Multiplicity and symmetry of positive solutions to
semi-linear elliptic problems with Neumann boundary
conditions

Christophe Troestler
(Joint work with D. Bonheure & C. Grumiau)

Department of Mathematics
University of Mons

UMONS

International Workshop on Variational Problems and PDE’s
Sé&o Paulo — Brazil



p =~ 2: ground state solutions p =~ 2: positive solutions Symmetry breaking 14+ 22?7 Multiplicity Numerics

The Lane-Emden problem

Let 2 c RN be open and bounded, N>2, and 2 < p < 2" := 2. We
consider
~Au+u=|uP?u, inQ
GO
o,u=0, on 09.

Solutions are critical points of the functional

8p:H1(Q)—>R:ur—>1§f|Vu|2+u2—%flulp
Q Q

Notation: 1 = A1 < A2 < --- denote the eigenvalues of —A + 1
E; denote the corresponding eigenspaces

Remark: 0 and =1 are always (trivial) solutions.
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Outline

p =~ 2: ground state solutions

p ~ 2: positive solutions

Symmetry breaking of the ground state
Symmetry breaking at p =1+ 1,7
Multiplicity results (radial domains)

BB Some numerical computations
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Dirichlet boundary conditions

—~Au+u=|uP?u inQ,
u=20 on 0f).

m The ground state solution is positive and is
even w.r.t. any hyperplane leaving Q invariant
(when Q is convex). In particular, it is radially
symmetric on a ball.

m Uniqueness of the positive solution when Q2 is a
ball.

m If Q is strictly starshaped and p > 2*, no
solution exist.

Christophe Troestler (UMONS)
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Existence of ground state solutions (p < 2%)

Theorem (Z. Nehari, A. Ambrosetti,
P.H. Rabinowitz)
For any p €2,2*[, (Pp) possesses

a ground state solution to (Pp);

it is a one-signed function;

its Morse index is 1.

Christophe Troestler (UMONS)
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p ~ 2: symmetry of ground state solutions

Theorem (D. Bonheure, V. Bouchez, C. Grumiau, C. T., J. Van Schaftingen, 08)

For p close to 2 and any R € O(N) s.t. R(2) = €2, ground state solutions
to (Pp) are symmetric w.r.t. R.

E.g. if Q is radially symmetric, so must the the ground state solution be.

Remark that the seminal method of moving planes is not applicable.

Christophe Troestler (UMONS)
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Unigueness of the positive solution

Theorem

1 is the unique positive solution to —Au+ u = |ulP~?u with NBC for p small.

Christophe Troestler (UMONS)
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Unigueness of the positive solution

Theorem
1 is the unique positive solution to —Au+ u = |ulP~?u with NBC for p small.

Let v := Pg, u (constant function) and w := PE#u (zero mean).

fleIerwz:flulp“w
Q Q

As Ay =1< A, forp~2, w=0andthenu=v=1.

Christophe Troestler (UMONS)
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Unigueness of the positive solution

Theorem
1 is the unique positive solution to —Au+ u = |ulP~?u with NBC for p small.

Let v := Pg, u (constant function) and w := PE#u (zero mean).

/1sz2< flelz—i—wz:flqu_‘w
Q Q Q

As 11 =1< A, forp~2, w=0andthenu=v=1.
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Unigueness of the positive solution

Theorem

1 is the unique positive solution to —Au+ u = |ulP~?u with NBC for p small

Let v := Pg,u (constant function) and w := PE#u (zero mean).

f fIVWIZJrW —flul’01 f (v+w)P~ V’H)w

As Ay =1< A, forp~2, w=0andthenu=v=1.
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Unigueness of the positive solution

Theorem
1 is the unique positive solution to —Au+ u = |ulP~?u with NBC for p small.

Let v := Pg, u (constant function) and w := PE#u (zero mean).
/lgf w? < fleIerwz = flulp_1w= f ((v+ w)P~! —vp‘1)w
Q Q Q Q
— [ smpiwt @pclo)
Q

<(p—1)(|v|+||w||oo)P—2wi2<(p—1)Kp-2wi2.

As 11 =1< A, forp~2, w=0andthenu=v=1.
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A priori bounds for positive solutions

Lemma
Positive solutions (up) are bounded in L* as p ~ 2.

m Integration & Holder: f ug_1 = f up <€ (recall up > 0).
Q Q

m Brezis-Strauss: from the bound on up_1, we deduce a bound on

P
lupllwra()y, 1< g <N/(N-1).

m Sobolev embedding: (up) bounded in L"(2), 1 <r < N/(N-2).

m Bootstrap: lupllwar () is bounded for some r > N/2 when p ~ 2.

Christophe Troestler (UMONS)
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A priori bounds for positive solutions

Proposition

Let2 < p < 2*. There exists Cp > 0 such that any positive solution to ()
with 2 < p < p satisfies max{||u||H1 , ||u||Loo} < Gp.

Christophe Troestler (UMONS)



p ~ 2: ground state solutions p ~ 2: positive solutions Symmetry breaking 14+ 22?7 Multiplicity Numerics

A priori bounds for positive solutions

Proposition
Let2 < p < 2*. There exists Cp > 0 such that any positive solution to ()
with 2 < p < p satisfies max{||u||H1 , IIUIILw} < Gp.

It remains to obtain a bound for 2 < p < p <2* in L*. Blow up argument
(Gidas-Spruck). Suppose on the contrary that there is a sequence

(Pn) € [p.P] and (up,) st
Up,(Xp,) :=llUp,llLe = +c0 and  p, — p* € [p,p].
(Drop index n.) Define

Vo) = spUp(F 22y +x5)  where jip == 1/lluplii — 0.

Note: v,(0) = [IVpllLe = 1.

Christophe Troestler (UMONS)



p ~ 2: ground state solutions p ~ 2: positive solutions Symmetry breaking 14+ 22?7 Multiplicity Numerics

A priori bounds for positive solutions
The rescaled function v, satisfies

with NBC. By elliptic regularity, (v,) is bounded in W2 and C'%, 0 <a < 1
on any compact set. Thus, taking if necessary a subsequence,

Vo — V" in W2" and C"*® on compact sets of Q* = RN or RN xR, ,.
One has v* >0, v*(0) = 1 =||v|l.~ and v* satisfies

. ~Av* = (v )P inRN-TxR
AV =(v)P! inRN or v =(v") ! >a
onv' =0 when xy = a

Liouville theorems imply v* = 0.

Christophe Troestler (UMONS)
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Symmetry breaking of the ground state

Theorem (W.-M. Ni, I. Takagi, '93; Adimurthi, F. Pacella, S.L. Yadava
'93)

When R is sufficiently large, ground state solutions possess a unique
maximum point Pg € 9(RS2). Moreover, ug — 0 outside a small
neighborhood of Pg. Pg is situated at the “most curved” part of d( R(2).

Christophe Troestler (UMONS)
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p large: symmetry breaking of the ground state

Corollary

1 cannot remain the ground state for all p on “large” domains.

Christophe Troestler (UMONS)
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p large: symmetry breaking of the ground state

Corollary

1 cannot remain the ground state for all p on “large” domains.

Lemma
1 cannot remain the ground state solution for p > 1+ Ap.

Proof. The Morse index of 1 is the sum of the dimension of the
eigenspaces corresponding to negative eigenvalues A of

-Av+v=(p-1)v+av, inQ,
J,v=0, on 09.

i.e. eigenvalues of —A + 1 less than p—1. When p > 1+ A, the Morse
index of the solution 1 is > 1. O

Christophe Troestler (UMONS)



p ~ 2: ground state solutions p ~ 2: positive solutions Symmetry breaking 14+227? Multiplicity Numerics

p large: symmetry breaking of the ground state
Proposition (Lopez, ’96)

On radial domains, the ground state is either constant or (e.g. when
p > 1+ A2) not radially symmetric.

Christophe Troestler (UMONS)
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p large: symmetry breaking of the ground state

Proposition (Lopez, ’96)

On radial domains, the ground state is either constant or (e.g. when
p > 1+ A») not radially symmetric.

Proposition

When Q is a ball or an annulus, the Morse index of a non-constant positive
radial solution is at least N+ 1. In particular, when p > 1+ A», ground state
solutions cannot be radial.

Based on: A. Aftalion, F. Pacella, Qualitative properties of nodal solutions of semilinear elliptic equations in radially symmetric domains, CRAS, 339(5), '04.

Let u be non-constant positive radial solution of (#,). We have to show
that

Lv:=-Av+v—(p-1)uP?v

with NBC possesses N + 1 negative eigenvalues.

Christophe Troestler (UMONS)
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p large: symmetry breaking of the ground state

u radial = dy,u =0 on 92 and on ;. Q.
i +

NI,

Xi

Christophe Troestler (UMONS)
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p large: symmetry breaking of the ground state

u radial = dy,u =0 on 92 and on ;. Q.
Let x € Q" s.t. dyu(x) #0. Let D be the connected Q7 _—-
component of {d,,u(X) # 0} containing X. D € Q"

Xi

Christophe Troestler (UMONS)
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p large: symmetry breaking of the ground state

u radial = dy,u =0 on 92 and on ;. Q.
Let X € Q" s.t. dyu(x) #0. Let D be the connected Q-
component of {d,,u(X) # 0} containing X. D € Q"

L(dxu)=0, onD; dxu=0, ondD. X;

Christophe Troestler (UMONS)
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p large: symmetry breaking of the ground state

u radial = dy,u =0 on 92 and on ;.
Let X € Q" s.t. d5u(X) # 0. Let D be the connected
component of {d,,u(X) # 0} containing X. D € Q"

L(dxu)=0, onD; dxu=0, ondD.

= A4(L,D,DBC) =0
= 44(L,Q,DBC) <0

Christophe Troestler (UMONS)
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p large: symmetry breaking of the ground state

u radial = dy,u =0 on 92 and on ;.
Let X € Q" s.t. d5u(X) # 0. Let D be the connected
component of {d,,u(X) # 0} containing X. D € Q"

L(dxu)=0, onD; dxu=0, ondD.

= A4(L,D,DBC) =0
= (L, ", DBC) <0
= i == A1(L,Q;",DBC on ©; and NBC on 4Q;" \ ;) <0
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p large: symmetry breaking of the ground state

u radial = dy,u =0 on 92 and on ;.
Let X € Q" s.t. d5u(X) # 0. Let D be the connected
component of {d,,u(X) # 0} containing X. D € Q"

L(dxu)=0, onD; dxu=0, ondD.

= ;(L,D,DBC) =0

= 1:(L,Q,DBC) <0

= i == A1(L,9;",DBC on ©; and NBC on 4Q;"\ ;) <0
If ¥; > 0 is the first eigenfunction of L on er with DBC on €2; and NBC on
o0\ Q, its odd extension y; to Q satisfies

L)) =mv), onQ,  dyi=0, ondQ.

Christophe Troestler (UMONS)
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p large: symmetry breaking of the ground state

u radial = dy,u =0 on 92 and on ;.
Let X € Q" s.t. d5u(X) # 0. Let D be the connected
component of {d,,u(X) # 0} containing X. D € Q"

L(dxu)=0, onD; dxu=0, ondD.

= ;(L,D,DBC) =0

= 1:(L,Q,DBC) <0

= i == A1(L,Q;",DBC on ©; and NBC on 4Q;" \ ;) <0
If ¥; > 0 is the first eigenfunction of L on er with DBC on €2; and NBC on
o0\ Q, its odd extension y; to Q satisfies

L)) =), onQ,  duf=0, ondQ.

Al g, j # i vanish on the axis x; = the family (;b;‘)}" ; is lin. indep.

Christophe Troestler (UMONS)
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p large: symmetry breaking of the ground state

u radial = dy,u =0 on 92 and on ;.
Let X € Q" s.t. d5u(X) # 0. Let D be the connected
component of {d,,u(X) # 0} containing X. D € Q"

L(dxu)=0, onD; dxu=0, ondD.

= A4(L,D,DBC) =0
= (L, ", DBC) <0
= i == A1(L,Q;",DBC on ©; and NBC on 4Q;" \ ;) <0

If i > 0 is the first eigenfunction of L on QI?L with DBC on €2; and NBC on
8(27r \ ©2;, its odd extension ¢} to (2 satisfies

L) =wy;, onQ,  dyi=0, ondQ.

All g7, j # i vanish on the axis x; = the family (gb]f‘)j’\’:1 is lin. indep.
None of the (y;), is a first eigenfunction.
Christophe Troestler (UMONS)
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p large: symmetry breaking of the ground state
Theorem (Lopes, '96)

On radial domains, ground state solutions are symmetric w.r.t. any
hyperplane containing a line L passing through the origin.

Theorem (J. Van Schaftingen, '04)

On radial domains, ground state solutions are foliated Schwarz symmetric.

d

There exists a unit vector d s.t. u depends
only on r = |x| and ¥ = arccos(ﬁ -d) and is
non-increasing in 9.

Christophe Troestler (UMONS)
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p large: non-radially symmetric ground state

Q=B CR? = 1+1,~5.39

p=>5.5

Christophe Troestler (UMONS)
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Ground states — summary

m When p = 2, 1 is the sole positive solution (hence the GS are +1).
m Whenp > 1+ Ao,

= 1 is not the GS anymore;
= on a ball or an annulus, GS solutions are not radial but foliated
Schwarz symmetric.

Christophe Troestler (UMONS)
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Ground states — summary

m When p = 2, 1 is the sole positive solution (hence the GS are +1).
m Whenp > 1+ Ao,

= 1 is not the GS anymore;

= on a ball or an annulus, GS solutions are not radial but foliated
Schwarz symmetric.

Theorem (Lin, Ni, Takagi '88)

Let Q4 < RN be a bounded smooth domain and p € ]2,2*[. There exists
0 < Ry < Ry such that the equation —Au+ u = [ulP~?u with NBC on
Q = R4 possesses

only constant positive solutions for R < Ry;
a non-constant positive solution for R > Ry.

Christophe Troestler (UMONS)
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Symmetry breaking at exactly p =1+ 12?

Conjecture
+1 are the ground states of —Au -+ u = |ulP~2u with NBC for all p < 1 + 2.
m [f1+4 A2 > 2%, no concentration therefore occurs when p — 2.

m If1+ 22 < 2", the GS solutions for p € |1+ A2,2*[ lie on the branch
emanating from (p,u) = (1+ A2,1) and concentrate on the boundary
asp— 2.

Evidence for this conjecture: examine the bifurcation at p = 1+ 1> on a ball.

Christophe Troestler (UMONS)
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Symmetry breaking at exactly p =1+ 12?
The linearisation of the equation around u=1,

Lv:=-Av+v—-(p-1)v

is not invertible iff p =1+ 24;, i > 2.

Christophe Troestler (UMONS)
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Symmetry breaking at exactly p =1+ 12?
The linearisation of the equation around u=1,
Lv:=-Av+v—-(p-1)v

is not invertible iff p =1+ 24;, i > 2.
Eigenfunctions of —A + 1 with NBC have the form:

= N-2
u(x) = 1% J,(Vir) Pe (%) where v — k+ 2=2,

Numerics

r = x|, and Px : RN = R is an harmonic homogenous polynomial of degree

k for some k € N. To satisfy the boundary conditions:

ViR is aroot of z - (k —v)Jd,(2) + 20J,(2) = kdy(2) — 2dy+1(2).

=>Ai=1+u

Christophe Troestler (UMONS)
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Symmetry breaking at exactly p =1+ 12?

In particular, a basis of E> is

N-2 Xj i
XI—)I’_TJN/Q(\//_U‘)#V j:1,...,N.

There is single function (up to a multiple) that is invariant under rotation in
(X2,5- .-, XN)-

Christophe Troestler (UMONS)
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Symmetry breaking at exactly p =1+ 12?

In particular, a basis of E> is
_N=2 Xj ,
X2 JN/z(‘/’Hr)Yl’ j=1,...,N.
There is single function (up to a multiple) that is invariant under rotation in
(X2,...,XN)-
Theorem (Crandall-Rabinowitz *71)

Let X and Y two Banach spaces, u* € X, and a function F :Rx X — Y :
(p,u) — F(p,u) such thatV¥p eR, F(p,u") = 0. Let p* € R be such that
ker(duF(p*,u*)) = span{¢*} has a dimension 1 and

codim(lm(auF(p* u*))) =1. Lety : Y — R be a continuous linear map
such that Im(d,F(p*,u*)) ={y €Y : (y,y) =0}

In our case F(p,u) = —Au+u—|uP~2u, p* =1+, U" =1, ¢* = o.

Christophe Troestler (UMONS)
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Symmetry breaking at exactly p =1+ 12?
Theorem (Crandall-Rabinowitz (cont'd))

Ifa = (y,0puF(p*,u")[¢"]) # 0, then (p*,u*) is a bifurcation point for F. In
addition, the set of non-trivial solutions of F = 0 around (p*,u*) is given by

a unique C' curve p — u,. The local behavior of the branch (p, up) for p
close to p* is as follows.

In our case,

Christophe Troestler (UMONS)
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Symmetry breaking at exactly p =1+ 12?

Theorem (Crandall-Rabinowitz (cont'd))

Ifa = (y,0puF(p*,u")[¢"]) # 0, then (p*,u*) is a bifurcation point for F. In
addition, the set of non-trivial solutions of F = 0 around (p*,u*) is given by
a unique C' curve p — up,. The local behavior of the branch (p, up) for p
close to p* is as follows.

wlfb:= —21—a<;0, 2F(p*, u*)[go*,ga*]) # 0 then the branch is transcritical and

— p* u
UpZU*+pbp " +o(p—p°).

In our case,

Christophe Troestler (UMONS)
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Symmetry breaking at exactly p =1+ 12?
Theorem (Crandall-Rabinowitz — extended)
= Ifb=0, let us define u
. 1 3 k% % % % * ,D
C:= _a(<'~/”auF(p ,u )[90 P 9 ]> p
+3<‘”’65F(p*’“*)[90*’w]>) Supercritical
where w € X is any solution of the equation
duF(p*,u")[w] = =05F (p*,u)[¢",¢"]. Ifc # 0
then b
p*
_p*\1/2
up:u*i(p P ) ¢ +o(lp-p*I'"?).
¢ Subcritical

In particular, the branch is supercritical if ¢ > 0
and subcritical if ¢ < 0.

Christophe Troestler (UMONS)
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Symmetry breaking at exactly p =1+ 12?

In our case,

02%12(22—1)(—(/12—2)L wg—312(12—1)LR¢§W)

where (A +1-12)w = ¢3 with NBC on Bg.

Christophe Troestler (UMONS)
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Symmetry breaking at exactly p =1+ 12?

In our case,

c:%42(12—1)(—(42-2)LR¢3-342(@-1)L

where (A +1-12)w = ¢3 with NBC on Bg.

5 W)

R

1_ Ho Ho
= g/lgR (N+2)(1 -+ ﬁ)((ﬁ—a)ﬁ —i—,B—l-a/)

where a = f Pa Bi= —3ﬁ2f Fow,
B4 B
(=A —fiz)w = @3 with NBC on Bj,

{2 and i > 0 are “the” second eigenfunction and eigenvalue
of —A with NBC on By s.t. |p2];2 = 1.

Christophe Troestler (UMONS)
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Symmetry breaking

14+227? Multiplicity

Symmetry breaking at exactly p =1+ 12?

We numerically have

N @ B L—a Bb+a
2 | 0.5577 0.5884 0.0306 1.1461
3 | 0.4632 0.3096 -0.1536 0.7728
4 104222 0.1694 -0.2528 0.5916
5104171 0.0858 -0.3313 0.5029
6 | 0.4421 0.0250 -0.4171 0.4671
RN+2C

4 N=2

3

2

1 N:S,_\:

. : 3 ! R, radius of the ball

2

-3 N:7

-4

Numerics

Christophe Troestler (UMONS)
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Symmetry breaking at exactly p =1+ 12?

We numerically have

N @ B L—a Bb+a
2 | 0.5577 05884 0.0306 1.1461
3 | 04632 0.3096 -0.1536 0.7728
4 | 04222 0.1694 -0.2528 0.5916
5104171 0.0858 -0.3313 0.5029
6 | 0.4421 0.0250 -0.4171 0.4671
RN+2C
4 N=2 emarks R s.t. 1+ 13(R) =2"
3
2
1
4 R, radius of the ball
2
-3 N f 7
-4

Christophe Troestler (UMONS)
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Symmetry breaking at exactly p =1+ 12?

We numerically have

N @ B L—a Bb+a
2 | 0.5577 0.5884 0.0306 1.1461
3 104632 0.3096 -0.1536 0.7728
4 | 04222 0.1694 -0.2528 0.5916
5104171 0.0858 -0.3313 0.5029
6 | 0.4421 0.0250 -0.4171 0.4671
RN+2C
4 N=2 emarks Rs.t. 1+42(R) =2"
z = ¢ > 0 in the subcritical range
;
4 R, radius of the ball
2
3 N=7
-4

Christophe Troestler (UMONS)
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Symmetry breaking at exactly p =1+ 12?

Theorem (Crandall-Rabinowitz — extended)

Assume F(p,u) = d,8(p,u). If (p,up) is the branch of nontrivial solutions
emanating from (p*,u*), b=0and c # 0,

% a * " — n*
E(p,Up) ~E(p. ") = o= (p—pP"f+0((p-p")?)  when E=F->0.

In our case, a= -1 <0 and ¢ > 0. Consequence: the energy along the

super-critical branch emanating from (1 + 12, 1) has lower energy than the
trivial solution 1.

Christophe Troestler (UMONS)
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Multiplicity

Christophe Troestler
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Existence of infinitely many solutions

Well known: infinitely many sign changing solutions when the problem is
invariant under an orthogonal symmetry group.

Christophe Troestler (UMONS)
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Existence of infinitely many solutions

Well known: infinitely many sign changing solutions when the problem is
invariant under an orthogonal symmetry group.

Theorem (A Castro '03)
If Q is a bounded region in RN that can be tiled by prisms congruent to

{(x1,...,xN):x,->0 fori=1,...,N,
XN < min{xj,a — x;} fori = 1,...,N—1}

with a > 0 arbitrarily small, then the problem —Au -+ u = |ulP~?u with NBC
on QQ has infinitely many sign-changing solutions.

Christophe Troestler (UMONS)
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Many positive solutions

Theorem (C. Gui, J. Wei, M. Winter '00)

For any smooth bounded domain Q4, p €]2,2*[, and any fixed K € Ny,
there always exists a boundary K-peaked positive solution to

—Au+u=|uP3u, inQ
P
(Po) {8yu =0, on 9.

with Q = R4, provided that R is large enough.

Peaks can also be inside 2 [M. Grossi, A. Pistoia, J. Wei '00] or both
inside 2 and on 92 [C. Gui, J. Wei '00].

Christophe Troestler (UMONS)
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p large: bifurcations from 1

Lemma

When p > 2 is increasing,
a bifurcation sequence start from 1 iff p crosses 1+ 4;;
this is actually a continuum if A; has odd muiltiplicity.

2 1+ 4 144 p

Christophe Troestler (UMONS)
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p large: transcritical radial bifurcations

Airad €igenvalues that possess a radial eigenfunction (simple in H:ad).
Proposition

On balls, two branches radial solutions in C>*(Q) of

—~Au+u=|uP?2u, inQ
(Pp) B
o,u=0, on 09).
start from each (p,u) = (1+ Ajrag, 1), i > 1. Locally, these branches form a

unique C'-curve. Moreover, for i large enough independent of the
measure of €, the bifurcation is transcritical.

u
|~
‘ /+ Ai’rad p

Christophe Troestler (UMONS)
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p large: transcritical radial bifurcations

Proof. Q2 = Bg. Using Crandall-Rabinowitz’ theorem, one has to show

b= —%/l,'(/l,'— 1 )f (,D‘zrad # 0.
Br

Given that radial eigenfunctions are given by constant spherical harmonics
(k =0, v=(N-2)/2), this amounts to

Vﬁi,rad
f t'J3(t)dt 0

f(_ZJ(r\/,u,ra/R) Nldr#0 e
0

where Ajrad = 1+ fijrad/R?. This is true for large i because

o 21/—1 (3/16)v—1/2
B (t)dt=————2— >0
jo‘ V(1) a2l (v+1/2) g

0

Thus b < 0. |

Christophe Troestler (UMONS)
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p large: transcritical radial bifurcations

Numerical computations indicate that
Z
Vz€]0,+o0], f tB3(H)dt>0,  v=(N-2)/2
0

and therefore that radial bifurcations are transcritical for all i.

061t N=2

0.5 N=3

0.4 .
0.3 .
0.2 N=4 N=5 .
0.1 f\ N=6 )
0.0 -y

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 © Z
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Shape of transcritical radial bifurcations

p- (1 +/li,rad)
b
where jrad(x) = IXI7d(\/Airad — 11X]). Thus
B Up(0)>1ifp<1+2jad
B Up(0)<1ifp>14Ajad

Up = 1+ ®irad O(p - (1 + /li,rad))

These facts remain true along the whole banches.

Christophe Troestler (UMONS)
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p large: positive transcritical radial bifurcations

Theorem (Crandall-Rabinowitz — extended)

Assume F(p,u) = 0,&(p, u). If (p,up) is the branch of nontrivial solutions
emanating from (p*,u*) and b # 0,

&(p. up) —&(p.u") = % (p—p*)*+0((p-p*)°).

In our case a = —1. Consequence: the energy along the right (resp. left)

branch is lower (resp. higher) than the one of the trivial solution.

higher energy

1+ rad

\ p

lower energy

1

Christophe Troestler (UMONS)
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p large: positive transcritical radial bifurcations

Corollary

The branches consist of positive functions.

SketcH: If it was not the case, there would be a point solution along the
branch with a double root, hence = 0. There is no bifurcation from 0. |

Christophe Troestler (UMONS)
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p large: positive transcritical radial bifurcations

Corollary
The branches consist of positive functions.

SketcH: If it was not the case, there would be a point solution along the
branch with a double root, hence = 0. There is no bifurcation from 0. |

Theorem

Radial bifurcations obtained for the C>*(2)-norm are unbounded and do
not intersect each other. Moreover, along bifurcations starting from

(14 Airag, 1), the solutions always possess the same number of
intersections with 1.

SketcH: The number of crossings with 1 stays constant because otherwise
a non-constant radial solution u s.t. u—1 has a double root would exists.
Since the branches do not intersect each other, Rabinowitz’s principle
says they must be undounded.

Christophe Troestler (UMONS)
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p large: multiplicity results (radial domains)

Theorem

Assume Q2 is a ball.
m In dimension 2, for any n € Ng, there exists p, > 2 such that, for any
p > pn, at least 2n—1 positive solutions exist

m In dimension > 3, for any 2 < p < 2* and n € N, at least 2n—1
positive solutions exist if the measure of the ball 2 is large enough.
In both cases, n of these solutions are bounded in L.

u

14+ Airad 1+ Ais1rad p

Christophe Troestler (UMONS)
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p large: degeneracy results (radial domains)

Conjecture
One can choose pp, = 1+ A raq and “large enough” as 1+ An raa(R) < p.

The conjecture is proved as soon as Vz €]0,+oo[, [ t'=J3(t)dt > 0, with
v € IN, is established.

Christophe Troestler (UMONS)
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p large: degeneracy results (radial domains)

Conjecture

One can choose pp, = 1+ A raq and “large enough” as 1+ An raa(R) < p.

The conjecture is proved as soon as Vz €]0,+oo[, [ t'=J3(t)dt > 0, with
v € IN, is established.

Theorem

On balls, there exists a degenerate positive radial solution for some p
provided that the measure of Q is large enough.

Christophe Troestler (UMONS)
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The super-critical case p > 2*

Christophe Troestler (UMONS)
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p=>2°

Theorem (Adimurthi, Yadava '91)
Let p = 2" and Q2 = Br. One consider the problem

—~Au+u=|uP?u, inQ
(Pp) B
o,u=20, on of2.

Numerics

If N >3 and 1+ 22 aq(R) < p, then (Pp) admits a positive solution

which is radially increasing.

If Ne{4,5,6} and p <1+ A2 ad(R), then ($,) admits a positive
solution which is radially decreasing.

If N = 3, there exists an R* > 0 such that for R € |0, R*[, (Pp) only

admits constant positive solutions.

Christophe Troestler (UMONS)
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p=>2

Theorem (X-J. Wang, '91)

When p = 2* and Q = R4 with R large enough, (P,) possesses at least
one non-constant positive solution.

Christophe Troestler (UMONS)
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p=>2°

Theorem (X-J. Wang, '91)

When p = 2* and Q = R4 with R large enough, (P,) possesses at least
one non-constant positive solution.

Theorem (E. Serra & P. Tilli, ’11)

Assume a € L'(]0, R|) is increasing, not constant and satisfies a > 0 in
10, R[, then for any p € ]2,+oo[, —~Au+ u = a(|x|)|ulP~2u with NBC
possesses a positive radially increasing solution.

Trick: work on the space of radially increasing functions.

Christophe Troestler (UMONS)
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k
p>2
Proposition

Assume (2 is a ball of radius R. If u is a radial solution of (Pp) such that
u(0) <1, then ||ull.~ < exp(1/2).

Christophe Troestler (UMONS)
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k
p>2
Proposition

Assume (2 is a ball of radius R. If u is a radial solution of (Pp) such that
u(0) <1, then ||ull.~ < exp(1/2).

Proor. In radial coordinates, the equation writes

7

N-1
—u —Tu'-i-u:u’H.

Multiplying by v/, we get

%h(r) = —#u’z(r) <0,
where P’ ) »
by 20 P P()
2 p 2
In particular, this means that h(r) < h(0) for any r.

Christophe Troestler (UMONS)
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Symmetry breaking 14+227? Multiplicity Numerics
k

p>2

ProoF (conT’d). The assumption u(0) < 1 implies

o) =200 o) 0 <

p 2
Thus

1
lull < (3

u= (p/2)1/(P—2)

Christophe Troestler (UMONS)
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p=>2°

Theorem

Assume Q2 is a ball. Then, for any n € Ny, there exists p, s.t., for any
p € [pn, +oo[, (Pp) has at least n positive radially symmetric solutions.

Christophe Troestler (UMONS)
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p=>2°

Theorem

Assume Q2 is a ball. Then, for any n € Ny, there exists p, s.t., for any
p € [pn, +oo[, (Pp) has at least n positive radially symmetric solutions.

SkeTcH: As we saw, radial bifurcations are transcritical and along the right
branch (starting with p > 1+ 2;aq) Up(0) < 1. Thus all u belonging to that
branch must satisfy ||ull .~ < exp(1/2). Since 1 is the only solution for

p ~ 2, the branch must exist for all p large. O

Christophe Troestler (UMONS)
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p=>2°

Theorem

Assume Q2 is a ball. Then, for any n € Ny, there exists p, s.t., for any
p € [pn, +oo[, (Pp) has at least n positive radially symmetric solutions.

SkeTcH: As we saw, radial bifurcations are transcritical and along the right
branch (starting with p > 1+ 2;aq) Up(0) < 1. Thus all u belonging to that
branch must satisfy ||ull .~ < exp(1/2). Since 1 is the only solution for

p ~ 2, the branch must exist for all p large. O

Conjecture

Pn =1+ An raq-

Christophe Troestler (UMONS)
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Some numerical computations

Christophe Troestler (UMONS)
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Radial ground state for p = 0.95 + A2,1ag < 2" 0N By

Using the Mountain Pass Algorithm in the space of radial functions:

T T
0 1 2 3 4 r=|x|

2° 14 25aa &(1) | minu maxu &(u)
o0 2.92 7.60 | 0447 2.05 745
6 3.26 50.58 | 0.130 4.05 34.85
4 3.65 280.58 | 0.016 13.31 66.39

Christophe Troestler (UMONS)
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Radial ground state for p = 1.1 4 Ao a9 < 2" 0N By

Using the Mountain Pass Algorithm in the space of radial functions with
initial functions x — 1+0.2|x|.

U Uz
11+ N 5+ |N=4
— L
1 +-=-=-=-=-=-=-=-=-=-=-- /KT
N=4 37
09 + 5 |
0.8 + 17
1 1 1 1
0 1 2 3 4 T 0

N 14+ 204 E(1) | minuy maxuy E(ur) | minug maxuz E(uz)
2 292 8.48 | 0.76 1.09 8.47 | 0.261 2.25 7.39
3
4

3.26 5430 | 0.85 1.03 5429 0.092 412 30.74
3.65 29463 |090 1.01 294.62 | 0.008 17.25 49.61

Christophe Troestler (UMONS)
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Bifurcation diagram N=4, R =4

u(0)
70+ - - -

60 T L4 : -: .
50 1 - S

40 T .. :
30 + K

20 — "
by g

2 3 i
1+ /12,rad

N
(_n 4
o]

Christophe Troestler (UMONS)
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Bifurcation diagram N=4, R =4

u(0)

00 - 4
607 . SN
50+ . o
40+ Lo
30+ % S
20 1 N
10 + {‘ |
14 O S

N
(_n 4
o]

2 3 i
1+ /12,rad

Christophe Troestler (UMONS)
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Bifurcation diagram N =4, R = 4 (contd)

Shape of the solutions for p = 3.5 < 1 4 A2 rad-

uz
5_
4_

I &(1) ~ 270.709
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Bifurcation diagram N =4, R = 4 (contd)

Shape of the solutions for p = 3.5 < 1 4 A2 rad-

Uz

5T &(1) ~ 270.709
T u(0)~1.213 = &~ 270.753
3 —+

2 —+
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Bifurcation diagram N =4, R = 4 (contd)

Shape of the solutions for p = 3.5 < 1 4 A2 rad-

&(1) ~ 270.709
u(0) ~1.213 = &~ 270.753
u(0) ~ 11.803 = & ~ 79.730
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Bifurcation diagram N =4, R = 4 (contd)

Shape of the solutions for p = 3.5 < 1 4 A2 rad-

Uz
1 &(1) ~ 270.709
u(0) ~1.213 = &~ 270.753
u(0) ~ 11.803 = & ~ 79.730
u(0) ~ 21.887 = & ~ 390.387

u(0) ~ 44.830 = & ~ 436.267

4
34
P
14
0

-1+

-2 +

Christophe Troestler (UMONS)
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Bifurcation diagram N=4, R =3

u(0)
70 T - .:
60 + ¢
50 + .

40 T ... R

30 .

20 + N

10 + /

1+ - - - ___\Hq'n_ = S

2 3 4 Is p

1 + /12,rad

Christophe Troestler (UMONS)
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Bifurcation diagram N=4, R =3

u(0)

30 + - |
20 1 \_/.:
10 + /
14 ,______\_ls-}m_ -

2 3 4 5 P
1+/12,rad

70| e
60y 1 .
50+ - o
401 [N

Christophe Troestler (UMONS)
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Bifurcation diagram N =4, R = 3 (contd)

Shape of the solutions for p = 3.7 < 2* < 1 4 A2 rad-

us
5 4

Al &(1) ~91.8273
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Bifurcation diagram N =4, R = 3 (contd)

Shape of the solutions for p = 3.7 < 2* < 1 4 A2 rad-

us

5 =+
&(1) ~91.8273

u(0) ~ 2.77189 = & ~ 95.7796

4__




p ~ 2: ground state solutions p ~ 2: positive solutions Symmetry breaking 14+ 22?7 Multiplicity Numerics

Bifurcation diagram N =4, R = 3 (contd)

Shape of the solutions for p = 3.7 < 2* < 1 4 A2 rad-

us
5 -
&(1) ~91.8273

u(0) ~ 2.77189 = & ~ 95.7796
u(0) ~ 15.1307 = & ~ 54.283

4
3
2
14
0

1+

-2 +
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Bifurcation diagram N =4, R = 3 (contd)

Shape of the solutions for p = 3.7 < 2* < 1 4 A2 rad-

us
5 -
&(1) ~91.8273

u(0) ~ 2.77189 = & ~ 95.7796
u(0) ~ 15.1307 = & ~ 54.283
u(0) ~37.412 = &~ 168.972

4
3
2
14
0

1+

-2 +

Christophe Troestler (UMONS)
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Bifurcation diagram N=4, R =2

1+ 12 =~ 8.59365

u(0)
70 +
60 +
50 +

ol \./ |

30 N

20 + S \

107 \:\

1 S 4 :
2 3 4 5 p

Christophe Troestler (UMONS)
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Bifurcation diagram N=4, R =2

1+ 12 =~ 8.59365

u(0)
70 +

60 + . - o
50 + ;o 4
40 '\/ .
30 A

20 1 .

107 \:\
IR e :
2 3 4

Christophe Troestler (UMONS)
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Bifurcation diagram N =4, R = 2 (cont'd)
Shape of the solutions for 2* < p =5 <1 4 A2 rag-

us
6 4
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Bifurcation diagram N =4, R = 2 (cont'd)
Shape of the solutions for 2* < p =5 <1 4 A2 rag-

us

4 u(0) ~ 2.86611
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Bifurcation diagram N =4, R = 2 (cont'd)

Shape of the solutions for 2* < p =5 <1 4 A2 rag-

u(0) ~ 2.86611
u(0) ~ 13.8393
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Bifurcation diagram N =4, R = 2 (cont'd)

Shape of the solutions for 2* < p =5 <1 4 A2 rag-

u(0) ~ 2.86611
u(0) ~ 13.8393
u(0) ~ 37.0332

Christophe Troestler (UMONS)
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Bifurcation diagram N=7, R =5

14 Ao rag = 3.95325

u(0)
210 1
190 +
170 +
150 1
130 T
110 +
90 +
70 1
50 +
30
19 1

2 3 4 5 p

e0 o ®
%00 o o
°

N

*

<.

e
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Bifurcation diagram N=7, R =4.9

1+ 1o~ 4.03379

u(0)
70 1
60 +
50 +
40
30 +
20
10 +

1+ ----- : .
2 3 4 5 p

N
*

7~

- - — - — — =

Christophe Troestler (UMONS)
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p ~ 2: positive solutions

Symmetry breaking 14+227? Multiplicity

Bifurcation diagram N=7, R =4.9

141, ~ 4.03379 . OU
u(0) " 2
70 . 10
60 + L 0 —
40 + \
30 + \
20 + 5
10 1 |
1+ =---. e e . .
2 3 4 5 p

Numerics

Christophe Troestler (UMONS)
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Bifurcation diagram N=7, R =4.8

141z ~4.11941
u(0)

70 +

60 +

50 +

40 +

30 t

20 t

10 1

1+ oo : :
2 3 4 5 P

N
*

-

e - - - — =

Christophe Troestler (UMONS)
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Bifurcation diagram N=7, R =4.8
u p=27<2"=28

14 1p ~ 4.11941 100
u(0) , o &(1) ~ 35956.2
0l | 2 &~ 53196.1
60 1 L ol
50 kX e e
wf N
30 1 |
20 + |
101 |
1 e w - -
2 3 4 5 F

Christophe Troestler (UMONS)
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Bifurcation diagram N=7, R =4.8

14 2o ~ 4.11941
u(0)

Christophe Troestler

70 T
60 +
50
40 +
30 +
20 +

10 1
1__

p ~ 2: positive solutions

Symmetry breaking

u

100
80
60
40
20

14+227? Multiplicity Numerics

p=27<2"=28

&(1) ~ 35956.2
&~ 53196.1
&~31588.4

T T T

2 3 4 [T

2

(UMONS)
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Bifurcation diagram N=7, R =4.8
u p=27<2"=28

1422 ~ 4.11941 100
u(0) ) o &(1) ~ 35956.2
201 2 40 &~ 53196.1
A
1 L 1 2 3 4 [T
50 !
40 + |
30 f
20 + |
101 |
1 e — > Y ‘
2 3 4 5 P

It is known [Adimurthi & S. L. Yadava '97] that if N> 7 and R is small
enough, positive solutions for p = 2* must be constant.

Christophe Troestler (UMONS)
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Thank you for your attention.

Christophe Troestler (UMONS)



Krasnoselskii-Boehme-Marino theorem (1/2)

Theorem (Krasnoselskii-Boehme-Marino)

LetF:IxH— K:(t,u) — F(t,u) be a continuous function, where | CR is
an interval, and H and K are Banach spaces, such that F(21,0) = 0 for any
Ael.

m IfFis of class C' in a neighborhood of (1,0) and (1,0) is a bifurcation
point of F then d,F(4,0) is not invertible.

m Let assume that for each (1,u) € Ix H,
F(A,u)=L(Au)=N(A,u), L(A,-)=A1-T and N(A,u)=o(||ull),

with T linear, T and N compact, and the last equality being uniform on
each compact set of A.

If A, is an eigenvalue of T with odd multiplicity, then (A.,0) is a global
bifurcation point for F(t,u) = 0.

Christophe Troestler (UMONS)



Krasnoselskii-Boehme-Marino theorem (2/2)

Theorem (Krasnoselskii-Boehme-Marino (cont’d))

m Let assume that H is a Hilbert space and that for each (1,u) € IxR,
F(4,u) =V h(a,u) where

h(a,u) = J(L(A,u),u)-g(a,u),
L(A,-)=21-T, and Vg(a,u)=o(|lul),

with T linear and symmetric, g(A,-) € C? for all A, and the last equality
being uniform on each compact set of A.

If A, is an eigenvalue of T with finite multiplicity and h(4,-) verifies the
Palais-Smale condition for each A, then (A.,0) is a bifurcation point for
F(t,u)=0.

Christophe Troestler (UMONS)
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