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Cylinder morphology of a stretched and twisted ribbon
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A rich zoology of morphologies emerges from a simple stretched and twisted elastic ribbon. Despite a lot
of interest, all the observed shapes are not quantitatively described. This is the case of the cylindrical shape
that prevails at large tension and twist, which emerges from a transverse buckling instability of the helicoid.
Here, we propose a simple description of this cylindrical shape. By comparing its energy to the energy of other
configurations, helicoidal and facetted, we are able to determine its location on the tension-twist phase diagram.
The theoretical predictions are in good quantitative agreement with the experimental results and complement
previous results from linear stability analysis.
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I. INTRODUCTION

Thin elastic sheets exhibit a wide variety of patterns in
response to external loadings such as wrinkles, crumples, and
folds [1–6]. This rich behavior stems from their two dimen-
sional nature, which introduces a coupling between mechanics
and geometry. In this context, a stretched and twisted ribbon is
a remarkable playground: varying two parameters, the tension
and the twist, allows one to produce many different shapes,
which can be organized on a phase diagram [7]. Understanding
the emergence of these shapes is a considerable theoretical
challenge.

The phase diagram of the stretched and twisted ribbon can
be seen as organized around the helicoid [7,8], which may be-
come unstable and give birth to different, more complex shapes
[Figs. 1 and 2(a)]. The first instability that has been understood
is the longitudinal buckling instability: as the helicoid is twisted
at relatively low tension, the center line is under compression
and eventually buckles, forming wrinkles [9–11]. Far from
threshold, a facetted morphology is observed [7], which can
be described as flat facets connected by isometric or stretching
ridges, Fig. 1(b) [12,13]. At very low tension, it has been
suggested that a cylindrical wrapping may be the energetically
favored state upon increasing the twist [8]. Finally, twisting
at large tension, the helicoid undergoes a transverse buckling
instability [8,14], which leads to a cylindrical shape, Fig. 1(c),
and finally to self-contact [7]. These two instabilities meet at
a triple point, the so-called “λ point” [8].

While the facetted morphology arising beyond the longi-
tudinal instability has been studied on its own [12,13], the
ultimate shape of the ribbon after the transverse buckling
instability remains unexplored. Here, we propose an ansatz
for this shape, whereby the ribbon wraps around a cylinder
(Fig. 3). We compute the parameters of the cylinder over
the whole phase diagram, and determine when it should be
observed by comparing its energy to those of previously known
shapes: the helicoid at vanishing and high tension, and the
facetted shape with isometric ridges at intermediate tension.

We find a good agreement between the theoretical predictions,
the experimental phase diagram [7], and our experiments at
large tension. We also get a good agreement with previous
theoretical predictions based on linear stability analysis of
the helicoid [8,11]. Moreover, from this comparison we get
insights into the nature of the helicoid-cylinder transition at
very low tension on one hand and at high tension on the other
hand.

This article is organized as follows. After the experimental
method described in Sec. II, we define the cylinder ansatz in
Sec. III. Its main properties are computed for any values of the
tension and the twist; the energy can be found numerically in
general and analytical expressions are given in limiting cases.
In Sec. IV, we compare the energy of the cylinder to the energy
of other shapes, depending on the tension, and obtain the region
of existence of the cylinder in the phase diagram. For the
sake of clarity, theory and experiments are compared through-
out the article. We conclude in Sec. V.

II. EXPERIMENTAL SETUP

In this setup, first proposed by Green [9,10], the two short
edges of a flat ribbon are clamped with flat rigid horizontal
jaws and held apart by a tensile force T̄ while a twist is applied
(one clamped edge remains blocked; the other can rotate at a
given angle θ ). Ribbons of length L̄, width W̄ , and thickness t̄

are used, always with a large aspect ratio, L̄/W̄ > 10. They
are composed of polyethylene terephthalate, PET (Young’s
modulus Ē � 3 GPa; Poisson’s ratio ν � 0.4).

We use the twist per unit ribbon length η = θW̄/L̄ and
the energy per unit ribbon length Ū . We normalize lengths
by the ribbon width W̄ and in-plane stresses by the stretching
modulus Ȳ = t̄ Ē. In the following, symbols without bar refer
to dimensionless quantities: W = 1, t = t̄/W̄ , Y = 1, T =
T̄ /(Ȳ W̄ ), and U = Ū/(Ȳ W̄ ).

In the experiments, we follow two “trajectories” to get the
cylinder shape: (i) we fix the distance between the clamps to
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FIG. 1. Pictures of the different morphologies: (a) helicoid, (b)
facets with isometric ridges (FIR), and (c) cylinder; from [13].

the rest length of the ribbon, increase the twist η, and measure
the tension T ; (ii) we fix the tension T , increase the twist η,
and measure the distance between the clamps. The radius of
the cylinder is measured at the middle of the ribbon to reduce
the influence of the clamps, which impose an infinite radius
at the edges. The radius at zero tension [Fig. 4(b)] is obtained
without the clamps, the twist being imposed by hand.

III. CYLINDER: DEFINITION AND PROPERTIES

A. Definition

We define the cylinder as a configuration where each line
parallel to the midline of the ribbon winds around a cylinder
of radius R at a rate η, with a difference in height between
the two ends of the ribbon given by (1 − χ )L, where χ is the
contraction (Fig. 3). If the length of the ribbon, or equivalently
the contraction χ , is fixed, the radius R should be determined
via energy minimization. If instead the tension is imposed,
both the radius and the contraction should be determined via
energy minimization. This definition describes the shape of
the ribbon far from the clamps, and thereby we assume that the
ribbon is long enough so that the boundary effects do not affect
the “bulk” shape of the ribbon. This assumption is also made
in the description of the other shapes, helicoid and facetted
morphology, leading a length independent phase diagram.

B. Elastic energy

As we describe the ribbon as a two-dimensional object (an
elastic plate), its elastic energy is the sum of the stretching and
bending energies [15]. Both are easy to compute, because the
strain and curvature are uniform in the ribbon. The strain of
the line parallel to the centerline of the ribbon is given by the
Pythagorean theorem:

ε =
√

(1 − χ )2 + η2R2 − 1. (1)

The curvature is 1/R, so that the bending energy is B/(2R2),
where B is the bending modulus, given by B = t2/[12(1 −
ν2)]. Since the thickness and Poisson’s ratio appear only
through the combination t/

√
1 − ν2, the Poisson’s ratio can be

absorbed in the thickness by redefining t = t̄/(W̄
√

1 − ν2), so
that B = t2/12. Finally, the elastic energy of the ribbon reads

U el
cyl = ε2

2
+ t2

24R2
. (2)

With this elastic energy, we can compute the free parameters of
the ribbon in the fixed length and fixed tension configurations.

FIG. 2. Phase diagram with transitions between helicoid, cylin-
der, and facetted shapes at (a) moderate tension and (b) low tension
[expansion of the gray domain in (a)]. Experimental data for t =
6.5 × 10−3 (filled symbols, PET ribbons), data of Ref. [7] (open
symbols) and theoretical curves. Thin solid line, longitudinal linear
instability of the helicoid [11]; dashed-dotted line, transverse linear
instability [8]; thick solid line, helicoid-cylinder transition from
energy comparison [Eq. (B2)]; dashed line, helicoid facets with
isometric ridges transition from energy comparison [Eq. (18)]; thick
dash-dotted line, helicoid-cylinder transition at low tension from the
energy comparison [Eq. (17)]; thin dotted line, low tension limit of
definition of the facets with isometric ridges.

C. Fixed length

We restrict the study of the cylinder at fixed length to the case
where the length is fixed to its value at rest, χ = 0, which was
investigated experimentally. The strain is obtained from Eq. (1)
with χ = 0, ε =

√
1 + η2R2 − 1. Considering small strains,

ηR should be small and we can approximate ε � η2R2/2. The
elastic energy thus becomes

U el
cyl = η4R4

8
+ t2

24R2
. (3)

The radius R is set by the minimization of the elastic energy,
which leads to

R =
(

t2

6η4

)1/6

. (4)

This relation agrees well with the experimental measurements
[Fig. 4(a)]; the shift can be attributed to the finite length of the
ribbon in experiments, which is not taken into account in the
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FIG. 3. Cylindrical configurations determined theoretically for
η = 0.5, t = 6.5 × 10−3, and different values of the tension T . The
parameters of the cylinder, the radius R and the contraction χ , are
represented for T = 7 × 10−6. The dark green line represents a line
parallel to the center line of the ribbon.

theory [14]. From Eqs. (3) and (4), the elastic energy is

U el
cyl = 3

8 × 62/3
(tη)4/3 � 0.11(tη)4/3. (5)

The tension in the ribbon is the variable conjugate to the
contraction χ ; it is given by

T = −∂U el
cyl

∂χ
. (6)

It can be shown without approximation (Appendix A) that it is
given by

T = t2

12η2R4
(1 − χ ) (7)

for the radius R that minimizes the elastic energy. For χ = 0
and the radius R given by Eq. (4), we find

T = 62/3

12
(ηt)2/3 � 0.28(ηt)2/3. (8)

We note that this expression is equal to the longitudinal strain,
ε � η2R2/2 [using Eq. (4) for the radius]. This relation also
quantitatively agrees with the tension measured in experiments
without any fitting parameter [Fig. 5(a)].

D. Fixed tension

When a tension T is imposed, the energy that should be
minimized is the sum of the elastic energy, Eq. (2), and the

FIG. 4. Evolution of the measured cylinder radius for twisted PET
ribbons (t � 6.5 × 10−3) in the three regimes: (a) fixed length, (b)
vanishing tension, and (c) moderate tension (T = 0.005, 0.007). The
solid lines correspond to the values predicted by the theoretical model.
There are no fitting parameters.

“potential energy” T χ [8]:

Ucyl = U el
cyl + T χ = ε2

2
+ t2

24R2
+ T χ. (9)

Note that Ucyl and U el
cyl are related through a Legendre trans-

form, since T and χ are conjugate variables. The contraction
χ and the radius of the cylinder R should be obtained by
minimizing the total energy, Eq. (9).

The minimization can be performed numerically (Fig. 6).
In order to get analytical expressions, we consider two lim-
iting cases: the low tension regime, where the tension term
can be neglected in the energy, Eq. (9), and the moderate
tension regime, where the contraction is small, |χ | � 1. The
location of these regimes in the phase diagram is discussed
below.

At low tension, we neglect the contraction term T χ in the
energy, Eq. (9). Minimizing the energy with respect to the
contraction leads to ε∂ε/∂χ = 0; hence ε = 0 or ∂ε/∂χ =
0. If ε = 0, the contraction is χ = 1 −

√
1 − η2R2, which

imposes ηR � 1; minimizing then the bending energy with
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FIG. 5. (a) Evolution of the tension with η at constant length
showing the helicoid-cylinder transition [T = η2/24 for the helicoid
and T � 0.28(ηt)2/3 for the cylinder]. Squares correspond to heli-
coidal configurations and circles to cylindrical configurations; the
color indicates the thickness, from 0.3 [red (gray)] to 0.9 mm (black).
(b) Helicoid-cylinder transition at fixed length for various ribbon
thicknesses.

respect to the radius amounts to maximize the radius, setting
R = 1/η, which in turn leads to χ = 1 and U = η2t2/24.
In contrast, considering ∂ε/∂χ = 0 yields χ = 1, ε = ηR −
1, and the energy becomes U = (ηR − 1)2/2 + t2/(24R2).
Minimizing the energy with respect to R leads to a lower
energy than the first condition (which leads to a particular
case), and R = (1 + α)/η. The parameter α should satisfy
α = η2t2/[12(1 + α)3]. Since t2 � 1, we have α ∼ t2 � 1
and R � 1/η. At the lowest order in t , the energy is

UT =0
cyl = η2t2

24
. (10)

The cylinder radius measured for vanishing tension agrees well
with the proposed relation R = 1/η [Fig. 4(b)].

At moderate tension, we assume that the contraction is
small; since the strain is also small, we can make the approxi-
mation

ε =
√

(1 − χ )2 + η2R2 − 1 � η2R2

2
− χ. (11)

Using this expression, the total energy [Eq. (9)] reads

Ucyl(η,χ,R) = 1

2

(
η2R2

2
− χ

)2

+ t2

24R2
+ χT . (12)

FIG. 6. Radius R (a), contraction χ (b), and energy Ucyl (c) of
a cylinder as a function of the tension T for t = 6.5 × 10−3 and
η = 0.5. The numerical minimization (solid lines) of the energy is
compared to the analytical expressions obtained in the small tension
(dotted lines, R = 1/η, χ = 1, Ucyl = η2t2/24) and moderate tension
(dashed lines) regimes. When values of the contraction or the energy
are negative, their absolute value is plotted in gray. The scaling laws
for (ηt)2 � T � (ηt)2/3 are indicated.

Minimizing this expression first with respect to the contraction
and then with respect to the radius gives

χ = η2R2

2
− T = ηt

4
√

3
√

T
− T , (13)

R =
(

t2

12T η2

)1/4

, (14)

Ucyl = tη
√

T

2
√

3
− T 2

2
. (15)

Figure 4(c) shows the good quantitative agreement between
measured radius at moderate tension and Eq. (14), without
any fitting parameter. We have assumed that the contraction is
small. From the expression of the contraction [Eq. (13)], we
see that this assumption holds as long as η2t2 � T � 1. Since
the tension should be small to remain in the linear elasticity
regime, and the twist can be of order 1, the moderate tension
regime corresponds to T � t2.

Two regimes can be identified in the moderate tension
regime, from the expressions of the contraction and the energy,
Eqs. (13) and (15), which change sign for T ∼ (ηt)2/3. The
regime where T � (ηt)2/3 corresponds to a ribbon under pure
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TABLE I. Expressions for the radius R, the contraction χ , and
the energy Ucyl of the cylinder in the small tension, moderate tension,
and fixed length regimes.

Regime Low tension Moderate tension Fixed length χ = 0

T T � t2 T � t2 T = 62/3

12 (ηt)2/3

χ 1 ηt

4
√

3
√

T
− T 0

R 1/η ( t2

12T η2 )
1/4

( t2

6η4 )
1/6

Ucyl
η2 t2

24
tη

√
T

2
√

3
− T 2

2
3

8×62/3 (tη)4/3

tension, as the contraction and energy are independent of the
twist, χ = −T and U = −T 2/2.

The analytical expressions for the parameters and the energy
of the cylinder in the different regimes are summarized in
Table I, and they are compared to the numerical minimization
of the energy in Fig. 6.

IV. ENERGY COMPARISON WITH OTHER STATES

In the previous section, we have determined the parameters
of the cylinder configuration and its energy in various cases.
In this section, we compare the energy of the cylinder to the
energy of other configurations as follows.

(i) At low tension, T � t2, the cylinder is compared to the
helicoid.

(ii) At moderate tension but below the λ point [8], t2 �
T � t , the cylinder is compared to facets with isometric ridges
[13].

(iii) Above the λ point, T � t , or at fixed length, χ = 0,
the cylinder is again compared to the helicoid.

Comparing the result of the energies’ balance to transitions
found by a linear stability analysis allows us to discuss the
nature, continuous or discontinuous, of the transitions.

A. Cylinder vs helicoid at low tension

At low tension, T � t2, a linear stability analysis has been
used to show that the helicoid is stable for η � 10t [7–10].
Here, we compare the energy of the helicoid to the energy of
the cylinder. In this regime, the energy of the helicoid is given
by [8]

Uhel = η4

1440
(16)

and the energy of the cylinder is given by Ucyl � η2t2/24,
Eq. (10). The cylinder is thus favorable for

η > ηhel-cyl = 2
√

15t � 8t. (17)

This transition is represented as a thick dotted line in Fig. 2(b).
Unfortunately, it occurs at a tension that is too low to allow a
comparison with experiments.

First, we note that the energy comparison gives the same
scaling for the transition, η ∼ t , as the linear stability analysis
of the helicoid. Second, the energy comparison shows that the
energy of the cylinder is lower than the energy of the helicoid
when the helicoid becomes linearly unstable, which suggests a
discontinuous transition between the helicoid and the cylinder.

B. Cylinder vs facets with isometric ridges

Upon increasing the twist at moderate tension, t2 � T �
t , facetted morphologies appear soon after the longitudinal
instability of the helicoid [7,12,13]. Depending on tension and
twist angle, two distinct facetted shapes can be observed. They
are discriminated by the nature of the ridges between adjacent
facets, isometric or minimal [13]. The shape that prevails at
small tension and large twist is the configuration where the
facets are separated by isometric ridges (FIR). As shown in
[13], the width of the FIR ridges is given by wr ∼ φRc, where
φ ∼ η is the angle between two facets and Rc ∼ t/(η

√
T ) is the

radius of curvature of the ridges; hence wr ∼ t/
√

T . Facets can
be observed as long as the width of the ridges remains small
compared to the width of the ribbon, i.e., wr ∼ t/

√
T � 1,

which means that T � t2. As T approaches t2 from above,
the width of the ridges becomes comparable to the width of
the ribbon and the facets become hard to distinguish from the
ridges. Since the ridges are portions of cylinders, we expect that
the FIR approaches the cylindrical morphology [thin dotted
line in Fig. 2(b)].

In contrast, the cylinder and the FIR are really different
configurations when t2 � T � t , allowing one to compare
their energies. For the cylinder, we use the moderate tension
estimate, Eq. (15); since T � t , the first term dominates:
Ucyl ∼ tη

√
T . The energy of the FIR is given by UFIR ∼

tη2
√

T + η2T [13]; since T � t2, the second term dominates:
UFIR ∼ η2T . Finally, we get that the cylinder has a lower
energy for

η � ηFIR-cyl = t√
T

. (18)

The line separating the FIR and the cylinder ends at T ∼ t2,
η ∼ 1, which is reminiscent of a liquid-vapor critical point.

The theoretical phase diagram at low tension is represented
in Fig. 2(b), and the scaling law for the FIR-cylinder transi-
tion, Eq. (18), is compared to experiments (Fig. 2). A good
agreement is found for moderate tension, but the critical twist
departs significantly from the prediction at the lowest tension
investigated in experiments, which may be due to an edge
effect.

C. Cylinder vs helicoid at large tension

When the tension exceeds the λ-point tension Tλ ∼ t ,
the helicoid undergoes a transverse buckling instability upon
increasing the twist [7,8], which may lead to a cylindrical shape
[Fig. 1(c) and Ref. [8]]. The critical twist has been determined
numerically [8]. At large tension, it behaves asymptotically as
ηtr � 4.4t/

√
T . Here, we compare the energy of the helicoid

and the energy of the cylinder.
The energy of the helicoid is given by [8]

Uhel = η4

1440
+ η2T

24
− T 2

2
, (19)

and we use the moderate tension estimate for the energy of
the cylinder, Eq. (15); note that the last terms in Eqs. (15)
and (19) are identical. The critical tension for a given twist
can be determined exactly (Appendix B); it is compared to
experiments in Fig. 2(a) and a quantitative agreement is found.
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At large tension and small twist, when T � η2, the second
term is larger than the first in the energy of the helicoid,
Eq. (19). The cylinder is energetically preferred when

η > ηhel-cyl = 4
√

3
t√
T

� 6.9
t√
T

. (20)

As in the very low tension regime, we find that the linear
stability analysis and the comparison of energies give the
same scaling law for the critical twist. Here, the energy of
the helicoid is smaller than the energy of the cylinder when
the helicoid becomes linearly unstable, which points to a
continuous transition between the two states.

D. Cylinder vs helicoid at constant length

Finally, we discuss the helicoid-cylinder transition at con-
stant length, which is particularly convenient to investigate in
experiments. This is a particular case of the helicoid-cylinder
transition at large tension presented in the previous section.
We restrict ourselves to the case where the length is fixed
to the rest length of the ribbon, χ = 0. For the helicoid the
tension is then given by Thel = η2/24 [7,8], while for the
cylinder Tcyl � 0.28(ηt)2/3 [Eq. (8)]. The transition between
the helicoid and the cylinder appears clearly when the tension
is measured while the twist is increased [Fig. 5(a)].

The energy of the helicoid is obtained by using T = η2/24
in Eq. (19), leading to

U
χ=0
hel = η4

640
, (21)

and the energy of the cylinder is given in Eq. (5). The energy
of the cylinder is lower for

η > η
χ=0
hel−cyl = 2403/8

61/4

√
t � 5.0

√
t . (22)

For comparison, the linear stability analysis of the helicoid
predicts that it buckles in the transverse direction at ηtr �
3.7

√
t (Appendix C [8]). As in the previous paragraph, the

helicoid becomes linearly unstable while its energy is lower
than the energy of the cylinder, again pointing to a continuous
transition between the two states.

As shown in Fig. 5(b), the twist angle at the helicoid-
cylinder transition under constant length measured for vari-
ous ribbon thicknesses is in quantitative agreement with the
theoretical prediction.

V. CONCLUSION

We have proposed a simple ansatz for the shape of a
stretched and twisted ribbon at large twist, whereby the ribbon
“wraps” around a cylinder. By comparing the energy of this
shape to the energy of previously identified shapes, helicoid
and facetted, we have shown that the cylinder is predicted to
appear in a large twist region of the phase diagram, which
is in good agreement with the experimental observations.
Moreover, the scaling laws of the different transitions are the
same as those obtained by linear stability analysis. Our analysis
thus pushes forward our understanding of the phase diagram
of the stretched and twisted ribbon by adding to the helicoid
another well characterized shape.

The helicoid served as a basis to understand more complex
morphologies because its stress field was easily and completely
characterized. In particular, this knowledge allows one to use
linear stability analysis to determine the region where it should
be observed. A complete mechanical analysis of the cylinder
remains however to be done, and at this stage we do not even
know if the cylinder is a solution of the Föppl–von Kármán
equations of elastic sheets.

Beyond the characterization of the cylinder, a unifying
framework to describe the different ribbon morphologies is
still desirable. As yet, our understanding of these morphologies
rests on the linear stability analysis of the helicoid and on
various ansatz for the cylinder, but also for the facetted shapes
[13]. A promising route is to represent the ribbon as a ruled
surface, which is always possible in the inextensible case
[16–18]. In this case, the ribbon can be described through its
center line, with the direction of the generatrices as an internal
variable. The main drawback of these approaches is that they
cannot describe the helicoid, where the ribbon is stretched.
It should be noted however that the helicoid is still a ruled
surface, as well as the facets with isometric ridges introduced in
Ref. [13], and the cylinder introduced here. Hence, if the ruled
surface approach could be extended to the extensible case, a
unified description of these three shapes would be within reach.
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APPENDIX A: EXACT RELATION BETWEEN THE
TENSION, THE CONTRACTION, AND THE RADIUS

We start from Eqs. (1) and (2):

U el
cyl = ε2

2
+ t2

24R2
, (A1)

ε =
√

(1 − χ )2 + η2R2 − 1. (A2)

The tension is given by Eq. (6):

T = −∂U el
cyl

∂χ
= −ε

∂ε

∂χ
. (A3)

The derivative of the strain with respect to contraction is

∂ε

∂χ
= χ − 1√

(1 − χ )2 + η2R2
= χ − 1

1 + ε
, (A4)

so that we have for the tension

T = ε

1 + ε
(1 − χ ). (A5)

We can use that the radius minimizes the energy:

0 = ∂U el
cyl

∂R
= ε

∂ε

∂R
− t2

12R3
. (A6)

The derivative of the strain with respect to the radius is

∂ε

∂R
= η2R√

(1 − χ )2 + η2R2
= η2R

1 + ε
. (A7)
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Inserting this relation into the previous one, we get

ε

1 + ε
= t2

12η2R4
. (A8)

Using this equation in Eq. (A5), we finally obtain

T = t2(1 − χ )

12η2R4
. (A9)

APPENDIX B: CRITICAL TENSION FOR THE
HELICOID-CYLINDER TRANSITION AT LARGE TENSION

Here, we determine analytically the critical tension for
the helicoid-cylinder transition at large tension (Sec. IV C).
Comparing the energies of the cylinder [Eq. (15)] and of the
helicoid [Eq. (19)] leads to a transition when

η4

1440
+ η2T

24
= tη

√
T

2
√

3
. (B1)

This equation can be solved for the tension T :

T = 12t2

η2

(
1 ±

√
1 − η4

720t2

)2

. (B2)

The large tension regime corresponds to the + sign.
The asymptotic law at large tension can be recovered by

neglecting the term η4/(720t2) in the square root; we get T =

48t2/η2, which is equivalent to Eq. (20). This approximation
is valid if

1 � η4

t2
∼ t2

T 2
, (B3)

which is the case for T � t .

APPENDIX C: LINEAR STABILITY ANALYSIS OF THE
HELICOID AT FIXED LENGTH

Imposing a zero contraction in the helicoid sets the tension
to T = η2/24 and the stress field to [Eqs. (3) and (4) of Ref. [8]]

σ ss
hel(r) = η2r2

2
, (C1)

σ rr
hel(r) = η4

8

(
r2 − 1

4

)(
r2 + 1

4

)
, (C2)

where s is the longitudinal component and r the transverse
component.

We can apply the linear stability analysis of Ref. [8] (Sec.
4.3) for the transverse buckling with this stress field, in the case
of an infinitely long ribbon. Inserting Eqs. (C1) and (C2) in the
buckling equation [Eq. (79) of [8]], we see that the critical
value for η scales as η ∼ √

t . A numerical resolution of the
buckling equation gives the numerical factor:

η � 3.7
√

t . (C3)
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