two eigenvalues of H2,
by adding multiples of the modulation frequency Ω. In
Fig. 13 we compare the numerical eigenvalues of the Flo-
quet matrix to the perturbation theory results. We ob-
tain a very good agreement between the numerical eigen-
values (truncated Eq. 10) and the analytical eigenvalues
obtained via perturbation theory (Eq. 18).
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FIG. 13. Solid lines: Numerical results for the eigenvalues of
the Floquet matrix. Circles: Eq. 18 and with Ω offset. The
parameters used are the same as in Fig. 2.

Furthermore, this perturbation analysis allows us to
find an analytical approximation for the coupling coeffi-
cient κc, where the Floquet modes cross for the first time
(around κ = Ω). By imposing that the two eigenvalues
ω± of Eq. 18 must be equal and solving for κ, we find
(after neglecting δ2 terms):

κc =
Ω

4

(

1 + 3

√

1−
2δ2

9Ω2

)

(19)

From this expression, we see that without perturbation
the bands indeed cross at κ = Ω as expected (see Fig. 2).
This is why we employed κ ≈ Ω for the band crossing in
the previous sections.
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VII. CONCLUSION

An efficient and tailored frequency conversion can be
achieved with a system of coupled time-modulated cavi-
ties. We describe this process using the CMT equations
adapted to time-dependent resonance frequencies. The
system supports Floquet modes, arising from the time
periodicity, which play an important role in the conver-
sion efficiency. Furthermore, their band-like structure is
a key element, as the conversion is enhanced in the neigh-
bourhood of (anti-)crossings.

We exploit the coupled-cavity setup to achieve both
symmetric and asymmetric frequency conversion, using
the important link of these two processes with the Flo-
quet modes. We employ perturbation theory to find an
analytic approximation of the Floquet bands. Further-

more, we show how to find useful system parameters
for selective frequency conversion using a straightforward
three-frequency model.
This frequency conversion mechanism is fairly general,

since it only requires two coupled, time-modulated reso-
nances, such as recently demonstrated in45. It can thus
be applied to a wide range of physical systems, ranging
from photonics to acoustics for example.
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