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A B S T R A C T   

Industrial robots are currently used in light milling operations for their low cost and large workspace compared 
with CNC machine tools. However, milling robots are prone to vibration instabilities (chatter) and process 
deviations since they are significantly less stiff than machine tools. As a result, robot dynamic response depends 
on its posture which represents a major challenge. This paper presents a direct method to update any multibody 
model, enclosing flexible rotational/translational or virtual joints with minimal tuning. The novel method allows 
determining the elastic parameters of the model based on a curve fitting of the frequency response functions 
measured at the tool tip. Fitting is fast and efficient as it occurs in the frequency domain without the need to 
transform the measured data into the model parameter space. It relies on a genetic algorithm followed by a 
deterministic procedure to ensure a refined solution of the identified global minimum. The method is firstly 
demonstrated and validated on a simulated flexible manipulator with three rotational joints. Its multibody model 
is built using minimal coordinates with known elastic parameters that the method recovers accurately. The new 
fitting algorithm is eventually applied to an actual industrial robot (KUKA KR90 R3100 robotic arm) resulting in 
the proper fit of its critical resonances. Posture dependency can also be tackled by considering multiple mea
surements in different poses within the same fitting procedure. Updating procedure was programmed in Matlab 
and made public so that it can be easily adapted to identify elastic parameters of other flexible mechanical 
systems.   

1. Introduction 

In the context of Industry 4.0, factories are definitely oriented to
wards increasingly automated, flexible and connected production units, 
relying more and more on so-called digital twins [1,2]. Robotics and 
automation in manufacturing technologies are part of this 4th industrial 
revolution [3]. In recent years, robotic machining gained in popularity 
from both academics and industrials. As a matter of fact, industrial 
manipulators, typically enclosing 6 axes, can cover larger workspace, 
reach narrow area on the workpiece and are far less expensive than 
machine tools. Furthermore, they can improve the productivity of ac
tual manufacturing process thanks to easier set-up and portability. 
Besides, variety of material-removal processes can be carried out by 
switching the end-effectors or cutting tools [4]. Nevertheless, the 

downfall of using industrial robots for machining applications is that 
they are more prone to deviate from their trajectory and to experience 
self-excited vibrations. The reason is their extremely low stiffness re
lative to machine tools, hence limiting their scope in machining ap
plications. Nowadays, robotic machining is limited to light milling 
operations such as deburring, polishing, grinding and material-removal 
on metal parts as long as the cutting forces remain relatively low [5–7]. 
Aeronautics and foundry industries are the main recipients of the 
technology for finishing operations on large parts and/or complex 
shapes [8]. 

A digital twin is a virtual model of an industrial process aiming at 
exhibiting the same dynamic behavior as its actual counterpart. Their 
use is profitable to design a machine, improve the performances, tune 
and validate controllers but also to monitor the process and react if 
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necessary [9–11]. Considering robotic machining, the development of 
digital twins involves knowledge on robot kinematics, dynamics, con
trol and milling process. While extensive research has been carried out 
in milling by Altintas et al. [12], there is still a long way to go before 
reaching a nearly-perfect fitted dynamic model of a robotic arm. For 
most of the robotic arms, their kinematics are straightforward and 
documented. However, before tuning the controllers, the generation 
and the updating of the robot dynamic model are still challenges to 
address [13,14]. Industrial robots are commonly modeled as a succes
sion of rigid bodies connected by spring and damper pairs representing 
the joint flexibility. Rigid body inertia properties are usually de
termined from CAD (Computer-Aided Design) models or through rigid- 
body identification methods [15]. Sophisticated models treat the links 
as flexible bodies using beam elements updated through finite element 
models [16,17]. Determining the elastic parameters (stiffness and 
damping) of the spring and damper pairs is however challenging but 
critical to capture the robot dynamics. In fact, many studies reported 
that robot dynamics depend on their posture which is caused by a non 
linear joint stiffness and a changing mass distribution [18,19]. This 
effect is readily visible on the surface quality of machined parts when 
the end-effector sweeps a large workspace [20]. 

Focussing on the identification of the joint elastic parameters, re
searchers developed different approaches to update their robot dynamic 
model. Dumas et al. [21] proposed a robust and fast procedure to de
termine the joint stiffness around the axes of motion. The method is 
based on the application of translational forces and torques at the end 
effector while the axis deflections are measured by a laser tracker. 
Variants of the method relying on similar set-ups were developed al
lowing a precise joint stiffness characterization but require expensive 
equipment (i.e. laser scanner) [18,22–24]. Lehmann et al. [25] used the 
so-called clamping method to determine the joint stiffness of ABB 
IRB2400 robot. The robot end effector is clamped to a fixed force sensor 
and built-in encoders read the deflection on each axis. Mercère et al. 
handled the identification of varying parameters over the workspace 
using scheduling methods [26]. It is however known that such method 
is not viable in industry as it requires to measure all postures before 
interpolation. Even though the non linear stiffness behavior can be 
accurately captured using the aforementioned methods, dynamic 
properties, such as natural frequencies, dampings and mode shapes, are 
usually estimated using experimental modal analysis (EMA). Roving 
hammer technique is generally employed and consists in performing 
hammer impacts on the whole structure while vibrations are measured 
at the end effector [27]. Measured frequency response functions (FRFs) 
are then used to manually tune the elastic parameters around axes  
[28–31]. Nevertheless, as pointed out by Klimchik et al. [32], only 
considering the joint flexibility around the motion axes is not sufficient 
to fully capture the manipulator dynamics. Hence, they proposed the 
so-called Virtual Joint Model in which extra spring and damper pairs 
are appended in all directions, along and around each axis. Since esti
mating the characteristics of each spring and damper pair is very 
challenging, it is common to only include the torsional flexibilities. But 
still, elastic parameters were manually or semi-automatically identified 
on the basis of a fine and tedious tuning of the initial guess [33]. In  
[34], they are determined by using the measured values of natural 
frequencies and damping ratios without considering the mode shapes. 

Therefore, in this paper, a direct method to update any flexible 
multibody dynamic (MBD) model, with rotational or translational 
joints, and determine its fitted elastic parameters (joint stiffness and 
damping) is presented and experimentally validated in one posture. A 
brief reminder on multibody modeling is presented in Section 2. The 
novel method is based on a frequency response function (FRF) curve 
fitting using a genetic algorithm followed by a deterministic procedure 
to refine the solution. In Section 3, the formulation of the method is 
detailed and immediately applied to an arbitrary manipulator as a va
lidation example in Section 4. Following section covers a complete 
practical application of the updating method to a 6-axis industrial robot 

(KUKA KR90 R3100 HA) dedicated to milling operations. Its modal 
parameters (natural frequencies, damping ratios and mode shapes) are 
first identified through experimental modal analysis and the updating 
method is used to update the elastic coefficients of the joint torsional 
springs in all directions (Section 5). A discussion is eventually proposed 
on the identification of elastic coefficients to handle the posture-de
pendency problem. Concluding comments and future works are ad
dressed in the conclusion section. 

2. Multibody modeling 

In this section, the kinematic and dynamic model of a multibody 
system gathering rigid bodies is derived using the generalized co
ordinates (i.e. minimal coordinates). In addition to the joint motions, 
elasticities between bodies are modeled using spring and damper pairs. 
The expressions of the equations of motion are derived knowing that 
the constitutive matrices will be used in the updating method to build 
the simulated frequency response functions. 

2.1. Kinematic modeling 

In rigid body dynamics, each body i is characterized by its mass mi 

and its central tensor of inertia ΦG,i taken at its center of mass Gi. 
Opposed to the Cartesian coordinates, the multibody model encloses 
the minimum number of configuration parameters ncp (i.e. degrees of 
freedom q). They can be chosen arbitrarily as long as there is a one-to- 
one relationship with the configuration of the system. A main frame 
(i.e. coordinate system) usually locates the center of mass Gi of body i 
with respect to a fixed global reference frame whose origin is labelled 0. 
Note as well that body i can also gather one or multiple secondary 
frames labelled i.j as illustrated in Figure 1, rigidly attached to body i 
through a constant homogeneous transformation matrix Ti, i.j. For in
stance, the frame to which the sensor (i.e. accelerometer) is attached is 
a secondary frame. 

The situation of each body is expressed using homogeneous trans
formation matrix T0, iy(q) which provides the situation of main frame i 
with respect to reference frame 0 in terms of configuration parameter 
vector q such as 

=T q R q e q
0 0 0 1

( ) ( ) { ( )} ,i
0 i i

0,
, 0

(1) 

where  

• {ei(q)}0 is the coordinate vector of frame i with respect to reference 
frame 0 and subscript 0 indicates that vector {ei(q)} is projected in 
frame 0;  

• R0, i(q) is the rotation matrix expressing the orientation of frame i 
with respect to frame 0. 

Four elementary homogeneous transformation matrices can be de
fined reflecting a single motion, i.e. a rotation around one axis (Trotx(α), 
Troty(α), Trotz(α)) or a translation along the axes of the frame (Tdisp(x, y, 
z)) (Relationships 2 and 3), 

Fig. 1. Body reference frame  
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= =x y z
x
y
zT T( , , )

1 0 0
0 1 0
0 0 1
0 0 0 1

, ( )

1 0 0 0
0 cos( ) sin( ) 0
0 sin( ) cos( ) 0
0 0 0 1

,disp rotx

(2)  

= =T

T

( )

cos( ) 0 sin( ) 0
0 1 0 0

sin( ) 0 cos( ) 0
0 0 0 1

, ( )

cos( ) sin( ) 0 0
sin( ) cos( ) 0 0

0 0 1 0
0 0 0 1

.roty

rotz (3)  

Complex motions can be achieved through the multiplication of the 
above elementary matrices using the following statement 

=T T T· .i k i j j k, , , (4)  

Translational and rotational velocities of frame i (or secondary 
frame i.j) are respectively denoted by vi and ωi and are obtained via 
time differentiation of the homogeneous transformation matrices such 
as 

= =

= =

=

=

q
q

q
q

v e J q

R
R J q

{ } { } · [ ] · ,

[ ] · · { } [ ] · ,

i
j
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i

j
j S i

i
j

n
i

j
i j i i

0
1

0
, 0

0
1

0,
0,
T

0 , 0

cp

cp

(5) 

with [ ˜ ]i 0 a skew-symmetric matrix from which rotational velocities ωi 

can be retrieved. Skew-symmetric matrix [ ˜ ]i 0 reads 

=[ ˜ ]
0

0
0

.i

z y

z x

y x

0

(6)  

Acceleration expressions are obtained by time differentiation of 
velocity leading to translational and rotational accelerations, ai and ,i
respectively. Entities [JS, i]0 and [Jω, i]0 are known as the translational 
and rotational Jacobian matrices. 

2.2. Equations of motion 

The general form of the equations of motion is expressed as follows 

+ + =t t t tM q q C q q q K q F( ) ¨ ( ) ( , ) ( ) ( ) ( ),q q q (7) 

where ×M IR ,q
n ncp cp ×C IRq

n ncp cp and ×K IRq
n ncp cp denote the 

system mass, damping and stiffness matrices, respectively, and 
tF( ) IRncp the vector of applied forces. Subscript q indicates that 

constitutive matrices are expressed in the space of configuration para
meters. Mass matrix Mq is obtained using the Jacobian matrices such as 

= +
=

mM q J J J R R J( ) ( [ ] ·[ ] [ ] · ·[ ] · ·[ ] ),
i

n

i S i S i i i G i i i iq
1

, 0
T

, 0 , 0
T

0, , 0,
T

, 0

B

(8) 

with nB the number of bodies in the system. 
According to the theorem of virtual power, Coriolis, gyroscopic and 

centrifugal forces are all gathered in term C q q q( , )q whose expression 
is given by 

= +

+ ×
=

mC q q q J J J R R J q

J R R

( , ) ( [ ] ·[ ] [ ] · ·[ ] · ·[ ] )·

[ ] ·({ } ( ·[ ] · ){ } ).
i
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q

0

1
, 0

T
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T
0, , 0,

T
, 0

, 0
T

0, , 0,
T

0

B

(9)  

Without considering stiffness matrix Kq, applied forces are ex
pressed as follows 

= +
=

F J J([ ] ·{ } [ ] ·{ } ),
i

n

S i i i G i
1

, 0
T

0 , 0
T

, 0

B

(10) 

with { }i 0 the resultant of all translational forces applied on body i and 
{ }G i, 0 the resultant of all applied moments exerted on body i with 

respect to its center of mass, both projected in frame 0. Gravity vector g 
is introduced as an applied force on each main frame i such as 

= m g{ } · .i i0 (11)  

Elastic forces can easily be introduced between frame i (action 
force) and frame j (reaction force) as long as stiffness kqp and damping 
dqp of each flexible element are known. In the case of torsional springs 
and dampers associated with the joints, the resultant moments read 

= +k q q d q q R u{ } · · · · (action),G i q p
Ref

p q p
Ref

p i x y z, 0 0, , ,p p
(12)  

= +k q q d q q R u{ } · · · · (reaction),G j q p
Ref

p q p
Ref

p i x y z, 0 0, , ,p p

(13) 

with ux, y, z a unit vector selecting the column of the rotation matrix 
around which the torsional spring rotates (e.g. uz = [0 0 1]T). For 
translational springs and dampers, same expressions are derived and 
enclosed in { }i 0 for the action and in { }j 0 for the reaction. Rest con
figuration of the multibody model is given by qp

Ref and q p
Ref (e.g. for an 

industrial robot, qp
Ref represents one of the joint axis angles in which 

EMA is performed, i.e. q p
Ref =0, typically). Similar expressions are de

rived in the case of translational springs and dampers. Unfortunately, 
elastic parameters in the configuration parameter space need to be 
determined from EMA (i.e. measured FRFs) tests and are enclosed in 
vector pElastic = [kq dq]T. 

2.3. Linearized dynamic model 

Equations of motion (Eq. 7) can be written into their residual form f 
such as 

= + + =f q q q 0 M q C q K q F 0( , , ¨) ¨ .q q q (14)  

They are linearized with respect to a reference position, i.e. the 
posture of the studied mechanical system analysed using EMA. This 
equilibrium configuration is characterized by a set of configuration 
parameters qRef with = =q q 0¨Ref Ref . Considering small variations of 
the configuration parameters and their time derivatives with respect to 
the reference configuration as 

= + = + = +q q q q q q q q q, , ¨ ¨ ¨ ,Ref Ref Ref (15) 

the equations of motion can be linearized in the form 

+ + =M q C q K q 0· ¨ · · ,q q q
0 0 0 (16) 

with 

= = =M M q C f
q

K f
q

( ), | , | .q q q q
0 Ref 0

Ref
0

Ref (17)  

Elements Cq
0 and Kq

0 are called the tangent damping and stiffness 
matrices and are used to derive the natural frequencies, damping ratios 
and mode shapes of the multibody model. By introducing state vector 

=q q q[ ] ,u
T T T the linearized equations of motion (Eq. 16) are ex

pressed in their first order form as 

+ =A q B q 0^ ^ ,u u (18)  

= =A
C M
M 0

B
K 0
0 M

^ and ^ .q q

q

q

q

0 0

0

0

0
(19)  

The simulated (subscript s) natural frequencies of the robot struc
ture fs,k, and associated simulated damping ratios ζs,k, are obtained from 
the generalized eigenvalues λs,k of matrices Â and B̂ such as 
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,
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3. Updating method 

The proposed method is appropriate to achieve a model updating of 
any multibody system comprising flexible joints to determine suitable 
elastic parameters (joint stiffness and damping). The idea of the method 
is to perform a curve fitting in the sensor frame of the measured FRF 
matrix H(ω) (generally composed of Hxx, Hyy, Hzz, Hxy, Hxz, Hyx, Hyz, Hzx 

and Hzy). In other words, measured FRFs are directly used without the 
need to transpose them in the configuration parameter space (joint 
coordinates). The method is said to be straightforward as the algorithm 
is supposed to deliver the optimum values for the sought parameters 
without manual tuning. Global minimum of the error function between 
the simulated and measured FRFs is ensured by a combination of ge
netic and deterministic algorithms. Each iteration of the genetic algo
rithm can be quickly completed since the simulated FRFs are computed 
in the frequency domain and in the joint space (configuration para
meter space) of the manipulator before being transposed back to the 
sensor frame. 

3.1. Cost function 

From a general point of view, the dynamics of any mechanical 
system can be modeled using FRF matrix H( ) such as 

= + +iH M C K( ) ( ) ,2 1 (21) 

with complex variable i, mass matrix M, damping matrix C and stiffness 
matrix K expressed in the Cartesian coordinates or sensor frame (e.g. 
typically accelerometer). Assuming that FRF matrix H( ) can be mea
sured over a suitable frequency bandwidth to reveal the structural 
modes of the physical system and that its mass matrix M q( )q

0 Ref is 
available (e.g. from CAD models), the proposed updating method is 
aimed at determining suitable elastic parameters in joint space pElastic 

= [kq dq]T to optimally capture the dynamics measured by the sensor 
(i.e. FRFs). As a necessary requirement to successfully apply the curve 
fitting procedure, the multibody model must be composed of rigid 
bodies linked by an adequate number of elastic joints (rotational or 
translational) and located according to the measured mode shapes: for 
instance, one may add virtual spring and damper pairs between the 
ground and the mechanical system. In other words, the multibody 
model must be able to capture the targeted modes to fit. Once the de
sign of the multibody model is achieved, the fitting algorithm can be 
deployed as explained below. 

Elastic parameters pElastic are determined such that they minimize 
the error between the measured and simulated FRFs in the sensor 
frame. The general idea is to simultaneously fit all the measured FRFs 
gathered in [3  ×  3] matrix H( ), at one flexible point of the me
chanical system (e.g. tool tip), with simulated FRFs from the multibody 
model. Each set is evaluated by submitting the iterated elastic para
meters to the fitting procedure which computes the value of the cost 
function J as the summation of all errors between the measured and 
simulated FRFs in the sensor frame. Cost function J that minimizes the 
error between components of matrix H( ), i.e. measured Hij(ω) and Hs 

(ω), i.e. simulated Hs,ij(ω) FRFs, is defined as 

=
= = =

p

p

J min (log[H ( , )] log[H ( )])*·

W( )·
(log[H ( , )] log[H ( )]),

ij ij

ij ij

pElastic i x y z j x y z k 1

N

s, k Elastic k

k

s, k Elastic k (22) 

where Nω is the number of discretized lines in the measured frequency 
response function, W(ωk) a weighting function (user defined) that 
magnifies values around peaks in the measured FRFs and superscript * 
denotes the conjugate transpose vector. A similar cost function is used 

by Neubauer et al. in [35] for the fitting of FRFs in the joint space of a 
manipulator. 

Simulated FRFs Hs,ij(ω) in the sensor coordinate system are derived 
from the equations of motion of the multibody model depending on 
configuration parameters qRef and elastic parameters pElastic. Once the 
constitutive system matrices (M C K, ,q q q

0 0 0 ) are computed in a chosen 
reference configuration (qRef) for the manipulator, simulated FRFs Hs,ij 

(ω) can be derived by transposing them from the manipulator joint 
space to the sensor frame (usually a Cartesian frame). Homogeneous 
transformation matrix locating and orienting the sensor frame T0, Sensor 

(qRef) is expressed in the reference frame using the direct kinematics, 
thus defining coordinate vector {eSensor(qRef)}0 and rotation matrix R0, 

Sensor(qRef). A virtual experimental modal analysis is then performed by 
applying force FEMA at the sensor frame in the direction of excitation j, 
representing one of the directions x, y or z, such as 

= FF R u{ } · ·{ } .j jSensor, 0 EMA 0,Sensor Sensor (23)  

Applied force is projected in the reference frame and then converted 
into the vector of joint torques (forces) τj using the translational com
ponent of the geometric Jacobian matrix [JS, Sensor]0 of the sensor and 
projected in the reference frame such as 

= J F[ ] ·{ } .j jS,Sensor 0
T

Sensor, 0 (24)  

The resulting variations in the degrees of freedom dq, which are 
complex values, corresponding to joint torque τj are computed at each 
frequency ωk using the linearized matrices as follows 

= + +d iq M C p K p( ) ( ( ) ( )) .k j k k jq q q
0 2 0

Elastic
0

Elastic
1

(25)  

Linearized damping C0(pElastic) and stiffness K0(pElastic) matrices 
depend on the elastic parameters which are iterated throughout the 
fitting process. Variations in the pose of the sensor are computed as the 
difference between the pose considering the applied force and the re
ference sensor pose which are transposed back in the sensor frame 
such as 

= + de R e q q e q{Re( )} ·({ ( Re( ( ) )) } { ( ) } ),j k jSensor 0,Sensor
1 Ref

Sensor 0
Ref

Sensor 0

(26)  

= + de R e q q e q{Im( )} ·({ ( Im( ( ) )) } { ( ) } ).j k jSensor 0,Sensor
1 Ref

Sensor 0
Ref

Sensor 0

(27)  

Simulated FRFs are constructed using coordinate vectors Re(Δej) 
and Im(Δej) projected in the sensor frame for each frequency (ωk) such 
as 

= +e e
H ( )
H ( )
H ( )

1
F

({Re( )} i{Im( )} ).
xj

yj

zj

s, k

s, k

s, k
EMA

j Sensor j Sensor

(28)  

The nine simulated FRFs at the TCP, forming FRF matrix H ( ),s are 
derived by successively applying force FEMA along the x, y and z di
rections in Eq. 23. Cost function J is eventually evaluated by using 
measured FRFs H( ) at the sensor frame and simulated FRFs H ( )s in  
Eq. 22. 

3.2. Fitting procedure 

The fitting procedure relies on multiple runs of a genetic algorithm 
followed by a deterministic algorithm (Figure 2). Inputs of the algo
rithm are the measured FRFs and the multibody model under the form 
of constitutive matrices M ,q

0 C ,q
0 Kq

0 in the reference configuration qRef. 
Fitting procedure also has its own parameters such as fitness tolerance δ 
(relative error between two successive estimates of the function), size of 
population SPop. and number of generations nGen.. Initial values of 
pElastic can also be defined but are not mandatory since the genetic al
gorithm is able to generate a random initial population (i.e. multiple 
sets of kq and dq). The initial population of pElastic is built by using a 
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uniform distribution around an initial (if provided) or random guess of 
elastic parameters. Maximum and minimum values for kq and dq can be 
specified to limit the search domain keeping in mind that they must be 
strictly positive to ensure a physical meaning. 

Once the initial population constructed, the genetic algorithm starts 
to evaluate all individuals by computation of cost function J. If its value 
becomes lower than fitness tolerance δ, the deterministic algorithm 
takes over. Another common stopping criterion consists in specifying a 
stalling limit. However, most of time, the genetic algorithm stops be
cause the maximum number of iterations is reached (GAmax. = nGen.  · 
SPop.). Otherwise, the genetic algorithm selects individuals that per
formed well and crosses and mutates them to create the next popula
tion. Anyway, the advantage of using genetic algorithm is its ability to 
find a global minimum in cost function J while the deterministic al
gorithm refines the solution by finding a local minimum. In the case 
that cost function J becomes lower than fitness tolerance δ, algorithm 
stops as a satisfactory set of elastic parameters is found. Otherwise, if 
the number of iterations for the deterministic algorithm is exceeded 
(DetIter. > DetMax.) another genetic algorithm is started taking the final 
set pElastic resulting from the deterministic algorithm as initial values. 

Deterministic algorithm uses the same cost function as the genetic 
algorithm (Eq. 22). It allows efficient and rapid refining of the values of 
elastic parameters to further minimize the value of the cost function in 
the curve fitting process. An implementation of the genetic algorithm 
can be found in Matlab under toolbox GA (requires the Optimization 
toolbox) as well as a deterministic algorithm with function fminsearch(). 
The latter implements the Nelder-Mead simplex direct algorithm [36]. 

4. Validation example 

A validation example of model updating is provided for an arbitrary 
manipulator comprising three revolute joints. Joint flexibility is only 
considered around the three motion axes (ncp = 3) and imposed joint 
stiffnesses and dampings are shown in Table 1. The aim of the 

validation example is to find back the six imposed elastic parameters by 
using the presented updating method. They lead to the 6 following 
modal parameters: f1=10.17 Hz, ζ1=1.89 %, f2=11.24 Hz, ζ2=1.8 %, 
f3=22.6 Hz and ζ3=1.66 %. 

The manipulator, illustrated in Figure 3, is geometrically char
acterized by the length of its first two links such as a1 = 0.35 m and a2 

= 1.35 m. The homogeneous transformation matrices providing the 
pose of all centers of mass and the sensor frame can be computed by 
using relationships 29 to 32. The dynamics of the manipulator corre
spond to the values of inertial parameters proposed in Table 2. Com
ponents of inertia tensor ΦG,i are denoted by ϕG and vector coordinates 
of center of mass of body i are given with respect to the joint frame by 
(C C C, ,x y zi i i). For the sake of simplicity, note that the manipulator does 
not comprise any motor and degree of freedom qz,i represents the joint 
deflection around the motion axis (i.e. rotation around z-axis of the 
local frame). 

= q C C CT T T( )· ( , , ).z x y z0,1 rotz ,1 disp 1 1 1 (29)  

=T T T

T T T

· (a C , C , C )·

2
· (q )· (C , C , C ).

x y z0,2 0,1 disp 1

rotx rotz z,2 disp x y z

1 1 1

2 2 2 (30)  

Fig. 2. Flowchart of the fitting procedure  

Table 1 
Selected joint stiffnesses and dampings for an arbitrary flexible multibody 
system    

Joint stiffness [Nm/rad] Joint damping [Nm.s/rad]  

kz,1 dz,1 

2.0e6 1.2e3 

kz,2 dz,2 

3.0e6 1.545e3 

kz,3 dz,3 

1.55e6 0.34e3 
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= a C C C q C C CT T T T T· ( , , )· ( )· ( , , ).x y z z x y z0,3 0,2 disp 2 rotz ,3 disp2 2 2 3 3 3

(31)  

= C C CT T T T· (1.566 , 0.042 , 0.005 )·
2

.x y z0,Sensor 0,3 disp rotx3 3 3

(32)  

Elastic parameters are fitted in the following manipulator config
uration qRef: qz,1= 0∘, qz,2= 70∘ and qz,3= -100∘. It is a typical posture 
used for milling applications hereafter called the milling posture. In this 
configuration and with the set of elastic parameters proposed in  
Table 1, values of linearized system matrices read 

= =M C
482.1 30.5 0.3

30.5 588.8 72.1
0.3 72.1 88.7

,
1200 0.01 0
0.35 1545 0.13
0.07 0.13 340

,q q
0 0

(33)  

=K
2e 0 0
0 3e 427.816
0 427.816 1.55e

.q
0

6

6

6 (34)  

Using the presented updating method, parameters of the genetic 
algorithm are chosen as follows with a number of generations of 
nGen.=15, a population size of SPop.=80 (number of joint stiffness and 
damping sets evaluated during each generation) and a fitness tolerance 
of δ=1e-12 (can be increased if one does not desire that the genetic 
algorithm stops after reaching GAMax.). Number of generations and 
population size must naturally be increased if more elastic parameters 
are fitted and practical methods to tune genetic algorithm can be found 
in [37]. For the deterministic algorithm, the maximum number of 

iterations is fixed at DetMax. = 5000 (too large in this case as observed 
in Figure 5 but difficult to guess). Initial values for pElastic are chosen 
randomly as far as they are strictly positive and in a reasonable range 
for stiffness and damping. FRFs to fit, normally measured from the 
actual machine, are generated by using the imposed elastic parameters 
and are hereafter called pseudo-measured FRFs. It leads to frequency 
response function matrix H(ω) of the three structural modes in the 
sensor frame. Each FRF is sampled at Δf = 0.2 Hz over a bandwidth of 
30 Hz. Selection of the bandwidth, i.e. modal parameters of the ex
ample, is made on the basis of actual measurements on an industrial 
robot [34]. Note that the inertance format ([m/s2/N]) is deliberately 
chosen as it was observed that high frequency peaks are fitted more 
quickly as they clearly appear. Finally, weighting function W(ωk) in  
Eq. 22 magnifies the values of FRFs around the peaks as highlighted in  
Figure 4. Using a peak-picking method, weights are set to a gain of 50 at 
each peak and also at   ±   2 Δf around each peak; gain is 0.5 on the rest 
of the frequency domain (weights can also be defined manually for each 
FRF). Once the genetic algorithm initialized, iterations are completed 
by following the steps described in Figure 2 using Eqs. 23 to 28. 

After the completion of proposed updating method, simulated and 
pseudo-measured FRF curves in the sensor frame are almost not dis
cernible. Sought joint stiffness and damping parameters are recovered 
with a negligible error. Following the set 1200 iterations of the genetic 
algorithm, it takes about 200 iterations for the deterministic algorithm 
to converge (vary upon the random results of genetic algorithm). 
Matlab default values for the genetic algorithm are applied for cross
overs and mutations. The evolution of the corresponding cost function 
is depicted in Figure 5. As witnessed, process is indeed convergent since 
the value of the cost function starting at around 2e5 m/s2/N stabilizes 
around 1e3 m/s2/N thanks to the genetic algorithm. The deterministic 
algorithm eventually drops the cost function value near zero ( ≃ 1e-7 m/ 
s2/N). Proposed method is fast as convergence is reached in about 4 
minutes using an Intel i7-8750H processor on the model updating ex
ample. Video of the FRF curve fitting is available through the following 
link https://youtu.be/riPu9QQl7dM as well as Matlab simulation files. 
They also include an extension of this example in which FRFs from 
different postures are fed to the fitting method slightly improving the 
convergence. 

5. Industrial application 

The updating method is applied to industrial robot KUKA KR90 
R3100. An experimental modal analysis was performed in the milling 
posture (qz,1= 0∘, qz,2= 70∘ and qz,3= -100∘) and experimental results 
are detailed in [34]. A tri-axis accelerometer located at the end-effector 
collected the direct FRFs from tap tests with a frequency resolution of 
0.5 Hz. Four modes were measured in the milling posture below 30 Hz. 
Referring to Figure 6, mode one (f1=10.0 Hz, ζ1= 1.4 %) is mainly 
dominated by the stiffness of joint one around its motion axis (qz,1). 
Mode two (f2=11.0 Hz, ζ2= 1.0 %) is formed by the deflection of the 
second joint of the robot around its axis of motion (qz,2). Mode four 
(f4=23.7 Hz, ζ4= 0.8 %) is also greatly influenced by a rotation around 
an axis of motion, the third axis (qz,3). However, for mode three 
(f3=19.2 Hz, ζ3= 0.5 %), it mostly involves the combination of rota
tions around the first joint about the axis of motion (qz,1) but also 
normal to the axis of motion (qx,1). 

In order to capture all modes using the multibody approach, the 
Virtual Joint Model [32] is deployed by appending two extra torsional 
springs and dampers (not represented in Figure 6) orthogonal to the z- 
axis of each joint frame. It will allow simulating mode three at f3=19.2 
Hz involving a mode shape leading to a rotation around qx,1. Since 
mode shapes only suggest deflections around the first three axes of 
Kuka robot, its dynamic model is limited to the first three joints. The 
manipulator was modeled with nine configuration parameters (ncp=9) 
as deflections may appear around any axis (actual or virtual) of the 
joint, in the most general case (using 4 configuration parameters, the 

Fig. 3. Arbitrary flexible multibody model  

Table 2 
Inertia properties of the arbitrary flexible multibody system       

Body 1 Body 2 Body 3  

mi [m] 511.726 249.53 222.659 
Cxi [m] -0.018 0.532 0.423 
Cyi [m] 0.002 -0.007 0.018 
Czi [m] -0.21 0.248 -0.018 

G xxi, [kg.m2] 19.45 5.014 5.882 

G yyi, [kg.m2] 33.893 57.621 49.927 

G zzi, [kg.m2] 30.242 56.853 48.9 

G xyi, [kg.m2] 2.274 -1.058 -1.372 

G xzi, [kg.m2] 0.938 5.498 0.074 

G yzi, [kg.m2] 0.373 -0.069 -1.202 
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updating method is also able to quickly fit the 4 modes at the expense of 
a slight drop in accuracy). Only the fitting of elastic parameters is ad
dressed in this paper since the inertia properties of the first three links 
were identified in [34] using a combination of rigid-body identification 
and CAD models. Identified inertia properties are enclosed in Table 3. 

The homogeneous transformation matrices locating the centers of 
mass of each body are shown from Eq. 35 to 38. The links lengths are as 
follows: a1=0.35 m and a2=1.35 m. 

= q q q C C CT T T T T( )· ( )· ( )· ( , , ).z x y x y z0,1 rotz ,1 rotx ,1 roty ,1 disp 1 1 1 (35)  

= a C C C

q q q C C C

T T T T

T T T T

· ( , , )·
2

·

( )· ( )· ( )· ( , , ).

x y z

z x y x y z

0,2 0,1 disp 1 rotx

rotz ,2 rotx ,2 roty ,2 disp

1 1 1

2 2 2 (36)  

= a C C C q
q q C C C

T T T T
T T T
· ( , , )· ( )·

( )· ( )· ( , , ).
x y z

x y x y z

0,3 0,2 disp 2 rotz z,3

rotx ,3 roty ,3 disp

2 2 2

3 3 3 (37)  

= C C CT T T T· (1.566 , 0.042 , 0.005 )·
2

.x y z0,Sensor 0,3 disp rotx3 3 3

(38)  

For the sake of performance evaluation of the updating method, 
three cases are considered to fit the 18 elastic parameters (stiffness and 
damping):  

1. Fit on modeled FRFs: the elastic parameters of the multibody model 
are fitted on the FRFs computed on the basis of the identified joint 
stiffness and damping presented in [34].  

2. Fit on measured FRFs: the parameters are identified on the raw 
measured FRFs.  

3. Fit on synthesized FRFs: they are determined on reconstructed FRFs 
from EMA software. 

Fig. 4. Weighting of peaks of interest in the FRF matrix H(ω) in inertance format  

Fig. 5. Evolution of the cost function for the FRF fitting applied to the arbitrary 
flexible multibody system 

Fig. 6. Multibody model of KUKA R3100 with 3 torsional springs/dampers per 
joint 

Table 3 
Inertia properties of the Kuka robot model       

Body 1 Body 2 Body 3  

mi [kg] 511.726 249.53 222.659 
Cxi [m] -0.02 0.53 0.42 
Cyi [m] 0.0 0.0 0.02 
Czi [m] -0.21 0.25 -0.02 

G xxi, [kg.m2] 15.45 80.01 45.88 

G yyi, [kg.m2] 30.90 150.62 125.93 

G zzi, [kg.m2] 30.24 150.85 125.90 

G xyi, [kg.m2] 1.87 -1.06 -1.37 

G xzi, [kg.m2] 0.94 0.5 0.07 

G yzi, [kg.m2] 0.37 -0.07 -1.20 
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Next subsections detail the fitting results and compare the perfor
mances. For all the three cases, the same guess and minimum and 
maximum values of elastic parameters are chosen as presented in  
Table 4. Mainly the maximum values of stiffness require some adjust
ment knowing that normal stiffnesses (kx,i and ky,i) are higher than 
rotational stiffness (kz,i). Besides, for most of 6-axis industrial robots, 
kz,1 rules stiffness of the first mode corresponding to a rotation around 
the first motion joint. A initial guess can therefore be easily obtained by 
considering the first FRF peak. The number of generations is increased 
to nGen.=20 and the number of populations to SPop.=100 for a fitness 
tolerance of δ=300. For the deterministic algorithm, the maximum 
number of iterations is fixed at DetMax.=10000. FRFs are also fitted 
over a bandwidth of 30 Hz in the inertance format exhibiting higher 
amplitudes as the frequency increases. Weighting function W(ωk) 
magnifies peaks and also   ±   2 Δf around with a gain of 80; gain is 0.5 
elsewhere (weights must be hand-selected for measured FRFs due to 
measurement noise). Genetic and deterministic algorithms are run ac
cording to Figure 2 using Eqs. 23 to 28. 

5.1. Fit on modeled FRFs 

The joint stiffnesses and dampings from [34] are adopted to generate 
the pseudo-measured FRFs to fit by using the presented multibody model  
Eqs. 35 to 38. Pseudo-measured FRFs are sampled at 0.2 Hz. After 17101 
iterations, the updating method converges to an error below the fitness 
tolerance Figure 7 and 8 compares the fitted FRF matrix H( ) in am
plitude (thick red line) against the raw measurements (thin black line) 
and the modeled FRFs from [34] (dotted blue line). Fitted FRFs are non 
discernible from the modeled FRFs. However, fitted parameters are dif
ferent as explained later in Subsection 5.4 in Table 5. Again, the updating 
method is able to successfully curve fit the pseudo-measured FRFs even if 
the number of configuration parameters was increased. 

To obtain this result, three successive runs of genetic and determi
nistic algorithms were necessary and completed in 2210 s to progres
sively reduce the stabilized value of the cost function. Its highest value 
of 2.65e5 [m/s2/N] was reduced to 64 [m/s2/N]. Note the chaotic be
havior of the cost function during the evaluations of the genetic algo
rithm since random mutations of the sets of elastic parameters are 
performed (convergent value of 130 [m/s2/N] for the cost function is 
attained in one run using a frequency resolution of 0.5 Hz without 
loosing accuracy in the fitting). 

5.2. Fit on measured FRFs 

Since fitted frequency peaks do not exactly match with the mea
sured ones in Figure 7, one may wonder if results are improved when 
the updating method relies on raw FRF measurements. As a matter of 
fact, raw measured FRFs exhibit non linear behavior (amplitude is force 
dependent on tap testing) and non symmetric cross-FRFs. Using the 
frequency resolution of measured FRFs (0.5 Hz), the curve fitting was 
processed over more than 400,000 iterations (about 12 hours of si
mulation) and then stopped by the user since the cost function could 

not decrease below fitness tolerance δ (implemented routine allows 
user to save data every x iteration). 

Resulting curve-fitted FRFs are compared to the raw FRFs in  
Figure 9. Although Hxx and Hzz show an acceptable level of fitting, for 
Hyy, the first peak at 10 Hz is not correlated even though boundaries 
were imposed for kz,1. As iterations go by, it can also be observed that 
peaks become sharper announcing a potential error on the joint 
dampings. Moreover, since the multibody model is linear, the non 
symmetric cross-FRFs cannot be captured. Overall, the fitting is quite 
poor on this particular system because mode 1 (10 Hz) and mode 2 (11 
Hz) are close. Better results can be expected on well-separated modes 
with less non-linearities. 

5.3. Fit on synthesized FRFs 

For the reason that the multibody model is linear, the last studied 
case is based on the curve fitting of the reconstructed FRFs from an 
experimental modal analysis software (LMS Test.Lab Rev. 8A). Once the 
FRFs are measured, time domain method Least Squares Complex 
Exponential (LSCE) was deployed to extract the modal parameters of 
industrial robot KUKA KR90 R3100 in [34]. Using the software modal 
parameters, LMS is able to reconstruct (synthesize) the measured FRFs 
using a modal space model. Figure 10 compares the fitted (thick red 
line), synthesized (dotted blue line) and raw measured FRFs (thin black 
line) using a frequency resolution of 0.5 Hz. Again, since the multibody 
model is linear, it cannot capture non-symmetric cross-FRFs. Therefore, 
user needs to select cross-FRFs and mirror for the counterparts (e.g. 
selection of Hxy and replacement of Hyx by Hxy). Another choice would 
consist in averaging cross-FRFs pairs. 

After about 150,000 iterations (about 4 hours of simulation), the 
multibody model was able to capture all the frequency peaks with a co
herent damping using the proposed updating method. In Figure 10, it can 
be observed that the fitting of cross-FRFs is less accurate (Hxy and Hxz) 
probably because the amplitude was low compared with the direct FRFs. 

5.4. Comparison of fitting performances 

All three curve fits are finally compared together. Firstly, the fitted 
elastic parameters are examined in Table 5 for all the studied cases. 
They are also compared to the ones semi-automatically fitted from [34]. 
It can be observed that although fitted FRFs and modeled from [34] 
were on top of each other, some differences arise. It is due to the fact 
that only four modes out of nine (nCP=9) are fitted leaving the solution 
undetermined. It is generally the case in experimental modal analysis 
when the structure is excited over a certain frequency bandwidth and 
the FRFs are only able to capture a subset of modes. It also means that 
fitted elastic parameters do not gather any physical meaning with re
spect to the actual deflection on the real machine, though stiffnesses 
around motion axes revolve around the same values (kz,1, kz,2 and kz,3) 
while normal stiffnesses (kx,i and ky,i) are generally higher. 

Next table Table 6 compares the fitted modal parameters to the 
measured ones using LMS Test.Lab. It is clear that the errors are higher 
when considering the raw measured FRFs since the multibody model is 
not able to handle non linear FRFs with non symmetric cross terms. 
Both the natural frequencies and the damping ratios are correlated with 
40 % error. When the fitting occurs on the FRFs computed from [34], a 
slight increase on damping error is noticeable due to the under
determined nature of the problem. Finally, the use symmetrized syn
thesized FRFs offers the lowest error in terms of fitting of natural fre
quencies but with a small increase of damping error. 

MAC (modal assurance criterion) matrices, used to compare the 
mode shapes against the measured ones, are eventually displayed in  
Figure 11. Once again, it can be observed that when symmetrized 
synthesized FRFs are considered for the curve fitting, three of the four 
diagonal elements are increased, hence, reporting a higher correlation 
with measured mode shapes. 

Table 4 
Initial, maximum and minimum values for elastic parameters          

Stiffness Initial Min. Max. Damping Initial Min. Max.  

kz,1 [Nm/rad] 3e6 5.5e5 5e6 dz,1 [Nm.s/rad] 100 1 1e4 

kx,1 [Nm/rad] 4e6 5.5e5 5e7 dx,1 [Nm.s/rad] 100 1 1e4 

ky,1 [Nm/rad] 8e6 5.5e5 5e7 dy,1 [Nm.s/rad] 100 1 1e4 

kz,2 [Nm/rad] 4e6 5.5e5 8e6 dz,2 [Nm.s/rad] 100 1 1e4 

kx,2 [Nm/rad] 8e6 5.5e5 4e7 dx,2 [Nm.s/rad] 100 1 1e4 

ky,2 [Nm/rad] 4e6 5.5e5 4e7 dy,2 [Nm.s/rad] 100 1 1e4 

kz,3 [Nm/rad] 1e6 5.5e5 4e6 dz,3 [Nm.s/rad] 100 1 1e4 

kx,3 [Nm/rad] 5e6 5.5e5 1e8 dx,3 [Nm.s/rad] 100 1 1e4 

ky,3 [Nm/rad] 8e6 5.5e5 1e8 dy,3 [Nm.s/rad] 100 1 1e4 
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6. Conclusion 

A novel method for updating the elastic parameters of any flexible 
multibody model was presented at the dawn of Industry 4.0 aiming at 
generating digital twins to improve manufacturing processes. The 

updating method is based on a curve fitting of FRFs using a combina
tion of genetic and deterministic algorithms. Synthesized FRFs in the 
sensor frame can directly be fitted without any transformation into the 
space of configuration parameters of the multibody model. 

The application of the updating method on the elastic parameter 
identification can be summarized in four steps.  

1. Perform an experimental modal analysis of the studied mechanical 
system by making sure that the sensor is located at a point experi
encing high deflections. The structure must be excited at the sensor 
point to measure the FRFs of interest and also, at different locations 
(i.e. roving hammer) in order to capture the mode shapes.  

2. Analyse the structural mode shapes and deduce the locations and 
orientations of the spring and damper pairs (e.g. for vertical ma
chine tool, virtual elasticities can be inserted between the base and 
the column). 

3. Build the kinematics of the multibody model based on the as
sumption of the locations of the spring and damper pairs. The dy
namic model is built by knowing the inertial properties generally 
obtained using CAD models. 

4. Apply the curve fitting method on the basis of the tooltip symme
trized and synthesized FRFs and the model derived at the previous 
step. Once the parameters of the genetic and deterministic algo
rithms are set, the routine is executed to provide optimal elastic 
parameters. 

Fig. 7. FRF matrix H( ) fitted on parameters from [34]  

Fig. 8. Evolution of the cost function for the FRFs fitted on model parameters 
from [34] 

Table 5 
Comparison of fitted stiffnesses and dampings        

From [34] Fit on 
model 

Fit on measured 
FRFs 

Fit on synthesized 
FRFs  

kz,1 [Nm/rad] 5.0e6 5.0e6 5.0e6 3.5e6 

kx,1 [Nm/rad] 6.1e6 5.4e6 5.8e6 7.0e6 

ky,1 [Nm/rad] 11.9e6 15.4e6 10.0e6 11.9e6 

kz,2 [Nm/rad] 6.9e6 5.9e6 8.0e6 6.9e6 

kx,2 [Nm/rad] 11.8e6 11.3e6 9.5e6 22.6e6 

ky,2 [Nm/rad] 8.1e6 9.0e6 32.0e6 18.2e6 

kz,3 [Nm/rad] 2.8e6 2.8e6 2.8e6 2.7e6 

kx,3 [Nm/rad] 5.2e6 18.2e6 100.0e6 0.9e6 

ky,3 [Nm/rad] 12.0e6 23.3e6 100.0e6 21.01e6 

dz,1 [Nm.s/rad] 0.02e3 0.03e3 0.12e3 1.5e3 

dx,1 [Nm.s/rad] 0.04e3 0.6e3 0.02e3 0.001e3 

dy,1 [Nm.s/rad] 3.1e3 0.3e3 0.006e3 7.3e3 

dz,2 [Nm.s/rad] 2.4e3 2.6e3 9.16e3 0.4e3 

dx,2 [Nm.s/rad] 0.04e3 0.2e3 0.01e3 0.002e3 

dy,2 [Nm.s/rad] 9.4e3 10e3 4.0e3 0.3e3 

dz,3 [Nm.s/rad] 0.2e3 0.2e3 0.03e3 0.3e3 

dx,3 [Nm.s/rad] 9.2e3 4.1e3 2.6e3 0.08e3 

dy,3 [Nm.s/rad] 0.08e3 0.7e3 9.0e3 0.06e3 

Table 6 
Comparison of fitted modal parameters         

Measured From [34] Fit on 
model 

Fit on 
measured 
FRFs 

Fit on 
synthesized 
FRFs  

f1 [Hz] 10.0 10.0 10.0 11.0 10.0 
f2 [Hz] 11.0 11.1 11.1 11.2 11.1 
f3 [Hz] 19.2 18.7 18.7 19.5 19.5 
f4 [Hz] 23.7 23.8 23.8 24.0 23.6 
ErrorAverage [%] / 17.5 17.5 40 12.5 
ζ1 [%] 1.4 1.1 1.0 1.6 0.9 
ζ2 [%] 1.0 1.0 1.0 0.3 1.0 
ζ3 [%] 0.5 0.6 0.6 0.1 0.7 
ζ4 [%] 0.8 0.8 0.8 0.5 0.8 
ErrorAverage [%] / 10.0 12.5 40 17.5 
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The updating method was validated on a 3-DoF manipulator with 
known elastic parameters. The updating was able to find back the exact 
elastic parameters. Besides, the updating method was applied on in
dustrial robot KUKA KR90 R3100 to find elastic parameters fitting the 
provided symmetrized synthesized FRFs. The method was also suc
cessfully used to determine elastic parameters for the Stäubli TX200 
robot in the updating of the first ten modes [38]. Though, for robotic 
milling applications, it was reported that low-speed cutting mainly 
excites the first three joints while in high-speed milling, the spindle 
chatters [39]. The method can also be applied to vertical machine 
centers. 

Nevertheless, as pointed out in [40], it is impossible to find a linear 
stiffness that perfectly matches the resonances for all positions when 
dealing with linear multibody model. Besides, the presented updating 
method provides elastic parameters in one posture, without physical 
meaning due to the underdetermined nature of the problem. Without 
considering the development of more sophisticated joint models, com
bining the actual deflection measurements estimating the joint stiffness 
could be used to guide the presented updating method. Applying the 

idea in several postures would potentially lead to the derivation of non 
linear stiffness and damping laws. 
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