Multiplicity and symmetry of positive solutions to semi-linear elliptic problems with Neumann boundary conditions

Christophe Troestler (Joint work with D. Bonheure & C. Grumiau)

Department of Mathematics University of Mons

UMONS

International Workshop on Variational Problems and PDE's São Paulo – Brazil

The Lane-Emden problem

Let $\Omega \subseteq \mathbb{R}^N$ be open and bounded, $N \ge 2$, and 2 . Weconsider

$$(\mathcal{P}_p) \begin{cases} -\Delta u + u = |u|^{p-2}u, & \text{in } \Omega \\ \partial_{\nu} u = 0, & \text{on } \partial \Omega. \end{cases}$$

Solutions are critical points of the functional

 $p \approx 2$: positive solutions

$$\mathcal{E}_p: H^1(\Omega) \to \mathbb{R}: u \mapsto \frac{1}{2} \int_{\Omega} |\nabla u|^2 + u^2 - \frac{1}{p} \int_{\Omega} |u|^p$$

Notation: $1 = \lambda_1 < \lambda_2 < \cdots$ denote the eigenvalues of $-\Delta + 1$ E_i denote the corresponding eigenspaces

Remark: 0 and ± 1 are always (trivial) solutions.

Outline

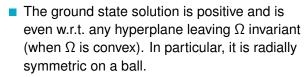
1 $p \approx 2$: ground state solutions

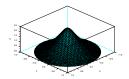
- 2 $p \approx 2$: positive solutions
- 3 Symmetry breaking of the ground state
- 4 Symmetry breaking at $p = 1 + \lambda_2$?
- 5 Multiplicity results (radial domains)
- 6 Some numerical computations

Dirichlet boundary conditions

$$\begin{cases} -\Delta u + u = |u|^{p-2}u & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega. \end{cases}$$

 $p \approx 2$: positive solutions





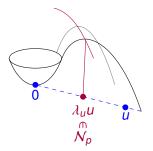
- Uniqueness of the positive solution when Ω is a ball.
- If Ω is strictly starshaped and $p \ge 2^*$, no solution exist.

Existence of ground state solutions ($p < 2^*$)

Theorem (Z. Nehari, A. Ambrosetti, P.H. Rabinowitz)

For any $p \in [2,2^*]$, (\mathcal{P}_p) possesses

- a ground state solution to (\mathcal{P}_p) ;
- it is a one-signed function;
- its Morse index is 1.



$p \approx 2$: symmetry of ground state solutions

Theorem (D. Bonheure, V. Bouchez, C. Grumiau, C. T., J. Van Schaftingen, '08)

For p close to 2 and any $R \in O(N)$ s.t. $R(\Omega) = \Omega$, ground state solutions to (\mathcal{P}_p) are symmetric w.r.t. R.

E.g. if Ω is radially symmetric, so must the ground state solution be.

Remark that the seminal method of moving planes is not applicable.

 $p \approx 2$: ground state solutions $p \approx 2$: positive solutions Symmetry breaking $1 + \lambda_2$? Multiplicity Numerics

Uniqueness of the positive solution

Theorem

1 is the unique positive solution to $-\Delta u + u = |u|^{p-2}u$ with NBC for p small.

Theorem

1 is the unique positive solution to $-\Delta u + u = |u|^{p-2}u$ with NBC for p small.

Let $v := P_{E_1} u$ (constant function) and $w := P_{E_1^{\perp}} u$ (zero mean).

$$\int_{\Omega} |\nabla w|^2 + w^2 = \int_{\Omega} |u|^{p-1} w$$

As
$$\lambda_1 = 1 < \lambda_2$$
, for $p \approx 2$, $w = 0$ and then $u = v = 1$.

Theorem

1 is the unique positive solution to $-\Delta u + u = |u|^{p-2}u$ with NBC for p small.

Let $v := P_{E_1} u$ (constant function) and $w := P_{E_1^{\perp}} u$ (zero mean).

$$\lambda_2 \int_{\Omega} w^2 \leqslant \int_{\Omega} |\nabla w|^2 + w^2 = \int_{\Omega} |u|^{p-1} w$$

As $\lambda_1 = 1 < \lambda_2$, for $p \approx 2$, w = 0 and then u = v = 1.

Theorem

1 is the unique positive solution to $-\Delta u + u = |u|^{p-2}u$ with NBC for p small.

Let $v := P_{E_1} u$ (constant function) and $w := P_{E_1^{\perp}} u$ (zero mean).

$$\lambda_2 \int_{\Omega} w^2 \le \int_{\Omega} |\nabla w|^2 + w^2 = \int_{\Omega} |u|^{p-1} w = \int_{\Omega} ((v+w)^{p-1} - v^{p-1}) w$$

As
$$\lambda_1 = 1 < \lambda_2$$
, for $p \approx 2$, $w = 0$ and then $u = v = 1$.

Theorem

1 is the unique positive solution to $-\Delta u + u = |u|^{p-2}u$ with NBC for p small.

Let $v := P_{E_1}u$ (constant function) and $w := P_{E_2^{\perp}}u$ (zero mean).

$$\begin{split} \lambda_2 \int_{\Omega} w^2 & \leq \int_{\Omega} |\nabla w|^2 + w^2 = \int_{\Omega} |u|^{p-1} w = \int_{\Omega} \left((v+w)^{p-1} - v^{p-1} \right) w \\ & = \int_{\Omega} (p-1) (v + \vartheta_p w)^{p-2} w^2 \qquad (\vartheta_p \in]0,1[) \\ & \leq (p-1) (|v| + ||w||_{\infty})^{p-2} \int_{\Omega} w^2 \leq (p-1) K^{p-2} \int_{\Omega} w^2. \end{split}$$

As $\lambda_1 = 1 < \lambda_2$, for $p \approx 2$, w = 0 and then u = v = 1.

4 □ ▶ 4 圖 ▶ 4 圖 ▶ 4 圖 ■ 9 Q ○

Numerics

Lemma

Positive solutions (u_p) are bounded in L^{∞} as $p \approx 2$.

- Integration & Hölder: $\int_{\Omega} u_p^{p-1} = \int_{\Omega} u_p \leq |\Omega|$ (recall $u_p > 0$).
- Brezis-Strauss: from the bound on $\int_{\Omega} u_p^{p-1}$, we deduce a bound on $||u_p||_{W^{1,q}(\Omega)}$, $1 \le q < N/(N-1)$.
- Sobolev embedding: (u_p) bounded in $L^r(\Omega)$, 1 < r < N/(N-2).
- Bootstrap: $||u_p||_{W^{2,r}(\Omega)}$ is bounded for some r > N/2 when $p \approx 2$.

Proposition

Let $2 < \bar{p} < 2^*$. There exists $C_{\bar{p}} > 0$ such that any positive solution to (\mathcal{P}_p) with $2 satisfies <math>\max\{||u||_{H^1}, ||u||_{L^\infty}\} \le C_{\bar{p}}$.

 $p \approx 2$: positive solutions

Proposition

Let $2 < \bar{p} < 2^*$. There exists $C_{\bar{p}} > 0$ such that any positive solution to (\mathcal{P}_p) with $2 satisfies <math>\max\{||u||_{H^1}, ||u||_{L^{\infty}}\} \le C_{\bar{p}}$.

It remains to obtain a bound for $2 in <math>L^{\infty}$. Blow up argument (Gidas-Spruck). Suppose on the contrary that there is a sequence $(p_n) \subseteq [p, \bar{p}]$ and (u_{p_n}) s.t.

$$u_{p_n}(x_{p_n}) := ||u_{p_n}||_{L^{\infty}} \to +\infty$$
 and $p_n \to p^* \in [\underline{p}, \overline{p}].$

(Drop index n.) Define

$$v_p(y) := \mu_p u_p \left(\mu_p^{(p-2)/2} y + x_p \right)$$
 where $\mu_p := 1/\|u_p\|_{L^\infty} \to 0$.

Note: $v_p(0) = ||v_p||_{L^{\infty}} = 1$.

The rescaled function v_p satisfies

$$-\Delta v_p + \mu_p^{p-2} v_p = v_p^{p-1}$$
 on $\Omega_p := (\Omega - x_p)/\mu_p^{(p-2)/2}$

with NBC. By elliptic regularity, (v_p) is bounded in $W^{2,r}$ and $C^{1,\alpha}$, $0 < \alpha < 1$ on any compact set. Thus, taking if necessary a subsequence,

$$v_n \to v^*$$
 in $W^{2,r}$ and $C^{1,\alpha}$ on compact sets of $\Omega^* = \mathbb{R}^N$ or $\mathbb{R}^{N-1} \times \mathbb{R}_{>a}$.

One has $v^* \ge 0$, $v^*(0) = 1 = ||v||_{L^{\infty}}$ and v^* satisfies

$$-\Delta v^* = (v^*)^{p^*-1}$$
 in \mathbb{R}^N or
$$\begin{cases} -\Delta v^* = (v^*)^{p^*-1} & \text{in } \mathbb{R}^{N-1} \times \mathbb{R}_{>a} \\ \partial_N v^* = 0 & \text{when } x_N = a \end{cases}$$

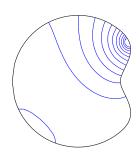
Liouville theorems imply $v^* = 0$.

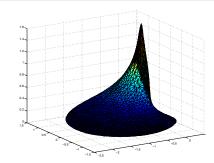
▲ 토 ▶ ▲ 토 ▶ - 토| ㅍ ∽ 약

Symmetry breaking of the ground state

Theorem (W.-M. Ni, I. Takagi, '93; Adimurthi, F. Pacella, S.L. Yadava '93)

When R is sufficiently large, ground state solutions possess a unique maximum point $P_R \in \partial(R\Omega)$. Moreover, $u_R \to 0$ outside a small neighborhood of P_R . P_R is situated at the "most curved" part of $\partial(R\Omega)$.





Corollary

1 cannot remain the ground state for all p on "large" domains.

Corollary

1 cannot remain the ground state for all p on "large" domains.

Lemma

1 cannot remain the ground state solution for $p > 1 + \lambda_2$.

Proof. The Morse index of 1 is the sum of the dimension of the eigenspaces corresponding to negative eigenvalues λ of

$$\begin{cases} -\Delta v + v = (p-1)v + \lambda v, & \text{in } \Omega, \\ \partial_v v = 0, & \text{on } \partial \Omega. \end{cases}$$

i.e. eigenvalues of $-\Delta + 1$ less than p - 1. When $p > 1 + \lambda_2$, the Morse index of the solution 1 is > 1.

Proposition (Lopez, '96)

On radial domains, the ground state is either constant or (e.g. when $p > 1 + \lambda_2$) not radially symmetric.

Proposition (Lopez, '96)

On radial domains, the ground state is either constant or (e.g. when $p > 1 + \lambda_2$) not radially symmetric.

Proposition

 $p \approx 2$: ground state solutions

When Ω is a ball or an annulus, the Morse index of a non-constant positive radial solution is at least N + 1. In particular, when $p > 1 + \lambda_2$, ground state solutions cannot be radial.

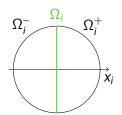
Based on: A. Aftalion, F. Pacella, Qualitative properties of nodal solutions of semilinear elliptic equations in radially symmetric domains, CRAS, 339(5), '04.

Let u be non-constant positive radial solution of (\mathcal{P}_p) . We have to show that

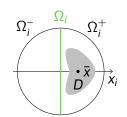
$$L v := -\Delta v + v - (p-1)|u|^{p-2}v$$

with NBC possesses N+1 negative eigenvalues.

 $u \text{ radial} \Rightarrow \partial_{x_i} u = 0 \text{ on } \partial \Omega \text{ and on } \Omega_i.$



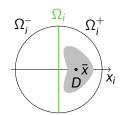
u radial $\Rightarrow \partial_{x_i} u = 0$ on $\partial \Omega$ and on Ω_i . Let $\bar{x} \in \Omega_i^+$ s.t. $\partial_{x_i} u(\bar{x}) \neq 0$. Let D be the connected component of $\{\partial_{x_i} u(\bar{x}) \neq 0\}$ containing \bar{x} . $D \subseteq \Omega_i^+$.



 $u \text{ radial} \Rightarrow \partial_{x_i} u = 0 \text{ on } \partial \Omega \text{ and on } \Omega_i.$ Let $\bar{x} \in \Omega_i^+$ s.t. $\partial_{x_i} u(\bar{x}) \neq 0$. Let *D* be the connected component of $\{\partial_{x_i} u(\bar{x}) \neq 0\}$ containing \bar{x} . $D \subseteq \Omega_i^+$.

 $p \approx 2$: positive solutions

$$L(\partial_{x_i}u)=0$$
, on D ; $\partial_{x_i}u=0$, on ∂D .

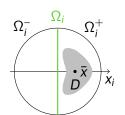


 $u \text{ radial} \Rightarrow \partial_{x_i} u = 0 \text{ on } \partial \Omega \text{ and on } \Omega_i.$ Let $\bar{x} \in \Omega_i^+$ s.t. $\partial_{x_i} u(\bar{x}) \neq 0$. Let *D* be the connected component of $\{\partial_{x_i} u(\bar{x}) \neq 0\}$ containing \bar{x} . $D \subseteq \Omega_i^+$.

 $p \approx 2$: positive solutions

$$L(\partial_{x_i}u)=0$$
, on D ; $\partial_{x_i}u=0$, on ∂D .

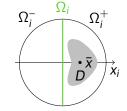
$$\Rightarrow \lambda_1(L, D, \mathsf{DBC}) = 0$$
$$\Rightarrow \lambda_1(L, \Omega_i^+, \mathsf{DBC}) \leq 0$$



 $u \text{ radial} \Rightarrow \partial_{x_i} u = 0 \text{ on } \partial \Omega \text{ and on } \Omega_i.$ Let $\bar{x} \in \Omega_i^+$ s.t. $\partial_{x_i} u(\bar{x}) \neq 0$. Let *D* be the connected component of $\{\partial_{x_i} u(\bar{x}) \neq 0\}$ containing \bar{x} . $D \subseteq \Omega_i^+$.

 $p \approx 2$: positive solutions

$$L(\partial_{x_i}u)=0$$
, on D ; $\partial_{x_i}u=0$, on ∂D .



$$\Rightarrow \lambda_1(L, D, DBC) = 0$$

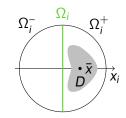
$$\Rightarrow \lambda_1(L, \Omega_i^+, DBC) \leq 0$$

$$\Rightarrow \mu_i := \lambda_1(L, \Omega_i^+, \mathsf{DBC} \ \mathsf{on} \ \Omega_i \ \mathsf{and} \ \mathsf{NBC} \ \mathsf{on} \ \partial \Omega_i^+ \setminus \Omega_i) < 0$$

 $u \text{ radial} \Rightarrow \partial_{x_i} u = 0 \text{ on } \partial \Omega \text{ and on } \Omega_i.$ Let $\bar{x} \in \Omega_i^+$ s.t. $\partial_{x_i} u(\bar{x}) \neq 0$. Let *D* be the connected component of $\{\partial_{x_i} u(\bar{x}) \neq 0\}$ containing \bar{x} . $D \subseteq \Omega_i^+$.

 $p \approx 2$: positive solutions

$$L(\partial_{x_i}u)=0$$
, on D ; $\partial_{x_i}u=0$, on ∂D .



$$\Rightarrow \lambda_1(L, D, DBC) = 0$$

$$\Rightarrow \lambda_1(L, \Omega_i^+, DBC) \leq 0$$

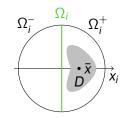
$$\Rightarrow \mu_i := \lambda_1(L, \Omega_i^+, \mathsf{DBC} \text{ on } \Omega_i \text{ and NBC on } \partial \Omega_i^+ \setminus \Omega_i) < 0$$

If $\psi_i > 0$ is the first eigenfunction of L on Ω_i^+ with DBC on Ω_i and NBC on $\partial\Omega_i^+\setminus\Omega_i$, its odd extension ψ_i^* to Ω satisfies

$$L(\psi_i^*) = \mu_i \psi_i^*$$
, on Ω , $\partial_\nu \psi_i^* = 0$, on $\partial \Omega$.

 $u \text{ radial} \Rightarrow \partial_{x_i} u = 0 \text{ on } \partial \Omega \text{ and on } \Omega_i.$ Let $\bar{x} \in \Omega_i^+$ s.t. $\partial_{x_i} u(\bar{x}) \neq 0$. Let *D* be the connected component of $\{\partial_{x_i} u(\bar{x}) \neq 0\}$ containing \bar{x} . $D \subseteq \Omega_i^+$.

$$L(\partial_{x_i}u)=0$$
, on D ; $\partial_{x_i}u=0$, on ∂D .



$$\Rightarrow \lambda_1(L, D, DBC) = 0$$

$$\Rightarrow \lambda_1(L, \Omega_i^+, DBC) \leq 0$$

$$\Rightarrow \mu_i := \lambda_1(L, \Omega_i^+, \mathsf{DBC} \text{ on } \Omega_i \text{ and NBC on } \partial \Omega_i^+ \setminus \Omega_i) < 0$$

If $\psi_i > 0$ is the first eigenfunction of L on Ω_i^+ with DBC on Ω_i and NBC on $\partial\Omega_i^+\setminus\Omega_i$, its odd extension ψ_i^* to Ω satisfies

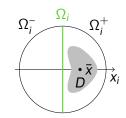
$$L(\psi_i^*) = \mu_i \psi_i^*$$
, on Ω , $\partial_{\nu} \psi_i^* = 0$, on $\partial \Omega$.

All ψ_i^* , $j \neq i$ vanish on the axis $x_i \Rightarrow$ the family $(\psi_i^*)_{i=1}^N$ is lin. indep.

 $u \text{ radial} \Rightarrow \partial_{x_i} u = 0 \text{ on } \partial \Omega \text{ and on } \Omega_i.$ Let $\bar{x} \in \Omega_i^+$ s.t. $\partial_{x_i} u(\bar{x}) \neq 0$. Let *D* be the connected component of $\{\partial_{x_i} u(\bar{x}) \neq 0\}$ containing \bar{x} . $D \subseteq \Omega_i^+$.

 $p \approx 2$: positive solutions

$$L(\partial_{x_i}u)=0$$
, on D ; $\partial_{x_i}u=0$, on ∂D .



$$\Rightarrow \lambda_1(L, D, DBC) = 0$$

$$\Rightarrow \lambda_1(L, \Omega_i^+, DBC) \leq 0$$

$$\Rightarrow \mu_i := \lambda_1(L, \Omega_i^+, \mathsf{DBC} \text{ on } \Omega_i \text{ and NBC on } \partial \Omega_i^+ \setminus \Omega_i) < 0$$

If $\psi_i > 0$ is the first eigenfunction of L on Ω_i^+ with DBC on Ω_i and NBC on $\partial\Omega_i^+\setminus\Omega_i$, its odd extension ψ_i^* to Ω satisfies

$$L(\psi_i^*) = \mu_i \psi_i^*$$
, on Ω , $\partial_{\nu} \psi_i^* = 0$, on $\partial \Omega$.

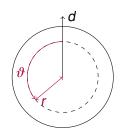
All ψ_i^* , $j \neq i$ vanish on the axis $x_i \Rightarrow$ the family $(\psi_i^*)_{i=1}^N$ is lin. indep. None of the $(\psi_i^*)_{i=1}^N$ is a first eigenfunction.

Theorem (Lopes, '96)

On radial domains, ground state solutions are symmetric w.r.t. any hyperplane containing a line L passing through the origin.

Theorem (J. Van Schaftingen, '04)

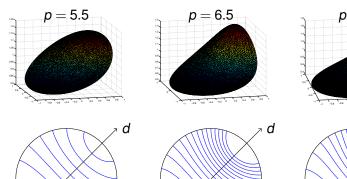
On radial domains, ground state solutions are foliated Schwarz symmetric.

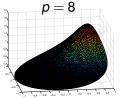


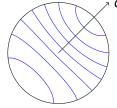
There exists a unit vector d s.t. u depends only on r = |x| and $\vartheta = \arccos(\frac{x}{|x|} \cdot d)$ and is non-increasing in ϑ .

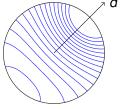
p large: non-radially symmetric ground state

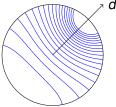
$$\Omega = B_1 \subseteq \mathbb{R}^2 \implies 1 + \lambda_2 \approx 5.39$$











Ground states — summary

- When $p \approx 2$, 1 is the sole positive solution (hence the GS are ±1).
- When $p > 1 + \lambda_2$,
 - 1 is not the GS anymore;
 - on a ball or an annulus, GS solutions are not radial but foliated Schwarz symmetric.

Ground states — summary

- When $p \approx 2$, 1 is the sole positive solution (hence the GS are ±1).
- When $p > 1 + \lambda_2$,
 - 1 is not the GS anymore;
 - on a ball or an annulus, GS solutions are not radial but foliated Schwarz symmetric.

Theorem (Lin, Ni, Takagi '88)

Let $\Omega_1 \subseteq \mathbb{R}^N$ be a bounded smooth domain and $p \in]2,2^*[$. There exists $0 < R_0 \leqslant R_1$ such that the equation $-\Delta u + u = |u|^{p-2}u$ with NBC on $\Omega = R\Omega_1$ possesses

- 1 only constant positive solutions for $R < R_0$;
- 2 a non-constant positive solution for $R \ge R_1$.

Conjecture

 ± 1 are the ground states of $-\Delta u + u = |u|^{p-2}u$ with NBC for all $p \le 1 + \lambda_2$.

- If $1 + \lambda_2 \ge 2^*$, no concentration therefore occurs when $p \to 2^*$.
- If $1 + \lambda_2 < 2^*$, the GS solutions for $p \in]1 + \lambda_2, 2^*[$ lie on the branch emanating from $(p, u) = (1 + \lambda_2, 1)$ and concentrate on the boundary as $p \to 2^*$.

Evidence for this conjecture: examine the bifurcation at $p = 1 + \lambda_2$ on a ball.

The linearisation of the equation around u = 1,

$$Lv := -\Delta v + v - (p-1)v$$

is not invertible iff $p = 1 + \lambda_i$, $i \ge 2$.

The linearisation of the equation around u = 1,

$$Lv := -\Delta v + v - (p-1)v$$

is not invertible iff $p = 1 + \lambda_i$, $i \ge 2$.

Eigenfunctions of $-\Delta + 1$ with NBC have the form:

$$u(x) = r^{-\frac{N-2}{2}} J_{\nu}(\sqrt{\mu}r) P_k\left(\frac{x}{|x|}\right), \quad \text{where } \nu = k + \frac{N-2}{2},$$

r = |x|, and $P_k : \mathbb{R}^N \to \mathbb{R}$ is an harmonic homogenous polynomial of degree k for some $k \in \mathbb{N}$. To satisfy the boundary conditions:

$$\sqrt{\mu}R$$
 is a root of $z \mapsto (k-\nu)J_{\nu}(z) + z\partial J_{\nu}(z) = kJ_{\nu}(z) - zJ_{\nu+1}(z)$.

$$\Rightarrow \lambda_i = 1 + \mu$$

▼ロト ◆母 ト ◆ 恵 ト ◆ 恵 ト ・ 恵 目 ・ か Q (*)

Numerics

In particular, a basis of E_2 is

$$x\mapsto r^{-\frac{N-2}{2}}J_{N/2}(\sqrt{\mu}r)\frac{x_j}{|x|}, \qquad j=1,\ldots,N.$$

There is single function (up to a multiple) that is invariant under rotation in $(x_2,...,x_N)$.

In particular, a basis of E_2 is

$$x\mapsto r^{-\frac{N-2}{2}}J_{N/2}(\sqrt{\mu}r)\frac{x_j}{|x|}, \qquad j=1,\ldots,N.$$

There is single function (up to a multiple) that is invariant under rotation in $(x_2,...,x_N)$.

Theorem (Crandall-Rabinowitz '71)

Let X and Y two Banach spaces, $u^* \in X$, and a function $F : \mathbb{R} \times X \to Y : (p,u) \mapsto F(p,u)$ such that $\forall p \in \mathbb{R}$, $F(p,u^*) = 0$. Let $p^* \in \mathbb{R}$ be such that $\ker(\partial_u F(p^*,u^*)) = \operatorname{span}\{\varphi^*\}$ has a dimension 1 and $\operatorname{codim}(\operatorname{Im}(\partial_u F(p^*,u^*))) = 1$. Let $\psi : Y \to \mathbb{R}$ be a continuous linear map such that $\operatorname{Im}(\partial_u F(p^*,u^*)) = \{y \in Y : \langle \psi,y \rangle = 0\}$.

In our case $F(p, u) = -\Delta u + u - |u|^{p-2}u$, $p^* = 1 + \lambda_2$, $u^* = 1$, $\varphi^* = \varphi_2$.

 $p \approx 2$: positive solutions

Theorem (Crandall-Rabinowitz (cont'd))

If $\mathbf{a} := \langle \psi, \partial_{pu} F(p^*, u^*) [\varphi^*] \rangle \neq 0$, then (p^*, u^*) is a bifurcation point for F. In addition, the set of non-trivial solutions of F = 0 around (p^*, u^*) is given by a unique C^1 curve $p \mapsto u_p$. The local behavior of the branch (p, u_p) for p close to p* is as follows.

In our case,

$$a = -\int_{\Omega} \varphi_2^2 = -1$$

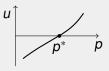
 $p \approx 2$: positive solutions

Theorem (Crandall-Rabinowitz (cont'd))

If $\mathbf{a} := \langle \psi, \partial_{pu} F(p^*, u^*) [\varphi^*] \rangle \neq \mathbf{0}$, then (p^*, u^*) is a bifurcation point for F. In addition, the set of non-trivial solutions of F = 0 around (p^*, u^*) is given by a unique C^1 curve $p \mapsto u_p$. The local behavior of the branch (p, u_p) for p close to p* is as follows.

• If $b := -\frac{1}{2a} \langle \psi, \partial_u^2 F(p^*, u^*) [\varphi^*, \varphi^*] \rangle \neq 0$ then the branch is transcritical and

$$u_p = u^* + \frac{p - p^*}{b} \varphi^* + o(p - p^*).$$



In our case,

$$a=-\int_{\Omega} \varphi_2^2=-1$$
 and $b=-rac{1}{2}\lambda_2(\lambda_2-1)\int_{\Omega} \varphi_2^3=0.$

 $p \approx 2$: positive solutions

Theorem (Crandall-Rabinowitz — extended)

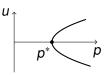
• If b = 0, let us define

$$c := -\frac{1}{6a} \Big(\langle \psi, \partial_u^3 F(p^*, u^*) [\varphi^*, \varphi^*, \varphi^*] \rangle + 3 \langle \psi, \partial_u^2 F(p^*, u^*) [\varphi^*, \mathbf{w}] \rangle \Big)$$

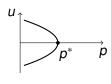
where $w \in X$ is any solution of the equation $\partial_{u}F(p^{*},u^{*})[\mathbf{w}] = -\partial_{u}^{2}F(p^{*},u^{*})[\varphi^{*},\varphi^{*}].$ If $c \neq 0$ then

$$u_p = u^* \pm \left(\frac{p - p^*}{c}\right)^{1/2} \varphi^* + o(|p - p^*|^{1/2}).$$

In particular, the branch is supercritical if c > 0and subcritical if c < 0.



Supercritical



Subcritical

 $1+\lambda_2$?

Symmetry breaking at exactly $p = 1 + \lambda_2$?

In our case.

$$\begin{split} c &= \frac{1}{6}\lambda_2(\lambda_2-1) \Big(-(\lambda_2-2) \int_{B_R} \varphi_2^4 - 3\lambda_2(\lambda_2-1) \int_{B_R} \varphi_2^2 w \Big) \\ &\quad \text{where } (-\Delta+1-\lambda_2) w = \varphi_2^2 \text{ with NBC on } B_R. \end{split}$$

 $1+\lambda_2$?

Symmetry breaking at exactly $p = 1 + \lambda_2$?

In our case,

$$c = \frac{1}{6}\lambda_2(\lambda_2 - 1)\left(-(\lambda_2 - 2)\int_{B_R}\varphi_2^4 - 3\lambda_2(\lambda_2 - 1)\int_{B_R}\varphi_2^2w\right)$$
where $(-\lambda_1 + 1)$ and $(-\lambda_2 + 1)$ with NDC as B

where
$$(-\Delta + 1 - \lambda_2)w = \varphi_2^2$$
 with NBC on B_R .

$$=\frac{1}{6}\bar{\mu}_2R^{-(N+2)}\left(1+\frac{\bar{\mu}_2}{R^2}\right)\left((\beta-\alpha)\frac{\bar{\mu}_2}{R^2}+\beta+\alpha\right)$$
where $\alpha:=\int_{R}\bar{\varphi}_2^4,\quad \beta:=-3\bar{\mu}_2\int_{R}\bar{\varphi}_2^2\bar{\mathbf{w}},$

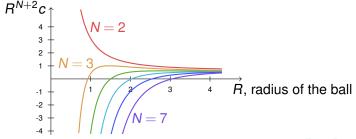
here
$$\alpha:=\int_{\mathcal{B}_1}\bar{\varphi}_2^4,\quad \beta:=-3\bar{\mu}_2\int_{\mathcal{B}_1}\bar{\varphi}_2^2\bar{w},$$

$$(-\Delta - \bar{\mu}_2)\bar{w} = \bar{\varphi}_2^2$$
 with NBC on B_1 ,

 $\bar{\varphi}_2$ and $\bar{\mu}_2 > 0$ are "the" second eigenfunction and eigenvalue of $-\Delta$ with NBC on B_1 s.t. $|\bar{\varphi}_2|_{L^2} = 1$.

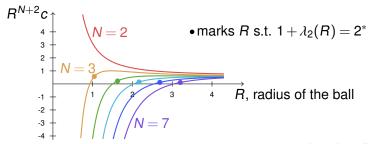
We numerically have

Ν		eta	$\beta - \alpha$	$\beta + \alpha$
2	0.5577	0.5884	0.0306	1.1461
3	0.4632	0.3096	-0.1536	0.7728
4	0.4222	0.1694	-0.2528	0.5916
5	0.4171	0.0858	-0.3313	0.5029
6	0.4421	0.0250	0.0306 -0.1536 -0.2528 -0.3313 -0.4171	0.4671



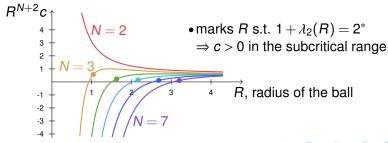
We numerically have

Ν		eta	$\beta - \alpha$	$\beta + \alpha$
2	0.5577	0.5884	0.0306	1.1461
3	0.4632	0.3096	-0.1536	0.7728
4	0.4222	0.1694	-0.2528	0.5916
5	0.4171	0.0858	-0.3313	0.5029
6	0.4421	0.0250	0.0306 -0.1536 -0.2528 -0.3313 -0.4171	0.4671



We numerically have

Ν		eta	$\beta - \alpha$	$\beta + \alpha$
2	0.5577	0.5884	0.0306 -0.1536 -0.2528 -0.3313 -0.4171	1.1461
3	0.4632	0.3096	-0.1536	0.7728
4	0.4222	0.1694	-0.2528	0.5916
5	0.4171	0.0858	-0.3313	0.5029
6	0.4421	0.0250	-0.4171	0.4671



 $p \approx 2$: positive solutions

Theorem (Crandall-Rabinowitz — extended)

Assume $F(p,u) = \partial_u \mathcal{E}(p,u)$. If (p,u_p) is the branch of nontrivial solutions emanating from (p^*,u^*) , b=0 and $c \neq 0$,

$$\mathcal{E}(p, u_p) - \mathcal{E}(p, u^*) = \frac{a}{6c} (p - p^*)^2 + o((p - p^*)^2)$$
 when $\frac{p - p^*}{c} > 0$.

In our case, a=-1<0 and c>0. Consequence: the energy along the super-critical branch emanating from $(1+\lambda_2,1)$ has lower energy than the trivial solution 1.

Multiplicity

26 / 56

 $p \approx 2$: ground state solutions $p \approx 2$: positive solutions Symmetry breaking $1 + \lambda_2$? Multiplicity Numerics

Existence of infinitely many solutions

Well known: infinitely many sign changing solutions when the problem is invariant under an orthogonal symmetry group.

27 / 56

Existence of infinitely many solutions

Well known: infinitely many sign changing solutions when the problem is invariant under an orthogonal symmetry group.

Theorem (A Castro '03)

If Ω is a bounded region in \mathbb{R}^N that can be tiled by prisms congruent to

$$\{(x_1,...,x_N) : x_i \ge 0 \text{ for } i = 1,...,N, x_N \le \min\{x_i, a - x_i\} \text{ for } i = 1,...,N-1\}$$

with a > 0 arbitrarily small, then the problem $-\Delta u + u = |u|^{p-2}u$ with NBC on Ω has infinitely many sign-changing solutions.

Many positive solutions

Theorem (C. Gui, J. Wei, M. Winter '00)

For any smooth bounded domain Ω_1 , $p \in]2,2^*[$, and any fixed $K \in \mathbb{N}_0$, there always exists a boundary K-peaked positive solution to

$$(\mathcal{P}_p) \begin{cases} -\Delta u + u = |u|^{p-2}u, & \text{in } \Omega \\ \partial_{\nu} u = 0, & \text{on } \partial \Omega. \end{cases}$$

with $\Omega = R\Omega_1$, provided that R is large enough.

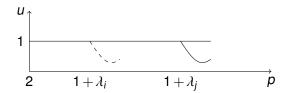
Peaks can also be inside Ω [M. Grossi, A. Pistoia, J. Wei '00] or both inside Ω and on $\partial\Omega$ [C. Gui, J. Wei '00].

p large: bifurcations from 1

Lemma

When p > 2 is increasing,

- a bifurcation **sequence** start from 1 **iff** p crosses $1 + \lambda_i$;
- this is actually a continuum if λ_i has **odd** multiplicity.



p large: transcritical radial bifurcations

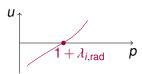
 $\lambda_{i,rad}$ eigenvalues that possess a radial eigenfunction (simple in H^1_{rad}).

Proposition

On balls, two branches radial solutions in $C^{2,\alpha}(\Omega)$ of

$$(\mathcal{P}_p) \begin{cases} -\Delta u + u = |u|^{p-2}u, & \text{in } \Omega \\ \partial_{\nu} u = 0, & \text{on } \partial \Omega. \end{cases}$$

start from each $(p,u) = (1 + \lambda_{i,rad}, 1)$, i > 1. Locally, these branches form a unique C^1 -curve. Moreover, for i large enough independent of the measure of Ω , the bifurcation is transcritical.



◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 下 少 Q C

p large: transcritical radial bifurcations

Proof. $\Omega = B_R$. Using Crandall-Rabinowitz' theorem, one has to show

$$b = -\frac{1}{2}\lambda_i(\lambda_i - 1) \int_{B_R} \varphi_{i,rad}^3 \neq 0.$$

Given that radial eigenfunctions are given by constant spherical harmonics $(k=0, \nu=(N-2)/2)$, this amounts to

$$\int_0^R \left(r^{-\frac{N-2}{2}} J_{\nu} \left(r \sqrt{\bar{\mu}_{i, \text{rad}}} / R \right) \right)^3 r^{N-1} \, \mathrm{d}r \neq 0 \quad \text{i.e.} \quad \int_0^{\sqrt{\bar{\mu}_{i, \text{rad}}}} t^{1-\nu} J_{\nu}^3(t) \, \mathrm{d}t \neq 0$$

where $\lambda_{i,rad} = 1 + \bar{\mu}_{i,rad}/R^2$. This is true for large i because

$$\int_0^\infty t^{1-\nu} J_\nu^3(t) \, \mathrm{d}t = \frac{2^{\nu-1} (3/16)^{\nu-1/2}}{\pi^{1/2} \Gamma(\nu+1/2)} > 0.$$

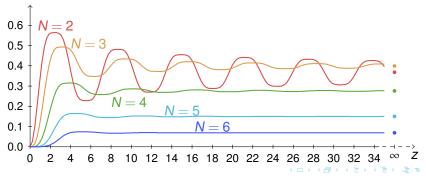
Thus b < 0.

p large: transcritical radial bifurcations

Numerical computations indicate that

$$\forall z \in]0, +\infty[, \int_0^z t^{1-\nu} J_{\nu}^3(t) dt > 0, \qquad \nu = (N-2)/2,$$

and therefore that radial bifurcations are transcritical for all i.



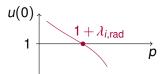
Christophe Troestler (UMONS)

Shape of transcritical radial bifurcations

$$u_p = 1 + \frac{p - (1 + \lambda_{i,rad})}{b} \varphi_{i,rad} + o(p - (1 + \lambda_{i,rad}))$$

where $\varphi_{i,\text{rad}}(x) = |x|^{-\nu} J_{\nu}(\sqrt{\lambda_{i,\text{rad}} - 1} |x|)$. Thus

- $u_p(0) > 1 \text{ if } p < 1 + \lambda_{i,rad}$
- $u_p(0) < 1 \text{ if } p > 1 + \lambda_{i,rad}$



These facts remain true along the whole banches.

Numerics

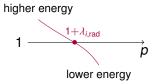
p large: positive transcritical radial bifurcations

Theorem (Crandall-Rabinowitz — extended)

Assume $F(p,u) = \partial_u \mathcal{E}(p,u)$. If (p,u_p) is the branch of nontrivial solutions emanating from (p^*,u^*) and $b \neq 0$,

$$\mathcal{E}(p, u_p) - \mathcal{E}(p, u^*) = \frac{a}{6b^2} (p - p^*)^3 + o((p - p^*)^3).$$

In our case a = -1. Consequence: the energy along the right (resp. left) branch is lower (resp. higher) than the one of the trivial solution.



 $p \approx 2$: ground state solutions $p \approx 2$: positive solutions Symmetry breaking $1 + \lambda_2$? Multiplicity Numerics

p large: positive transcritical radial bifurcations

Corollary

The branches consist of positive functions.

Sketch: If it was not the case, there would be a point solution along the branch with a double root, hence = 0. There is no bifurcation from 0.

p large: positive transcritical radial bifurcations

Corollary

The branches consist of positive functions.

Sketch: If it was not the case, there would be a point solution along the branch with a double root, hence = 0. There is no bifurcation from 0.

Theorem

Radial bifurcations obtained for the $C^{2,\alpha}(\Omega)$ -norm are unbounded and do not intersect each other. Moreover, along bifurcations starting from $(1+\lambda_{i,rad},1)$, the solutions always possess the same number of intersections with 1.

Sketch: The number of crossings with 1 stays constant because otherwise a non-constant radial solution u s.t. u-1 has a double root would exists. Since the branches do not intersect each other, Rabinowitz's principle says they must be undounded.

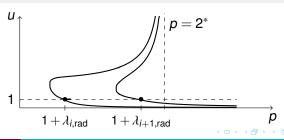
p large: multiplicity results (radial domains)

Theorem

Assume Ω is a ball.

- In dimension 2, for any $n \in \mathbb{N}_0$, there exists $p_n > 2$ such that, for any $p > p_n$, at least 2n 1 positive solutions exist
- In dimension \geqslant 3, for any 2 \mathbb{N}_0, at least 2n 1 positive solutions exist if the measure of the ball Ω is large enough.

In both cases, n of these solutions are bounded in L^{∞} .



Conjecture

One can choose $p_n = 1 + \lambda_{n,rad}$ and "large enough" as $1 + \lambda_{n,rad}(R) < p$.

The conjecture is proved as soon as $\forall z \in]0, +\infty[, \int_0^z t^{1-\nu} J_{\nu}^3(t) dt > 0$, with $\nu \in \frac{1}{2} \mathbb{N}$, is established.

p large: degeneracy results (radial domains)

Conjecture

One can choose $p_n = 1 + \lambda_{n,rad}$ and "large enough" as $1 + \lambda_{n,rad}(R) < p$.

The conjecture is proved as soon as $\forall z \in]0, +\infty[, \int_0^z t^{1-\nu} J_{\nu}^3(t) dt > 0$, with $\nu \in \frac{1}{2}\mathbb{N}$, is established.

Theorem

On balls, there exists a degenerate positive radial solution for some p provided that the measure of Ω is large enough.

38 / 56

Theorem (Adimurthi, Yadava '91)

Let $p = 2^*$ and $\Omega = B_R$. One consider the problem

$$(\mathcal{P}_p) \begin{cases} -\Delta u + u = |u|^{p-2}u, & \text{in } \Omega \\ \partial_{\nu} u = 0, & \text{on } \partial\Omega. \end{cases}$$

- If $N \ge 3$ and $1 + \lambda_{2,rad}(R) < p$, then (\mathcal{P}_p) admits a positive solution which is radially increasing.
- If $N \in \{4,5,6\}$ and $p < 1 + \lambda_{2,rad}(R)$, then (\mathcal{P}_p) admits a positive solution which is radially decreasing.
- If N = 3, there exists an $R^* > 0$ such that for $R \in]0, R^*[, (\mathcal{P}_p)]$ only admits constant positive solutions.

$$p \geqslant 2^*$$

Theorem (X-J. Wang, '91)

When $p = 2^*$ and $\Omega = R\Omega_1$ with R large enough, (\mathcal{P}_p) possesses at least one non-constant positive solution.

Theorem (X-J. Wang, '91)

When $p = 2^*$ and $\Omega = R\Omega_1$ with R large enough, (\mathcal{P}_p) possesses at least one non-constant positive solution.

Theorem (E. Serra & P. Tilli, '11)

Assume $a \in L^1(]0, R[)$ is increasing, not constant and satisfies a > 0 in]0, R[, then for any $p \in]2, +\infty[$, $-\Delta u + u = a(|x|)|u|^{p-2}u$ with NBC possesses a positive radially increasing solution.

Trick: work on the space of radially increasing functions.

$$p \geqslant 2^*$$

Proposition

Assume Ω is a ball of radius R. If u is a radial solution of (\mathcal{P}_p) such that u(0) < 1, then $||u||_{L^{\infty}} \leq \exp(1/2)$.

Proposition

Assume Ω is a ball of radius R. If u is a radial solution of (\mathcal{P}_p) such that u(0) < 1, then $||u||_{L^{\infty}} \leq \exp(1/2)$.

PROOF. In radial coordinates, the equation writes

$$-u'' - \frac{N-1}{r}u' + u = u^{p-1}.$$

Multiplying by u', we get

$$\frac{\mathrm{d}}{\mathrm{d}r}h(r)=-\frac{N-1}{r}u'^2(r)\leqslant 0,$$

where

$$h(r) := \frac{u'^2(r)}{2} + \frac{u^p(r)}{p} - \frac{u^2(r)}{2}.$$

In particular, this means that $h(r) \leq h(0)$ for any r.

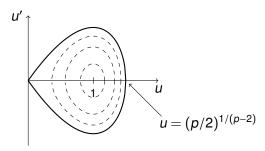
$$p \geqslant 2^*$$

Proof (CONT'D). The assumption u(0) < 1 implies

$$h(0) = \frac{u^p(0)}{p} - \frac{u^2(0)}{2} = u^2(0) \left(\frac{u^{p-2}(0)}{p} - \frac{1}{2} \right) \le 0.$$

Thus

$$||u||_{L^{\infty}} \leqslant \left(\frac{p}{2}\right)^{1/(p-2)} \leqslant \exp(1/2).$$



$$p \geqslant 2^*$$

Theorem

Assume Ω is a ball. Then, for any $n \in \mathbb{N}_0$, there exists p_n s.t., for any $p \in [p_n, +\infty[$, (\mathcal{P}_p) has at least n positive radially symmetric solutions.

43 / 56

Theorem

Assume Ω is a ball. Then, for any $n \in \mathbb{N}_0$, there exists p_n s.t., for any $p \in [p_n, +\infty[$, (\mathcal{P}_p) has at least n positive radially symmetric solutions.

Sketch: As we saw, radial bifurcations are transcritical and along the right branch (starting with $p > 1 + \lambda_{i,rad}$) $u_p(0) < 1$. Thus all u belonging to that branch must satisfy $||u||_{L^\infty} \le \exp(1/2)$. Since 1 is the only solution for $p \approx 2$, the branch must exist for all p large.

$$p \geqslant 2^*$$

Theorem

Assume Ω is a ball. Then, for any $n \in \mathbb{N}_0$, there exists p_n s.t., for any $p \in [p_n, +\infty[$, (\mathcal{P}_p) has at least n positive radially symmetric solutions.

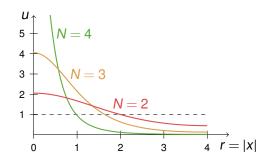
Sketch: As we saw, radial bifurcations are transcritical and along the right branch (starting with $p > 1 + \lambda_{i,rad}$) $u_p(0) < 1$. Thus all u belonging to that branch must satisfy $||u||_{L^\infty} \le \exp(1/2)$. Since 1 is the only solution for $p \approx 2$, the branch must exist for all p large.

Conjecture

$$p_n = 1 + \lambda_{n,rad}$$
.

Radial ground state for $p = 0.95 + \lambda_{2,rad} < 2^*$ on B_4

Using the Mountain Pass Algorithm in the space of radial functions:



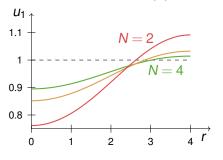
		$1 + \lambda_{2,rad}$				
2	∞	2.92	7.60	0.447	2.05	7.45
3	6	3.26	50.58	0.130	4.05	34.85
4	4	3.65	50.58 280.58	0.016	13.31	66.39

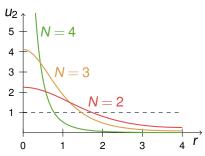
□ ト 4 個 ト 4 差 ト 4 差 ト 差 1章 からで

 $1+\lambda_2$?

Radial ground state for $p = 1.1 + \lambda_{2,rad} < 2^*$ on B_4

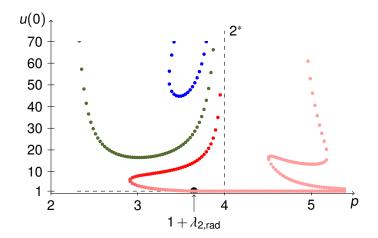
Using the Mountain Pass Algorithm in the space of radial functions with initial functions $x \mapsto 1 \pm 0.2|x|$.





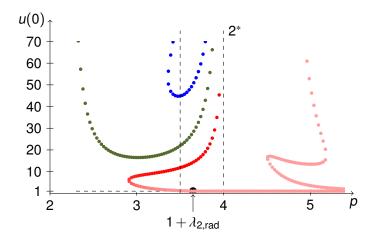
Ν	$1+\lambda_{2,rac}$	$_{\sf d}~\mathcal{E}(1)$	mın <i>u</i> ₁	max u ₁	$\mathcal{E}(u_1)$	$min u_2$	max u ₂	$\mathcal{E}(u_2)$
2	2.92	8.48	0.76	1.09	8.47	0.261	2.25	7.39
3	3.26	54.30	0.85	1.03	54.29	0.092	4.12	30.74
4	3.65	294.63	0.90	1.01	294.62	0.008	17.25	49.61
			•			•		

Bifurcation diagram N = 4, R = 4

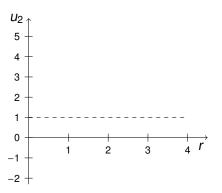


Multiplicity

Bifurcation diagram N = 4, R = 4

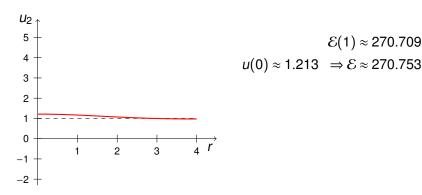


Shape of the solutions for $p = 3.5 < 1 + \lambda_{2,rad}$.

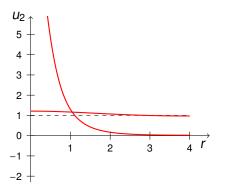


 $\mathcal{E}(1) \approx 270.709$

Shape of the solutions for $p = 3.5 < 1 + \lambda_{2,rad}$.



Shape of the solutions for $p = 3.5 < 1 + \lambda_{2,rad}$.



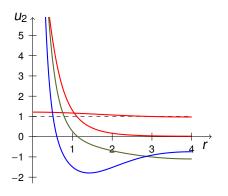
$$\mathcal{E}(1) \approx 270.709$$

$$u(0) \approx 1.213 \quad \Rightarrow \mathcal{E} \approx 270.753$$

$$u(0) \approx 11.803 \Rightarrow \mathcal{E} \approx 79.730$$

 $p \approx 2$: positive solutions

Shape of the solutions for $p = 3.5 < 1 + \lambda_{2,rad}$.



$$\mathcal{E}(1) \approx 270.709$$

$$u(0) \approx 1.213 \implies \mathcal{E} \approx 270.753$$

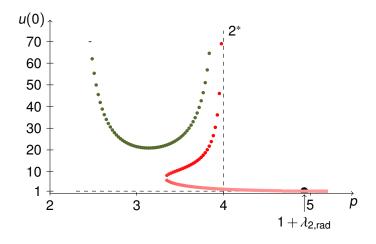
 $1+\lambda_2$?

$$u(0) \approx 11.803 \Rightarrow \mathcal{E} \approx 79.730$$

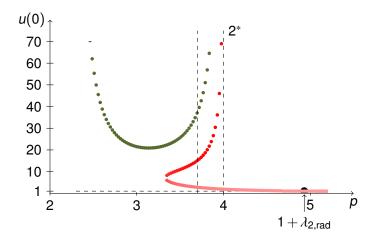
$$u(0) \approx 21.887 \Rightarrow \mathcal{E} \approx 390.387$$

$$u(0) \approx 44.830 \Rightarrow \mathcal{E} \approx 436.267$$

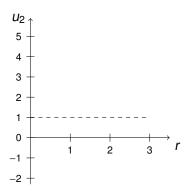
Bifurcation diagram N = 4, R = 3



Bifurcation diagram N = 4, R = 3

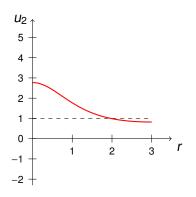


Shape of the solutions for $p = 3.7 < 2^* < 1 + \lambda_{2,rad}$.



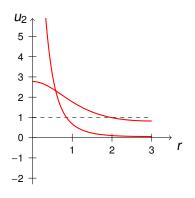
$$\mathcal{E}(1) \approx 91.8273$$

Shape of the solutions for $p = 3.7 < 2^* < 1 + \lambda_{2,rad}$.



$$\mathcal{E}(1) \approx 91.8273$$
 $u(0) \approx 2.77189 \Rightarrow \mathcal{E} \approx 95.7796$

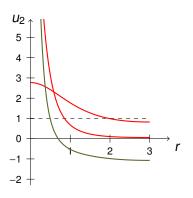
Shape of the solutions for $p = 3.7 < 2^* < 1 + \lambda_{2,rad}$.



$$\mathcal{E}(1) \approx 91.8273$$
 $u(0) \approx 2.77189 \Rightarrow \mathcal{E} \approx 95.7796$
 $u(0) \approx 15.1307 \Rightarrow \mathcal{E} \approx 54.283$

 $p \approx 2$: positive solutions

Shape of the solutions for $p = 3.7 < 2^* < 1 + \lambda_{2 \text{ rad}}$.



$$\mathcal{E}(1) \approx 91.8273$$

$$u(0) \approx 2.77189 \Rightarrow \mathcal{E} \approx 95.7796$$

$$u(0) \approx 15.1307 \Rightarrow \mathcal{E} \approx 54.283$$

$$u(0) \approx 37.412 \implies \mathcal{E} \approx 168.972$$

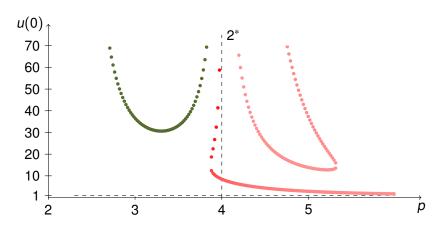
50 / 56

 $1+\lambda_2$?

Bifurcation diagram N = 4, R = 2

 $p \approx 2$: positive solutions

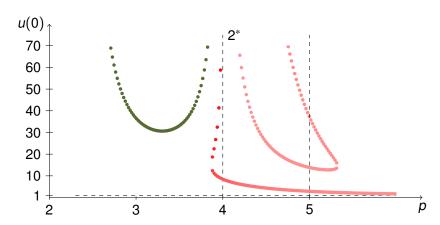
$$1+\lambda_2\approx 8.59365$$



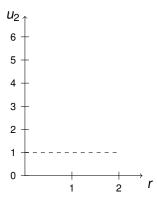
 $1+\lambda_2$?

Bifurcation diagram N = 4, R = 2

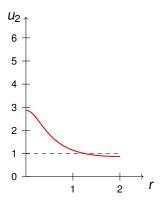
$$1+\lambda_2\approx 8.59365$$



Shape of the solutions for $2^* .$

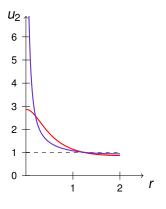


Shape of the solutions for $2^* .$



 $u(0) \approx 2.86611$

Shape of the solutions for $2^* .$

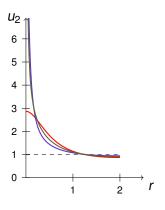


$$u(0) \approx 2.86611$$

 $u(0) \approx 13.8393$

 $p \approx 2$: positive solutions

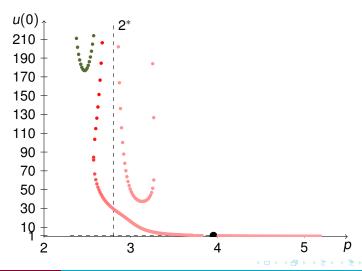
Shape of the solutions for $2^* .$



- $u(0) \approx 2.86611$
- $u(0) \approx 13.8393$
- $u(0) \approx 37.0332$

Bifurcation diagram N = 7, R = 5

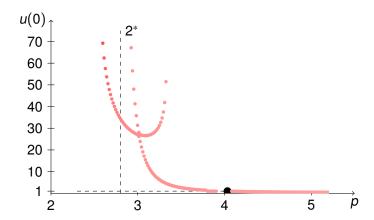
$$1 + \lambda_{2,rad} \approx 3.95325$$



 $1+\lambda_2$?

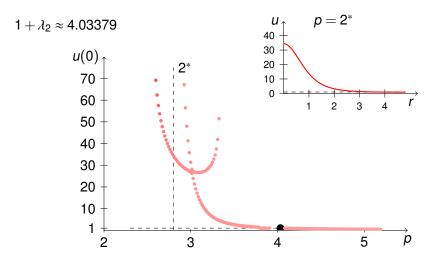
 $p \approx 2$: positive solutions

$$1 + \lambda_2 \approx 4.03379$$

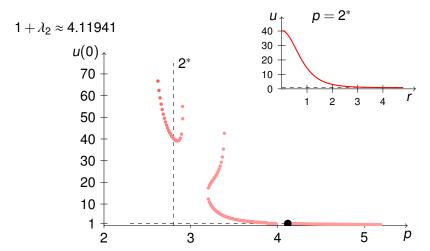


 $1+\lambda_2$?

Bifurcation diagram N = 7, R = 4.9



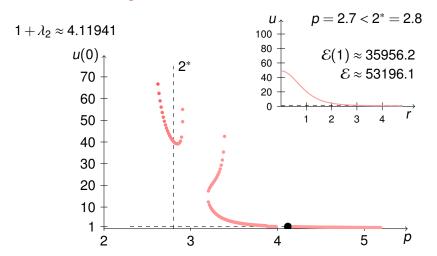
Bifurcation diagram N = 7, R = 4.8



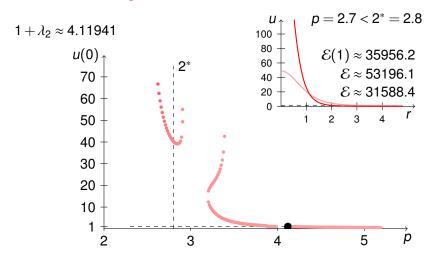
 $1 + \lambda_2$?

Bifurcation diagram N = 7, R = 4.8

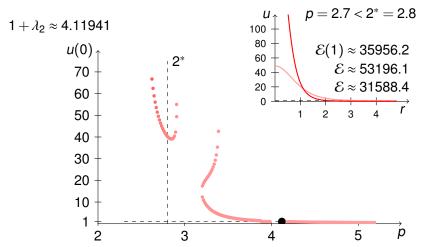
 $p \approx 2$: positive solutions



Bifurcation diagram N = 7, R = 4.8



Bifurcation diagram N = 7, R = 4.8



It is known [Adimurthi & S. L. Yadava '97] that if $N \ge 7$ and R is small enough, positive solutions for $p = 2^*$ must be constant.

◆□▶◆圖▶◆불▶◆불≥ 외익()

 $p \approx 2$: ground state solutions

55 / 56

Thank you for your attention.

Krasnoselskii-Boehme-Marino theorem (1/2)

Theorem (Krasnoselskii-Boehme-Marino)

Let $F: I \times H \to K: (t, u) \mapsto F(t, u)$ be a continuous function, where $I \subseteq \mathbb{R}$ is an interval, and H and K are Banach spaces, such that $F(\lambda,0) = 0$ for any $\lambda \in I$.

- If F is of class C^1 in a neighborhood of $(\lambda,0)$ and $(\lambda,0)$ is a bifurcation point of F then $\partial_{\mu}F(\lambda,0)$ is not invertible.
- Let assume that for each $(\lambda, u) \in I \times H$,

$$F(\lambda, u) = L(\lambda, u) - N(\lambda, u), \quad L(\lambda, \cdot) = \lambda \mathbb{1} - T \quad and \quad N(\lambda, u) = o(\|u\|),$$

with T linear, T and N compact, and the last equality being uniform on each compact set of λ .

If λ_* is an eigenvalue of T with odd multiplicity, then $(\lambda_*,0)$ is a global bifurcation point for F(t, u) = 0.

Krasnoselskii-Boehme-Marino theorem (2/2)

Theorem (Krasnoselskii-Boehme-Marino (cont'd))

Let assume that H is a Hilbert space and that for each $(\lambda, u) \in I \times \mathbb{R}$, $F(\lambda, u) = \nabla_u h(\lambda, u)$ where

$$h(\lambda, u) = \frac{1}{2} \langle L(\lambda, u), u \rangle - g(\lambda, u),$$

$$L(\lambda, \cdot) = \lambda \mathbb{1} - T, \quad \text{and} \quad \nabla g(\lambda, u) = o(||u||),$$

with T linear and symmetric, $g(\lambda, \cdot) \in C^2$ for all λ , and the last equality being uniform on each compact set of λ .

If λ_* is an eigenvalue of T with finite multiplicity and $h(\lambda, \cdot)$ verifies the Palais-Smale condition for each λ , then $(\lambda_*, 0)$ is a bifurcation point for F(t, u) = 0.

